1
|
Choi JI, Rodin D, Patel R, Sparano J, Khan A, Gerber N. Salvage Therapy for Isolated Local-Regional Breast Cancer Recurrence. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00593-0. [PMID: 40513680 DOI: 10.1016/j.ijrobp.2025.05.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 05/12/2025] [Accepted: 05/23/2025] [Indexed: 06/16/2025]
Abstract
The overall number of breast cancer patients at risk of developing local-regional disease recurrence has been increasing due to long-term survivorship from improvements in multimodality breast cancer treatment and a steady increase in breast cancer incidence. Many patients receive radiotherapy as part of definitive multidisciplinary breast cancer treatment, and to date, practitioners have approached reirradiation delivery with reticence due to concern for serious toxicities that may be incurred with high cumulative radiation doses. However, a subset of patients with breast cancer recurrence may benefit from reirradiation for improved locoregional tumor control. An emerging body of evidence has demonstrated promising efficacy and safety of breast cancer reirradiation that are gradually redefining the treatment paradigm. In addition, an increase in systemic therapy options has further optimized the opportunity for successful salvage of breast cancer recurrence. In this critical review, we review breast cancer radiation and systemic therapy salvage options, available data, ongoing studies, and treatment delivery considerations.
Collapse
Affiliation(s)
- J Isabelle Choi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; New York Proton Center, New York, NY, USA.
| | - Danielle Rodin
- Department of Radiation Oncology, University of Toronto, Ontario, CA
| | - Rima Patel
- Division of Hematology and Medical Oncology, Mount Sinai Health System, New York, NY, USA
| | - Joseph Sparano
- Division of Hematology and Medical Oncology, Mount Sinai Health System, New York, NY, USA
| | - Atif Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Naamit Gerber
- Department of Radiation Oncology, NYU Langone, New York, NY, USA
| |
Collapse
|
2
|
Xiao Y, Benedict S, Cui Y, Glide-Hurst C, Graves S, Jia X, Kry SF, Li H, Lin L, Matuszak M, Newpower M, Paganetti H, Qi XS, Roncali E, Rong Y, Sgouros G, Simone CB, Sunderland JJ, Taylor PA, Tchelebi L, Weldon M, Zou JW, Wuthrick EJ, Machtay M, Le QT, Buchsbaum JC. Embracing the Future of Clinical Trials in Radiation Therapy: An NRG Oncology CIRO Technology Retreat Whitepaper on Pioneering Technologies and AI-Driven Solutions. Int J Radiat Oncol Biol Phys 2025; 122:443-457. [PMID: 39848295 DOI: 10.1016/j.ijrobp.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/20/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
This white paper examines the potential of pioneering technologies and artificial intelligence-driven solutions in advancing clinical trials involving radiation therapy. As the field of radiation therapy evolves, the integration of cutting-edge approaches such as radiopharmaceutical dosimetry, FLASH radiation therapy, image guided radiation therapy, and artificial intelligence promises to improve treatment planning, patient care, and outcomes. Additionally, recent advancements in quantum science, linear energy transfer/relative biological effect, and the combination of radiation therapy and immunotherapy create new avenues for innovation in clinical trials. The paper aims to provide an overview of these emerging technologies and discuss their challenges and opportunities in shaping the future of radiation oncology clinical trials. By synthesizing knowledge from experts across various disciplines, this white paper aims to present a foundation for the successful integration of these innovations into radiation therapy research and practice, ultimately enhancing patient outcomes and revolutionizing cancer care.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stanley Benedict
- Department of Radiation Oncology, University of California at Davis, Comprehensive Cancer Center, Davis, California
| | - Yunfeng Cui
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Carri Glide-Hurst
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Stephen Graves
- Department of Radiology, Division of Nuclear Medicine, University of Iowa, Iowa City, Iowa
| | - Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Liyong Lin
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Martha Matuszak
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Mark Newpower
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - X Sharon Qi
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Emilie Roncali
- Department of Radiology, University of California at Davis, Davis, California
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - George Sgouros
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | | | - John J Sunderland
- Department of Radiology, Division of Nuclear Medicine, University of Iowa, Iowa City, Iowa
| | - Paige A Taylor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Leila Tchelebi
- Department of Radiation Oncology, Northwell Health, Mt. Kisco, New York
| | - Michael Weldon
- Department of Radiation Oncology, The Ohio State University Medical Center, Columbus, Ohio
| | - Jennifer W Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evan J Wuthrick
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Mitchell Machtay
- Department of Radiation Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Jeffrey C Buchsbaum
- Division of Cancer Treatment and Diagnosis, Radiation Research Program, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
3
|
Fontana G, Pepa M, Camarda AM, Strikchani M, Meregaglia M, Vai A, Mirandola A, Vischioni B, Pella A, Baroni G, Jereczek-Fossa BA, Scorsetti M, Cianchetti M, D'Angelo E, Bonomo P, Krengli M, Orlandi E. Envisioning an Italian Head and Neck Proton Therapy Model-Based Selection: Challenge and Opportunity. Int J Part Ther 2025; 16:100745. [PMID: 40230401 PMCID: PMC11995119 DOI: 10.1016/j.ijpt.2025.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Affiliation(s)
- Giulia Fontana
- Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Matteo Pepa
- Bioengineering Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Anna Maria Camarda
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Mimoza Strikchani
- Administrative Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Michela Meregaglia
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
| | - Alessandro Vai
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Alfredo Mirandola
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Andrea Pella
- Bioengineering Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Guido Baroni
- Bioengineering Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano (POLIMI), Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Cianchetti
- Proton Therapy Unit, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Elisa D'Angelo
- Radiation Oncology Department, Bellaria Hospital, AUSL of Bologna, Bologna, Italy
| | - Pierluigi Bonomo
- Department of Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Marco Krengli
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova, Italy
- Radiotherapy Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Ester Orlandi
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| |
Collapse
|
4
|
Shaaban SG, LeCompte M, Chen H, Lubelski D, Bydon A, Theodore N, Khan M, Lee S, Kebaish K, Kleinberg L, Hooker T, Li H, Redmond KJ. Comparison of Proton Versus Photon SBRT for Treatment of Spinal Metastases Using Variable RBE Models. Int J Part Ther 2025; 16:100743. [PMID: 40144347 PMCID: PMC11932874 DOI: 10.1016/j.ijpt.2025.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Purpose Study of proton stereotactic body radiation therapy (SBRT) for spinal metastasis has been limited, largely due to concerns of increased risk of spinal cord injury given the challenges of end of range relative biological effectiveness (RBE). Although the 1.1 RBE constant for proton beam has been adopted for clinical use, data indicate that proton RBE is variable and dependent on technical-, tissue-, and patient factors. To better understand the safety of proton SBRT for spinal metastasis, this dosimetric analysis compares plans using photon robotic techniques and proton therapy accounting for RBE-weighted dose (D_{RBE}). Materials and Methods Nine patients with spinal metastasis were selected to be representative of a broad range of complex clinical practice (3 cervical, 3 thoracic, 3 lumbar) that are uniquely challenging to treat with SBRT were identified. Each vertebral level contained a case with paraspinal extension, a reirradiation case, and a case with high-grade epidural disease (Bilsky grade ≥1c) given that such complex cases in current practice often require target volume under-coverage with photon SBRT (PH-SBRT) in order to meet organ at risk (OAR) dose constraints. All selected patients were treated with PH-SBRT using a robotic system to a prescription dose of 30 Gy in 5 fractions despite our institutional preference for further dose escalation, because further dose escalation was not feasible in the original planning process while keeping normal tissues below acceptable dose constraints. To see if superior target coverage could be achieved with proton treatment, comparative intensity modulated proton therapy (IMPT) plans were generated with the same prescription dose as what was clinically delivered using the 1.1 RBE constant. Dose escalated IMPT plans were then generated to 45 Gy(RBE) in 5 fractions. Variable RBE models (Carabe, McNamara, and Wedenberg) were then utilized to generate RBE-weighted dose D_{RBE} distribution for 30 Gy(RBE) and 45 Gy(RBE) plans using the α/β value (which was 3.76 in this study), physical dose, linear energy transfer (LET) value, and dose per fraction parameters. Proton plans used the robust optimization parameters of ±3.5% range and 2-mm setup uncertainties. Planning target volume (PTV) coverage and OARs sparing were compared using the Wilcoxon signed-rank test. Results Planning target volume coverage was significantly improved when comparing PH-SBRT at 30 Gy in 5 fractions (median: 25 Gy) to IMPT at 30 Gy[RBE] in 5 fractions (median: 30.3 Gy[RBE], P = .02) and 45 Gy(RBE) in 5 fractions (median 35.6 Gy[RBE], P = .001). Maximum dose of the spinal cord (cord Dmax) was significantly lower with IMPT at 30 Gy(RBE) (median: 17.6 Gy[RBE], P = .04) and 45 Gy(RBE) (median: 16.1 Gy[RBE], P = .04) compared to conventional plan at 30 Gy (median: 18 Gy). Spinal cord expansion (cord + 2 mm) maximum dose did not change in both photon (median 21.5 Gy) and proton plans (median 22.5, P = .27). Other OARs were better spared with the same and dose-escalated proton plans. No difference was seen in cord Dmax when comparing the PH-SBRT at 30 Gy to D_{RBE} at 30 and 45 Gy(RBE) using Carabe-, McNamara-, or Wedenberg models. However, for spinal cord expansion (cord + 2 mm), there was significant difference between PH-SBRT and D_{RBE} at 30 Gy(RBE) and 45 Gy(RBE) in 5 fractions using Carabe- (median: 25.4 Gy[RBE], P = .002), McNamara- (median: 25.1 Gy[RBE], P = .003), or Wedenberg (median: 24.8 Gy[RBE], P = .0001) models. The average increase in the spinal cord expansion maximum dose using these models compared to the fixed RBE plans was 5.3%. Conclusion We report the first dosimetric analysis of proton SBRT for spine metastasis using variable RBE dose models. Compared to photon SBRT, IMPT may provide improved target coverage and better spare adjacent OARs, though fixed RBE models can underestimate the maximum dose to adjacent OARs. Future prospective studies are needed to validate these results.
Collapse
Affiliation(s)
- Sherif G. Shaaban
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Michael LeCompte
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Hao Chen
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | | | - Ali Bydon
- Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | | | - Majid Khan
- Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sang Lee
- Orthopedic Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Khaled Kebaish
- Orthopedic Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Lawrence Kleinberg
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ted Hooker
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Heng Li
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kristin J. Redmond
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Waldrip BR, Malik M, Paez P, Lenards N, Hunzeker A, Park J. Relative biological effectiveness-weighted dose sparing utilizing a linear energy transfer optimization function for organs-at-risk in left breast proton treatment plans. Med Dosim 2025:S0958-3947(25)00026-3. [PMID: 40410073 DOI: 10.1016/j.meddos.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 05/25/2025]
Abstract
Current proton treatment plans employ a constant relative biological effectiveness (RBE) of 1.1, which may underestimate organs-at-risk (OAR) doses due to high linear energy transfer (LET) at the distal end of the proton beam. When 2 anterior fields are used for left breast treatment using pencil beam scanning (PBS), the ipsilateral lung and heart are susceptible to high LET. Although studies have indicated a potential increase in OAR toxicity linked to LET effects, the strategy of optimizing LET to RBE-weighted doses (D_vRBE) to spare OAR is still underexplored in treatment planning research. Addressing this gap is crucial for improving treatment outcomes and minimizing toxicities. To evaluate the effectiveness of LET optimization in reducing doses to OAR, we aimed to achieve more than a 10% reduction in the mean or maximum D_vRBE for the heart, ipsilateral lung, and humeral joint, while ensuring adequate target coverage. In this study, 12 cases of left-sided breast cancer with locally advanced invasive carcinoma were randomly selected to assess the dose reduction of OAR using LET optimization. The OAR doses were compared to those of clinically accepted PBS plans that did not incorporate LET optimization. To validate the hypothesis, a statistical analysis was implemented using the Wilcoxon-Signed Rank test. The results demonstrated a significant reduction in mean D_vRBE for both the heart and ipsilateral lung, as well as the maximum D_vRBE for humeral joint (p < 0.05). A decrease in both maximum and mean LET was observed in the ipsilateral lung (p < 0.05). These findings indicate that optimizing LET has the potential to effectively reduce D_vRBE for OAR, which can lead to minimizing organ toxicity.
Collapse
Affiliation(s)
- Bobby R Waldrip
- Medical Dosimetry Program, University of Wisconsin, La Crosse, WI, USA; University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA.
| | - Mahnoor Malik
- Medical Dosimetry Program, University of Wisconsin, La Crosse, WI, USA
| | - Paula Paez
- Medical Dosimetry Program, University of Wisconsin, La Crosse, WI, USA
| | - Nishele Lenards
- Medical Dosimetry Program, University of Wisconsin, La Crosse, WI, USA
| | - Ashley Hunzeker
- Medical Dosimetry Program, University of Wisconsin, La Crosse, WI, USA
| | - Jiyeon Park
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| |
Collapse
|
6
|
Lauwens L, Ribeiro MF, Zegers CML, Høyer M, Alapetite C, Blomstrand M, Calugaru V, Perri DD, Iannalfi A, Lütgendorf-Caucig C, Paulsen F, Postma AA, Romero AM, Timmermann B, Troost EGC, van der Weide HL, Whitfield GA, Harrabi S, Lambrecht M, Eekers DBP. Systematic review of MRI alterations in the brain following proton and photon radiation therapy: Towards a uniform European Particle Therapy Network (EPTN) definition. Radiother Oncol 2025; 208:110936. [PMID: 40360047 DOI: 10.1016/j.radonc.2025.110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
Magnetic resonance imaging (MRI) often demonstrates alterations following cranial radiotherapy (RT), which may result in clinical symptoms and diagnostic uncertainty, and thus potentially impact treatment decisions. The potential differences in MRI alterations after proton and photon RT, has raised concerns regarding the relative biological effectiveness of proton therapy. To provide an overview of MRI alterations in the brain post-RT and to explore differences between photon and proton RT, a systematic review adhering to the PRISMA guidelines was conducted, focusing on the assessment methods and definitions across studies. A systematic search of three electronic databases was performed using the concepts 'normo-fractionated radiotherapy ', 'MRI alterations' and 'brain, skull base or head and neck tumours in adult and paediatric populations'. Data extraction and quality assessment was performed on articles meeting the predefined criteria by two independent reviewers. Out of 5887 screened studies, 94 met the inclusion criteria. These studies were categorized based on confinement of the MRI alterations to temporal lobe, brainstem, or across the entire brain. Additional subclassification was performed based on MRI sequences evaluated or by the nature of the alterations, with pseudoprogression generally reserved for glioma patients. While many papers exist on MRI alterations in the brain after RT, this review highlights significant inconsistencies in the terminology and definitions, limiting the comparability of findings across studies. Our results highlight the need for and facilitate the development of a standardized framework for describing MRI alterations after RT.
Collapse
Affiliation(s)
- Lieselotte Lauwens
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium; University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium.
| | - Marvin F Ribeiro
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht. University Medical Centre+, Maastricht, the Netherlands; Mental Health and Neuroscience research institute (Mhens) Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht. University Medical Centre+, Maastricht, the Netherlands
| | - Morton Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Claire Alapetite
- Institut Curie, Radiation Oncology Department, Paris & Proton Center, Orsay, France
| | - Malin Blomstrand
- Department of Oncology, Sahlgrenska University Hospital Gothenburg and the Skandion Clinic, Sweden
| | - Valentin Calugaru
- Institut Curie, Radiation Oncology Department, Paris & Proton Center, Orsay, France
| | - Dario Di Perri
- Department of Radiation Oncology, Cliniques universitaires Saint-Luc, Brussels, Belgium; Particle Therapy Interuniversitary Center Leuven (PartICLe), Belgium
| | - Alberto Iannalfi
- Clinical Department, Radiotherapy Unit, National Center for Oncological Hadrontherapy (C.N.A.O.), Italy
| | - Carola Lütgendorf-Caucig
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; Radioonkologie, Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Frank Paulsen
- Clinic for Radiation Oncology, Eberhard-Karls-University, Tuebingen, Germany
| | - Alida A Postma
- Mental Health and Neuroscience research institute (Mhens) Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Alejandra Méndèz Romero
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Beate Timmermann
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), University Hospital Essen, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Hiska L van der Weide
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Gillian A Whitfield
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom; University of Manchester, Royal Manchester Children's Hospital, The Children's Brain Tumour Research Network, Manchester, United Kingdom
| | - Semi Harrabi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Maarten Lambrecht
- KU Leuven, University of Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium; University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium; Particle Therapy Interuniversitary Center Leuven (PartICLe), Belgium
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht. University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
7
|
Wagenaar D, Mohan V, Langendijk JA, J.H.M. Steenbakkers R, Vogel WV, Both S. Relating proton LETd to biological response of parotid and submandibular glands using PSMA-PET in clinical patients. Clin Transl Radiat Oncol 2025; 52:100910. [PMID: 39925864 PMCID: PMC11803207 DOI: 10.1016/j.ctro.2024.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 02/11/2025] Open
Abstract
Background and purpose A recent study investigated the use of PSMA-PET in monitoring loss of secretory cells in salivary glands of head and neck cancer (HNC) patients. Previously, a dose-effect relation has been formulated to the PSMA-PET uptake in salivary glands. The aim of this study was to derive a proton RBE model from the PSMA-PET uptake in salivary glands after proton therapy of HNC patients. Materials and methods Six patients treated with proton therapy were included. These patients received a PET-CT scan using 68Ga (N = 1) or 18F (N = 5) PSMA before treatment (baseline) and one month after the last fraction (follow-up). Physical dose (D), D·LETd and the follow-up PSMA-PET scan were deformed to the baseline PET-CT using deformable image registration. Parotid and submandibular gland delineations were adjusted to include voxels which had an uptake of ≥ 5 g/ml in the baseline PSMA-PET scan. Results The average RBE-LET slope was 0.075 [0.009; 0.125] (keV/μm)-1 (mean [95 %CI]) for parotid and submandibular glands combined. When analyzing parotid or submandibular glands separately the RBE-LET curve slope varies with two and five patients showing a positive RBE-LET slope when only analyzing parotid or submandibular glands respectively. Conclusion Our study did not find clear evidence of an increased RBE in parotid and submandibular glands with increasing LETd. On average an LETd effect was observed, however our sample size was too small to clearly define an RBE-LET relation. A larger cohort scanned at later time intervals could shed more light on this issue.
Collapse
Affiliation(s)
- Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Vineet Mohan
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Johannes A. Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Roel J.H.M. Steenbakkers
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wouter V. Vogel
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Yang Y, Gergelis KR, Shen J, Afzal A, Mullikin TC, Gao RW, Aziz K, Shumway DA, Corbin KS, Liu W, Mutter RW. Study of linear energy transfer effect on rib fracture in breast cancer patients receiving pencil-beam-scanning proton therapy. Med Phys 2025; 52:3428-3438. [PMID: 40102627 PMCID: PMC12059513 DOI: 10.1002/mp.17745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND In breast cancer patients treated with pencil-beam scanning proton therapy (PBS), the increased linear energy transfer (LET) near the end of the proton range can affect nearby ribs. This may associate with a higher risk of rib fractures. PURPOSE To study the effect of LET on rib fracture in breast cancer patients treated with PBS using a novel tool of dose-LET volume histogram (DLVH). METHODS From a prospective registry of patients treated with post-mastectomy proton therapy to the chest wall and regional lymph nodes for breast cancer between 2015 and 2020, we retrospectively identified rib fracture cases detected after completing treatment. Contemporaneously treated control patients who did not develop rib fracture were matched to patients 2:1 considering prescription dose, boost location, reconstruction status, laterality, chest wall thickness, and treatment year. The DLVH index, V(d, l), defined as volume(V) of the structure with at least dose(d) and dose-averaged LET (l) (LETd), was calculated. DLVH plots between the fracture and control group were compared. Conditional logistic regression (CLR) model was used to establish the relation of V(d, l) and the observed fracture at each combination of d and l. The p-value derived from CLR model shows the statistical difference between fracture patients and the matched control group. Using the 2D p-value map derived from CLR model, the DLVH features associated with the patient outcomes were extracted. RESULTS Seven rib fracture patients were identified, and fourteen matched patients were selected for the control group. The median time from the completion of proton therapy to rib fracture diagnosis was 12 months (range 5-14 months). Two patients had grade 2 symptomatic rib fracture while the remaining 5 were grade 1 incidentally detected on imaging. The derived p-value map demonstrated larger V(0-36 Gy[RBE], 4.0-5.0 keV/µm) in patients experiencing fracture (p < 0.1). For example, the p-value for V(30 Gy[RBE], 4.0 keV/um) was 0.069. CONCLUSION In breast cancer patients receiving PBS, a larger volume of chest wall receiving moderate dose and high LETd may result in an increased risk of rib fracture.
Collapse
Affiliation(s)
- Yunze Yang
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
- Department of Radiation OncologyUniversity of MiamiMiamiFloridaUSA
| | - Kimberly R. Gergelis
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
- Department of Radiation OncologyUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - Jiajian Shen
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
| | - Arslan Afzal
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | - Trey C. Mullikin
- Department of Radiation OncologyDuke Cancer InstituteDurhamNorth CarolinaUSA
| | - Robert W. Gao
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | - Khaled Aziz
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | - Dean A. Shumway
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | | | - Wei Liu
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
| | - Robert W. Mutter
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
- Department of PharmacologyMayo ClinicRochesterMinnesotaSA
| |
Collapse
|
9
|
Ashby BS, Chronholm V, Hajnal DK, Lukyanov A, MacKenzie K, Pim A, Pryer T. Efficient proton transport modelling for proton beam therapy and biological quantification. J Math Biol 2025; 90:47. [PMID: 40214815 PMCID: PMC11992007 DOI: 10.1007/s00285-025-02212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
In this work, we present a fundamental mathematical model for proton transport, tailored to capture the key physical processes underpinning Proton Beam Therapy (PBT). The model provides a robust and computationally efficient framework for exploring various aspects of PBT, including dose delivery, linear energy transfer, treatment planning and the evaluation of relative biological effectiveness. Our findings highlight the potential of this model as a complementary tool to more complex and computationally intensive simulation techniques currently used in clinical practice.
Collapse
Affiliation(s)
- Ben S Ashby
- Institute of Mathematical Innovation, University of Bath, Bath, UK
| | | | - Daniel K Hajnal
- Department of Mathematical Sciences, University of Bath, Bath, UK
| | - Alex Lukyanov
- Department of Mathematics and Statistics, University of Reading, Reading, UK
| | | | - Aaron Pim
- Department of Mathematical Sciences, University of Bath, Bath, UK
| | - Tristan Pryer
- Institute of Mathematical Innovation, University of Bath, Bath, UK.
- Department of Mathematical Sciences, University of Bath, Bath, UK.
| |
Collapse
|
10
|
Su T, Yu X, Hoseini-Ghahfarokhi M, Flint DB, Bright SJ, Antunes JIDS, Martinus DKJ, Manandhar M, Ben Kacem M, Marinello PC, Pereira EJG, Chiu HS, Titt U, Grosshans DR, Schuemann J, Willers H, Paganetti H, Sumazin P, Sawakuchi GO. Differentiation Stage Predicts Radiosensitivity in Mesenchymal-Like Pancreatic Cancer. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00266-4. [PMID: 40180058 DOI: 10.1016/j.ijrobp.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/25/2025] [Accepted: 03/15/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE To derive a genomic classifier to predict radiosensitivity of pancreatic cancer cell lines and patients with pancreatic cancer to allow genomic-guided radiation therapy. METHODS AND MATERIALS We collected a comprehensive data set of full clonogenic cell survival curves of 45 pancreatic cancer cell lines irradiated with clinical photon and proton beams. We derived classifiers based on data from human embryonic and fetal pancreas single-cell RNA-sequencing to distinguish between epithelial and mesenchymal cells and to predict pancreas cell-line differentiation stage. Independent testing was done with an embryonic mouse pancreas single-cell RNA-sequencing data set. We then used bulk RNA-seq profiles from the Cancer Cell Line Encyclopedia to classify our pancreatic cancer cell lines using our epithelial-mesenchymal and differentiation stage classifiers. We then correlated the differentiation stage classifier with the radiosensitivity of the pancreatic cancer cell lines as well as with pancreatic cancer patient data from The Cancer Genome Atlas. RESULTS We found wide variability in radiosensitivity to both photons and protons among pancreatic cancer cell lines. We showed that the differentiation stage is predictive of radiosensitivity of mesenchymal pancreatic cancer cell lines but not epithelial pancreatic cancer cell lines. We found that chromatin compaction is associated with the differentiation stage and showed that the less differentiated mesenchymal pancreatic cancer cell lines tend to be radioresistant and with more compact chromatin than the radiosensitive differentiated cell lines. Patients with more differentiated tumors exhibit better overall survival. CONCLUSIONS We found that mesenchymal-like undifferentiated pancreatic cancer cell lines are more radioresistant than mesenchymal-like differentiated ones and that patients with pancreatic cancer with mesenchymal-like undifferentiated tumors treated with radiation therapy tend to have lower overall survival compared with patients with mesenchymal-like differentiated tumors. We show that it is feasibility to use the differentiation stage of mesenchymal pancreatic cancer cells to predict tumor specific radiosensitivity.
Collapse
Affiliation(s)
- Tingshi Su
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xinjian Yu
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Mojtaba Hoseini-Ghahfarokhi
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David B Flint
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott J Bright
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joana I D S Antunes
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Physics, Faculty of Science, University of Lisbon, Lisbon, Portugal; Laboratory of Instrumentation and Experimental Particle Physics, Lisbon, Portugal
| | - David K J Martinus
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mandira Manandhar
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mariam Ben Kacem
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Poliana C Marinello
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eurico J G Pereira
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Hua-Sheng Chiu
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Uwe Titt
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R Grosshans
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Pavel Sumazin
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas.
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
11
|
Wang JH, Oglesby R, Tran A, Guryildirim M, Miller M, Sheikh K, Li H, Ladra M, Hrinivich WT, Acharya S. The Association of Linear Energy Transfer and Dose With Radiation Necrosis After Pencil Beam Scanning Proton Therapy in Pediatric Posterior Fossa Tumors. Int J Radiat Oncol Biol Phys 2025; 121:1219-1228. [PMID: 39580001 DOI: 10.1016/j.ijrobp.2024.11.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
PURPOSE Proton therapy is the preferred treatment modality for most pediatric central nervous system tumors. The risk of radiation necrosis may be increased at the distal end of the beam because of an increase in linear energy transfer (LET) and relative biological effectiveness (RBE) dose. We report on the association of LET and dose with radiation necrosis after pencil beam scanning proton therapy in pediatric posterior fossa tumors using a case-control framework. MATERIALS AND METHODS From 2019 to 2022, 33 patients less than or equal to 18 years of age treated with first-line proton therapy for primary tumors in the posterior fossa and with 6 or more months of follow-up magnetic resonance imaging were retrospectively identified. Nine patients with imaging changes consistent with necrosis were matched with controls in a 1:2 fashion based on age, sex, dose, and follow-up time from proton therapy. Dose (Gy [RBE]) and dose-averaged LET (LETd) values for target structures and organs at risk were computed and compared between cases and controls. RESULTS Within the whole cohort, the mean age was 6.6 years (SD, 4.77) with a median follow-up time of 24.1 months. Within the case-control matched cohort (18 controls and 9 cases), there were no significant differences in age, sex, time to follow-up, tumor location, dose, and use of concurrent chemotherapy. The mean time to necrotic imaging finding was 4.47 months (SD, 2.03). Cases demonstrated significantly higher brainstem D50 (P = .02). LETd was not different between cases and controls. However, when using a combined metric of higher brainstem dose {>47.5 (Gy [RBE])} and higher LETd (>3.5 keV/µm), a greater proportion of cases compared with controls met this metric (89% vs 39%, P = .02). CONCLUSIONS Combined effects of intermediate-to-high dose and LETd in the brainstem may contribute to greater necrosis risk after pencil beam scanning proton therapy in children with posterior fossa tumors.
Collapse
Affiliation(s)
- Jarey H Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ryan Oglesby
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anh Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, District of Columbia
| | - Melike Guryildirim
- Division of Pediatric Neuroradiology, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mattea Miller
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Khadija Sheikh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, District of Columbia
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, District of Columbia
| | - Matthew Ladra
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, District of Columbia
| | - William T Hrinivich
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, District of Columbia
| | - Sahaja Acharya
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Johns Hopkins Proton Therapy Center, Johns Hopkins University School of Medicine, Washington, District of Columbia.
| |
Collapse
|
12
|
Garrido-Hernandez G, Ytre-Hauge KS, Winter RM, Danielsen S, Alsaker MKD, Redalen KR, Henjum H. In Silico Interim Adaptation of Proton Therapy in Head and Neck Cancer by Simultaneous Dose and Linear Energy Transfer Escalation. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00154-3. [PMID: 39993539 DOI: 10.1016/j.ijrobp.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/28/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
PURPOSE The outcome of proton therapy for head and neck cancer (HNC) varies considerably. We investigated the feasibility of adapting proton therapy plans based on 18F-fluorodeoxyglucose-positron emission tomography-defined biologic tumor volumes (BTVs) reflecting remaining aggressive tumor subvolumes 2 weeks into treatment (interim). Recognizing the potential to improve proton therapy response with increasing linear energy transfer (LET), we simulated a combined dose-LET escalation to the BTVs and compared it to pure dose escalation. In addition, the impact of relative biological effectiveness (RBE) was evaluated by comparing the constant RBE of 1.1 (RBE1.1) with a variable-RBE model. METHODS AND MATERIALS A semiautomated method was used to segment the BTV from 18F-fluorodeoxyglucose-positron emission tomography-defined for 9 patients with HNC, assuming high standardized uptake value at interim to reflect tumor radioresistance. An in-house Monte Carlo-based recalculation and reoptimization tool simulated proton therapy plans with both constant RBE1.1 and variable-RBE, aimed to deliver 68 Gy (RBE) to high-risk target volumes, 10% dose escalation to the BTV, and a LET boost to the BTV. Dose distributions were prioritized over LET optimization goals. Results were quantified by dose and LET distributions to target volumes and organs at risk, as well as normal tissue complication probabilities (NTCPs) for xerostomia and dysphagia. RESULTS Dose-LET adapted proton therapy plans achieved 10% dose escalation and mean dose-averaged LET (LETd) increases to the BTV above 1.0 keV/μm, with no significant LET increases to organs at risk. NTCP for xerostomia and dysphagia from dose-LET and dose-only escalation were similar. However, NTCPs increased 6% to 10% when variable-RBE was used instead of the constant RBE1.1. CONCLUSIONS Our in silico study showed that dose-LET escalation in proton therapy integrating a variable-RBE model may improve proton therapy for patients with HNC. Clinical evaluation of such a biological image-based dose-LET escalation in proton therapy of HNC remains to be investigated.
Collapse
Affiliation(s)
| | | | - René M Winter
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Signe Danielsen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Mirjam K D Alsaker
- Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Helge Henjum
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Overgaard CB, Reaz F, Ankjærgaard C, Andersen CE, Sitarz M, Poulsen P, Spejlborg H, Johansen JG, Overgaard J, Grau C, Bassler N, Sørensen BS. The proton RBE and the distal edge effect for acute and late normal tissue damage in vivo. Radiother Oncol 2025; 203:110668. [PMID: 39675573 DOI: 10.1016/j.radonc.2024.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND AND PURPOSE In proton therapy, a relative biological effectiveness (RBE) of 1.1 is used toreach an isoeffective biological response between photon and proton doses. However, the RBE varies with biological endpoints and linear energy transfer (LET), two key parameters in radiotherapy. Few in vivo studies have investigated the increasing RBE with increasing LET. This study aims to test the hypothesis that the RBE varies between endpoints and has a distal edge effect in vivo. MATERIALS AND METHODS Unanesthetized micewere restrainedin jigs where their right hind legs were irradiated with a single dose of protons at the center (LET, all = 5.3 keV/μm) and distal edge (LET, all = 7.6 keV/μm) of a spread-out Bragg peak (SOBP). 6 MV photons were used as reference. The acute damage and skin toxicity were scored daily until day 30, and the late damage was evaluated using a joint contracture assay for one year after treatment. RESULTS An acute damage RBE of 1.06 ± 0.02(1.02-1.10) and late damage RBE of 1.16 ± 0.08(1.00-1.32) were found, displaying an enhanced RBE for late damage in the center SOBP. The distal edge RBE for acute and late damage was 1.15 ± 0.02(1.10-1.19) and 1.26 ± 0.09(1.07-1.43), showing a similar center-to-distal edge RBE enhancement of 8 % and 9 % for acute and late damage. CONCLUSION The findings demonstrate an increased RBE for late damage than acute damage and the distal edge effect is evident with increased RBE at the distal end of the proton SOBP in vivo.
Collapse
Affiliation(s)
| | - Fardous Reaz
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | | | | | - Mateusz Sitarz
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Per Poulsen
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Harald Spejlborg
- Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Jacob G Johansen
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Cai Grau
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Niels Bassler
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| |
Collapse
|
14
|
Kalholm F, Toma‐Dasu I, Traneus E. 'Dirty dose'-based proton variable RBE models - performance assessment on in vitro data. Med Phys 2025; 52:1311-1322. [PMID: 39565935 PMCID: PMC11788267 DOI: 10.1002/mp.17519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND In clinical proton radiotherapy, a constant relative biological effectiveness (RBE) of 1.1 is typically applied. Due to abundant evidence of variable RBE effects from in vitro data, multiple variable RBE models have been suggested, typically by describing the α $\alpha$ and β $\beta$ parameters in the linear quadratic (LQ) model as a function of dose averaged linear energy transfer (LET d $\text{LET}_d$ ). PURPOSE This work introduces a new variable RBE model based on the dirty dose concept, where dose deposited in voxels with a corresponding LET exceeding a specific threshold is considered "dirty" in the sense that it has a biological effect above the one predicted by a constant RBE of 1.1. As only one LET level, corresponding to a specific energy for a given particle in a given medium, needs to be monitored, this offers several advantages, such as simplified calculations by removing the need for intricate end of range LET calculations and averaging procedures, as well as opening up for more efficient experimental assessment of the cell specific model parameters. METHODS Previously published in vitro data were utilized, where surviving fraction (SF), dose andLET d $\text{LET}_d$ were reported for a pristine proton beam with varying physical PMMA thicknesses placed upstream of the cells. The setup was re-simulated to extract dirty dose metrics for the corresponding reportedLET d $\text{LET}_d$ -values. Models were created by setting the α $\alpha$ parameter of the LQ model as a function of the fraction of dirty dose and subsequently benchmarked against models based on other radiation quality metrics by comparing the root-mean-square-error (RMSE) of the predicted and actual cell surviving fraction. RESULTS Variable RBE models based on dirty dose perform on par with conventional radiation quality metrics with a RMSE of 0.38 for a dirty dose-based model with a threshold of 7keV / μ m $\mathrm{keV}/{\umu}\mathrm{m}$ , compared to 0.42 and 0.36 for aLET d $\text{LET}_d$ -based andQ eff , d $Q_{\mathrm{eff}, d}$ -based model, respectively. Higher chosen LET thresholds typically performed better and lower performed worse. CONCLUSION The results indicate that models based on dirty dose metrics perform equally well as conventional radiation quality metrics. Due to the simplified calculations involved and the potential for more efficient measurement techniques for data generation, dirty dose-based models might be the most conservative and practical approach for creating future proton variable RBE models.
Collapse
Affiliation(s)
- Fredrik Kalholm
- Medical Radiation PhysicsDepartment of PhysicsStockholm UniversityStockholmSweden
- Department of Oncology and PathologyMedical Radiation PhysicsKarolinska InstitutetStockholmSweden
- Raysearch Laboratories ABStockholmSweden
| | - Iuliana Toma‐Dasu
- Medical Radiation PhysicsDepartment of PhysicsStockholm UniversityStockholmSweden
- Department of Oncology and PathologyMedical Radiation PhysicsKarolinska InstitutetStockholmSweden
| | | |
Collapse
|
15
|
Knäusl B. New guidelines and recommendations to advance treatment planning in proton therapy. Phys Imaging Radiat Oncol 2025; 33:100695. [PMID: 39866245 PMCID: PMC11764265 DOI: 10.1016/j.phro.2024.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Affiliation(s)
- Barbara Knäusl
- Department of Radiation Oncology & Christian Doppler Laboratory for Image and Knowledge Driven Precision Radiation Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Ödén J, Eriksson K, Kaushik S, Traneus E. Beyond a constant proton relative biological effectiveness: A survey of clinical and research perspectives among proton institutions in Europe and the United States. J Appl Clin Med Phys 2025; 26:e14535. [PMID: 39492602 PMCID: PMC11712586 DOI: 10.1002/acm2.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 11/05/2024] Open
Abstract
PURPOSE Although proton relative biological effectiveness (RBE) depends on factors like linear energy transfer (LET), tissue properties, dose, and biological endpoint, a constant RBE of 1.1 is recommended in clinical practice. This study surveys proton institutions to explore activities using functionalities beyond a constant proton RBE. METHODS Research versions of RayStation integrate functionalities considering variable proton RBE, LET, proton track-ends, and dirty dose. A survey of 19 institutions in Europe and the United States, with these functionalities available, investigated clinical adoption and research prospects using a 25-question online questionnaire. RESULTS Of the 16 institutions that responded (84% response rate), 13 were clinically active. These clinical institutions prescribe RBE = 1.1 but also employ planning strategies centered around special beam arrangements to address potentially enhanced RBE effects in serially structured organs at risk (OARs). Clinical plan evaluation encompassed beam angles/spot position (69%), dose-averaged LET (LETd) (46%), and variable RBE distributions (38%). High ratings (discrete scale: 1-5) were reported for the research functionalities using linear LETd-RBE models, LETd, track-end frequency and dirty dose (averages: 4.0-4.8), while LQ-based phenomenological RBE models dependent on LETd scored lower for optimization (average: 2.2) but congruent for evaluation (average: 4.1). The institutions preferred LET reported as LETd (94%), computed in unit-density water (56%), for all protons (63%), and lean toward LETd-based phenomenological RBE models for clinical use (> 50%). CONCLUSIONS Proton institutions recognize RBE variability but adhere to a constant RBE while actively mitigating potential enhancements, particularly in serially structured OARs. Research efforts focus on planning techniques that utilize functionalities beyond a constant RBE, emphasizing standardized LET and RBE calculations to facilitate their adoption in clinical practice and improve clinical data collection. LETd calculated in unit-density water for all protons as input to adaptable phenomenological RBE models was the most suggested approach, aligning with predominant clinical LET and variable RBE reporting.
Collapse
Affiliation(s)
- Jakob Ödén
- Department of ResearchRaySearch Laboratories ABStockholmSweden
| | - Kjell Eriksson
- Department of ResearchRaySearch Laboratories ABStockholmSweden
| | | | - Erik Traneus
- Department of ResearchRaySearch Laboratories ABStockholmSweden
| |
Collapse
|
17
|
Smith BR, Hyer DE. The LET enhancement of energy-specific collimation in pencil beam scanning proton therapy. J Appl Clin Med Phys 2025; 26:e14477. [PMID: 39644507 PMCID: PMC11712952 DOI: 10.1002/acm2.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 12/09/2024] Open
Abstract
PURPOSE To computationally characterize the LET distribution during dynamic collimation in PBS and quantify its impact on the resultant dose distribution. METHODS Monte Carlo simulations using Geant4 were used to model the production of low-energy proton scatter produced in the collimating components of a novel PBS collimator. Custom spectral tallies were created to quantify the energy, track- and dose-averaged LET resulting from individual beamlet and composite fields simulated from a model of the IBA dedicated nozzle system. The composite dose distributions were optimized to achieve a uniform physical dose coverage of a cubical and pyramidal target, and the resulting dose-average LET distributions were calculated for uncollimated and collimated PBS deliveries and used to generate RBE-weighted dose distributions. RESULTS For collimated beamlets, the scattered proton energy fluence is strongly dependent on collimator position relative to the central axis of the beamlet. When delivering a uniform profile, the distribution of dose-average LET was nearly identical within the target and increased between 1 and2 keV / μ m $2 \,{\rm keV}/\mathrm{\umu }\mathrm{m}$ within 10 mm surrounding the target. Dynamic collimation resulted in larger dose-average LET changes: increasing the dose-average LET between 1 and3 keV / μ m $3 \,{\rm keV}/\mathrm{\umu }\mathrm{m}$ within 10 mm of a pyramidal target while reducing the dose-average LET outside this margin by as much as10 keV / μ m $10 \,{\rm keV}/\mathrm{\umu }\mathrm{m}$ . Biological dose distributions are improved with energy-specific collimation in reducing the lateral penumbra. CONCLUSION The presence of energy-specific collimation in PBS can lead to dose-average LET changes relative to an uncollimated delivery. In some clinical situations, the placement and application of energy-specific collimation may require additional planning considerations based on its reduction to the lateral penumbra and increase in high-dose conformity. Future applications may embody these unique dosimetric characteristics to redirect high-LET portions of a collimated proton beamlet from healthy tissues while enhancing the dose-average LET distribution within target.
Collapse
Affiliation(s)
- Blake R. Smith
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| | - Daniel E. Hyer
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
18
|
Wagenaar D, Langendijk JA, Both S. Linear approximation of variable relative biological effectiveness models for proton therapy. Phys Imaging Radiat Oncol 2025; 33:100691. [PMID: 39885905 PMCID: PMC11780161 DOI: 10.1016/j.phro.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
The McNamara (MCN) and Wedenberg (WED) RBE weighted dose (DRBE), dose and dose-weighted average LET (LETd) were calculated in twenty brain cancer patients. A linear approximation was made for each RBE model to give best agreement to clinically relevant dosimetric parameters. Additional evaluations were done on twenty head and neck and twenty breast cancer patients.The R2 of the fits was ≥0.94 and ≥0.91 for MCN and WED respectively for α/β values ≥1.0 Gy. The graphs derived in this work can be used to convert RBE-LET slopes derived from clinical data to α/β values in the MCN or WED models.
Collapse
Affiliation(s)
- Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Johannes A. Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
19
|
Palkowitsch M, Kaufmann LM, Hennings F, Menkel S, Hahn C, Bensberg J, Lühr A, Seidlitz A, Troost EGC, Krause M, Löck S. Variable-RBE-induced NTCP predictions for various side-effects following proton therapy for brain tumors - Identification of high-risk patients and risk mitigation. Radiother Oncol 2025; 202:110590. [PMID: 39427934 DOI: 10.1016/j.radonc.2024.110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AND PURPOSE Disregarding the increase of relative biological effectiveness (RBE) may raise the risk of acute and late adverse events after proton beam therapy (PBT). This study aims to explore the relationship between variable RBE (above 1.1)-induced normal tissue complication probabilities (NTCP) and patient-specific factors, identify patients at high risk of RBE-induced NTCP increase, and assess risk mitigation by incorporating RBE variability into treatment planning. MATERIALS AND METHODS We retrospectively analyzed 105 primary brain tumor patients treated with PBT (RBE = 1.1). We calculated differences in estimated NTCP (ΔNTCP) using a variable RBE-weighted dose (DRBE, Wedenberg model) and a constant RBE-weighted dose (DRBE=1.1), across 16 NTCP models. These differences were correlated with patient-specific characteristics. Based on ΔNTCP, patients were classified as high risk (32 %) or low risk (68 %) for adverse events due to RBE-induced NTCP. This classification was compared with alternative classifications based on (a) relevant patient-specific characteristics, (b) DRBE=1.1, and (c) the difference between DRBE and DRBE=1.1 (ΔD), assessing the balanced accuracy. The potential to reduce RBE-induced NTCP through track-end and linear energy transfer (LET) optimization was evaluated in six example patients. RESULTS Using a variable RBE instead of a constant one resulted in NTCP increases (up to 32 percentage points). Variable-RBE-induced NTCP increases were strongly negatively correlated with the distance between the clinical target volume (CTV) and the organ at risk (OAR) for most side-effects, and positively correlated with CTV volume for certain side-effects. High increases were associated with (a) specific patient factors, particularly the proximity of the CTV to OARs, (b) DRBE=1.1, and (c) ΔD, with a balanced accuracy of 0.88, 0.94, and 0.86, respectively. Optimization of track-ends and LET considerably reduced NTCP values, achieving a mean reduction of 31 % for optimized OARs. CONCLUSION The risk of variable-RBE-induced NTCP strongly depends on patient-specific factors and the considered side-effect. A small distance between the tumor and OARs notably increases the risk. Integrating biologically-guided objectives into treatment planning can effectively mitigate the risk.
Collapse
Affiliation(s)
- Martina Palkowitsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.
| | - Lisa-Marie Kaufmann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Fabian Hennings
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Stefan Menkel
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Christian Hahn
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; TU Dortmund University, Department of Physics, Dortmund, Germany
| | - Jona Bensberg
- TU Dortmund University, Department of Physics, Dortmund, Germany
| | - Armin Lühr
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; TU Dortmund University, Department of Physics, Dortmund, Germany
| | - Annekatrin Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| |
Collapse
|
20
|
Romero-Expósito M, Sánchez-Nieto B, Riveira-Martin M, Azizi M, Gkavonatsiou A, Muñoz I, López-Martínez IN, Espinoza I, Zelada G, Córdova-Bernhardt A, Norrlid O, Goldkuhl C, Molin D, Sánchez FMP, López-Medina A, Toma-Dasu I, Dasu A. Individualized evaluation of the total dose received by radiotherapy patients: Integrating in-field, out-of-field, and imaging doses. Phys Med 2025; 129:104879. [PMID: 39718311 DOI: 10.1016/j.ejmp.2024.104879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/07/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
PURPOSE To propose a methodology for integrating the out-of-field and imaging doses to the in-field dose received by radiotherapy (RT) patients. In addition, the impact of considering the total dose in planning and radiation-induced second malignancies (RISM) risk assessment will be evaluated in several scenarios comprising photon and proton treatments. METHODS The total dose is the voxel-wise sum of the doses from the different radiation sources (accounting for the radiobiological effectiveness) produced during the whole RT chain. The dose from the plan and imaging procedures were obtained by measurements for a photon prostate treatment and by calculation (combining treatment planning system, analytical models, and Monte Carlo simulations) for two lymphoma treatments, one using photons and the other, protons. Dose distributions, dose volume histograms (DVHs) metrics, mean organ doses, and RISM risks were evaluated for each radiation exposure in each treatment. RESULTS In general, the contribution of the imaging doses is low compared to the dose administered during RT treatment, being higher in proton therapy. However, for some organs, for instance testes in the prostate case, the imaging dose becomes higher than the scattered dose from the treatment fields. Plan evaluations revealed shifts in cumulative DVHs with the inclusion of out-of-field and imaging doses, though minimal clinical impact is expected. Risk assessment showed increased estimates with total dose. CONCLUSIONS The methodology enables accounting for the total dose for optimization of plans and imaging protocols, prospective risk predictions and retrospective epidemiological analyses.
Collapse
Affiliation(s)
- Maite Romero-Expósito
- The Skandion Clinic, Uppsala, Sweden; Oncology Pathology Department, Karolinska Institutet, Stockholm, Sweden.
| | | | | | - Mona Azizi
- Oncology Pathology Department, Karolinska Institutet, Stockholm, Sweden; Medical Radiation Physics, Stockholm University, Stockholm, Sweden
| | | | - Isidora Muñoz
- Pontificia Universidad Católica de Chile, Instituto de Física, Santiago, Chile
| | | | - Ignacio Espinoza
- Pontificia Universidad Católica de Chile, Instituto de Física, Santiago, Chile
| | - Gabriel Zelada
- Servicio de Radioterapia, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | | | - Ola Norrlid
- Uppsala University Hospital, Uppsala, Sweden
| | | | - Daniel Molin
- Department of Immunology, Genetics and Pathology, Cancer Immunotherapy, Uppsala University, Uppsala, Sweden
| | | | - Antonio López-Medina
- Medical Physics and RP Department (GALARIA), University Hospital of Vigo, Meixoeiro Hospital, Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Vigo, Spain
| | - Iuliana Toma-Dasu
- Oncology Pathology Department, Karolinska Institutet, Stockholm, Sweden; Medical Radiation Physics, Stockholm University, Stockholm, Sweden
| | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden; Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Paganetti H, Simone CB, Bosch WR, Haas-Kogan D, Kirsch DG, Li H, Liang X, Liu W, Mahajan A, Story MD, Taylor PA, Willers H, Xiao Y, Buchsbaum JC. NRG Oncology White Paper on the Relative Biological Effectiveness in Proton Therapy. Int J Radiat Oncol Biol Phys 2025; 121:202-217. [PMID: 39059509 PMCID: PMC11646189 DOI: 10.1016/j.ijrobp.2024.07.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
This position paper, led by the NRG Oncology Particle Therapy Work Group, focuses on the concept of relative biologic effect (RBE) in clinical proton therapy (PT), with the goal of providing recommendations for the next-generation clinical trials with PT on the best practice of investigating and using RBE, which could deviate from the current standard proton RBE value of 1.1 relative to photons. In part 1, current clinical utilization and practice are reviewed, giving the context and history of RBE. Evidence for variation in RBE is presented along with the concept of linear energy transfer (LET). The intertwined nature of tumor radiobiology, normal tissue constraints, and treatment planning with LET and RBE considerations is then reviewed. Part 2 summarizes current and past clinical data and then suggests the next steps to explore and employ tools for improved dynamic models for RBE. In part 3, approaches and methods for the next generation of prospective clinical trials are explored, with the goal of optimizing RBE to be both more reflective of clinical reality and also deployable in trials to allow clinical validation and interpatient comparisons. These concepts provide the foundation for personalized biologic treatments reviewed in part 4. Finally, we conclude with a summary including short- and long-term scientific focus points for clinical PT. The practicalities and capacity to use RBE in treatment planning are reviewed and considered with more biological data in hand. The intermediate step of LET optimization is summarized and proposed as a potential bridge to the ultimate goal of case-specific RBE planning that can be achieved as a hypothesis-generating tool in near-term proton trials.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston Children's Hospital, Boston, Massachusetts
| | - David G Kirsch
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey C Buchsbaum
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
22
|
Lühr A, Wagenaar D, Eekers DB, Glimelius L, Habraken SJ, Harrabi S, Kramer MC, Mackay RI, Vaniqui A, Dasu A, Weber DC. Recommendations for reporting and evaluating proton therapy beyond dose and constant relative biological effectiveness. Phys Imaging Radiat Oncol 2025; 33:100692. [PMID: 39839817 PMCID: PMC11750264 DOI: 10.1016/j.phro.2024.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Background and purpose In proton therapy, a relative biological effectiveness (RBE) of 1.1 is used to convert proton dose into an equivalent photon dose. However, RBE varies with tissue type, fraction dose, and beam quality parameters beyond dose such as linear energy transfer (LET) raising concerns about increased local effectiveness and potential toxicity. This work aims to harmonize quantities used for clinical consideration of variable RBE for proton therapy. Materials and methods A survey was distributed to proton centres to determine agreement on RBE-related concerns and clinical implementations. A subsequent clinical expert meeting facilitated by the European Particle Therapy Network was held to achieve consensus and to make clinical recommendations how to prescribe and report beyond using dose and constant RBE. Results The survey was answered by 17 out of 23 centres contacted (74%). For proton RBE, most concerns existed regarding toxicity in serial organs, while the assumption of an RBE of 1.1 was considered valid for targets. Most physicists intended to consider a physical quantity beyond dose in clinical decision making. Conclusions A constant RBE of 1.1 was the consensus for prescribing dose. However, current practice of recording and reporting dose in proton therapy must be complemented: the recommended quantity beyond dose was the dose-averaged LET in water from primary and secondary protons, normalized to unit density. This will facilitate analyses of treatment data on effectiveness beyond dose and between centres. No consensus on a single variable RBE model was found. More clinical training on proton RBE is needed.
Collapse
Affiliation(s)
- Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daniëlle B.P. Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | | | - Steven J.M. Habraken
- HollandPTC, Delft, the Netherlands
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Semi Harrabi
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Germany
| | - Miranda C.A. Kramer
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ranald I. Mackay
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Ana Vaniqui
- Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Damien C. Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|
23
|
Wagenaar D, Habraken SJM, Rinaldi I, Eekers DBP, Kramer M, Jaspers JPM, van Gent D, Barazzuol L, Klaver YLB, Zindler J, Coremans I, Compter I, Scandurra D, van der Weide HL, Both S, Hoogeman M, Unipan M, Méndez Romero A. Evaluating and reporting LET and RBE-weighted dose in proton therapy for glioma - The Dutch approach. Radiother Oncol 2025; 202:110653. [PMID: 39603511 DOI: 10.1016/j.radonc.2024.110653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND PURPOSE With proton therapy, the relative biological effectiveness (RBE) accounts for increased DNA damage caused by higher linear energy transfer (LET) compared to photons. However, the LET and hence the RBE varies along the proton range, particularly at the Bragg peak, introducing challenges in proton treatment planning for brain tumors. The aim of this paper is to standardize evaluating and reporting LET and RBE in proton therapy for patients with grade 2 and 3 IDH mutant gliomas among the Dutch proton therapy centers. MATERIALS AND METHODS A working group, comprising experts from three Dutch proton therapy centers, conducted nine meetings between 2020 and 2023. A joint literature review supported the standardized evaluation and reporting of LET and RBE. Questionnaires sent out to the three Dutch proton centers in 2020 and 2023 provided input for discussions on clinical practices. Three clinical examples were chosen to illustrate the application of the recommended methodology in treatment planning. RESULTS Following the literature review, a guideline on evaluation and reporting using the dose averaged LET (LETd) of primary and secondary protons calculated in water normalized to unit density was established. The McNamara variable RBE model with an α/β value of 2 Gy was selected for reporting. CONCLUSION The study presents a harmonization of approaches to evaluating and reporting LET and variable RBE in a guideline for the three Dutch proton therapy centers, providing clarity for future clinical interpretation. Having chosen a single variable RBE model offers practicality, although its accuracy remains a topic of ongoing research.
Collapse
Affiliation(s)
- Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Steven J M Habraken
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Miranda Kramer
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jaap P M Jaspers
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands
| | - Dik van Gent
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam
| | - Lara Barazzuol
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yvonne L B Klaver
- HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap Zindler
- HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Haaglanden MC, The Hague, The Netherlands
| | - Ida Coremans
- HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniel Scandurra
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hiska L van der Weide
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mischa Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Alejandra Méndez Romero
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands
| |
Collapse
|
24
|
Han MC, Choi SH, Hong CS, Kim YB, Koom WS, Kim JS, Cho J, Wee CW, Kim C, Park JW, Han S, Lee H, Yoon HI, Lee IJ, Keum KC. The first Korean carbon-ion radiation therapy facility: current status of the Heavy-ion Therapy Center at the Yonsei Cancer Center. Radiat Oncol J 2024; 42:295-307. [PMID: 39748530 DOI: 10.3857/roj.2024.00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 01/04/2025] Open
Abstract
PURPOSE This report offers a detailed examination of the inception and current state of the Heavy-ion Therapy Center (HITC) at the Yonsei Cancer Center (YCC), setting it apart as the world's first center equipped with a fixed beam and two superconducting gantries for carbon-ion radiation therapy (CIRT). MATERIALS AND METHODS Preparations for CIRT at YCC began in 2013; accordingly, this center has completed a decade of meticulous planning and culminating since the operational commencement of the HITC in April 2023. RESULTS This report elaborates on the clinical preparation for adopting CIRT in Korea. It includes an extensive description of HITC's facility layout at YCC, which comprises the accelerator and treatment rooms. Furthermore, this report delineates the clinical workflow, criteria for CIRT application, and the rigorous quality assurance processes implemented at YCC. It highlights YCC's sophisticated radiation therapy infrastructure, collaborative initiatives, and the efficacious treatment of >200 prostate cancer cases utilizing CIRT. CONCLUSION This manuscript concludes by discussing the prospective influence of CIRT on the medical domain within Korea, spotlighting YCC's pioneering contribution and forecasting the widespread integration of this groundbreaking technology.
Collapse
Affiliation(s)
- Min Cheol Han
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Hee Choi
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Woo Wee
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Changhwan Kim
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Won Park
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soorim Han
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heejeong Lee
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ik Jae Lee
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki Chang Keum
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Jin JY, Yuan J, Qin X, Li Y, Yan H, Oleinick NL, Yao M, Pan Q, Kong FM(S, Machtay M. Derivation of a comprehensive semi-empirical proton RBE model from published experimental cell survival data collected in the PIDE database. Front Oncol 2024; 14:1415213. [PMID: 39664177 PMCID: PMC11631728 DOI: 10.3389/fonc.2024.1415213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/24/2024] [Indexed: 12/13/2024] Open
Abstract
We aimed to develop a comprehensive proton relative biological effectiveness (RBE) model based on accumulated cell survival data in the literature. Our approach includes four major components: (1) Eligible cell survival data with various linear energy transfers (LETs) in the Particle Irradiation Data Ensemble (PIDE) database (72 datasets in four cell lines); (2) a cell survival model based on Poisson equation, with α and β defined as the ability to generate and repair damage, respectively, to replace the classic linear-quadratic model for fitting the cell survival data; (3) hypothetical linear relations of α and β on LET, orα ( L E T ) α x = α α + b α ∗ L E T andβ ( L E T ) β x = α β - b β ∗ L E T ; and (4) a multi-curve fitting (MCF) approach to fit all cell survival data into the survival model and derive the aα , bα , aβ , and bβ values for each cell line. Dependences of these parameters on cell type were thus determined and finally a comprehensive RBE model was derived. MCF showed that (aα , bα , aβ , bβ ) = (1.09, 0.0010, 0.96, 0.033), (1.10, 0.0015, 1.03, 0.023), (1.12, 0.0025, 0.99, 0.0085), and (1.17, 0.0025, 0.99, 0.013) for the four cell lines, respectively. Thus, aα = 1.12 ± 0.04, bα = 0.0019 ± 0.0008, aβ = 0.99 ± 0.03, and bβ = 0.013 ∗ αx , and approximately α ∼ 1.12 ∗ α x and β = ( 0.99 - 0.013 ∗ α x ∗ L E T ) ∗ β x . Consequently, a relatively reliable and comprehensive RBE model with dependence on LET, αx , βx , and dose per fraction was finally derived for potential clinical application.
Collapse
Affiliation(s)
- Jian-Yue Jin
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jiankui Yuan
- Seidman Cancer Center, University Hospitals, Cleveland Medical Center, Cleveland, OH, United States
| | - Xiaohang Qin
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Yinghui Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Huagang Yan
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Nancy L. Oleinick
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Min Yao
- Department of Radiation Oncology, Penn State University Cancer Institute, Hershey, PA, United States
| | - Quintin Pan
- Seidman Cancer Center, University Hospitals, Cleveland Medical Center, Cleveland, OH, United States
| | - Feng-Ming (Spring) Kong
- Department of Clinical Oncology, Hong Kong University Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, Queen Mary Hospital, Li Ka Shing Medical School, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mitchell Machtay
- Department of Radiation Oncology, Penn State University Cancer Institute, Hershey, PA, United States
| |
Collapse
|
26
|
Harrison N, Charyyev S, Oancea C, Stanforth A, Gelover E, Zhou S, Dynan WS, Zhang T, Biegalski S, Lin L. Characterizing devices for validation of dose, dose rate, and LET in ultra high dose rate proton irradiations. Med Phys 2024; 51:8411-8422. [PMID: 39153223 DOI: 10.1002/mp.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Ultra high dose rate (UHDR) radiotherapy using ridge filter is a new treatment modality known as conformal FLASH that, when optimized for dose, dose rate (DR), and linear energy transfer (LET), has the potential to reduce damage to healthy tissue without sacrificing tumor killing efficacy via the FLASH effect. PURPOSE Clinical implementation of conformal FLASH proton therapy has been limited by quality assurance (QA) challenges, which include direct measurement of UHDR and LET. Voxel DR distributions and LET spectra at planning target margins are paramount to the DR/LET-related sparing of organs at risk. We hereby present a methodology to achieve experimental validation of these parameters. METHODS Dose, DR, and LET were measured for a conformal FLASH treatment plan involving a 250-MeV proton beam and a 3D-printed ridge filter designed to uniformly irradiate a spherical target. We measured dose and DR simultaneously using a 4D multi-layer strip ionization chamber (MLSIC) under UHDR conditions. Additionally, we developed an "under-sample and recover (USRe)" technique for a high-resolution pixelated semiconductor detector, Timepix3, to avoid event pile-up and to correct measured LET at high-proton-flux locations without undesirable beam modifications. Confirmation of these measurements was done using a MatriXX PT detector and by Monte Carlo (MC) simulations. RESULTS MC conformal FLASH computed doses had gamma passing rates of >95% (3 mm/3% criteria) when compared to MatriXX PT and MLSIC data. At the lateral margin, DR showed average agreement values within 0.3% of simulation at 100 Gy/s and fluctuations ∼10% at 15 Gy/s. LET spectra in the proximal, lateral, and distal margins had Bhattacharyya distances of <1.3%. CONCLUSION Our measurements with the MLSIC and Timepix3 detectors shown that the DR distributions for UHDR scenarios and LET spectra using USRe are in agreement with simulations. These results demonstrate that the methodology presented here can be used effectively for the experimental validation and QA of FLASH treatment plans.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuang Zhou
- Washington University of St. Louis, Saint Louis, Missouri, USA
| | | | - Tiezhi Zhang
- Washington University of St. Louis, Saint Louis, Missouri, USA
| | | | | |
Collapse
|
27
|
Guan F, Bronk L, Kerr M, Li Y, Braby LA, Sobieski M, Wang X, Zhang X, Stephan C, Grosshans DR, Mohan R. Interpreting the biological effects of protons as a function of physical quantity: linear energy transfer or microdosimetric lineal energy spectrum? Sci Rep 2024; 14:25181. [PMID: 39448656 PMCID: PMC11502811 DOI: 10.1038/s41598-024-73619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
The choice of appropriate physical quantities to characterize the biological effects of ionizing radiation has evolved over time coupled with advances in scientific understanding. The basic hypothesis in radiation dosimetry is that the energy deposited by ionizing radiation initiates all the consequences of exposure in a biological sample (e.g., DNA damage, reproductive cell death). Physical quantities defined to characterize energy deposition have included dose, a measure of the mean energy imparted per unit mass of the target, and linear energy transfer (LET), a measure of the mean energy deposition per unit distance that charged particles traverse in a medium. The primary advantage of using the "dose and LET" physical system is its relative simplicity, especially for presenting and recording results. Inclusion of additional information such as the energy spectrum of charged particles renders this approach adequate to describe the biological effects of large dose levels from homogeneous sources. The primary disadvantage of this system is that it does not provide a unique description of the stochastic nature of radiation interactions. We and others have used dose-averaged LET (LETd) as a correlative physical quantity to the relative biological effectiveness (RBE) of proton beams. This approach is based on established experimental findings that proton RBE increases with LETd. However, this approach might not be applicable to intensity-modulated proton therapy or other applications in which the proton energy spectrum is highly heterogeneous. In the current study, we irradiated cancer cells with scanning proton beams with identical LETd (3.4 keV/µm) but arising from two different proton energy/LET spectra (a narrow spectrum in group 1 and a widespread heterogeneous spectrum in group 2). Clonogenic survival after irradiation revealed significant differences in RBE at any cell surviving fraction: e.g., at a surviving fraction of 0.1, the RBE was 0.97 ± 0.03 in group 1 and 1.16 ± 0.04 in group 2 (p≤0.01), validating our hypothesis that LETd alone may not adequately indicate proton RBE. Further analysis showed that microdosimetric spectrum (the probability density function of the stochastic physical quantity lineal energy y) was helpful for interpreting observed differences in biological effects. However, more accurate use of microdosimetric spectrum to quantify RBE requires a cell line-specific mechanistic model.
Collapse
Affiliation(s)
- Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Lawrence Bronk
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Matthew Kerr
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Yuting Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Leslie A Braby
- Department of Nuclear Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Mary Sobieski
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Xiaochun Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Clifford Stephan
- Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Isomura T, Kamizawa S, Takada K, Mori Y, Sakae T. Real-time measurement of two-dimensional LET distributions of proton beams using scintillators. Phys Med Biol 2024; 69:215017. [PMID: 39383888 DOI: 10.1088/1361-6560/ad8546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Objective.The linear energy transfer (LET) of proton therapy beams increases rapidly from the Bragg peak to the end of the beam. Although the LET can be determined using analytical or computational methods, a technique for efficiently measuring its spatial distribution has not yet been established. Thus, the purpose of this study is to develop a technique to measure the two-dimensional LET distribution in proton therapy in real time using a combination of multiple scintillators with different quenching.Approach.Inorganic and organic scintillator sheets were layered and irradiated with proton beams. Two-color signals of the CMOS sensor were obtained from the scintillation light and calibration curves were generated using LET. LET was calculated using Monte Carlo simulations asLETtandLETdweighted by fluence and dose, respectively. The accuracy of the calibration curve was evaluated by comparing the calculated and measured LET values for the 200 MeV monoenergetic and spread-out Bragg peak (SOBP) beams. LET distributions were obtained from the calibration curves.Main results.The deviation between the calculated and measured LET values was evaluated. For bothLETtandLETd, the deviation in the plateau region of the monoenergetic and SOBP beams tended to be larger than those in the peak region. The deviation was smaller forLETd. In the obtainedLETddistribution, the deviation between the calculated and measured values agreed within 3% in the peak region, while the deviation was larger in other regions.Significance.The LET distribution can be measured with a single irradiation using two scintillator sheets. This method may be effective for verifying LET in daily clinical practice and for quality control.
Collapse
Affiliation(s)
- Taiki Isomura
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Medipolis Proton Therapy and Research Center, 4423, Higashikata, Ibusuki, Kagoshima 891-0403, Japan
- Shin Nippon Biomedical Laboratories, 2438 Miyanoura, Kagoshima, Kagoshima 891-1394, Japan
| | - Satoshi Kamizawa
- Proton Medical Research Center, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Kenta Takada
- Gunma Prefectural College of Health Sciences, 323-1, Kamiokimachi, Maebashi, Gunma 371-0052, Japan
| | - Yutaro Mori
- Proton Medical Research Center, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki 305-8576, Japan
- Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takeji Sakae
- Proton Medical Research Center, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki 305-8576, Japan
- Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
29
|
Mein S, Wuyckens S, Li X, Both S, Carabe A, Vera MC, Engwall E, Francesco F, Graeff C, Gu W, Hong L, Inaniwa T, Janssens G, de Jong B, Li T, Liang X, Liu G, Lomax A, Mackie T, Mairani A, Mazal A, Nesteruk KP, Paganetti H, Pérez Moreno JM, Schreuder N, Soukup M, Tanaka S, Tessonnier T, Volz L, Zhao L, Ding X. Particle arc therapy: Status and potential. Radiother Oncol 2024; 199:110434. [PMID: 39009306 DOI: 10.1016/j.radonc.2024.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
There is a rising interest in developing and utilizing arc delivery techniques with charged particle beams, e.g., proton, carbon or other ions, for clinical implementation. In this work, perspectives from the European Society for Radiotherapy and Oncology (ESTRO) 2022 physics workshop on particle arc therapy are reported. This outlook provides an outline and prospective vision for the path forward to clinically deliverable proton, carbon, and other ion arc treatments. Through the collaboration among industry, academic, and clinical research and development, the scientific landscape and outlook for particle arc therapy are presented here to help our community understand the physics, radiobiology, and clinical principles. The work is presented in three main sections: (i) treatment planning, (ii) treatment delivery, and (iii) clinical outlook.
Collapse
Affiliation(s)
- Stewart Mein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sophie Wuyckens
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Xiaoqiang Li
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Macarena Chocan Vera
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | | | | | - Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Wenbo Gu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Liu Hong
- Ion Beam Applications SA, Louvain-la-Neuve, Belgium
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Medical Physics and Engineering, Graduate School of Medicine, Division of Health Sciences, Osaka University, Osaka, Japan
| | | | - Bas de Jong
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Taoran Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Gang Liu
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Antony Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; ETH, Department of Physics, Zürich, Switzerland
| | - Thomas Mackie
- Department of Human Oncology, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | | | - Konrad P Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | | | | | | | - Sodai Tanaka
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Lennart Volz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Lewei Zhao
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA.
| |
Collapse
|
30
|
Lægdsmand P, Matysiak W, Muren LP, Lassen-Ramshad Y, Maduro JH, Vestergaard A, Righetto R, Pettersson E, Kristensen I, Dutheil P, Demoor-Goldschmidt C, Charlwood F, Whitfield G, Feijoo MM, Vela A, Missohou F, Vennarini S, Mirandola A, Orlandi E, Rombi B, Goedgebeur A, Van Beek K, Bannink-Gawryszuk A, Campoo FC, Engellau J, Toussaint L. Variations in linear energy transfer distributions within a European proton therapy planning comparison of paediatric posterior fossa tumours. Phys Imaging Radiat Oncol 2024; 32:100675. [PMID: 39803348 PMCID: PMC11718416 DOI: 10.1016/j.phro.2024.100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background and Purpose Radiotherapy for paediatric posterior fossa tumours may cause complications in the brainstem and upper spinal cord due to high doses. With proton therapy (PT) this risk may increase due to higher relative biological effectiveness (RBE) from elevated linear energy transfer (LET). This study assesses variations in LET in the brainstem and spinal cord in proton treatment plans from European centres. Materials and Methods Ten European PT centres using spot-scanning PT planned two paediatric posterior fossa cases: One overlapping partly with the brainstem and upper spinal cord, prescribed 54 Gy(RBE), and the second wrapping around these organs, prescribed 59.4 Gy(RBE). Dose-averaged LET distributions were assessed in volumes of the brainstem and spinal cord irradiated to over 50 Gy(RBE = 1.1). The maximum hinge angle effect on near-maximum RBE-weighted doses using the Unkelbach RBE model was also investigated. Results In the first case, the mean LET in brainstem volumes receiving more than 50 Gy(RBE = 1.1) ranged from 2.8 keV/µm to 3.6 keV/µm across centres (median: 3.3 keV/µm). In the second case, treatment plans showed a narrower range of mean LET in the brainstem, from 2.5 keV/µm to 2.8 keV/µm (median: 2.7 keV/µm). There was no statistically significant impact of the maximum hinge angle. Conclusions LET distributions vary across centres due to different techniques but are also influenced significantly by factors like shape and position of the target volume.
Collapse
Affiliation(s)
- Peter Lægdsmand
- Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark
- Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| | - Witold Matysiak
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, Netherlands
| | - Ludvig P. Muren
- Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark
- Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| | | | - John H. Maduro
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, Netherlands
| | - Anne Vestergaard
- Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark
| | | | - Erik Pettersson
- Sahlgrenska University Hospital, Department of Therapeutic Radiation Physics, Gothenburg, Sweden
- University of Gothenburg, Department of Medical Radiation Sciences, Gothenburg, Sweden
| | - Ingrid Kristensen
- Skåne University Hospital, Hematology, Oncology and Radiation Physics, Lund, Sweden
| | - Pauline Dutheil
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Charlotte Demoor-Goldschmidt
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
- Angers University Hospital, Department of Paediatric Oncology, Angers, France
| | - Frances Charlwood
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Gillian Whitfield
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
- University of Manchester, Royal Manchester Children’s Hospital, The Children’s Brain Tumour Research Network, Manchester, United Kingdom
| | | | - Anthony Vela
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Fernand Missohou
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Sabina Vennarini
- Fondazione IRCCS Instituto Nazionale Tumori, Paediatric Radiotherapy Unit, Milano, Italy
| | - Alfredo Mirandola
- CNAO National Center for Oncological Hadrontherapy, Medical Physics Unit, Clinical Department, Pavia, Italy
| | - Ester Orlandi
- CNAO National Center for Oncological Hadrontherapy, Clinical Department, Pavia, Italy
- University of Pavia, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, Pavia, Italy
| | - Barbara Rombi
- Proton Therapy Centre, Hospital S. Chiara, APSS, Trento, Italy
| | | | - Karen Van Beek
- Particle UZLeuven, Department of Radiation Oncology, Leuven, Belgium
| | - Agata Bannink-Gawryszuk
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, Netherlands
| | | | - Jacob Engellau
- Skåne University Hospital, Hematology, Oncology and Radiation Physics, Lund, Sweden
| | - Laura Toussaint
- Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark
- Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| |
Collapse
|
31
|
Parisi A, Furutani KM, Sato T, Beltran CJ. LET-based approximation of the microdosimetric kinetic model for proton radiotherapy. Med Phys 2024; 51:7589-7605. [PMID: 39153222 DOI: 10.1002/mp.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Phenomenological relative biological effectiveness (RBE) models for proton therapy, based on the dose-averaged linear energy transfer (LET), have been developed to address the apparent RBE increase towards the end of the proton range. The results of these phenomenological models substantially differ due to varying empirical assumptions and fitting functions. In contrast, more theory-based approaches are used in carbon ion radiotherapy, such as the microdosimetric kinetic model (MKM). However, implementing microdosimetry-based models in LET-based proton therapy treatment planning systems poses challenges. PURPOSE This work presents a LET-based version of the MKM that is practical for clinical use in proton radiotherapy. METHODS At first, we derived an approximation of the Mayo Clinic Florida (MCF) MKM for relatively-sparsely ionizing radiation such as protons. The mathematical formalism of the proposed model is equivalent to the original MKM, but it maintains some key features of the MCF MKM, such as the determination of model parameters from measurable cell characteristics. Subsequently, we carried out Monte Carlo calculations with PHITS in different simulated scenarios to establish a heuristic correlation between microdosimetric quantities and the dose averaged LET of protons. RESULTS A simple allometric function was found able to describe the relationship between the dose-averaged LET of protons and the dose-mean lineal energy, which includes the contributions of secondary particles. The LET-based MKM was used to model the in vitro clonogenic survival RBE of five human and rodent cell lines (A549, AG01522, CHO, T98G, and U87) exposed to pristine and spread-out Bragg peak (SOBP) proton beams. The results of the LET-based MKM agree well with the biological data in a comparable or better way with respect to the other models included in the study. A sensitivity analysis on the model results was also performed. CONCLUSIONS The LET-based MKM integrates the predictive theoretical framework of the MCF MKM with a straightforward mathematical description of the RBE based on the dose-averaged LET, a physical quantity readily available in modern treatment planning systems for proton therapy.
Collapse
Affiliation(s)
- Alessio Parisi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith M Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
- Research Center for Nuclear Physics, Osaka University, Suita, Osaka, Japan
| | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
32
|
Ahmad R, Barcellini A, Baumann K, Benje M, Bender T, Bragado P, Charalampopoulou A, Chowdhury R, Davis AJ, Ebner DK, Eley J, Kloeber JA, Mutter RW, Friedrich T, Gutierrez-Uzquiza A, Helm A, Ibáñez-Moragues M, Iturri L, Jansen J, Morcillo MÁ, Puerta D, Kokko AP, Sánchez-Parcerisa D, Scifoni E, Shimokawa T, Sokol O, Story MD, Thariat J, Tinganelli W, Tommasino F, Vandevoorde C, von Neubeck C. Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology Subcommittee Report. Int J Part Ther 2024; 13:100626. [PMID: 39258166 PMCID: PMC11386331 DOI: 10.1016/j.ijpt.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Particle therapy (PT) represents a significant advancement in cancer treatment, precisely targeting tumor cells while sparing surrounding healthy tissues thanks to the unique depth-dose profiles of the charged particles. Furthermore, their linear energy transfer and relative biological effectiveness enhance their capability to treat radioresistant tumors, including hypoxic ones. Over the years, extensive research has paved the way for PT's clinical application, and current efforts aim to refine its efficacy and precision, minimizing the toxicities. In this regard, radiobiology research is evolving toward integrating biotechnology to advance drug discovery and radiation therapy optimization. This shift from basic radiobiology to understanding the molecular mechanisms of PT aims to expand the therapeutic window through innovative dose delivery regimens and combined therapy approaches. This review, written by over 30 contributors from various countries, provides a comprehensive look at key research areas and new developments in PT radiobiology, emphasizing the innovations and techniques transforming the field, ranging from the radiobiology of new irradiation modalities to multimodal radiation therapy and modeling efforts. We highlight both advancements and knowledge gaps, with the aim of improving the understanding and application of PT in oncology.
Collapse
Affiliation(s)
- Reem Ahmad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Clinical Department Radiation Oncology Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Kilian Baumann
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany
- Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Malte Benje
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tamara Bender
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Paloma Bragado
- Biochemistry and Molecular Biology Department, Complutense University of Madrid, Madrid, Spain
| | - Alexandra Charalampopoulou
- University School for Advanced Studies (IUSS), Pavia, Italy
- Radiobiology Unit, Development and Research Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Reema Chowdhury
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anthony J. Davis
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel K. Ebner
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Eley
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jake A. Kloeber
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert W. Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Friedrich
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Alexander Helm
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marta Ibáñez-Moragues
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Jeannette Jansen
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Miguel Ángel Morcillo
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Daniel Puerta
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, Granada, Spain
| | | | | | - Emanuele Scifoni
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Takashi Shimokawa
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Juliette Thariat
- Centre François Baclesse, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, Caen, France
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Francesco Tommasino
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
33
|
Toussaint L, Matysiak W, Alapetite C, Aristu J, Bannink-Gawryszuk A, Bolle S, Bolsi A, Calvo F, Cerron Campoo F, Charlwood F, Demoor-Goldschmidt C, Doyen J, Drosik-Rutowicz K, Dutheil P, Embring A, Engellau J, Goedgebeur A, Goudjil F, Harrabi S, Kopec R, Kristensen I, Lægsdmand P, Lütgendorf-Caucig C, Meijers A, Mirandola A, Missohou F, Montero Feijoo M, Muren LP, Ondrova B, Orlandi E, Pettersson E, Pica A, Plaude S, Righetto R, Rombi B, Timmermann B, Van Beek K, Vela A, Vennarini S, Vestergaard A, Vidal M, Vondracek V, Weber DC, Whitfield G, Zimmerman J, Maduro JH, Lassen-Ramshad Y. Clinical practice in European centres treating paediatric posterior fossa tumours with pencil beam scanning proton therapy. Radiother Oncol 2024; 198:110414. [PMID: 38942120 DOI: 10.1016/j.radonc.2024.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/17/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND AND PURPOSE As no guidelines for pencil beam scanning (PBS) proton therapy (PT) of paediatric posterior fossa (PF) tumours exist to date, this study investigated planning techniques across European PT centres, with special considerations for brainstem and spinal cord sparing. MATERIALS AND METHODS A survey and a treatment planning comparison were initiated across nineteen European PBS-PT centres treating paediatric patients. The survey assessed all aspects of the treatment chain, including but not limited to delineations, dose constraints and treatment planning. Each centre planned two PF tumour cases for focal irradiation, according to their own clinical practice but based on common delineations. The prescription dose was 54 Gy(RBE) for Case 1 and 59.4 Gy(RBE) for Case 2. For both cases, planning strategies and relevant dose metrics were compared. RESULTS Seventeen (89 %) centres answered the survey, and sixteen (80 %) participated in the treatment planning comparison. In the survey, thirteen (68 %) centres reported using the European Particle Therapy Network definition for brainstem delineation. In the treatment planning study, while most centres used three beam directions, their configurations varied widely across centres. Large variations were also seen in brainstem doses, with a brainstem near maximum dose (D2%) ranging from 52.7 Gy(RBE) to 55.7 Gy(RBE) (Case 1), and from 56.8 Gy(RBE) to 60.9 Gy(RBE) (Case 2). CONCLUSION This study assessed the European PBS-PT planning of paediatric PF tumours. Agreement was achieved in e.g. delineation-practice, while wider variations were observed in planning approach and consequently dose to organs at risk. Collaboration between centres is still ongoing, striving towards common guidelines.
Collapse
Affiliation(s)
- Laura Toussaint
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark.
| | - Witold Matysiak
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | - Claire Alapetite
- Institut Curie, Department of Radiation Oncology & Proton Centre, Paris, France
| | - Javier Aristu
- Clínica Universidad de Navarra, Proton Therapy Unit, Madrid, Spain
| | - Agata Bannink-Gawryszuk
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | - Stephanie Bolle
- Institut Curie, Department of Radiation Oncology & Proton Centre, Paris, France; Institut Gustave Roussy, Department of Radiation Oncology, Villejuif, France; Centro de Protonterapia Quironsalud, Madrid, Spain
| | - Alessandra Bolsi
- Paul Scherrer Institute, Centre for Proton Therapy, ETH Domain, Villigen, Switzerland
| | - Felipe Calvo
- Clínica Universidad de Navarra, Proton Therapy Unit, Madrid, Spain
| | | | - Frances Charlwood
- University of Manchester, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Charlotte Demoor-Goldschmidt
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France; Angers University Hospital, Department of Paediatric Oncology, Angers, France
| | - Jérôme Doyen
- Centre Antoine Lacassagne, Department of Radiation Oncology, Nice, France
| | - Katarzyna Drosik-Rutowicz
- National Research Institute of Oncology Kraków/Gliwice branch, Department of Radiation Oncology, Kraków, Poland
| | - Pauline Dutheil
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Anna Embring
- Karolinska University Hospital, Department of Radiotherapy, Stockholm, Sweden
| | - Jacob Engellau
- Skåne University Hospital, Hematology, Oncology and Radiation Physics, Lund, Sweden
| | - Anneleen Goedgebeur
- PARTICLE Proton Therapy Centre University Hospital Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Farid Goudjil
- Institut Curie, Department of Radiation Oncology & Proton Centre, Paris, France
| | - Semi Harrabi
- Heidelberg Ion Beam Therapy Centre, University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg, Germany
| | - Renata Kopec
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Ingrid Kristensen
- Skåne University Hospital, Hematology, Oncology and Radiation Physics, Lund, Sweden
| | - Peter Lægsdmand
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| | | | - Arturs Meijers
- Paul Scherrer Institute, Centre for Proton Therapy, ETH Domain, Villigen, Switzerland
| | - Alfredo Mirandola
- Radiation Oncology Unit, Clinical Department, National Centre for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Fernand Missohou
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | | | - Ludvig P Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| | - Barbora Ondrova
- Proton Therapy Centre Czech, Department of Radiation Oncology, Prague, Czech Republic
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Centre for Oncological Hadrontherapy (CNAO), Pavia, Italy; University of Pavia, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, Pavia, Italy
| | - Erik Pettersson
- Sahlgrenska University Hospital, Department of Therapeutic Radiation Physics, Medical Physics and Biomedical Engineering, Gothenburg, Sweden; Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Department of Medical Radiation Sciences, Gothenburg, Sweden
| | - Alessia Pica
- Paul Scherrer Institute, Centre for Proton Therapy, ETH Domain, Villigen, Switzerland
| | - Sandija Plaude
- West German Proton Therapy Centre Essen (WPE), Essen University Hospital, Essen, Germany
| | | | - Barbara Rombi
- Trento Proton Therapy Centre,epartment of Radiation Oncology, APSS Trento, Italy
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), Essen University Hospital, Essen, Germany; Department of Particle Therapy, University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), German Cancer Consortium (DKTK), Essen, Germany
| | - Karen Van Beek
- PARTICLE Proton Therapy Centre University Hospital Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Anthony Vela
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Sabina Vennarini
- Paediatric Radiotherapy Unit, IRCCS Foundation Institute of Cancer, Milano, Italy
| | - Anne Vestergaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, Denmark
| | - Marie Vidal
- Centre Antoine Lacassagne, Department of Radiation Oncology, Nice, France
| | - Vladimir Vondracek
- Proton Therapy Centre Czech, Department of Radiation Oncology, Prague, Czech Republic
| | - Damien C Weber
- Paul Scherrer Institute, Centre for Proton Therapy, ETH Domain, Villigen, Switzerland
| | - Gillian Whitfield
- University of Manchester, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; University of Manchester, Royal Manchester Children's Hospital, The Children's Brain Tumour Research Network, Manchester, United Kingdom
| | - Jens Zimmerman
- Karolinska University Hospital, Department of Radiotherapy Physics and Engineering, Stockholm, Sweden
| | - John H Maduro
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | | |
Collapse
|
34
|
Muñoz ID, García-Calderón D, Felix-Bautista R, Burigo LN, Christensen JB, Brons S, Runz A, Häring P, Greilich S, Seco J, Jäkel O. Linear Energy Transfer Measurements and Estimation of Relative Biological Effectiveness in Proton and Helium Ion Beams Using Fluorescent Nuclear Track Detectors. Int J Radiat Oncol Biol Phys 2024; 120:205-215. [PMID: 38437925 DOI: 10.1016/j.ijrobp.2024.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE Our objective was to develop a methodology for assessing the linear energy transfer (LET) and relative biological effectiveness (RBE) in clinical proton and helium ion beams using fluorescent nuclear track detectors (FNTDs). METHODS AND MATERIALS FNTDs were exposed behind solid water to proton and helium (4He) ion spread-out Bragg peaks. Detectors were imaged with a confocal microscope, and the LET spectra were derived from the fluorescence intensity. The track- and dose-averaged LET (LETF and LETD, respectively) were calculated from the LET spectra. LET measurements were used as input on RBE models to estimate the RBE. Human alveolar adenocarcinoma cells (A549) were exposed at the same positions as the FNTDs. The RBE was calculated from the resulting survival curves. All measurements were compared with Monte Carlo simulations. RESULTS For protons, average relative differences between measurements and simulations were 6% and 19% for LETF and LETD, respectively. For helium ions, the same differences were 11% for both quantities. The position of the experimental LET spectra primary peaks agreed with the simulations within 9% and 14% for protons and helium ions, respectively. For the RBE models using LETD as input, FNTD-based RBE values ranged from 1.02 ± 0.01 to 1.25 ± 0.04 and from 1.08 ± 0.09 to 2.68 ± 1.26 for protons and helium ions, respectively. The average relative differences between these values and simulations were 2% and 4%. For A549 cells, the RBE ranged from 1.05 ± 0.07 to 1.47 ± 0.09 and from 0.89 ± 0.06 to 3.28 ± 0.20 for protons and helium ions, respectively. Regarding the RBE-weighted dose (2.0 Gy at the spread-out Bragg peak), the differences between simulations and measurements were below 0.10 Gy. CONCLUSIONS This study demonstrates for the first time that FNTDs can be used to perform direct LET measurements and to estimate the RBE in clinical proton and helium ion beams.
Collapse
Affiliation(s)
- Iván D Muñoz
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
| | - Daniel García-Calderón
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renato Felix-Bautista
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Lucas N Burigo
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Jeppe Brage Christensen
- Department of Radiation Safety and Security, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Stephan Brons
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Armin Runz
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Peter Häring
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Steffen Greilich
- Berthold Technologies GmbH & Co KG, Units of Radiation Protection and Bioanalytics, Bad Wildbad, Germany
| | - Joao Seco
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Jäkel
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
35
|
Frank SJ, Das IJ, Simone CB, Davis BJ, Deville C, Liao Z, Lo SS, McGovern SL, Parikh RR, Reilly M, Small W, Schechter NR. ACR-ARS Practice Parameter for the Performance of Proton Beam Therapy. Int J Part Ther 2024; 13:100021. [PMID: 39347377 PMCID: PMC11437389 DOI: 10.1016/j.ijpt.2024.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose This practice parameter for the performance of proton beam radiation therapy was revised collaboratively by the American College of Radiology (ACR) and the American Radium Society (ARS). This practice parameter was developed to serve as a tool in the appropriate application of proton therapy in the care of cancer patients or other patients with conditions in which radiation therapy is indicated. It addresses clinical implementation of proton radiation therapy, including personnel qualifications, quality assurance (QA) standards, indications, and suggested documentation. Materials and Methods This practice parameter for the performance of proton beam radiation therapy was developed according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards) by the Committee on Practice Parameters - Radiation Oncology of the ACR Commission on Radiation Oncology in collaboration with the ARS. Results The qualifications and responsibilities of personnel, such as the proton center Chief Medical Officer or Medical Director, Radiation Oncologist, Radiation Physicist, Dosimetrist and Therapist, are outlined, including the necessity for continuing medical education. Proton therapy standard clinical indications and methodologies of treatment management are outlined by disease site and treatment group (e.g. pediatrics) including documentation and the process of proton therapy workflow and equipment specifications. Additionally, this proton therapy practice parameter updates policies and procedures related to a quality assurance and performance improvement program (QAPI), patient education, infection control, and safety. Conclusion As proton therapy becomes more accessible to cancer patients, policies and procedures as outlined in this practice parameter will help ensure quality and safety programs are effectively implemented to optimize clinical care.
Collapse
Affiliation(s)
- Steven J. Frank
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Indra J. Das
- Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhongxing Liao
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon S. Lo
- University of Washington Medical Center, Seattle, WA 98195, USA
| | - Susan L. McGovern
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rahul R. Parikh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - William Small
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maguire Center, Maywood, IL 60153, USA
| | | |
Collapse
|
36
|
Hedrick SG, Buchanan L, Mahan S, Ramsey C. Reducing Radiation Dermatitis for PBS Proton Therapy Breast Cancer Patients Using SpotDelete. Int J Part Ther 2024; 13:100628. [PMID: 39296494 PMCID: PMC11408802 DOI: 10.1016/j.ijpt.2024.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Purpose The purpose of this work was to reduce the severity of radiation dermatitis for breast cancer patients receiving pencil beam scanning proton therapy. The hypothesis was that eliminating proton spots (SpotDelete) in the 0.5 cm skin rind would reduce the potentially higher relative biological effectiveness (RBE) known to occur at the Bragg Peak. Patients and Methods Our center has been using an in-house developed Python script in RayStation since 2021 to remove spots from the skin rind of breast patients. In this work, we retrospectively reviewed the on-treatment visit data from a cohort of breast patients treated with hypofractionation (16 fractions) before this technique (MinDepth) and after (SpotDelete) to acquire the physician-reported radiation dermatitis scores. We evaluated the delivered treatment plans, calculating the linear energy transfer (LET) and applying 3 variable RBE models, Carabe-Fernandez, Wedenberg, and McNamara. An α/β of 10 was assumed for the skin. Results In the MinDepth cohort (n = 28), grade 1, 2, and 3 dermatitis accounted for 57%, 36%, and 7% of the cases, respectively. For SpotDelete (n = 27), the incidence rate of grade 1 and 2 acute radiation dermatitis was 67% and 37%, respectively. There were 0 instances of grade 3 dermatitis observed in the SpotDelete cohort. The onset of radiation dermatitis in the SpotDelete cohort was delayed compared to MinDepth, occurring 1 week later in the course of treatment. There was no significant difference in LET or in any of the variable RBE models when analyzing the 0.5 cm skin rind between the cohorts. Conclusion Despite the lack of correlation in LET or RBE, SpotDelete has been shown to reduce the severity and onset of radiation dermatitis. Possibly, more research into the α/β for skin and RBE models based on skin cell lines could provide insight into the efficacy of the SpotDelete technique.
Collapse
|
37
|
Starke S, Kieslich A, Palkowitsch M, Hennings F, G C Troost E, Krause M, Bensberg J, Hahn C, Heinzelmann F, Bäumer C, Lühr A, Timmermann B, Löck S. A deep-learning-based surrogate model for Monte-Carlo simulations of the linear energy transfer in primary brain tumor patients treated with proton-beam radiotherapy. Phys Med Biol 2024; 69:165034. [PMID: 39019053 DOI: 10.1088/1361-6560/ad64b7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Objective.This study explores the use of neural networks (NNs) as surrogate models for Monte-Carlo (MC) simulations in predicting the dose-averaged linear energy transfer (LETd) of protons in proton-beam therapy based on the planned dose distribution and patient anatomy in the form of computed tomography (CT) images. As LETdis associated with variability in the relative biological effectiveness (RBE) of protons, we also evaluate the implications of using NN predictions for normal tissue complication probability (NTCP) models within a variable-RBE context.Approach.The predictive performance of three-dimensional NN architectures was evaluated using five-fold cross-validation on a cohort of brain tumor patients (n= 151). The best-performing model was identified and externally validated on patients from a different center (n= 107). LETdpredictions were compared to MC-simulated results in clinically relevant regions of interest. We assessed the impact on NTCP models by leveraging LETdpredictions to derive RBE-weighted doses, using the Wedenberg RBE model.Main results.We found NNs based solely on the planned dose distribution, i.e. without additional usage of CT images, can approximate MC-based LETddistributions. Root mean squared errors (RMSE) for the median LETdwithin the brain, brainstem, CTV, chiasm, lacrimal glands (ipsilateral/contralateral) and optic nerves (ipsilateral/contralateral) were 0.36, 0.87, 0.31, 0.73, 0.68, 1.04, 0.69 and 1.24 keV µm-1, respectively. Although model predictions showed statistically significant differences from MC outputs, these did not result in substantial changes in NTCP predictions, with RMSEs of at most 3.2 percentage points.Significance.The ability of NNs to predict LETdbased solely on planned dose distributions suggests a viable alternative to compute-intensive MC simulations in a variable-RBE setting. This is particularly useful in scenarios where MC simulation data are unavailable, facilitating resource-constrained proton therapy treatment planning, retrospective patient data analysis and further investigations on the variability of proton RBE.
Collapse
Affiliation(s)
- Sebastian Starke
- Helmholtz-Zentrum Dresden-Rossendorf, Department of Information Services and Computing, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Aaron Kieslich
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Martina Palkowitsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Fabian Hennings
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Esther G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases Dresden (NTC/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Mechthild Krause
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases Dresden (NTC/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jona Bensberg
- TU Dortmund University, Department of Physics, Dortmund, Germany
| | - Christian Hahn
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TU Dortmund University, Department of Physics, Dortmund, Germany
| | - Feline Heinzelmann
- West German Proton Therapy Centre Essen (WPE), University Hospital Essen, Essen, Germany
- Department of Particle Therapy, University Hospital Essen, Essen, Germany
| | - Christian Bäumer
- TU Dortmund University, Department of Physics, Dortmund, Germany
- West German Proton Therapy Centre Essen (WPE), University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen/Duesseldorf, Germany
| | - Armin Lühr
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- TU Dortmund University, Department of Physics, Dortmund, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), University Hospital Essen, Essen, Germany
- Department of Particle Therapy, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen/Duesseldorf, Germany
| | - Steffen Löck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases Dresden (NTC/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| |
Collapse
|
38
|
Fira AMR, Keta OD, Petković VD, Đorđević M, Petringa G, Fattori S, Catalano R, Cirrone GP, Cuttone G, Sakata D, Tran NH, Chatzipapas K, Incerti S, Petrović IM. In vitro validation of helium ion irradiations as a function of linear energy transfer in radioresistant human malignant cells. Int J Radiat Biol 2024; 100:1426-1437. [PMID: 39058324 DOI: 10.1080/09553002.2024.2373752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Based on considerable interest to enlarge the experimental database of radioresistant cells after their irradiation with helium ions, HTB140, MCF-7 and HTB177 human malignant cells are exposed to helium ion beams having different linear energy transfer (LET). MATERIALS AND METHODS The cells are irradiated along the widened 62 MeV/u helium ion Bragg peak, providing LET of 4.9, 9.8, 23.4 and 36.8 keV/µm. Numerical simulations with the Geant4 toolkit are used for the experimental design. Cell survival is evaluated and compared with reference γ-rays. DNA double strand breaks are assessed via γ-H2AX foci. RESULTS With the increase of LET, surviving fractions at 2 Gy decrease, while RBE (2 Gy, γ) gradually increase. For HTB140 cells, above the dose of 4 Gy, a slight saturation of survival is observed while the increase of RBE (2 Gy, γ) remains unaffected. With the increase of LET the increase of γ-H2AX foci is revealed at 0.5 h after irradiation. There is no significant difference in the number of foci between the cell lines for the same LET. From 0.5 to 24 h, the number of foci drops reaching its residual level. For each time point, there are small differences in DNA DSB among the three cell lines. CONCLUSION Analyses of data acquired for the three cell lines irradiated by helium ions, having different LET, reveal high elimination capacity and creation of a large number of DNA DSB with respect to γ-rays, and are between those reported for protons and carbon ions.
Collapse
Affiliation(s)
| | - Otilija D Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana D Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Miloš Đorđević
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Giada Petringa
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | - Serena Fattori
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | | | | | | | | | - Ngoc Hoang Tran
- University of Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France
| | | | - Sebastien Incerti
- University of Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France
| | - Ivan M Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
39
|
Viar-Hernandez D, Molina-Maza JM, Vera-Sánchez JA, Perez-Moreno JM, Mazal A, Rodriguez-Vila B, Malpica N, Torrado-Carvajal A. Enhancing adaptive proton therapy through CBCT images: Synthetic head and neck CT generation based on 3D vision transformers. Med Phys 2024; 51:4922-4935. [PMID: 38569141 DOI: 10.1002/mp.17057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/01/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Proton therapy is a form of radiotherapy commonly used to treat various cancers. Due to its high conformality, minor variations in patient anatomy can lead to significant alterations in dose distribution, making adaptation crucial. While cone-beam computed tomography (CBCT) is a well-established technique for adaptive radiation therapy (ART), it cannot be directly used for adaptive proton therapy (APT) treatments because the stopping power ratio (SPR) cannot be estimated from CBCT images. PURPOSE To address this limitation, Deep Learning methods have been suggested for converting pseudo-CT (pCT) images from CBCT images. In spite of convolutional neural networks (CNNs) have shown consistent improvement in pCT literature, there is still a need for further enhancements to make them suitable for clinical applications. METHODS The authors introduce the 3D vision transformer (ViT) block, studying its performance at various stages of the proposed architectures. Additionally, they conduct a retrospective analysis of a dataset that includes 259 image pairs from 59 patients who underwent treatment for head and neck cancer. The dataset is partitioned into 80% for training, 10% for validation, and 10% for testing purposes. RESULTS The SPR maps obtained from the pCT using the proposed method present an absolute relative error of less than 5% from those computed from the planning CT, thus improving the results of CBCT. CONCLUSIONS We introduce an enhanced ViT3D architecture for pCT image generation from CBCT images, reducing SPR error within clinical margins for APT workflows. The new method minimizes bias compared to CT-based SPR estimation and dose calculation, signaling a promising direction for future research in this field. However, further research is needed to assess the robustness and generalizability across different medical imaging applications.
Collapse
Affiliation(s)
- David Viar-Hernandez
- Universidad Rey Juan Carlos, Medical Image Analysis and Biometry Laboratory, Madrid, Spain
| | | | | | | | - Alejandro Mazal
- Centro de Protonterapia Quironsalud, Servicio de física médica, Madrid, Spain
| | - Borja Rodriguez-Vila
- Universidad Rey Juan Carlos, Medical Image Analysis and Biometry Laboratory, Madrid, Spain
| | - Norberto Malpica
- Universidad Rey Juan Carlos, Medical Image Analysis and Biometry Laboratory, Madrid, Spain
| | - Angel Torrado-Carvajal
- Universidad Rey Juan Carlos, Medical Image Analysis and Biometry Laboratory, Madrid, Spain
| |
Collapse
|
40
|
Harrison N, Kang M, Liu R, Charyyev S, Wahl N, Liu W, Zhou J, Higgins KA, Simone CB, Bradley JD, Dynan WS, Lin L. A Novel Inverse Algorithm To Solve the Integrated Optimization of Dose, Dose Rate, and Linear Energy Transfer of Proton FLASH Therapy With Sparse Filters. Int J Radiat Oncol Biol Phys 2024; 119:957-967. [PMID: 38104869 DOI: 10.1016/j.ijrobp.2023.11.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/27/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE The recently proposed Integrated Physical Optimization Intensity Modulated Proton Therapy (IPO-IMPT) framework allows simultaneous optimization of dose, dose rate, and linear energy transfer (LET) for ultra-high dose rate (FLASH) treatment planning. Finding solutions to IPO-IMPT is difficult because of computational intensiveness. Nevertheless, an inverse solution that simultaneously specifies the geometry of a sparse filter and weights of a proton intensity map is desirable for both clinical and preclinical applications. Such solutions can reduce effective biologic dose to organs at risk in patients with cancer as well as reduce the number of animal irradiations needed to derive extra biologic dose models in preclinical studies. METHODS AND MATERIALS Unlike the initial forward heuristic, this inverse IPO-IMPT solution includes simultaneous optimization of sparse range compensation, sparse range modulation, and spot intensity. The daunting computational tasks vital to this endeavor were resolved iteratively with a distributed computing framework to enable Simultaneous Intensity and Energy Modulation and Compensation (SIEMAC). SIEMAC was demonstrated on a human patient with central lung cancer and a minipig. RESULTS SIEMAC simultaneously improves maps of spot intensities and patient-field-specific sparse range compensators and range modulators. For the patient with lung cancer, at our maximum nozzle current of 300 nA, dose rate coverage above 100 Gy/s increased from 57% to 96% in the lung and from 93% to 100% in the heart, and LET coverage above 4 keV/µm dropped from 68% to 9% in the lung and from 26% to <1% in the heart. For a simple minipig plan, the full-width half-maximum of the dose, dose rate, and LET distributions decreased by 30%, 1.6%, and 57%, respectively, again with similar target dose coverage, thus reducing uncertainty in these quantities for preclinical studies. CONCLUSIONS The inverse solution to IPO-IMPT demonstrated the capability to simultaneously modulate subspot proton energy and intensity distributions for clinical and preclinical studies.
Collapse
Affiliation(s)
| | | | - Ruirui Liu
- Emory University, Atlanta, Georgia; University of Nebraska, Omaha, Nebraska
| | | | - Niklas Wahl
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wei Liu
- Mayo Clinic, Phoenix, Arizona
| | - Jun Zhou
- Emory University, Atlanta, Georgia
| | | | | | | | | | | |
Collapse
|
41
|
Denbeigh JM, Howard ME, Garcia DA, Debrot EK, Cole KC, Remmes NB, Beltran CJ. Characterizing Proton-Induced Biological Effects in a Mouse Spinal Cord Model: A Comparison of Bragg Peak and Entrance Beam Response in Single and Fractionated Exposures. Int J Radiat Oncol Biol Phys 2024; 119:924-935. [PMID: 38310485 DOI: 10.1016/j.ijrobp.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 02/05/2024]
Abstract
PURPOSE Proton relative biological effectiveness (RBE) is a dynamic variable influenced by factors like linear energy transfer (LET), dose, tissue type, and biological endpoint. The standard fixed proton RBE of 1.1, currently used in clinical planning, may not accurately represent the true biological effects of proton therapy (PT) in all cases. This uncertainty can contribute to radiation-induced normal tissue toxicity in patients. In late-responding tissues such as the spinal cord, toxicity can cause devastating complications. This study investigated spinal cord tolerance in mice subjected to proton irradiation and characterized the influence of fractionation on proton- induced myelopathy at entrance (ENT) and Bragg peak (BP) positions. METHODS AND MATERIALS Cervical spinal cords of 8-week-old C57BL/6J female mice were irradiated with single- or multi-fractions (18x) using lateral opposed radiation fields at 1 of 2 positions along the Bragg curve: ENT (dose-mean LET = 1.2 keV/μm) and BP (LET = 6.9 keV/μm). Mice were monitored over 1 year for changes in weight, mobility, and general health, with radiation-induced myelopathy as the primary biological endpoint. Calculations of the RBE of the ENT and BP curve (RBEENT/BP) were performed. RESULTS Single-fraction RBEENT/BP for 50% effect probability (tolerance dose (TD50), grade II paresis, determined using log-logistic model fitting) was 1.10 ± 0.06 (95% CI) and for multifraction treatments it was 1.19 ± 0.05 (95% CI). Higher incidence and faster onset of paralysis were seen in mice treated at the BP compared with ENT. CONCLUSIONS The findings challenge the universally fixed RBE value in PT, indicating up to a 25% mouse spinal cord RBEENT/BP variation for multifraction treatments. These results highlight the importance of considering fractionation in determining RBE for PT. Robust characterization of proton-induced toxicity, aided by in vivo models, is paramount for refining clinical decision-making and mitigating potential patient side effects.
Collapse
Affiliation(s)
- Janet M Denbeigh
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida.
| | - Michelle E Howard
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa
| | - Darwin A Garcia
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Emily K Debrot
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Kristin C Cole
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
42
|
Rana S, Manthala Padannayil N, Tran L, Rosenfeld AB, Saeed H, Kasper M. Quantifying the Dosimetric Impact of Proton Range Uncertainties on RBE-Weighted Dose Distributions in Intensity-Modulated Proton Therapy for Bilateral Head and Neck Cancer. Curr Oncol 2024; 31:3690-3697. [PMID: 39057144 PMCID: PMC11275331 DOI: 10.3390/curroncol31070272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND In current clinical practice, intensity-modulated proton therapy (IMPT) head and neck cancer (HNC) plans are generated using a constant relative biological effectiveness (cRBE) of 1.1. The primary goal of this study was to explore the dosimetric impact of proton range uncertainties on RBE-weighted dose (RWD) distributions using a variable RBE (vRBE) model in the context of bilateral HNC IMPT plans. METHODS The current study included the computed tomography (CT) datasets of ten bilateral HNC patients who had undergone photon therapy. Each patient's plan was generated using three IMPT beams to deliver doses to the CTV_High and CTV_Low for doses of 70 Gy(RBE) and 54 Gy(RBE), respectively, in 35 fractions through a simultaneous integrated boost (SIB) technique. Each nominal plan calculated with a cRBE of 1.1 was subjected to the range uncertainties of ±3%. The McNamara vRBE model was used for RWD calculations. For each patient, the differences in dosimetric metrices between the RWD and nominal dose distributions were compared. RESULTS The constrictor muscles, oral cavity, parotids, larynx, thyroid, and esophagus showed average differences in mean dose (Dmean) values up to 6.91 Gy(RBE), indicating the impact of proton range uncertainties on RWD distributions. Similarly, the brachial plexus, brain, brainstem, spinal cord, and mandible showed varying degrees of the average differences in maximum dose (Dmax) values (2.78-10.75 Gy(RBE)). The Dmean and Dmax to the CTV from RWD distributions were within ±2% of the dosimetric results in nominal plans. CONCLUSION The consistent trend of higher mean and maximum doses to the OARs with the McNamara vRBE model compared to cRBE model highlighted the need for consideration of proton range uncertainties while evaluating OAR doses in bilateral HNC IMPT plans.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
- Department of Radiation Oncology, Florida International University, Miami, FL 33199, USA
| | - Noufal Manthala Padannayil
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
| | - Linh Tran
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anatoly B. Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Hina Saeed
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
- Department of Radiation Oncology, Florida International University, Miami, FL 33199, USA
| | - Michael Kasper
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
| |
Collapse
|
43
|
Domingo Muñoz I, Van Hoey O, Parisi A, Bassler N, Grzanka L, De Saint-Hubert M, Vaniqui A, Olko P, Sądel M, Stolarczyk L, Vestergaard A, Jäkel O, Gardenali Yukihara E, Brage Christensen J. Assessment of fluence- and dose-averaged linear energy transfer with passive luminescence detectors in clinical proton beams. Phys Med Biol 2024; 69:135004. [PMID: 38774985 DOI: 10.1088/1361-6560/ad4e8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
Objective.This work investigates the use of passive luminescence detectors to determine different types of averaged linear energy transfer (LET-) for the energies relevant to proton therapy. The experimental results are compared to reference values obtained from Monte Carlo simulations.Approach.Optically stimulated luminescence detectors (OSLDs), fluorescent nuclear track detectors (FNTDs), and two different groups of thermoluminescence detectors (TLDs) were irradiated at four different radiation qualities. For each irradiation, the fluence- (LET-f) and dose-averaged LET (LET-d) were determined. For both quantities, two sub-types of averages were calculated, either considering the contributions from primary and secondary protons or from all protons and heavier, charged particles. Both simulated and experimental data were used in combination with a phenomenological model to estimate the relative biological effectiveness (RBE).Main results.All types ofLET-could be assessed with the luminescence detectors. The experimental determination ofLET-fis in agreement with reference data obtained from simulations across all measurement techniques and types of averaging. On the other hand,LET-dcan present challenges as a radiation quality metric to describe the detector response in mixed particle fields. However, excluding secondaries heavier than protons from theLET-dcalculation, as their contribution to the luminescence is suppressed by ionization quenching, leads to equal accuracy betweenLET-fandLET-d. Assessment of RBE through the experimentally determinedLET-dvalues agrees with independently acquired reference values, indicating that the investigated detectors can determineLET-with sufficient accuracy for proton therapy.Significance.OSLDs, TLDs, and FNTDs can be used to determineLET-and RBE in proton therapy. With the capability to determine dose through ionization quenching corrections derived fromLET-, OSLDs and TLDs can simultaneously ascertain dose,LET-, and RBE. This makes passive detectors appealing for measurements in phantoms to facilitate validation of clinical treatment plans or experiments related to proton therapy.
Collapse
Affiliation(s)
- Iván Domingo Muñoz
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | | | - Alessio Parisi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Niels Bassler
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Leszek Grzanka
- Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN), Kraków, Poland
| | | | - Ana Vaniqui
- Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Paweł Olko
- Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN), Kraków, Poland
| | - Michał Sądel
- Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN), Kraków, Poland
| | - Liliana Stolarczyk
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Vestergaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Oliver Jäkel
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | | | - Jeppe Brage Christensen
- Department of Radiation Safety and Security, Paul Scherrer Institute (PSI), Villigen PSI, Switzerland
| |
Collapse
|
44
|
Hua CH, Bentzen SM, Li Y, Milano MT, Rancati T, Marks LB, Constine LS, Yorke ED, Jackson A. Improving Pediatric Normal Tissue Radiation Dose-Response Modeling in Children With Cancer: A PENTEC Initiative. Int J Radiat Oncol Biol Phys 2024; 119:369-386. [PMID: 38276939 DOI: 10.1016/j.ijrobp.2023.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 01/27/2024]
Abstract
The development of normal tissue radiation dose-response models for children with cancer has been challenged by many factors, including small sample sizes; the long length of follow-up needed to observe some toxicities; the continuing occurrence of events beyond the time of assessment; the often complex relationship between age at treatment, normal tissue developmental dynamics, and age at assessment; and the need to use retrospective dosimetry. Meta-analyses of published pediatric outcome studies face additional obstacles of incomplete reporting of critical dosimetric, clinical, and statistical information. This report describes general methods used to address some of the pediatric modeling issues. It highlights previous single- and multi-institutional pediatric dose-response studies and summarizes how each PENTEC taskforce addressed the challenges and limitations of the reviewed publications in constructing, when possible, organ-specific dose-effect models.
Collapse
Affiliation(s)
- Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yimei Li
- Department of Biostatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Ellen D Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
45
|
Stokkevåg CH, Journy N, Vogelius IR, Howell RM, Hodgson D, Bentzen SM. Radiation Therapy Technology Advances and Mitigation of Subsequent Neoplasms in Childhood Cancer Survivors. Int J Radiat Oncol Biol Phys 2024; 119:681-696. [PMID: 38430101 DOI: 10.1016/j.ijrobp.2024.01.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/13/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE In this Pediatric Normal Tissue Effects in the Clinic (PENTEC) vision paper, challenges and opportunities in the assessment of subsequent neoplasms (SNs) from radiation therapy (RT) are presented and discussed in the context of technology advancement. METHODS AND MATERIALS The paper discusses the current knowledge of SN risks associated with historic, contemporary, and future RT technologies. Opportunities for research and SN mitigation strategies in pediatric patients with cancer are reviewed. RESULTS Present experience with radiation carcinogenesis is from populations exposed during widely different scenarios. Knowledge gaps exist within clinical cohorts and follow-up; dose-response and volume effects; dose-rate and fractionation effects; radiation quality and proton/particle therapy; age considerations; susceptibility of specific tissues; and risks related to genetic predisposition. The biological mechanisms associated with local and patient-level risks are largely unknown. CONCLUSIONS Future cancer care is expected to involve several available RT technologies, necessitating evidence and strategies to assess the performance of competing treatments. It is essential to maximize the utilization of existing follow-up while planning for prospective data collection, including standardized registration of individual treatment information with linkage across patient databases.
Collapse
Affiliation(s)
- Camilla H Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, Bergen, Norway.
| | - Neige Journy
- French National Institute of Health and Medical Research (INSERM) Unit 1018, Centre for Research in Epidemiology and Population Health, Paris Saclay University, Gustave Roussy, Villejuif, France
| | - Ivan R Vogelius
- Department of Clinical Oncology, Centre for Cancer and Organ Diseases and University of Copenhagen, Copenhagen, Denmark
| | - Rebecca M Howell
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - David Hodgson
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| |
Collapse
|
46
|
Lillo S, Mirandola A, Vai A, Camarda AM, Ronchi S, Bonora M, Ingargiola R, Vischioni B, Orlandi E. Current Status and Future Directions of Proton Therapy for Head and Neck Carcinoma. Cancers (Basel) 2024; 16:2085. [PMID: 38893203 PMCID: PMC11171191 DOI: 10.3390/cancers16112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The growing interest in proton therapy (PT) in recent decades is justified by the evidence that protons dose distribution allows maximal dose release at the tumor depth followed by sharp distal dose fall-off. But, in the holistic management of head and neck cancer (HNC), limiting the potential of PT to a mere dosimetric advantage appears reductive. Indeed, the precise targeting of PT may help evaluate the effectiveness of de-escalation strategies, especially for patients with human papillomavirus associated-oropharyngeal cancer (OPC) and nasopharyngeal cancer (NPC). Furthermore, PT could have potentially greater immunogenic effects than conventional photon therapy, possibly enhancing both the radiotherapy (RT) capability to activate anti-tumor immune response and the effectiveness of immunotherapy drugs. Based on these premises, the aim of the present paper is to conduct a narrative review reporting the safety and efficacy of PT compared to photon RT focusing on NPC and OPC. We also provide a snapshot of ongoing clinical trials comparing PT with photon RT for these two clinical scenarios. Finally, we discuss new insights that may further develop clinical research on PT for HNC.
Collapse
Affiliation(s)
- Sara Lillo
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Alfredo Mirandola
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.); (A.V.)
| | - Alessandro Vai
- Medical Physics Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.); (A.V.)
| | - Anna Maria Camarda
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Sara Ronchi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Maria Bonora
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Rossana Ingargiola
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy; (A.M.C.); (S.R.); (M.B.); (R.I.); (B.V.); (E.O.)
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
47
|
Hoeltgen L, Meixner E, Hoegen-Saßmannshausen P, Kim JY, Deng M, Seidensaal K, Held T, Herfarth K, Haberer T, Debus J, Mairani A, Harrabi S, Tessonnier T. Helium Ion Therapy for Advanced Juvenile Nasopharyngeal Angiofibroma. Cancers (Basel) 2024; 16:1993. [PMID: 38893114 PMCID: PMC11171253 DOI: 10.3390/cancers16111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Helium ion therapy (HRT) is a promising modality for the treatment of pediatric tumors and those located close to critical structures due to the favorable biophysical properties of helium ions. This in silico study aimed to explore the potential benefits of HRT in advanced juvenile nasopharyngeal angiofibroma (JNA) compared to proton therapy (PRT). We assessed 11 consecutive patients previously treated with PRT for JNA in a definitive or postoperative setting with a relative biological effectiveness (RBE) weighted dose of 45 Gy (RBE) in 25 fractions at the Heidelberg Ion-Beam Therapy Center. HRT plans were designed retrospectively for dosimetric comparisons and risk assessments of radiation-induced complications. HRT led to enhanced target coverage in all patients, along with sparing of critical organs at risk, including a reduction in the brain integral dose by approximately 27%. In terms of estimated risks of radiation-induced complications, HRT led to a reduction in ocular toxicity, cataract development, xerostomia, tinnitus, alopecia and delayed recall. Similarly, HRT led to reduced estimated risks of radiation-induced secondary neoplasms, with a mean excess absolute risk reduction of approximately 30% for secondary CNS malignancies. HRT is a promising modality for advanced JNA, with the potential for enhanced sparing of healthy tissue and thus reduced radiation-induced acute and long-term complications.
Collapse
Affiliation(s)
- Line Hoeltgen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ji-Young Kim
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- Partner Site, German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Centro Nazionale di Adroterapia Oncologica (CNAO), Medical Physics Department, 27100 Pavia, Italy
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
48
|
Holtzman AL, Mohammadi H, Furutani KM, Koffler DM, McGee LA, Lester SC, Gamez ME, Routman DM, Beltran CJ, Liang X. Impact of Relative Biologic Effectiveness for Proton Therapy for Head and Neck and Skull-Base Tumors: A Technical and Clinical Review. Cancers (Basel) 2024; 16:1947. [PMID: 38893068 PMCID: PMC11171304 DOI: 10.3390/cancers16111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Proton therapy has emerged as a crucial tool in the treatment of head and neck and skull-base cancers, offering advantages over photon therapy in terms of decreasing integral dose and reducing acute and late toxicities, such as dysgeusia, feeding tube dependence, xerostomia, secondary malignancies, and neurocognitive dysfunction. Despite its benefits in dose distribution and biological effectiveness, the application of proton therapy is challenged by uncertainties in its relative biological effectiveness (RBE). Overcoming the challenges related to RBE is key to fully realizing proton therapy's potential, which extends beyond its physical dosimetric properties when compared with photon-based therapies. In this paper, we discuss the clinical significance of RBE within treatment volumes and adjacent serial organs at risk in the management of head and neck and skull-base tumors. We review proton RBE uncertainties and its modeling and explore clinical outcomes. Additionally, we highlight technological advancements and innovations in plan optimization and treatment delivery, including linear energy transfer/RBE optimizations and the development of spot-scanning proton arc therapy. These advancements show promise in harnessing the full capabilities of proton therapy from an academic standpoint, further technological innovations and clinical outcome studies, however, are needed for their integration into routine clinical practice.
Collapse
Affiliation(s)
- Adam L. Holtzman
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Homan Mohammadi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Keith M. Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Daniel M. Koffler
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lisa A. McGee
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Scott C. Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mauricio E. Gamez
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - David M. Routman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
49
|
Song G, Zheng Z, Zhu Y, Wang Y, Xue S. A review and bibliometric analysis of global research on proton radiotherapy. Medicine (Baltimore) 2024; 103:e38089. [PMID: 38728501 PMCID: PMC11081588 DOI: 10.1097/md.0000000000038089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Proton beam therapy (PBT) has great advantages as tumor radiotherapy and is progressively becoming a more prevalent choice for individuals undergoing radiation therapy. The objective of this review is to pinpoint collaborative efforts among countries and institutions, while also exploring the hot topics and future outlook in the field of PBT. Data from publications were downloaded from the Web of Science Core Collection. CiteSpace and Excel 2016 were used to conduct the bibliometric and knowledge map analysis. A total of 6516 publications were identified, with the total number of articles steadily increasing and the United States being the most productive country. Harvard University took the lead in contributing the highest number of publications. Paganetti Harald published the most articles and had the most cocitations. PHYS MED BIOL published the greatest number of PBT-related articles, while INT J RADIAT ONCOL received the most citations. Paganetti Harald, 2012, PHYS MED BIOL can be classified as classic literature due to its high citation rate. We believe that research on technology development, dose calculation and relative biological effectiveness were the knowledge bases in this field. Future research hotspots may include clinical trials, flash radiotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Ge Song
- Department of Critical Care Medicine, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Zhi Zheng
- Department of Stomatology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Yingming Zhu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaoting Wang
- Department of Oncology, Dongying People’s Hospital, Dongying, China
| | - Song Xue
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
50
|
Matias F, Silva TF, Koval NE, Pereira JJN, Antunes PCG, Siqueira PTD, Tabacniks MH, Yoriyaz H, Shorto JMB, Grande PL. Efficient computational modeling of electronic stopping power of organic polymers for proton therapy optimization. Sci Rep 2024; 14:9868. [PMID: 38684890 PMCID: PMC11058815 DOI: 10.1038/s41598-024-60651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
This comprehensive study delves into the intricate interplay between protons and organic polymers, offering insights into proton therapy in cancer treatment. Focusing on the influence of the spatial electron density distribution on stopping power estimates, we employed real-time time-dependent density functional theory coupled with the Penn method. Surprisingly, the assumption of electron density homogeneity in polymers is fundamentally flawed, resulting in an overestimation of stopping power values at energies below 2 MeV. Moreover, the Bragg rule application in specific compounds exhibited significant deviations from experimental data around the stopping maximum, challenging established norms.
Collapse
Affiliation(s)
- F Matias
- Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes, São Paulo, 05508-000, Brazil.
| | - T F Silva
- Instituto de Física da Universidade de São Paulo, Rua do Matão, trav. R187, São Paulo, 05508-090, Brazil
| | - N E Koval
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, Donostia-San Sebastián, 20018, Spain
| | - J J N Pereira
- Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes, São Paulo, 05508-000, Brazil
| | - P C G Antunes
- Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes, São Paulo, 05508-000, Brazil
| | - P T D Siqueira
- Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes, São Paulo, 05508-000, Brazil
| | - M H Tabacniks
- Instituto de Física da Universidade de São Paulo, Rua do Matão, trav. R187, São Paulo, 05508-090, Brazil
| | - H Yoriyaz
- Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes, São Paulo, 05508-000, Brazil
| | - J M B Shorto
- Instituto de Pesquisas Energéticas e Nucleares, Av. Professor Lineu Prestes, São Paulo, 05508-000, Brazil
| | - P L Grande
- Instituto de Física da Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Porto Alegre, 9500, Brazil
| |
Collapse
|