1
|
Chen B, He H, Wang X, Wu S, Wang Q, Zhang J, Qiao Y, Liu H. Research Progress on Shrimp Allergens and Allergenicity Reduction Methods. Foods 2025; 14:895. [PMID: 40077598 PMCID: PMC11899471 DOI: 10.3390/foods14050895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Shrimp are highly favored by consumers for their delicious taste and rich nutritional value. However, reports of allergic reactions caused by shrimp and its derivatives have been increasing, significantly impacting consumer health and posing a growing global food safety concern. This article introduces the structure and biochemical characteristics of major allergenic proteins in shrimp, including tropomyosin (TM), arginine kinase, sarcoplasmic calcium-binding protein, myosin light chain, troponin C, and hemocyanin. Currently, there is no effective treatment for shrimp allergies, and prevention is mainly achieved by avoiding consumption. The study of shrimp allergen sensitization reduction technology is of great significance to the development of hypoallergenic or desensitized products. The article provides a detailed overview of the effects of common processing techniques, including physical, chemical, biological, and combined methods, on the allergenicity of shrimp allergens; for instance, the binding rate to immunoglobulin E (IgE) was reduced by 73.59% after treating TM with high pressure (500 MPa) at 55 °C for 10 min and the recognition rate of TM to IgE decreased by 89.4% on average after treating TM with pepsin (30 μg/mL, pH 2) for 2 h. These techniques provide references for the development of hypoallergenic aquatic products or desensitized foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongjin Qiao
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.H.); (X.W.); (S.W.); (Q.W.); (J.Z.)
| | - Hongru Liu
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.H.); (X.W.); (S.W.); (Q.W.); (J.Z.)
| |
Collapse
|
2
|
Delfino D, Prandi B, Calcinai L, Ridolo E, Dellafiora L, Pedroni L, Nicoletta F, Cavazzini D, Tedeschi T, Folli C. Molecular Characterization of the Allergenic Arginine Kinase from the Edible Insect Hermetia illucens (Black Soldier Fly). Mol Nutr Food Res 2024; 68:e2300911. [PMID: 38629315 DOI: 10.1002/mnfr.202300911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Indexed: 05/12/2024]
Abstract
SCOPE Arginine kinase (AK) is an important enzyme for energy metabolism of invertebrate cells by participating in the maintenance of constant levels of ATP. However, AK is also recognized as a major allergen in insects and crustaceans capable of cross-reactivity with sera of patients sensitized to orthologous proteins. In the perspective of introducing insects or their derivatives in the human diet in Western world, it is of primary importance to evaluate possible risks for allergic consumers. METHODS AND RESULTS This work reports the identification and characterization of AK from Hermetia illucens commonly known as the black soldier fly, a promising insect for human consumption. To evaluate allergenicity of AK from H. illucens, putative linear and conformational epitopes are identified by bioinformatics analyses, and Dot-Blot assays are carried out by using sera of patients allergic to shrimp or mites to validate the cross-reactivity. Gastrointestinal digestion reduces significantly the linear epitopes resulting in lower allergenicity, while the secondary structure is altered at increasing temperatures supporting the possible loss or reduction of conformational epitopes. CONCLUSION The results indicate that the possible allergenicity of AK should be taken in consideration when dealing with novel foods containing H. illucens or its derivatives.
Collapse
Affiliation(s)
- Danila Delfino
- Department of Food and Drug, University of Parma, Parma, 43124, Italy
| | - Barbara Prandi
- Department of Food and Drug, University of Parma, Parma, 43124, Italy
| | - Luisa Calcinai
- Department of Food and Drug, University of Parma, Parma, 43124, Italy
| | - Erminia Ridolo
- Allergy and Clinical Immunology, Medicine and Surgery Department, University of Parma, Parma, 43126, Italy
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma, 43124, Italy
| | - Lorenzo Pedroni
- Department of Food and Drug, University of Parma, Parma, 43124, Italy
| | - Francesca Nicoletta
- Allergy and Clinical Immunology, Medicine and Surgery Department, University of Parma, Parma, 43126, Italy
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Tullia Tedeschi
- Department of Food and Drug, University of Parma, Parma, 43124, Italy
| | - Claudia Folli
- Department of Food and Drug, University of Parma, Parma, 43124, Italy
| |
Collapse
|
3
|
Dlamini W, Nunu WN, Ndlovu V, Nleya N, Mudonhi N, Sibula M. Molecular detection of Imbrasia belina proteins associated with allergic reactions on harvesters and consumers from selected districts in Matabeleland: a comparative study. Mol Biol Rep 2023; 50:8025-8034. [PMID: 37540454 DOI: 10.1007/s11033-023-08678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Harvesting and consuming insects (entomophagy), particularly Imbrasia belina is widespread in developing countries like Zimbabwe. Due to their extraordinary nutritional content, tastiness, ease of processing and storage, Imbrasia belina has become a delicacy, reachable nutritious complement, and money source for some people in Zimbabwean communities. However, some harvesters and consumers have become allergic to the Imbrasia belina, popularly known as Mopani worms. This has been attributed or associated with the changes in the genetic structure of Imbrasia belina. Therefore, this research sought to compare the presence of the genes associated with allergic reactions to mopane worms from Gwanda and Umguza districts in Zimbabwe. METHODS A lab-based observational study was conducted on collected Imbrasia belina samples from both districts. Fifteen samples of mopane worms were collected from each district, and DNA extraction was performed using DNeasy blood and tissue kit. The DNA extraction products were then amplified using a Polymerase chain reaction. The polymerase chain reaction products were run on agarose gel electrophoresis to determine the presence of the target genes. RESULTS Three of the five samples from Gwanda district were positive for the tropomyosin gene, whereas two samples from Umguza district were positive. All the samples from the two districts were negative for arginine kinase genes. CONCLUSION The study results highlighted that allergic reactions to Imbrasia belina reported in Gwanda district are associated with the presence of the tropomyosin gene, which has undergone polymorphism. Responsible authorities such as Gwanda local authority should develop bylaws that govern Imbrasia belina harvesting in the district.
Collapse
Affiliation(s)
- Witness Dlamini
- Department of Environmental Science, Faculty of Environmental Science, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Wilfred Njabulo Nunu
- Office of the Executive Dean, Faculty of Environmental Science, National University of Science and Technology, Corner Gwanda Road and Cecil Avenue Ascot, P O Box AC 939, Bulawayo, Zimbabwe.
| | - Vuyelwa Ndlovu
- Department of Environmental Health, Faculty of Environmental Science, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Nancy Nleya
- Department of Applied Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Nicholas Mudonhi
- Department of Environmental Health, Faculty of Environmental Science, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Madeline Sibula
- Department of Applied Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe
| |
Collapse
|
4
|
Miraglia del Giudice M, Dinardo G, Klain A, D’Addio E, Bencivenga CL, Decimo F, Indolfi C. Anaphylaxis after Shrimp Intake in a European Pediatric Population: Role of Molecular Diagnostics and Implications for Novel Foods. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1583. [PMID: 37892246 PMCID: PMC10605710 DOI: 10.3390/children10101583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023]
Abstract
(1) Background: Tropomyosin is a major cause of shellfish allergy and anaphylaxis triggered by food. It acts as a pan-allergen, inducing cross-reactivity in insects, dust mites, crustaceans, and mollusks. Our study investigates anaphylaxis in children with asthma or atopic diseases after consuming tropomyosin-containing food. (2) Methods: We analyzed the molecular sensitization profiles of pediatric patients at the University of Campania 'Luigi Vanvitelli' from 2017 to 2021, with conditions such as allergic rhinitis, asthma, atopic dermatitis, urticaria, and food allergies. (3) Results: Out of a total of 253 patients aged 1 to 18 years (167 males, 86 females), 21 patients (8.3%) experienced anaphylaxis after shrimp ingestion. All 21 (100%) were sensitized to various tropomyosins: Pen m 1 (100%), Der p 10 (90.5%), Ani s 3 (81%), and Bla g 7 (76.2%). Clinical symptoms included allergic asthma (76.2%), atopic dermatitis (61.9%), urticaria (38.1%), and allergic rhinitis (38.1%). (4) Conclusions: Crustaceans and mollusks are major allergens in Italy and Europe, requiring mandatory declaration on food labels. Italian pediatric patients demonstrated significant anaphylaxis after consuming shrimp, often accompanied by multiple atopic disorders such as asthma, rhinitis, and atopic dermatitis. Considering the cross-reactivity of tropomyosin among various invertebrates and the emergence of 'novel foods' containing insect flours in Europe, there is ongoing debate about introducing precautionary labeling for these products.
Collapse
Affiliation(s)
| | - Giulio Dinardo
- Department of Woman, Child and of General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.M.d.G.); (A.K.); (E.D.); (C.L.B.); (F.D.); (C.I.)
| | | | | | | | | | | |
Collapse
|
5
|
Giannetti A, Pession A, Bettini I, Ricci G, Giannì G, Caffarelli C. IgE Mediated Shellfish Allergy in Children-A Review. Nutrients 2023; 15:3112. [PMID: 37513530 PMCID: PMC10386692 DOI: 10.3390/nu15143112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Shellfish is a leading cause of food allergy and anaphylaxis worldwide. Recent advances in molecular characterization have led to a better understanding of the allergen profile. High sequence homology between shellfish species and between shellfish and house dust mites leads to a high serological cross-reactivity, which does not accurately correlate with clinical cross-reactions. Clinical manifestations are immediate and the predominance of perioral symptoms is a typical feature of shellfish allergy. Diagnosis, as for other food allergies, is based on SPTs and specific IgE, while the gold standard is DBPCFC. Cross-reactivity between shellfish is common and therefore, it is mandatory to avoid all shellfish. New immunotherapeutic strategies based on hypoallergens and other innovative approaches represent the new frontiers for desensitization.
Collapse
Affiliation(s)
- Arianna Giannetti
- Paediatrics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.G.); (A.P.)
| | - Andrea Pession
- Paediatrics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.G.); (A.P.)
| | - Irene Bettini
- Paediatrics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.G.); (A.P.)
| | - Giampaolo Ricci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy;
| | - Giuliana Giannì
- Clinica Pediatrica, Azienda Ospedaliero-Universitaria, Medicine and Surgery Department, Università di Parma, 43126 Parma, Italy;
| | - Carlo Caffarelli
- Clinica Pediatrica, Azienda Ospedaliero-Universitaria, Medicine and Surgery Department, Università di Parma, 43126 Parma, Italy;
| |
Collapse
|
6
|
Kamath SD, Bublin M, Kitamura K, Matsui T, Ito K, Lopata AL. Cross-reactive epitopes and their role in food allergy. J Allergy Clin Immunol 2023; 151:1178-1190. [PMID: 36932025 DOI: 10.1016/j.jaci.2022.12.827] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 03/17/2023]
Abstract
Allergenic cross-reactivity among food allergens complicates the diagnosis and management of food allergy. This can result in many patients being sensitized (having allergen-specific IgE) to foods without exhibiting clinical reactivity. Some food groups such as shellfish, fish, tree nuts, and peanuts have very high rates of cross-reactivity. In contrast, relatively low rates are noted for grains and milk, whereas many other food families have variable rates of cross-reactivity or are not well studied. Although classical cross-reactive carbohydrate determinants are clinically not relevant, α-Gal in red meat through tick bites can lead to severe reactions. Multiple sensitizations to tree nuts complicate the diagnosis and management of patients allergic to peanut and tree nut. This review discusses cross-reactive allergens and cross-reactive carbohydrate determinants in the major food groups, and where available, describes their B-cell and T-cell epitopes. The clinical relevance of these cross-reactive B-cell and T-cell epitopes is highlighted and their possible impact on allergen-specific immunotherapy for food allergy is discussed.
Collapse
Affiliation(s)
- Sandip D Kamath
- Division of Medical Biotechnology, Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia.
| | - Merima Bublin
- Division of Medical Biotechnology, Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Katsumasa Kitamura
- Department of Allergy, Allergy and Immunology Center, Aichi Children's Health and Medical CenterAichi, Japan
| | - Teruaki Matsui
- Department of Allergy, Allergy and Immunology Center, Aichi Children's Health and Medical CenterAichi, Japan
| | - Komei Ito
- Department of Allergy, Allergy and Immunology Center, Aichi Children's Health and Medical CenterAichi, Japan; Comprehensive Pediatric Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Andreas L Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia; Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia; Tropical Futures Institute, James Cook University, Singapore; Centre for Food and Allergy Research, Murdoch Childrens Research Institute, Melbourne, Australia.
| |
Collapse
|
7
|
Zhang Z, Li XM, Wang H, Lin H, Xiao H, Li Z. Seafood allergy: Allergen, epitope mapping and immunotherapy strategy. Crit Rev Food Sci Nutr 2023; 63:1314-1338. [PMID: 36825451 DOI: 10.1080/10408398.2023.2181755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Seafoods are fashionable delicacies with high nutritional values and culinary properties, while seafood belongs to worldwide common food allergens. In recent years, many seafood allergens have been identified, while the diversity of various seafood species give a great challenge in identifying and characterizing seafood allergens, mapping IgE-binding epitopes and allergen immunotherapy development, which are critical for allergy diagnostics and immunotherapy treatments. This paper reviewed the recent progress on seafood (fish, crustacean, and mollusk) allergens, IgE-binding epitopes and allergen immunotherapy for seafood allergy. In recent years, many newly identified seafood allergens were reported, this work concluded the current situation of seafood allergen identification and designation by the World Health Organization (WHO)/International Union of Immunological Societies (IUIS) Allergen Nomenclature Sub-Committee. Moreover, this review represented the recent advances in identifying the IgE-binding epitopes of seafood allergens, which were helpful to the diagnosis, prevention and treatment for seafood allergy. Furthermore, the allergen immunotherapy could alleviate seafood allergy and provide promising approaches for seafood allergy treatment. This review represents the recent advances and future outlook on seafood allergen identification, IgE-binding epitope mapping and allergen immunotherapy strategies for seafood allergy prevention and treatment.
Collapse
Affiliation(s)
- Ziye Zhang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology and Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Hao Wang
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zhenxing Li
- Laboratory of Food Safety, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
8
|
Wai CYY, Leung NYH, Leung ASY, Ngai SM, Pacharn P, Yau YS, Rosa Duque JSD, Kwan M, Jirapongsananuruk O, Chan WH, Chua G, Lee QU, Piboonpocanun S, Ho PK, Wong JC, Li S, Xu KJY, Wong GWK, Chu K, Leung PSC, Vichyanond P, Leung TF. Comprehending the allergen repertoire of shrimp for precision molecular diagnosis of shrimp allergy. Allergy 2022; 77:3041-3051. [PMID: 35567339 PMCID: PMC9795902 DOI: 10.1111/all.15370] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Clinical management of shrimp allergy is hampered by the lack of accurate tests. Molecular diagnosis has been shown to more accurately reflect the clinical reactivity but the full spectrum of shrimp allergens and their clinical relevance are yet to be established. We therefore sought to comprehend the allergen repertoire of shrimp, investigate and compare the sensitization pattern and diagnostic value of the allergens in allergic subjects of two distinct populations. METHODS Sera were collected from 85 subjects with challenge-proven or doctor-diagnosed shrimp allergy in Hong Kong and Thailand. The IgE-binding proteins of Penaeus monodon were probed by Western blotting and identified by mass spectrometry. Recombinant shrimp allergens were synthesized and analyzed for IgE sensitization by ELISA. RESULTS Ten IgE-binding proteins were identified, and a comprehensive panel of 11 recombinant shrimp allergens was generated. The major shrimp allergens among Hong Kong subjects were troponin C (Pen m 6) and glycogen phosphorylase (Pen m 14, 47.1%), tropomyosin (Pen m 1, 41.2%) and sarcoplasmic-calcium binding protein (Pen m 4, 35.3%), while those among Thai subjects were Pen m 1 (68.8%), Pen m 6 (50.0%) and fatty acid-binding protein (Pen m 13, 37.5%). Component-based tests yielded significantly higher area under curve values (0.77-0.96) than shrimp extract-IgE test (0.70-0.75). Yet the best component test differed between populations; Pen m 1-IgE test added diagnostic value only in the Thai cohort, whereas sensitizations to other components were better predictors of shrimp allergy in Hong Kong patients. CONCLUSION Pen m 14 was identified as a novel shrimp allergen predictive of challenge outcome. Molecular diagnosis better predicts shrimp allergy than conventional tests, but the relevant component is population dependent.
Collapse
Affiliation(s)
- Christine Y. Y. Wai
- Department of Paediatrics, Prince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Nicki Y. H. Leung
- Department of Paediatrics, Prince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Agnes S. Y. Leung
- Department of Paediatrics, Prince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Sai Ming Ngai
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongHong KongChina,School of Life SciencesThe Chinese University of Hong KongHong KongChina
| | - Punchama Pacharn
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of MedicineSiriraj Hospital, Mahidol UniversityBangkokThailand
| | - Yat Sun Yau
- Department of PaediatricsQueen Elizabeth HospitalHong KongChina
| | - Jaime Sou Da Rosa Duque
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Mike Y. W. Kwan
- Department of Paediatrics and Adolescent MedicinePrincess Margaret Hospital and Yan Chai HospitalHong KongChina
| | - Orathai Jirapongsananuruk
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of MedicineSiriraj Hospital, Mahidol UniversityBangkokThailand
| | - Wai Hung Chan
- Department of PaediatricsQueen Elizabeth HospitalHong KongChina
| | - Gilbert T. Chua
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Qun Ui Lee
- Department of Paediatrics and Adolescent MedicinePrincess Margaret Hospital and Yan Chai HospitalHong KongChina
| | | | - Po Ki Ho
- Department of PaediatricsQueen Elizabeth HospitalHong KongChina
| | - Joshua S. C. Wong
- Department of Paediatrics and Adolescent MedicinePrincess Margaret Hospital and Yan Chai HospitalHong KongChina
| | - Shanshan Li
- School of Life SciencesThe Chinese University of Hong KongHong KongChina
| | - Kary J. Y. Xu
- Department of Paediatrics, Prince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Gary W. K. Wong
- Department of Paediatrics, Prince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Ka Hou Chu
- School of Life SciencesThe Chinese University of Hong KongHong KongChina
| | - Patrick S. C. Leung
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Pakit Vichyanond
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of MedicineSiriraj Hospital, Mahidol UniversityBangkokThailand,Samitivej Allergy InstituteSamitivej Thonburi HospitalBangkokThailand
| | - Ting Fan Leung
- Department of Paediatrics, Prince of Wales HospitalThe Chinese University of Hong KongHong KongChina,Hong Kong Hub of Paediatric ExcellenceThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
9
|
Dong X, Raghavan V. Recent advances of selected novel processing techniques on shrimp allergenicity: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Múnera M, Martínez D, Wortmann J, Zakzuk J, Keller W, Caraballo L, Puerta L. Structural and allergenic properties of the fatty acid binding protein from shrimp Litopenaeus vannamei. Allergy 2022; 77:1534-1544. [PMID: 34695231 DOI: 10.1111/all.15154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 04/12/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The shrimp Litopenaeus vannamei is an important source of food allergens but its allergenic repertoire is poorly characterized. Cross-reactivity between crustacean and mites has been reported, with tropomyosin, the most relevant allergen involved. The aim of this study was to investigate the structural and immunological properties of a recombinant Fatty Acid Binding Protein (FABP) family from L. vannamei (LvFABP). METHODS ELISA, skin prick test (SPT) and basophil activation assays were performed to determine IgE reactivity and allergenic activity of LvFABP. LC-MS/MS and Circular Dichroism experiments were done for structural analysis. B-cell epitope mapping with overlapping peptides, and cross-inhibition studies using human sera were done to identify antigenic regions and cross-reactivity. RESULTS The recombinant LvFABP bound serum IgE from 27% of 36 shrimp allergic patients and showed allergenic activity when tested for basophil activation and SPT in a selected number of them. CD-spectroscopy of LvFABP revealed that the protein is folded with a secondary structure composed of mainly β-strands and a smaller fraction of α helices. This is consistent with molecular modelling results, which exhibit a typical β barrel fold with two α-helices and ten β-strands. Epitope mapping identified two IgE-binding antigenic regions and inhibition assays found high cross-reactivity between LvFABP and Blo t 13, mediated by the antigenic region involving amino acids 54 to 72. CONCLUSIONS Our results show that LvFABP is a shrimp allergen that cross reacts with the house dust mite allergen Blo t 13 and has allergenic activity, which suggest that it could be clinically relevant in case of shellfish allergy. This new allergen, named Lit v 13, will also help to understand basic mechanisms of sensitization to shrimp.
Collapse
Affiliation(s)
- Marlon Múnera
- Institute for Immunological Research University of Cartagena Cartagena Colombia
| | - Dalgys Martínez
- Institute for Immunological Research University of Cartagena Cartagena Colombia
| | - Judith Wortmann
- Institute of Molecular Biosciences, BioTechMed Graz University of Graz Graz Austria
| | - Josefina Zakzuk
- Institute for Immunological Research University of Cartagena Cartagena Colombia
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz University of Graz Graz Austria
| | - Luis Caraballo
- Institute for Immunological Research University of Cartagena Cartagena Colombia
| | - Leonardo Puerta
- Institute for Immunological Research University of Cartagena Cartagena Colombia
| |
Collapse
|
11
|
Lamara Mahammed L, Belaid B, Berkani LM, Merah F, Rahali SY, Ait Kaci A, Berkane I, Sayah W, Allam I, Djidjik R. Shrimp sensitization in house dust mite algerian allergic patients: A single center experience. World Allergy Organ J 2022; 15:100642. [PMID: 35432714 PMCID: PMC8988002 DOI: 10.1016/j.waojou.2022.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/19/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
Background Cross-reactivity between shrimp and house dust mite (HDM) proteins has been widely documented. However, a significant geographical variability in sensitization patterns and cross-reactive allergens has been reported which may impact the diagnosis and management of shrimp allergy among HDM-shrimp co-sensitized patients. This study aimed to investigate the prevalence of shrimp and tropomyosin sensitization among HDM-allergic patients in order to understand the local epidemiology to inform the development of targeted diagnostic and therapeutic tools. Methods Four hundred forty-six (446) HDM-allergic patients and 126 atopic controls were screened for shrimp-specific IgE using the IMMULITE 2000 XPI® System. HDM-shrimp sensitized subjected were also tested for IgE tropomyosin (nPen m 1) and thoroughly interviewed about their shellfish consumption habits. Tropomyosin sensitized patients were subjected to further analysis including measurement of IgE specific to squid and crab. Results The prevalence of shrimp sensitization in the HDM-allergic population was 20.4% vs 0% in the control group. Of them 63.7% were clinically allergic to shrimp, while 9 cases had no history of allergic reaction to this food and 24 patients reported not having consumed shrimp before. Besides, 72.5% of the HDM-shrimp sensitized subjects had tropomyosin-specific IgE with a positivity rate of 82.8% among shrimp-allergic patients. Among tropomyosin reactors, 95.5% were sensitized to crab and 89.5% to squid, none of them had previously ingested neither crab nor squid. Nevertheless, one-third of HDM-shrimp sensitized patients who never consumed shrimp before did not react to tropomyosin. Conclusions Shrimp allergy seems to be strictly dependent on HDM sensitization, at least in this geographical area. Therefore, HDM allergic patients should be systematically screened for shrimp sensitization and asked about the consumption of shellfish. Tropomyosin is a major and clinically relevant shrimp allergen that accounts for shellfish-HDM cross-reactivity. However, other components could be involved.
Collapse
|
12
|
Lv L, Ahmed I, Qu X, Ju G, Yang N, Guo Y, Li Z. Effect of the structure and potential allergenicity of glycated tropomyosin, the shrimp allergen. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liangtao Lv
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Ishfaq Ahmed
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Xin Qu
- Qingdao Municipal Center for Disease Control and Prevention 175 Shandong Road, Shibei District Qingdao Shandong Province 266033 China
| | - Guangxiu Ju
- Qingdao Municipal Center for Disease Control and Prevention 175 Shandong Road, Shibei District Qingdao Shandong Province 266033 China
| | - Ni Yang
- General Surgery Ward 1 Qingdao Eighth People's Hospital 84 Fengshan Road, Licang District Qingdao Shandong Province 266100 China
| | - Yuman Guo
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Zhenxing Li
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| |
Collapse
|
13
|
Yu C, Ding X, Gao X, Lin H, Ullah Khan M, Lin H, Dang X, Li Z. Immunological Cross-Reactivity Involving Mollusc Species and Mite-Mollusc and Cross-Reactive Allergen PM Are Risk Factors of Mollusc Allergy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:360-372. [PMID: 34978452 DOI: 10.1021/acs.jafc.1c05421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine molluscs are seafood consumed worldwide and could cause food allergies, while investigation on their sensitizing components and cross-reactivity seems to be rare. Furthermore, allergy to mites may result in anaphylaxis in mollusc-allergic individuals owing to their cross-reactivity. The aim of the study was to identify cross-reactive allergens and investigate the cross-reactivity between different mollusc groups and mite-mollusc. The extracted mollusc and dust mite proteins were separated by SDS-PAGE, and IgE-binding components were recognized by immunoblotting with sera from patients sensitized to mollusc and mite. Cross-reactivity of different mollusc groups and mite-mollusc was assessed using ELISA and inhibition ELISA. The results of the immune detection, ELISA, and inhibition ELISA indicated that different mollusc groups and mite-mollusc showed varying degrees of cross-reactivity. The most frequently recognized cross-reactive protein was paramyosin from different mollusc groups and dust mite, while cross-reactive allergen paramyosin in the mite extract was identified and evaluated by MS and Allermatch, respectively. Inhibition ELISA studies also revealed that paramyosin played an important role in molluscan and mite-molluscan cross-reactivity. These findings contribute to a better understanding of the cross-reactivity involving mollusc species and mite-mollusc, which can be used to assist in the diagnosis and treatment of mite- and mollusc-allergic disorders.
Collapse
Affiliation(s)
- Chuang Yu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Xue Ding
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Xiang Gao
- Department of Allergy, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong Province 266003, P. R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Hang Lin
- Department of Allergy, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong Province 266003, P. R. China
| | - Xuewen Dang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| |
Collapse
|
14
|
Akimoto S, Yokooji T, Ogino R, Chinuki Y, Taogoshi T, Adachi A, Morita E, Matsuo H. Identification of allergens for food-dependent exercise-induced anaphylaxis to shrimp. Sci Rep 2021; 11:5400. [PMID: 33686124 PMCID: PMC7940642 DOI: 10.1038/s41598-021-84752-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/22/2021] [Indexed: 11/10/2022] Open
Abstract
Shrimp is a causative food that elicits food-dependent exercise-induced anaphylaxis (FDEIA). In this study, we sought to identify IgE-binding allergens in patients with shrimp-FDEIA. Sera were obtained from eight patients with shrimp-FDEIA and two healthy control subjects. Proteins were extracted from four shrimp species by homogenization in Tris buffer. Immunoblot analysis revealed that IgE from patient sera bound strongly to a 70-kDa and a 43-kDa protein in a preparation of Tris-soluble extracts from Litopenaeus vannamei. Mass spectrometry identified the 70-kDa and 43-kDa proteins as a P75 homologue and fructose 1,6-bisphosphate aldolase (FBPA), respectively. To confirm that the putative shrimp allergens were specifically recognized by serum IgE from shrimp-FDEIA patients, the two proteins were purified by ammonium sulfate precipitation followed by reversed-phase HPLC and/or anion-exchange hydrophobic interaction chromatography and then subjected to immunoblot analysis. Purified P75 homologue and FBPA were positively bound by serum IgE from one and three, respectively, of the eight patients with shrimp-FDEIA, but not by sera from control subjects. Thus, P75 homologue and FBPA are identified as IgE-binding allergens for shrimp-FDEIA. These findings could be useful for the development of diagnostic tools and desensitization therapy for shrimp-FDEIA patients.
Collapse
Affiliation(s)
- Shiori Akimoto
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tomoharu Yokooji
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan. .,Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Ryohei Ogino
- Department of Dermatology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yuko Chinuki
- Department of Dermatology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Takanori Taogoshi
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Atsuko Adachi
- Department of Dermatology, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Japan
| | - Eishin Morita
- Department of Dermatology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroaki Matsuo
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
15
|
Karnaneedi S, Huerlimann R, Johnston EB, Nugraha R, Ruethers T, Taki AC, Kamath SD, Wade NM, Jerry DR, Lopata AL. Novel Allergen Discovery through Comprehensive De Novo Transcriptomic Analyses of Five Shrimp Species. Int J Mol Sci 2020; 22:E32. [PMID: 33375120 PMCID: PMC7792927 DOI: 10.3390/ijms22010032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
Shellfish allergy affects 2% of the world's population and persists for life in most patients. The diagnosis of shellfish allergy, in particular shrimp, is challenging due to the similarity of allergenic proteins from other invertebrates. Despite the clinical importance of immunological cross-reactivity among shellfish species and between allergenic invertebrates such as dust mites, the underlying molecular basis is not well understood. Here we mine the complete transcriptome of five frequently consumed shrimp species to identify and compare allergens with all known allergen sources. The transcriptomes were assembled de novo, using Trinity, from raw RNA-Seq data of the whiteleg shrimp (Litopenaeus vannamei), black tiger shrimp (Penaeus monodon), banana shrimp (Fenneropenaeus merguiensis), king shrimp (Melicertus latisulcatus), and endeavour shrimp (Metapenaeus endeavouri). BLAST searching using the two major allergen databases, WHO/IUIS Allergen Nomenclature and AllergenOnline, successfully identified all seven known crustacean allergens. The analyses revealed up to 39 unreported allergens in the different shrimp species, including heat shock protein (HSP), alpha-tubulin, chymotrypsin, cyclophilin, beta-enolase, aldolase A, and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Multiple sequence alignment (Clustal Omega) demonstrated high homology with allergens from other invertebrates including mites and cockroaches. This first transcriptomic analyses of allergens in a major food source provides a valuable resource for investigating shellfish allergens, comparing invertebrate allergens and future development of improved diagnostics for food allergy.
Collapse
Affiliation(s)
- Shaymaviswanathan Karnaneedi
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Roger Huerlimann
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Elecia B. Johnston
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Department of Aquatic Product Technology, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Thimo Ruethers
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Aya C. Taki
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Sandip D. Kamath
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Nicholas M. Wade
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- CSIRO Agriculture and Food, Aquaculture Program, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Dean R. Jerry
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Tropical Futures Institute, James Cook University, 149 Sims Drive, Singapore 387380, Singapore
| | - Andreas L. Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
16
|
Lv L, Qu X, Yang N, Liu Z, Wu X. Changes in structure and allergenicity of shrimp tropomyosin by dietary polyphenols treatment. Food Res Int 2020; 140:109997. [PMID: 33648231 DOI: 10.1016/j.foodres.2020.109997] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 11/15/2022]
Abstract
Here, the potential allergenicity of shrimp tropomyosin (TM) after conjugation with chlorogenic acid (CA) and (-)-epigallo-catechin 3-gallate (EGCG) was assessed. Conformational structures of TM-polyphenol complexes were detected using SDS-PAGE, circular dichroism (CD), and fluorescence. Potential allergenicity was assessed by immunological methods, a rat basophil leukemia cell model (RBL-2H3), and in vivo assays. Indirect ELISA showed that TM-polyphenol complexes caused a conformational change to TM structure, with decreased IgG/IgE binding capacity significantly fewer inflammatory mediators were released with EGCG-TM and CA-TM in a mediator-releasing RBL-2H3 cell line. Mice model showed low allergenicity to serum levels of TM-specific antibody and T-cell cytokine production. EGCG-TM and CA-TM might reduce the potential allergenicity of shrimp TM, which could be used to produce hypoallergenic food in the food industry.
Collapse
Affiliation(s)
- Liangtao Lv
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, China; School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, China.
| | - Xin Qu
- Qingdao Municipal Center for Disease Control and Prevention, 175 Shandong Road, Shibei District, Qingdao, Shandong Province 266033, China
| | - Ni Yang
- General Surgery Ward 1, Qingdao Eighth People's Hospital, 84 Fengshan Road, Licang District, Qingdao, Shandong Province 266100, China
| | - Zhigang Liu
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, China; School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, China.
| |
Collapse
|
17
|
Expression and epitope identification of myosin light chain isoform 1, an allergen in Procambarus clarkii. Food Chem 2020; 317:126422. [DOI: 10.1016/j.foodchem.2020.126422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/09/2020] [Accepted: 02/15/2020] [Indexed: 12/17/2022]
|
18
|
Han TJ, Liu M, Huan F, Li MS, Xia F, Chen YY, Chen GX, Cao MJ, Liu GM. Identification and Cross-reactivity Analysis of Sarcoplasmic-Calcium-Binding Protein: A Novel Allergen in Crassostrea angulata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5221-5231. [PMID: 32298098 DOI: 10.1021/acs.jafc.0c01543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oysters are an important shellfish group known to cause food allergy; however, knowledge of their sensitization components and cross-reactivity is limited. This study aimed to identify a novel allergen in Crassostrea angulata and investigate its cross-reactivity. To this end, a 20 kDa protein was purified from oyster and confirmed to be a sarcoplasmic-calcium-binding protein (SCP) by LC-MS/MS. A 537 bp open reading frame was obtained from oyster SCP total RNA, which encoded 179 amino acids, and was expressed in Escherichia coli. According to the circular dichroism results, digestion assay, and inhibition ELISA, the recombinant SCP (rSCP) exhibited similar physicochemical properties and IgG-binding activity to native SCP. rSCP displayed stronger IgE-binding activity by immunological method. Moreover, a different intensity of cross-reactivity and sequence homology were demonstrated between shellfish species. Collectively, these findings provide novel insight into shellfish allergens, which can be used to aid in the in vitro diagnosis of oyster-sensitized patients.
Collapse
Affiliation(s)
- Tian-Jiao Han
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Meng Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Huan
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Meng-Si Li
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Xia
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yi-Yu Chen
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
19
|
Abstract
House dust mites are an unsurpassed cause of atopic sensitization and allergic illness throughout the world. The major allergenic dust mites Dermatophagoides pteronyssinus, Dermatophagoides farinae, Euroglyphus maynei, and Blomia tropicalis are eight-legged members of the Arachnid class. Their approximately 3-month lifespan comprises egg, larval, protonymph, tritonymph, and adult stages, with adults, about one fourth to one third of a millimeter in size, being at the threshold of visibility. The geographic and seasonal distributions of dust mites are determined by their need for adequate humidity, while their distribution within substrates is further determined by their avoidance of light. By contacting the epithelium of the eyes, nose, lower airways, skin, and gut, the allergen-containing particles of dust mites can induce sensitization and atopic symptoms in those organs. Various mite allergens, contained primarily in mite fecal particles but also in shed mite exoskeletons and decaying mite body fragments, have properties that include proteolytic activity, homology with the lipopolysaccharide-binding component of Toll-like receptor 4, homology with other invertebrate tropomyosins, and chitin-cleaving and chitin-binding activity. Mite proteases have direct epithelial effects including the breaching of tight junctions and the stimulation of protease-activated receptors, the latter inducing pruritus, epithelial dysfunction, and cytokine release. Other components, including chitin, unmethylated mite and bacterial DNA, and endotoxin, activate pattern recognition receptors of the innate immune system and act as adjuvants promoting sensitization to mite and other allergens. Clinical conditions resulting from mite sensitization and exposure include rhinitis, sinusitis, conjunctivitis, asthma, and atopic dermatitis. Systemic allergy symptoms can also occur from the ingestion of cross-reacting invertebrates, such as shrimp or snail, or from the accidental ingestion of mite-contaminated foods. Beyond their direct importance as a major allergen source, an understanding of dust mites leads to insights into the nature of atopy and of allergic sensitization in general.
Collapse
|
20
|
Li J, Ogorodova LM, Mahesh PA, Wang MH, Fedorova OS, Leung TF, Fernandez-Rivas M, Mills ENC, Potts J, Kummeling I, Versteeg SA, van Ree R, Yazdanbakhsh M, Burney PGJ, Wong GWK. Comparative Study of Food Allergies in Children from China, India, and Russia: The EuroPrevall-INCO Surveys. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:1349-1358.e16. [PMID: 31857266 DOI: 10.1016/j.jaip.2019.11.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND A clear understanding of the differences in the epidemiology of food allergy between rural and urban populations may provide insights into the causes of increasing prevalence of food allergy in the developed world. OBJECTIVE We used a standardized methodology to determine the prevalence and types of food-specific allergic sensitization and food allergies in schoolchildren from urban and rural regions of China, Russia, and India. METHODS The current study is a multicenter epidemiological survey of children recruited from 5 cities in China (Hong Kong and Guangzhou), Russia (Tomsk), and India (Bengaluru and Mysore) and 1 rural county in Southern China (Shaoguan). A total of 35,549 children aged 6 to 11 years from 3 countries participated in this survey. Random samples of children from 3 countries were first screened by the EuroPrevall screening questionnaire. Children with and without a history of adverse reactions to foods were then recruited for the subsequent case-control comparative studies. We determined the prevalence rates of food-specific IgE sensitization and food allergies using the predefined criteria. RESULTS The prevalence rates of food-specific IgE sensitization (≥0.7 kU/L) to at least 1 food were 16.6% in Hong Kong, 7.0% in Guangzhou, 16.8% in rural Shaoguan, 8.0% in Tomsk, and 19.1% in India. Using a definition of probable food allergy as reporting allergic symptoms within 2 hours of ingestion of a specific food plus the presence of allergic sensitization to the specific food (positive IgE and/or positive skin prick test result), the prevalence of food allergy was highest in Hong Kong (1.50%), intermediate in Russia (0.87%), and lowest in Guangzhou (0.21%), Shaoguan (0.69%), and India (0.14%). For children recruited from Hong Kong, both sensitization and food allergy were significantly higher in children who were born and raised in Hong Kong when compared with those who were born in mainland China and migrated to Hong Kong, highlighting the importance of early-life exposures in affecting the subsequent development of food sensitization and food allergy. CONCLUSIONS There are wide variations in the prevalence of food-specific IgE sensitization and food allergy in the 3 participating countries. Food allergy appears to be less common when compared with developed countries. The variations in the prevalence of food allergen sensitization cannot be explained by the differences in the degree of urbanization. Despite the high prevalence of food-specific IgE sensitization in India and rural China, food allergy is still extremely uncommon. In addition to IgE sensitization, other factors must play important roles resulting in the clinical manifestations of food allergies.
Collapse
Affiliation(s)
- Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Padukudru Anand Mahesh
- Department of TB and Respiratory Medicine, JSS Medical College, JSS University and Allergy Asthma Associates, Mysore, India
| | - Maggie Haitian Wang
- School of Public Health, Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | - Ting Fan Leung
- Department of Pediatrics, Chinese University of Hong Kong, Hong Kong, China
| | | | - E N Clare Mills
- School of Translational Medicine, Manchester Academic Health Science Centre and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, United Kingdom
| | - James Potts
- Department of Respiratory Epidemiology and Public Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ischa Kummeling
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Serge A Versteeg
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands; Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter G J Burney
- Department of Respiratory Epidemiology and Public Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gary W K Wong
- Department of Pediatrics, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
21
|
Jeebhay MF, Moscato G, Bang BE, Folletti I, Lipińska‐Ojrzanowska A, Lopata AL, Pala G, Quirce S, Raulf M, Sastre J, Swoboda I, Walusiak‐Skorupa J, Siracusa A. Food processing and occupational respiratory allergy- An EAACI position paper. Allergy 2019; 74:1852-1871. [PMID: 30953601 DOI: 10.1111/all.13807] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/29/2022]
Abstract
Occupational exposure to foods is responsible for up to 25% of cases of occupational asthma and rhinitis. Animal and vegetable high-molecular-weight proteins present in aerosolized foods during food processing, additives, preservatives, antioxidants, and food contaminants are the main inhalant allergen sources. Most agents typically cause IgE-mediated allergic reactions, causing a distinct form of food allergy (Class 3 food allergy). The allergenicity of a food protein, allergen exposure levels, and atopy are important risk factors. Diagnosis relies on a thorough medical and occupational history, functional assessment, assessment of sensitization, including component-resolved diagnostics where appropriate, and in selected cases specific inhalation tests. Exposure assessment, including allergen determination, is a cornerstone for establishing preventive measures. Management includes allergen exposure avoidance or reduction (second best option), pharmacological treatment, assessment of impairment, and worker's compensation. Further studies are needed to identify and characterize major food allergens and define occupational exposure limits, evaluate the relative contribution of respiratory versus cutaneous sensitization to food antigens, evaluate the role of raw versus cooked food in influencing risk, and define the absolute or relative contraindication of patients with ingestion-related food allergy, pollinosis, or oral allergy syndrome continuing to work with exposure to aerosolized food allergens.
Collapse
Affiliation(s)
- Mohamed F. Jeebhay
- Occupational Medicine Division, and Centre for Environmental & Occupational Health Research, School of Public Health and Family Medicine University of Cape Town Observatory South Africa
| | - Gianna Moscato
- Department of Public Health, Forensic and Experimental Medicine, Specialization School in Occupational Medicine University of Pavia Pavia Italy
| | - Berit E. Bang
- Department of Occupational and Environmental Medicine University Hospital of North Norway Sykehusvegen, Tromsoe Norway
| | - Ilenia Folletti
- Occupational Medicine Terni Hospital, University of Perugia Perugia Italy
| | | | - Andreas L. Lopata
- Department of Molecular & Cell Biology, College of Public Health, Medical and Veterinary Sciences James Cook University Townsville Queensland Australia
| | - Gianni Pala
- Occupational Physician’s Division Healthcare Authority of Sardinia Area of Sassari Italy
| | - Santiago Quirce
- Department of Allergy Hospital La Paz Institute for Health Research (IdiPAZ), and CIBER of Respiratory Diseases CIBERES Madrid Spain
| | - Monika Raulf
- Institute of Prevention and Occupational Medicine of the German Social Accident Insurance Institute of the Ruhr University Bochum Bochum Germany
| | - Joaquin Sastre
- Allergy Department Hospital Fundación Jiménez Díazand CIBER de Enfermedades Respiratorias (CIBERES) Madrid Spain
| | - Ines Swoboda
- Molecular Biotechnology Section FH Campus Wien ‐ University of Applied Sciences Vienna Austria
| | | | - Andrea Siracusa
- Formerly professor of Occupational Medicine University of Perugia Perugia Italy
| |
Collapse
|
22
|
Lv L, Lin H, Li Z, Nayak B, Ahmed I, Tian S, Chen G, Lin H, Zhao J. Structural changes of 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) treated shrimp tropomyosin decrease allergenicity. Food Chem 2019; 274:547-557. [DOI: 10.1016/j.foodchem.2018.09.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/01/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
|
23
|
Faber MA, Van Gasse AL, Decuyper II, Sabato V, Hagendorens MM, Mertens C, Bridts CH, De Clerck LS, Ebo DG. Cross-Reactive Aeroallergens: Which Need to Cross Our Mind in Food Allergy Diagnosis? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2018; 6:1813-1823. [PMID: 30172018 DOI: 10.1016/j.jaip.2018.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023]
Abstract
Secondary food allergies due to cross-reactivity between inhalant and food allergens are a significant and increasing global health issue. Cross-reactive food allergies predominantly involve plant-derived foods resulting from a prior sensitization to cross-reactive components present in pollen (grass, tree, weeds) and natural rubber latex. Also, primary sensitization to allergens present in fungi, insects, and both nonmammalian and mammalian meat might induce cross-reactive food allergic syndromes. Correct diagnosis of these associated food allergies is not always straightforward and can pose a difficult challenge. As a matter of fact, cross-reactive allergens might hamper food allergy diagnosis, as they can cause clinically irrelevant positive tests to cross-reacting foods that are safely consumed. This review summarizes the most relevant cross-reactivity syndromes between inhalant and food allergens. Particular focus is paid to the potential and limitations of confirmatory testing such as skin testing, specific IgE assays, molecular diagnosis, and basophil activation test.
Collapse
Affiliation(s)
- Margaretha A Faber
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Athina L Van Gasse
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Faculty of Medicine and Health Science, Department of Pediatrics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Ine I Decuyper
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Faculty of Medicine and Health Science, Department of Pediatrics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Vito Sabato
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Margo M Hagendorens
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Faculty of Medicine and Health Science, Department of Pediatrics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Christel Mertens
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Chris H Bridts
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Luc S De Clerck
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Didier G Ebo
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
24
|
Pascal M, Kamath SD, Faber M. Diagnosis and Management of Shellfish Allergy: Current Approach and Future Needs. CURRENT TREATMENT OPTIONS IN ALLERGY 2018. [DOI: 10.1007/s40521-018-0186-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Tong WS, Yuen AW, Wai CY, Leung NY, Chu KH, Leung PS. Diagnosis of fish and shellfish allergies. J Asthma Allergy 2018; 11:247-260. [PMID: 30323632 PMCID: PMC6181092 DOI: 10.2147/jaa.s142476] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Seafood allergy is a hypersensitive disorder with increasing prevalence worldwide. Effective and accurate diagnostic workup for seafood allergy is essential for clinicians and patients. Parvalbumin and tropomyosin are the most common fish and shellfish allergens, respectively. The diagnosis of seafood allergies is complicated by cross-reactivity among fish allergens and between shellfish allergens and other arthropods. Current clinical diagnosis of seafood allergy is a complex algorithm that includes clinical assessment, skin prick test, specific IgE measurement, and oral food challenges. Emerging diagnostic strategies, such as component-resolved diagnosis (CRD), which uses single allergenic components for assessment of epitope specific IgE, can provide critical information in predicting individualized sensitization patterns and risk of severe allergic reactions. Further understanding of the molecular identities and characteristics of seafood allergens can advance the development of CRD and lead to more precise diagnosis and improved clinical management of seafood allergies.
Collapse
Affiliation(s)
- Wai Sze Tong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Agatha Wt Yuen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Christine Yy Wai
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China,
| | - Nicki Yh Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China,
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Patrick Sc Leung
- Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California Davis, Davis, CA, USA,
| |
Collapse
|
26
|
Yang Y, Hu MJ, Jin TC, Zhang YX, Liu GY, Li YB, Zhang ML, Cao MJ, Su WJ, Liu GM. A comprehensive analysis of the allergenicity and IgE epitopes of myosinogen allergens in Scylla paramamosain. Clin Exp Allergy 2018; 49:108-119. [PMID: 30187588 DOI: 10.1111/cea.13266] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Scylla paramamosain is one of the most common and serious food allergens in Asia. Therefore, research on its prevalence, accurate diagnosis, and IgE-binding pattern of the allergens is crucial. OBJECTIVE To identify the IgE epitopes of the myosinogen allergens in S. paramamosain using phage peptide library. METHODS The prevalence of allergy to crabs (AC) and of sensitization was analysed using a questionnaire and a serological assay. BAT was performed by flow cytometry, and its diagnostic performance was evaluated in relation to allergens purified from crab myosinogen. IgE-binding epitopes were identified by phage display using the IgE from patients with AC. Sequence- and structure-based bioinformatics analyses were performed to identify allergenic epitopes. RESULTS Crab was the most common cause of food allergies in this study. Subjects with AC (n = 30) with clear clinical symptoms were identified by immunoblotting and BAT. All of the myosinogen allergens triggered basophil activation; surface expression of CD63 and CD203c was higher in patients allergic to AK and FLN c than in patients allergic to SCP and TIM. In addition to six conformational epitopes of SCP, six linear epitopes and eight conformational epitopes of AK were identified. Five linear epitopes and three conformational epitopes of TIM, nine linear and ten conformational epitopes of FLN c were also identified, and the sequence VH(I/T) L was appeared in epitopes of both TIM and FLN c. The number of epitopes showed consistency with the value of BAT. CONCLUSIONS AND CLINICAL RELEVANCE BAT can be used for accurate diagnosis of AC. Identification of particular allergenic motifs could be a valuable tool for prevention, diagnosis, and treatment of food allergies.
Collapse
Affiliation(s)
- Yang Yang
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, China
| | - Meng Jun Hu
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, China
| | - Teng Chuan Jin
- University of Science and Technology of China, Hefei, China
| | - Yong Xia Zhang
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, China
| | - Guang Yu Liu
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, China
| | - Yu Bao Li
- Medical center of Jimei University, Xiamen, China
| | | | - Min Jie Cao
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, China
| | - Wen Jin Su
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, China
| | - Guang Ming Liu
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, China
| |
Collapse
|
27
|
Tuano KTS, Anvari S, Hanson IC, Hajjar J, Seeborg F, Noroski LM, Guffey D, Kang G, Orange JS, Davis CM. Improved diagnostic clarity in shrimp allergic non-dust-mite sensitized patients. Allergy Asthma Proc 2018; 39:377-383. [PMID: 30153888 DOI: 10.2500/aap.2018.39.4148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Allergen specific immunoglobulin E (sIgE) levels predictive of shrimp allergy have not been identified, but these may be helpful in identifying patients at risk for shrimp-induced allergic reactions. OBJECTIVE This study sought to identify component resolved diagnostic tests useful for diagnosis of shrimp allergy in patients with or without house-dust mite (HDM) sensitization to the major allergen cysteine protease (Der p 1). METHODS Patients with positive skin-prick test (SPT) results and/or sIgE values were recruited. Shrimp allergy was classified by oral food challenge (OFC) or by a clear history of anaphylaxis after shrimp ingestion. Patients with shrimp allergy and patients who were tolerant were further classified based on HDM sensitivity (Der p 1 > 0.35 kUA/L). Testing for sIgE to total shrimp, and shrimp and HDM components was performed. The Fisher exact test, Wilcoxon sum rank test, and receiver operating characteristics analyses were used to compare sIgE levels in patients with allergy and patients who were tolerant. RESULTS Of 79 patients recruited, 12 patients with shrimp allergy (7 with positive OFC results and 5 with a history of anaphylaxis) and 18 patients who were shrimp tolerant were enrolled. Of the patients not HDM sensitized, sIgE levels to shrimp (10.5 kUA/L, p = 0.012) and Der p 10 (4.09 kUA/L, p = 0.035) were higher in patients with shrimp allergy. Shrimp sIgE of ≥3.55 kUA/L had 100% diagnostic sensitivity and 85.7% specificity (receiver operating characteristic 0.94 [0.81, 1.0] 95% CI) and Der p 10 sIgE levels of ≥3.98 kUA/L had a diagnostic sensitivity of 80% and specificity of 100% (receiver operating characteristic 0.86 [0.57, 1.0] 95% CI) for prediction of clinical reactivity. CONCLUSION HDM sensitization influences shrimp and HDM component sIgE levels and, consequently, their diagnostic accuracy in shrimp allergy. In our series, in the patients who were non-HDM sensitized, a shrimp sIgE level of >3.55 kUA/L showed 100% sensitivity and, Der p 10 sIgE of >3.98 kUA/L showed 100% specificity for the diagnosis of shrimp allergy. These levels may not be applicable to every patient and, therefore, may not obviate the need for OFC.
Collapse
Affiliation(s)
- Karen Thursday S. Tuano
- From the Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Sara Anvari
- From the Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Imelda Celine Hanson
- From the Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Joud Hajjar
- From the Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Filiz Seeborg
- From the Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Lenora M. Noroski
- From the Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Danielle Guffey
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Grace Kang
- From the Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Jordan Scott Orange
- From the Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Carla M. Davis
- From the Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
28
|
IgE and T-cell responses to house dust mite allergen components. Mol Immunol 2018; 100:120-125. [DOI: 10.1016/j.molimm.2018.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/19/2018] [Indexed: 01/10/2023]
|
29
|
Einhorn L, Hofstetter G, Brandt S, Hainisch EK, Fukuda I, Kusano K, Scheynius A, Mittermann I, Resch-Marat Y, Vrtala S, Valenta R, Marti E, Rhyner C, Crameri R, Satoh R, Teshima R, Tanaka A, Sato H, Matsuda H, Pali-Schöll I, Jensen-Jarolim E. Molecular allergen profiling in horses by microarray reveals Fag e 2 from buckwheat as a frequent sensitizer. Allergy 2018; 73:1436-1446. [PMID: 29350763 PMCID: PMC6032949 DOI: 10.1111/all.13417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
Background Companion animals are also affected by IgE‐mediated allergies, but the eliciting molecules are largely unknown. We aimed at refining an allergen microarray to explore sensitization in horses and compare it to the human IgE reactivity profiles. Methods Custom‐designed allergen microarray was produced on the basis of the ImmunoCAP ISAC technology containing 131 allergens. Sera from 51 horses derived from Europe or Japan were tested for specific IgE reactivity. The included horse patients were diagnosed for eczema due to insect bite hypersensitivity, chronic coughing, recurrent airway obstruction and urticaria or were clinically asymptomatic. Results Horses showed individual IgE‐binding patterns irrespective of their health status, indicating sensitization. In contrast to European and Japanese human sensitization patterns, frequently recognized allergens were Aln g 1 from alder and Cyn d 1 from Bermuda grass, likely due to specific respiratory exposure around paddocks and near the ground. The most prevalent allergen for 72.5% of the tested horses (37/51) was the 2S‐albumin Fag e 2 from buckwheat, which recently gained importance not only in human but also in horse diet. Conclusion In line with the One Health concept, covering human health, animal health and environmental health, allergen microarrays provide novel information on the allergen sensitization patterns of the companion animals around us, which may form a basis for allergen‐specific preventive and therapeutic concepts.
Collapse
Affiliation(s)
- L. Einhorn
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - G. Hofstetter
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
| | - S. Brandt
- Research Group Oncology; Equine Clinic; University of Veterinary Medicine Vienna; Vienna Austria
| | - E. K. Hainisch
- Research Group Oncology; Equine Clinic; University of Veterinary Medicine Vienna; Vienna Austria
| | - I. Fukuda
- Racehorse Hospital; Miho Training Center; Japan Racing Association; Mikoma Japan
| | - K. Kusano
- Racehorse Hospital; Miho Training Center; Japan Racing Association; Mikoma Japan
| | - A. Scheynius
- Science for Life Laboratory; Department of Clinical Science and Education; Karolinska Institutet, and Sachs’ Children and Youth Hospital; Södersjukhuset; Stockholm Sweden
| | - I. Mittermann
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - Y. Resch-Marat
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - S. Vrtala
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - R. Valenta
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - E. Marti
- Department of Clinical Research and Veterinary Public Health; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - C. Rhyner
- Swiss Institute for Allergy and Asthma Research (SIAF); Davos Switzerland
| | - R. Crameri
- Swiss Institute for Allergy and Asthma Research (SIAF); Davos Switzerland
| | - R. Satoh
- Division of Food Function Research; Food Research Institute; National Agriculture and Food Research Organization; Tsukuba Japan
| | - R. Teshima
- National Institute of Health Sciences; Tokyo Japan
| | - A. Tanaka
- Laboratory of Comparative Animal Medicine; Division of Animal Life Science; Tokyo University of Agriculture and Technology; Fuchu Japan
| | - H. Sato
- Laboratory of Veterinary Molecular Pathology and Therapeutics; Division of Animal Life Science; Tokyo University of Agriculture and Technology; Fuchu Japan
| | - H. Matsuda
- Laboratory of Veterinary Molecular Pathology and Therapeutics; Division of Animal Life Science; Tokyo University of Agriculture and Technology; Fuchu Japan
| | - I. Pali-Schöll
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - E. Jensen-Jarolim
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
- Institute of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
- AllergyCare; Allergy Diagnosis and Study Center; Vienna Austria
| |
Collapse
|
30
|
Tuano KTS, Davis CM. Oral allergy syndrome in shrimp and house dust mite allergies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:2163-2164. [PMID: 29751156 DOI: 10.1016/j.jaip.2018.04.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/22/2018] [Accepted: 04/15/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Karen Thursday S Tuano
- Department of Pediatrics, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex.
| | - Carla M Davis
- Department of Pediatrics, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| |
Collapse
|
31
|
Gamboa PM, Bartolomé B, García Lirio E, Cuesta-Herranz J, Pastor-Vargas C. Aldolase: A new Crustacea allergen. Ann Allergy Asthma Immunol 2018; 121:246-247. [PMID: 29729415 DOI: 10.1016/j.anai.2018.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 11/29/2022]
Affiliation(s)
- P M Gamboa
- Hospital Universitario de Cruces, Servicio de Alergología, Barakaldo, Spain.
| | | | - E García Lirio
- Hospital Universitario de Cruces, Servicio de Alergología, Barakaldo, Spain
| | | | | |
Collapse
|
32
|
Erban T, Klubal R. Non-protease native allergens partially purified from bodies of eight domestic mites using p-aminobenzamidine ligand. Allergol Immunopathol (Madr) 2018; 46:218-225. [PMID: 29128091 DOI: 10.1016/j.aller.2017.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/21/2017] [Accepted: 07/29/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Optimised purification steps for concentrating trace target native antigens are needed. Combining the p-aminobenzamidine ligand with protease inactivation enables partial purification of mite non-protease allergens lacking proteases. OBJECTIVE We sought to analyse in detail proteins obtained using this method from eight species of synanthropic acaridid mites and tested IgE reactivity using pooled human sera. MATERIALS AND METHODS Proteins affinity bound to p-aminobenzamidine as a ligand were identified by MALDI TOF/TOF. After electroblotting, the proteins were visualised using the fluorescent SYPRO-Ruby protein blot stain, and IgE reactivity was further analysed using pooled human sera collected from patients allergic to house dust mites. RESULTS MS/MS identification confirmed previous results that no proteases were purified. Protein patterns corresponding to the allergens Der f 7, Der f 30 and actins indicated that these proteins are purified using p-aminobenzamidine and are present across a wide spectrum of acaridid mites. When using Dermatophagoides farinae, apolipophorins (Der f 14), chitinase-like Der f 15 and 18, 70-kDa heat shock protein, and a Der f Alt a10 allergen homolog (gi|37958173) were also detected. The target antigens tropomyosins and paramyosins showed similar IgE binding among the mite species tested. IgE reactivity with miscellaneous D. farinae antigen was also observed. CONCLUSIONS Partial purification of mite non-protease antigens using a strategy combining p-aminobenzamidine with protease inactivation was verified by 1D-E and 2D-E analyses. IgE binding to p-aminobenzamidine-purified native non-protease mite antigens was tested using pooled sera. This preliminary study allows for further work on individual serum samples, allowing confirmation of immunoreactivity.
Collapse
Affiliation(s)
- T Erban
- Crop Research Institute, 507/73, Prague 6-Ruzyne, CZ-16106, Czech Republic.
| | - R Klubal
- Medical Center Prague, Mezi Vodami 205/29, Prague 4-Modrany, CZ-14300, Czech Republic
| |
Collapse
|
33
|
Yang Z, Zhao J, Wei N, Feng M, Xian M, Shi X, Zheng Z, Su Q, Wong GWK, Li J. Cockroach is a major cross-reactive allergen source in shrimp-sensitized rural children in southern China. Allergy 2018; 73:585-592. [PMID: 29072879 DOI: 10.1111/all.13341] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Little is known about the prevalence of food allergy (FA) in China. The aim of this study was to investigate the disparity of FA between urban and rural areas in southern China. METHODS EuroPrevall questionnaire responses were obtained from 5542 school-age children in urban Guangzhou and 5319 in rural Shaoguan. A case-control study enrolled 190 children with adverse reactions (ARs) after food intake as cases and 212 controls in Guangzhou, whereas 116 cases and 233 controls in Shaoguan. These subjects underwent skin prick test (SPT) and serum IgE measurements to food and inhalant allergens. Allergen extracts from shrimp, house dust mite (HDM), and cockroach were prepared for IgE cross-reactivity testing in 23 Guangzhou and 20 Shaoguan shrimp-sensitized subjects. RESULTS The prevalence of ARs to shrimp was higher in Guangzhou than in Shaoguan children (3.5% vs 1.4%, P < .001). However, sensitization rate to shrimp (SPT: 3.7% vs 11.2%, P = .015; IgE: 12.6% vs 36.2%, P < .001) and cockroach (SPT: 5.3% vs 33.5%; IgE: 2.6% vs 27.6%, P < .001) was lower in Guangzhou. A significant correlation between shrimp and HDM/cockroach IgE was found in Shaoguan children. The proportions of positive IgE to tropomyosin (Pen a 1, Der p 10) were lower than 7.4% in both areas. Cockroach allergen has a significantly higher inhibition rate of binding to IgE to house dust mite allergens in Shaoguan sera. CONCLUSION Shrimp is a common allergic food in southern China. Higher proportion of shrimp sensitization in rural subjects could be explained by cross-reactivity to cockroach. Tropomyosin was not a major allergen responding to the cross-reactivity.
Collapse
Affiliation(s)
- Z. Yang
- Department of Allergy and Clinical Immunology; Guangzhou Institute of Respiratory Disease; State Key Laboratory of Respiratory Disease; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - J. Zhao
- Department of Allergy and Clinical Immunology; Guangzhou Institute of Respiratory Disease; State Key Laboratory of Respiratory Disease; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - N. Wei
- Department of Allergy and Clinical Immunology; Guangzhou Institute of Respiratory Disease; State Key Laboratory of Respiratory Disease; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - M. Feng
- Department of Allergy and Clinical Immunology; Guangzhou Institute of Respiratory Disease; State Key Laboratory of Respiratory Disease; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - M. Xian
- Department of Allergy and Clinical Immunology; Guangzhou Institute of Respiratory Disease; State Key Laboratory of Respiratory Disease; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - X. Shi
- Department of Allergy and Clinical Immunology; Guangzhou Institute of Respiratory Disease; State Key Laboratory of Respiratory Disease; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - Z. Zheng
- Department of Allergy and Clinical Immunology; Guangzhou Institute of Respiratory Disease; State Key Laboratory of Respiratory Disease; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - Q. Su
- Department of Allergy and Clinical Immunology; Guangzhou Institute of Respiratory Disease; State Key Laboratory of Respiratory Disease; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - G. W. K. Wong
- Department of Paediatrics; Prince of Wales Hospital; The Chinese University of Hong Kong; Hong Kong China
| | - J. Li
- Department of Allergy and Clinical Immunology; Guangzhou Institute of Respiratory Disease; State Key Laboratory of Respiratory Disease; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| |
Collapse
|
34
|
Tham EH, Leung DYM. How Different Parts of the World Provide New Insights Into Food Allergy. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:290-299. [PMID: 29949829 PMCID: PMC6021584 DOI: 10.4168/aair.2018.10.4.290] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/21/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022]
Abstract
The prevalence and patterns of food allergy are highly variable in different parts of the world. Differences in food allergy epidemiology may be attributed to a complex interplay of genetic, epigenetic, and environmental factors, suggesting that mechanisms of food allergy may differ in various global populations. Genetic polymorphisms, migration, climate, and infant feeding practices all modulate food allergy risk, and possibly also the efficacy of interventions aimed at primary prevention of food allergy development. Approaches to diagnosis, treatment, and prevention of food allergy should thus be tailored carefully to each population's unique genetic and environmental make-up. Future research in the context of food allergy prevention should focus on elucidating factors determining differential responses between populations.
Collapse
Affiliation(s)
- Elizabeth Huiwen Tham
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore.,Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, University of Colorado at Denver Health Sciences Center, Aurora, Colorado, USA.
| |
Collapse
|
35
|
Jarupalee T, Chatchatee P, Komolpis K, Suratannon N, Roytrakul S, Yingchutrakul Y, Yimchuen W, Butta P, Jacquet A, Palaga T. Detecting Allergens From Black Tiger Shrimp Penaeus monodon That Can Bind and Cross-link IgE by ELISA, Western Blot, and a Humanized Rat Basophilic Leukemia Reporter Cell Line RS-ATL8. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:62-76. [PMID: 29178679 PMCID: PMC5705486 DOI: 10.4168/aair.2018.10.1.62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 11/30/2022]
Abstract
Background Black tiger shrimp Penaeus monodon is one of the common causes of shellfish allergy that is increasing worldwide. One of the important problems in the management of shellfish allergy is the lack of accurate diagnostic assay because the biological and immunological properties of allergens in black tiger shrimp have not been well characterized. This study aims to detect proteins with the ability to bind and cross-link immunoglobulin E (IgE) from black tiger shrimp by enzyme-linked immunosorbent assay (ELISA), Western blot, and a humanized rat basophilic leukemia reporter cell line RS-ATL8. Methods Sera from shrimp allergic subjects were subjected to ELISA and Western blots using raw or cooked shrimp extract as antigens. Pooled sera were used to sensitize the RS-ATL8 reporter cell line and cells were activated by shrimp extract. Eluted protein extracts separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were tested on the RS-ATL8 cell line and subjected to mass spectrometry to identify potential candidate allergens. Results Allergic sera reacted stronger to raw shrimp extract than cooked shrimp extract (P=0.009). Western blot demonstrated that major IgE reactivity protein bands were at 32–39 kDa and 91–230 kDa in both raw and cooked shrimp extracts. The eluted protein bands at the molecular weight of 38 and 115 kDa from raw shrimp extract induced IgE cross-linking as assayed by the RS-ATL8 cell line. These protein bands were subjected to mass spectrometry for analysis. Ubiquitin-activating enzyme and crustacyanin were identified as potential candidate novel shrimp allergens. Conclusions The RS-ATL8 reporter cell line can be used to identify potential new shrimp allergens that can functionally cross-link IgE and induce mast cell degranulation.
Collapse
Affiliation(s)
- Thanyapat Jarupalee
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pantipa Chatchatee
- Allergy&Immunology Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kittinan Komolpis
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Narissara Suratannon
- Allergy&Immunology Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Wanaporn Yimchuen
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Patcharavadee Butta
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Alain Jacquet
- Chula-Vaccine Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
36
|
Farioli L, Losappio LM, Giuffrida MG, Pravettoni V, Micarelli G, Nichelatti M, Scibilia J, Mirone C, Cavallarin L, Lamberti C, Balossi LG, Pastorello EA. Mite-Induced Asthma and IgE Levels to Shrimp, Mite, Tropomyosin, Arginine Kinase, and Der p 10 Are the Most Relevant Risk Factors for Challenge-Proven Shrimp Allergy. Int Arch Allergy Immunol 2017; 174:133-143. [PMID: 29169170 DOI: 10.1159/000481985] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/05/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Shrimp sensitization is common in the general population, but the presence of symptoms is only moderately related to sensitization. A point still at issue is which in vivo and/or in vitro tests (food challenge, component-resolved diagnosis, house dust mite [HDM] sensitization) can help in distinguishing shrimp-allergic subjects from subjects that are sensitized but tolerant. METHODS The aim of this study was to evaluate the role of IgE to the different shrimp and mite allergens in distinguishing shrimp challenge-positive from challenge-negative patients. Subjects with suspected hypersensitivity reactions to shrimp, positive skin prick tests (SPTs), and/or anti-shrimp IgE were submitted to open and double-blind placebo-controlled food challenges (DBPCFC). Specific IgE to shrimp, mites, and the recombinants rPen a 1, rDer p 1, 2, and 10 were tested using ImmunoCAP-FEIA. IgE immunoblotting was performed to identify the patients' allergenic profiles. RESULTS In total, 13 out of 51 (25.5%) patients with reported reactions to shrimp were truly shrimp allergic (7 DBPCFC positive and 6 with documented severe reactions). These patients had significantly higher skin test wheal diameters than nonallergic patients, as well as higher levels of IgE to rPen a 1 and rDer p 10. HDM-induced asthma and the simultaneous presence of anti-nDer p 1, 2, and 10 IgE levels increased the risk of true shrimp allergy. CONCLUSION Food challenge tests are mandatory for the diagnosis of shrimp allergy. Tropomyosin is associated with clinical reactivity. HDM-induced asthma and anti-mite IgE are risk factors for shrimp allergy.
Collapse
Affiliation(s)
- Laura Farioli
- Department of Laboratory Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW To describe recent insights into how molecular diagnosis can improve indication and selection of suitable allergens for specific immunotherapy and increase the safety of this therapy. RECENT FINDINGS As specific allergen immunotherapy targets specific allergens, identification of the disease-eliciting allergen is a prerequisite for accurate prescription of treatment. In areas of complex sensitization to aeroallergens or in cases of hymenoptera venom allergy, the use of molecular diagnosis has demonstrated that it may lead to a change in indication and selection of allergens for immunotherapy in a large proportion of patients when compared with diagnosis based on skin prick testing and/or specific IgE determination with commercial extracts. These changes in immunotherapy prescription aided by molecular diagnosis have been demonstrated to be cost-effective in some scenarios. Certain patterns of sensitization to grass or olive pollen and bee allergens may identify patients with higher risk of adverse reaction during immunotherapy. SUMMARY Molecular diagnosis, when used with other tools and patients' clinical records, can help clinicians better to select the most appropriate patients and allergens for specific immunotherapy and, in some cases, predict the risk of adverse reactions. The pattern of sensitization to allergens could potentially predict the efficacy of allergen immunotherapy provided that these immunotherapy products contain a sufficient amount of these allergens. Nevertheless, multiplex assay remains a third-level approach, not to be used as screening method in current practice.
Collapse
|
38
|
Faber MA, Pascal M, El Kharbouchi O, Sabato V, Hagendorens MM, Decuyper II, Bridts CH, Ebo DG. Shellfish allergens: tropomyosin and beyond. Allergy 2017; 72:842-848. [PMID: 28027402 DOI: 10.1111/all.13115] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 01/08/2023]
Abstract
IgE-mediated shellfish allergy constitutes an important cause of food-related adverse reactions. Shellfish are classified into mollusks and crustaceans, the latter belonging to the class of arthropoda. Among crustaceans, shrimps are the most predominant cause of allergic reactions and thus more extensively studied. Several major and minor allergens have been identified and cloned. Among them, invertebrate tropomyosin, arginine kinase, myosin light chain, sarcoplasmic calcium-binding protein, and hemocyanin are the most relevant. This review summarizes our current knowledge about these allergens.
Collapse
Affiliation(s)
- M. A. Faber
- Department of Immunology - Allergology - Rheumatology; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
| | - M. Pascal
- Immunology Department; Centre de Diagnòstic Biomèdic (CDB); Hospital Clínic; Universitat de Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
| | - O. El Kharbouchi
- Department of Immunology - Allergology - Rheumatology; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
| | - V. Sabato
- Department of Immunology - Allergology - Rheumatology; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
| | - M. M. Hagendorens
- Department of Immunology - Allergology - Rheumatology; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
- Department of Pediatrics; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
| | - I. I. Decuyper
- Department of Immunology - Allergology - Rheumatology; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
- Department of Pediatrics; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
| | - C. H. Bridts
- Department of Immunology - Allergology - Rheumatology; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
| | - D. G. Ebo
- Department of Immunology - Allergology - Rheumatology; Faculty of Medicine and Health Science; University of Antwerp and Antwerp University Hospital; Wilrijk Belgium
| |
Collapse
|
39
|
Kimura H, Inami M, Hamaguchi Y, Takehara K, Akimoto S, Yokooji T, Matsuo H, Matsushita T. Food-dependent exercise-induced anaphylaxis due to shrimp associated with 43 kDa, a new antigen. J Dermatol 2017; 45:366-367. [PMID: 28470776 DOI: 10.1111/1346-8138.13890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroshi Kimura
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan.,Department of Dermatology, Kaga Medical Center, Ishikawa, Japan
| | - Maiko Inami
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan.,Department of Dermatology, Fukui Prefectural Hospital, Fukui, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Shiori Akimoto
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoharu Yokooji
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroaki Matsuo
- Department of Pharmaceutical Services, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
40
|
Erban T, Harant K, Hubert J. Detailed two-dimensional gel proteomic mapping of the feces of the house dust mite Dermatophagoides pteronyssinus and comparison with D. farinae: Reduced trypsin protease content in D. pteronyssinus and different isoforms. J Proteomics 2017; 162:11-19. [PMID: 28442447 DOI: 10.1016/j.jprot.2017.04.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Abstract
Major domestic mite allergens are present in feces. We present a detailed 2D-E-MS/MS proteomic analysis of the Dermatophagoides pteronyssinus feces. Precise cultivation yielded a pure fecal extract. We detected differences in fecal allergens/digestive enzymes between D. pteronyssinus and D. farinae using 2D-E fingerprinting, including unique information on species-specific protease isoforms. Proteomic analysis was performed by 2D-E coupled with MALDI-TOF/TOF identification. The species-specific differences in the fecal extracts of the mites were attributed to trypsin-like proteases known as group 3 allergens. In D. farinae, Der f 3 exhibited high abundance with a pI similar (acidic) to that of the cysteine protease Der f 1 and the chymotrypsin protease Der f 6, whereas in D. pteronyssinus, Der p 3 was rarely detected and exhibited low abundance only at basic pI. Moreover, Der p 9 was detected at a pI of ~ 10, in contrast to Der p 1 and Der p 6, suggesting different compartmentalization in the body. Overall, in D. pteronyssinus feces, allergens of groups 1, 2, 6, and 15 were quantitatively similar to those of D. farinae with the exception of the group 3 and 9 allergens. This work provides novel insights into mite-defecated proteins/digestive enzymes, which are important allergens. SIGNIFICANCE Millions of people are affected by allergy and asthma, and their number is growing. In homes, the major triggers of allergy and asthma are the house dust mites Dermatophagoides farinae and D. pteronyssinus, and a clear understanding of the development of diseases caused by these mites is needed. The major sources of mite allergens are their feces, which are deposited in the environment and are easily inhaled as part of aeroplankton. However, descriptions of and comparisons between the major fecal allergens of these two mites are lacking. This study shows that similar group 1 (cysteine protease), 2 (NPC2 family), 6 (chymotrypsin) and 15 (chitinase-like) allergens are present in the feces of these two mite species, as determined by 2D-E mapping, whereas group 3 (trypsin) and 9 (collagenolytic protease) allergens in the feces of the two species are different. The results provide unique MS/MS mapped fingerprints of mite species-specific isoforms in feces. The presence of ubiquitin in mite feces suggests that these proteins participate in the post-translational modification of fecal proteins. The findings are essential for understanding differences between D. farinae and D. pteronyssinus with respect to immunoreactivity, protease activation mechanisms, association with microbes, and food utilization.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, Czechia.
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, Czechia
| |
Collapse
|
41
|
Shimojo N, Yagami A, Nakamura M, Nagai A, Matsunaga K. Occupational fish allergy caused by percutaneous sensitization with α-actinin-3. Contact Dermatitis 2017; 76:322-323. [DOI: 10.1111/cod.12753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/03/2016] [Accepted: 12/09/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Naoshi Shimojo
- Department of Integrative Medical Science for Allergic Disease; Fujita Health University School of Medicine; Toyoake 470-1192 Japan
- General Research and Development Institute; Hoyu Co., Ltd; Nagakute 480-1136 Japan
| | - Akiko Yagami
- Department of Allergology; Fujita Health University Second Educational Hospital; Nagoya 454-8509 Japan
| | - Masashi Nakamura
- Department of Integrative Medical Science for Allergic Disease; Fujita Health University School of Medicine; Toyoake 470-1192 Japan
- General Research and Development Institute; Hoyu Co., Ltd; Nagakute 480-1136 Japan
| | - Akiyo Nagai
- Department of Dermatology; Fujita Health University School of Medicine; Nagoya 470-1192 Japan
| | - Kayoko Matsunaga
- Department of Integrative Medical Science for Allergic Disease; Fujita Health University School of Medicine; Toyoake 470-1192 Japan
| |
Collapse
|
42
|
Yang Y, Chen ZW, Hurlburt BK, Li GL, Zhang YX, Fei DX, Shen HW, Cao MJ, Liu GM. Identification of triosephosphate isomerase as a novel allergen in Octopus fangsiao. Mol Immunol 2017; 85:35-46. [PMID: 28208072 DOI: 10.1016/j.molimm.2017.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 11/19/2022]
Abstract
Octopus is an important mollusk in human dietary for its nutritional value, however it also causes allergic reactions in humans. Major allergens from octopus have been identified, while the knowledge of novel allergens remains poor. In the present study, a novel allergen with molecular weight of 28kDa protein was purified from octopus (Octopus fangsiao) and identified as triosephosphate isomerase (TIM) by mass spectrometry. TIM aggregated beyond 45°C, and its IgE-binding activity was affected under extreme pH conditions due to the altered secondary structure. In simulated gastric fluid digestion, TIM can be degraded into small fragments, while retaining over 80% of the IgE-binding activity. The full-length cDNA of O. fangsiao TIM (1140bp) was cloned, which encodes 247 amino acid residues, and the entire recombinant TIM was successfully expressed in Escherichia coli BL21, which showed similar immunoreactivity to the native TIM. Different intensity of cross-reactivity among TIM from related species revealed the complexity of its epitopes. Eight linear epitopes of TIM were predicted following bioinformatic analysis. Furthermore, a conformational epitope (A71G74S69D75T73F72V67) was confirmed by the phage display technology. The results revealed the physicochemical and immunological characteristics of TIM, which is significant in the development of hyposensitivity food and allergy diagnosis.
Collapse
Affiliation(s)
- Yang Yang
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Zhong-Wei Chen
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Barry K Hurlburt
- U.S. Department of Agriculture, Agriculture Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA, 70124, USA
| | - Gui-Ling Li
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Yong-Xia Zhang
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Dan-Xia Fei
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Hai-Wang Shen
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen Key Laboratory of Marine Functional Food, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China.
| |
Collapse
|
43
|
Rosenfield L, Tsoulis MW, Milio K, Schnittke M, Kim H. High rate of house dust mite sensitization in a shrimp allergic southern Ontario population. Allergy Asthma Clin Immunol 2017; 13:5. [PMID: 28115965 PMCID: PMC5244585 DOI: 10.1186/s13223-017-0177-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/02/2017] [Indexed: 11/18/2022] Open
Abstract
Background Shrimp and house dust mite (HDM) allergies are common in Canadians. Often, both of these allergies occur in the same patient. This may be due to homology of tropomyosin or other potentially shared proteins. The aim of our study was to assess the frequency of house dust mite sensitization in a shrimp allergic Canadian population. Methods We undertook a retrospective chart review of shrimp allergic patients at an outpatient allergy clinic in Kitchener, Ontario, Canada. Our primary endpoint was to assess for presence of HDM sensitization in this population. Patients were categorized into approximate quartiles. We assessed the severity of the shrimp reactions, correlated shrimp skin test size to HDM skin test size, and measured the proportion of patients with atopic symptoms. Results We identified 95 shrimp allergic patients who were tested for house dust mite. 86 (90.5%) of these patients had a positive skin test to HDM. Patients with a shrimp skin test ≥5 mm were 5.31 times (95% CI, 1.55–18.14; p = 0.008) more likely to exhibit a dust mite skin test ≥5 mm than patients with a shrimp skin test <5 mm. The odds of a patient with a shrimp skin test between 10 and 18 mm having a larger HDM skin test were 3.93 times (95% CI 1.03–14.98, p = 0.045) the odds for a patient with a shrimp skin test size between 3 and 4 mm. We did not find a correlation between shrimp skin test size and shrimp reaction symptom grade (p = 0.301). Conclusion In our Canadian patients, we found a large majority of shrimp allergic patients to be sensitized to HDM. We found that patients with a large skin test to shrimp were more likely to have a large skin test to HDM compared to those patients with a small skin test to shrimp. We did not find a correlation between shrimp skin test size and shrimp reaction symptom severity. Most of these patients had symptoms of rhinitis and/or asthma that may have been caused by house dust mite allergy.
Collapse
Affiliation(s)
- Lana Rosenfield
- Division of Clinical Immunology and Allergy, Department of Medicine Michael D. DeGroote School of Medicine, McMaster University, Hamilton, ON Canada
| | | | - Kirolos Milio
- Faculty of Science, University of Waterloo, Waterloo, ON Canada
| | | | - Harold Kim
- Division of Clinical Immunology and Allergy, Department of Medicine Michael D. DeGroote School of Medicine, McMaster University, Hamilton, ON Canada.,Grandriver Allergy, Kitchener, ON Canada.,Schulich School of Medicine & Dentistry, Western University, London, ON Canada
| |
Collapse
|
44
|
|
45
|
Allergens and molecular diagnostics of shellfish allergy: Part 22 of the Series Molecular Allergology. ACTA ACUST UNITED AC 2016; 25:210-218. [PMID: 28239537 PMCID: PMC5306157 DOI: 10.1007/s40629-016-0124-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/07/2016] [Indexed: 12/16/2022]
Abstract
Shellfish belongs to "The Big 8" food groups causing allergy, which often does not outgrow during childhood. Shellfish is one of the main food allergens in adults and constitutes a diverse group of species subdivided into crustaceans and mollusks, which seem to include similar but also different allergens. Several pan-allergens are characterized in detail, including tropomyosin and arginine kinase, responsible for clinical cross-reactivity with other invertebrate allergen sources, embracing mites, insects, and parasites. Currently, at least seven different shellfish allergens have been identified, mostly from crustaceans. However, only three recombinant allergens are available for IgE-based routine diagnostic, including tropomyosin, arginine kinase, and sarcoplasmic Ca2+-binding protein. Other allergens include myosin light chain, troponin C, triosephosphate isomerase, and actin. This review summarizes the current advances on the molecular characterization of shellfish allergens, clinical cross-reactivity, and current diagnostic approaches for the management of this life-threatening disease.
Collapse
|
46
|
Ghosal K, Saha B, Gupta Bhattacharya S. Clinical and immuno-proteomic approach on Lantana camara pollen allergy-a major health hazard. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2016; 12:33. [PMID: 27471520 PMCID: PMC4963993 DOI: 10.1186/s13223-016-0135-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND The incidence of allergic diseases is increasing gradually and is a global burden affecting the socio-economic quality of life. Identification of allergens is the first step towards paving the way for therapeutic interventions against atopic diseases. Our previous investigation figured out that total pollen load correlated significantly with the rise of respiratory allergy in a subtropical city in India. The most dominant pollen responsible for IgE sensitivity in most patients emerged to be from Lantana camara (LC) an obnoxious weed growing in and around suburban areas of West Bengal. In this study, we identified allergenic components from this shrub using an immunoproteomic approach. METHODS Determination of dominant pollen species was done using aerobiological sampling during two consecutive years and correlated with hospitalization and skin prick test. Serum was collected from LC positive patients and checked for in vitro allergenicity using ELISA and Histamine assay. Total proteome was profiled in SDS-PAGE, 2D PAGE and immunoblotted to detect IgE binding proteins which were further identified using mass spectrometry. RESULTS Lantana camara pollen emerged as a significant contributor from the correlation study with hospital admission of the respiratory allergy sufferers and its extract demonstrated an elevated IgE response in ELISA and histamine release assay tests. Five IgE reactive bands/zones were observed in 1D blot which resolved to 12 allergo-reactive spots in the 2D blot. Mass spectrometric analysis identified nine spots that grouped into four diverse proteins. Pathogenesis-related Thaumatin-like protein was found to be one of the major allergens in Lantana camara. CONCLUSIONS This is to our knowledge the first attempt to identify allergens from Lantana camara using a proteomic approach. The allergens identified thereof can be used to prepare hypoallergenic vaccine candidates and design immunotherapy trials against LC pollen and other aeroallergen carriers which are cross-reactive and harbor similar proteins.
Collapse
Affiliation(s)
- Kavita Ghosal
- Division of Plant Biology, Bose Institute, Main Campus, 93/1, A.P.C. Road, Kolkata, West Bengal 700009 India
| | - Bodhisattwa Saha
- Division of Plant Biology, Bose Institute, Main Campus, 93/1, A.P.C. Road, Kolkata, West Bengal 700009 India
| | - Swati Gupta Bhattacharya
- Division of Plant Biology, Bose Institute, Main Campus, 93/1, A.P.C. Road, Kolkata, West Bengal 700009 India
| |
Collapse
|
47
|
López-Matas MA, de Larramendi CH, Moya R, Sánchez-Guerrero I, Ferrer A, Huertas AJ, Flores I, Navarro LA, García-Abujeta JL, Vicario S, Andreu C, Peña M, Carnés J. In vivo diagnosis with purified tropomyosin in mite and shellfish allergic patients. Ann Allergy Asthma Immunol 2016; 116:538-43. [PMID: 27132158 DOI: 10.1016/j.anai.2016.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/25/2016] [Accepted: 03/31/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Tropomyosin is the most studied shellfish allergen and has been involved in cross-reactivity among different invertebrates (crustacean, mollusks, mites, insects, and nematodes). OBJECTIVE To determine the relevance of tropomyosin in mite- and shellfish-sensitized patients using tropomyosin skin testing. METHODS Patients were divided into 3 groups: group M included mite allergic patients (ie, individuals with respiratory symptoms and a positive result on skin prick testing [SPT] to house dust mites), group S included shellfish allergic patients (ie, individuals who reported symptoms with shellfish), and group MS included mite- and shellfish allergic patients (ie, individuals who simultaneously fulfilled the inclusion criteria for groups M and S). Tropomyosin was purified from shrimp, characterized, and used in SPT for diagnosis in the patient population. RESULTS Eight hundred fifty patients were included in the study: 790 (92.9%) in group M, 21 (2.5%) in group S, and 39 (4.6%) in group MS. Tropomyosin was purified from shrimp with a purity higher than 95%. Forty-two individuals tested positive to tropomyosin: the prevalence was 2.7% in group M, 28.6% in group S, and 38.5% in patients of group MS. Twenty-one (50%) of the tropomyosin-positive individuals had symptoms with shellfish, and 3 (14.3%) reported anaphylaxis. CONCLUSION The prevalence of tropomyosin was low in mite-sensitized patients (2.7 %) and high in shellfish allergic patients (28.6%). The higher prevalence of tropomyosin was found in patients sensitized to both mite and shellfish (38.5%). The selection of tropomyosin-sensitized patients by SPT might help in the choice of appropriate treatments or management for these patients.
Collapse
Affiliation(s)
| | - Carlos H de Larramendi
- Allergy Section, Hospital Marina Baixa, Villajoyosa and Centro de Especialidades Foietes, Benidorm, Alicante, Spain
| | - Raquel Moya
- R&D Department, Laboratorios LETI S.L., Tres Cantos, Madrid, Spain
| | | | - Angel Ferrer
- Allergy Unit, Hospital General Universitario de Elche, Elche, Alicante, Spain
| | - Angel Julio Huertas
- Allergy Section, Complejo Hospitalario Universitario de Cartagena, Cartagena, Murcia, Spain
| | - Isabel Flores
- Allergy Unit, Hospital de la Vega Baja, Orihuela, Alicante, Spain
| | - Luis Angel Navarro
- Allergy Unit, Centro de Especialidades El Españoleto, Játiva, Valencia, Spain
| | - José Luis García-Abujeta
- Allergy Section, Hospital Marina Baixa, Villajoyosa and Centro de Especialidades Foietes, Benidorm, Alicante, Spain
| | - Sandra Vicario
- Allergy Section, Hospital Marina Baixa, Villajoyosa and Centro de Especialidades Foietes, Benidorm, Alicante, Spain
| | - Carmen Andreu
- Allergy Unit, Hospital de la Vega Baja, Orihuela, Alicante, Spain
| | - Maribel Peña
- Allergy Unit, Hospital de la Vega Baja, Orihuela, Alicante, Spain
| | - Jerónimo Carnés
- R&D Department, Laboratorios LETI S.L., Tres Cantos, Madrid, Spain.
| |
Collapse
|
48
|
Fei DX, Liu QM, Chen F, Yang Y, Chen ZW, Cao MJ, Liu GM. Assessment of the sensitizing capacity and allergenicity of enzymatic cross-linked arginine kinase, the crab allergen. Mol Nutr Food Res 2016; 60:1707-18. [PMID: 26935337 DOI: 10.1002/mnfr.201500936] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/10/2016] [Accepted: 02/25/2016] [Indexed: 01/28/2023]
Abstract
SCOPE The enzymatic cross-linking of an allergen by food processing may alter its sensitization potential. In this study, the IgE-binding activity and allergenicity of cross-linked thermal polymerized arginine kinase (CL-pAK) were investigated. METHODS AND RESULTS The IgE-binding activity and stability of CL-pAK were analyzed by immunological and proteomics methods. The sensitization and potency to induce oral tolerance of CL-pAK were tested using in vivo assays and a cell model. According to the results of inhibition of ELISA, the half inhibitory concentration of AK after cross-linking changed from 1.13 to 228.36 μg/mL. The results of in vitro digestion demonstrated that CL-pAK showed more resistance to gastrointestinal digestion than native AK. Low allergenicity and capacity to induce oral tolerance in mice were shown by the sera levels of AK-specific antibodies and T-cell cytokine production. Exposure of RBL-2H3 cells to CL-pAK compared with AK, resulted in lower levels of mast degranulation and histamine. CONCLUSION Enzymatic cross-linking with thermal polymerization of AK by tyrosinase and caffeic acid had high potential in mitigating IgE-binding activity and allergenicity, which were influenced by altering the molecular and immunological features of the shellfish protein.
Collapse
Affiliation(s)
- Dan-Xia Fei
- College of Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China
| | - Feng Chen
- College of Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China.,Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Yang Yang
- College of Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China
| | - Zhong-Wei Chen
- College of Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
49
|
Erban T, Rybanska D, Harant K, Hortova B, Hubert J. Feces Derived Allergens of Tyrophagus putrescentiae Reared on Dried Dog Food and Evidence of the Strong Nutritional Interaction between the Mite and Bacillus cereus Producing Protease Bacillolysins and Exo-chitinases. Front Physiol 2016; 7:53. [PMID: 26941650 PMCID: PMC4764834 DOI: 10.3389/fphys.2016.00053] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/04/2016] [Indexed: 12/31/2022] Open
Abstract
Tyrophagus putrescentiae (Schrank, 1781) is an emerging source of allergens in stored products and homes. Feces proteases are the major allergens of astigmatid mites (Acari: Acaridida). In addition, the mites are carriers of microorganisms and microbial adjuvant compounds that stimulate innate signaling pathways. We sought to analyze the mite feces proteome, proteolytic activities, and mite-bacterial interaction in dry dog food (DDF). Proteomic methods comprising enzymatic and zymographic analysis of proteases and 2D-E-MS/MS were performed. The highest protease activity was assigned to trypsin-like proteases; lower activity was assigned to chymotrypsin-like proteases, and the cysteine protease cathepsin B-like had very low activity. The 2D-E-MS/MS proteomic analysis identified mite trypsin allergen Tyr p3, fatty acid-binding protein Tyr p13 and putative mite allergens ferritin (Grp 30) and (poly)ubiquitins. Tyr p3 was detected at different positions of the 2D-E. It indicates presence of zymogen at basic pI, and mature-enzyme form and enzyme fragment at acidic pI. Bacillolysins (neutral and alkaline proteases) of Bacillus cereus symbiont can contribute to the protease activity of the mite extract. The bacterial exo-chitinases likely contribute to degradation of mite exuviae, mite bodies or food boluses consisting of chitin, including the peritrophic membrane. Thus, the chitinases disrupt the feces and facilitate release of the allergens. B. cereus was isolated and identified based on amplification and sequencing of 16S rRNA and motB genes. B. cereus was added into high-fat, high-protein (DDF) and low-fat, low-protein (flour) diets to 1 and 5% (w/w), and the diets palatability was evaluated in 21-day population growth test. The supplementation of diet with B. cereus significantly suppressed population growth and the suppressive effect was higher in the high-fat, high-protein diet than in the low-fat, low-protein food. Thus, B. cereus has to coexist with the mite in balance to be beneficial for the mite. The mite-B. cereus symbiosis can be beneficial-suppressive at some level. The results increase the veterinary and medical importance of the allergens detected in feces. The B. cereus enzymes/toxins are important components of mite allergens. The strong symbiotic association of T. putrescentiae with B. cereus in DDF was indicated.
Collapse
Affiliation(s)
- Tomas Erban
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research Institute Prague, Czech Republic
| | - Dagmar Rybanska
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research InstitutePrague, Czech Republic; Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences PraguePrague, Czech Republic
| | - Karel Harant
- Biology Section, Laboratory of Mass Spectrometry, Service Labs, Faculty of Science, Charles University in Prague Prague, Czech Republic
| | - Bronislava Hortova
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research Institute Prague, Czech Republic
| | - Jan Hubert
- Laboratory of Proteomics, Biologically Active Substances in Crop Protection, Crop Research Institute Prague, Czech Republic
| |
Collapse
|
50
|
López-Matas MA, Iraola V, Moya R, Vailes LD, Pomés A, Boquete M, Fernández-Caldas E, Arlian L, Chapman M, Carnés J. Cloning and characterization of tropomyosin from the mite Chortoglyphus arcuatus. Mol Immunol 2015; 68:634-40. [DOI: 10.1016/j.molimm.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/29/2015] [Accepted: 10/09/2015] [Indexed: 11/29/2022]
|