1
|
Zhang K, Triphan SMF, Wielpütz MO, Ziener CH, Ladd ME, Schlemmer HP, Kauczor HU, Sedlaczek O, Kurz FT. Navigator-based motion compensation for liver BOLD measurement with five-echo SAGE EPI and breath-hold task. NMR IN BIOMEDICINE 2024; 37:e5173. [PMID: 38783837 DOI: 10.1002/nbm.5173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE The purpose of this work is to apply multi-echo spin- and gradient-echo (SAGE) echo-planar imaging (EPI) combined with a navigator-based (NAV) prospective motion compensation method for a quantitative liver blood oxygen level dependent (BOLD) measurement with a breath-hold (BH) task. METHODS A five-echo SAGE sequence was developed to quantitatively measure T2 and T2* to depict function with sufficient signal-to-noise ratio, spatial resolution and sensitivity to BOLD changes induced by the BH task. To account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI-based readouts, navigator acquisition and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. Six healthy volunteers and three patients with liver carcinoma were included in this study. Quantitative T2 and T2* were calculated at each time point of the BH task. Parameters of t value from first-level analysis using a general linear model and hepatovascular reactivity (HVR) of Echo1, T2 and T2* were calculated. RESULTS The motion caused by respiratory activity was successfully compensated using the navigator signal. The average changes of T2 and T2* during breath-hold were about 1% and 0.7%, respectively. With the help of NAV prospective motion compensation whole liver t values could be obtained without motion artifacts. The quantified liver T2 (34.7 ± 0.7 ms) and T2* (29 ± 1.2 ms) values agreed with values from literature. In healthy volunteers, the distribution of statistical t value and HVR was homogeneous throughout the whole liver. In patients with liver carcinoma, the distribution of t value and HVR was inhomogeneous due to metastases or therapy. CONCLUSIONS This study demonstrates the feasibility of using a NAV prospective motion compensation technique in conjunction with five-echo SAGE EPI for the quantitative measurement of liver BOLD with a BH task.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Simon M F Triphan
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Christian H Ziener
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | | | - Hans-Ulrich Kauczor
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Sedlaczek
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Felix T Kurz
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
2
|
Huang J, Chen Z, van Zijl PCM, Law LH, Pemmasani Prabakaran RS, Park SW, Xu J, Chan KWY. Effect of inhaled oxygen level on dynamic glucose-enhanced MRI in mouse brain. Magn Reson Med 2024; 92:57-68. [PMID: 38308151 PMCID: PMC11055662 DOI: 10.1002/mrm.30035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/23/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
PURPOSE To investigate the effect of inhaled oxygen level on dynamic glucose enhanced (DGE) MRI in mouse brain tissue and CSF at 3 T. METHODS DGE data of brain tissue and CSF from mice under normoxia or hyperoxia were acquired in independent and interleaved experiments using on-resonance variable delay multi-pulse (onVDMP) MRI. A bolus of 0.15 mL filtered 50% D-glucose was injected through the tail vein over 1 min during DGE acquisition. MRS was acquired before and after DGE experiments to confirm the presence of D-glucose. RESULTS A significantly higher DGE effect under normoxia than under hyperoxia was observed in brain tissue (p = 0.0001 and p = 0.0002 for independent and interleaved experiments, respectively), but not in CSF (p > 0.3). This difference is attributed to the increased baseline MR tissue signal under hyperoxia induced by a shortened T1 and an increased BOLD effect. When switching from hyperoxia to normoxia without glucose injection, a signal change of ˜3.0% was found in brain tissue and a signal change of ˜1.5% was found in CSF. CONCLUSIONS DGE signal was significantly lower under hyperoxia than that under normoxia in brain tissue, but not in CSF. The reason is that DGE effect size of brain tissue is affected by the baseline signal, which could be influenced by T1 change and BOLD effect. Therefore, DGE experiments in which the oxygenation level is changed from baseline need to be interpreted carefully.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peter CM van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lok Hin Law
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Rohith Saai Pemmasani Prabakaran
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Se Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie WY Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Velej V, Cankar K, Vidmar J. The effects of normobaric and hyperbaric oxygenation on MRI signal intensities in T1 -weighted, T2 -weighted and FLAIR images in human brain. Radiol Oncol 2023; 57:317-324. [PMID: 37665738 PMCID: PMC10476901 DOI: 10.2478/raon-2023-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Dissolved oxygen has known paramagnetic effects in magnetic resonance imaging (MRI). The aim of this study was to compare the effects of normobaric oxygenation (NBO) and hyperbaric oxygenation (HBO) on human brain MRI signal intensities. PATIENTS AND METHODS Baseline brain MRI was performed in 17 healthy subjects (mean age 27.8 ± 3.2). MRI was repeated after exposure to the NBO and HBO at different time points (0 min, 25 min, 50 min). Signal intensities in T 1-weighted, T 2-weighted images and fluid attenuated inversion recovery (FLAIR) signal intensities of several intracranial structures were compared between NBO and HBO. RESULTS Increased T 1-weighted signal intensities were observed in white and deep grey brain matter, cerebrospinal fluid (CSF), venous blood and vitreous body after exposure to NBO as well as to HBO compared to baseline (Dunnett's test, p < 0.05) without significant differences between both protocols. There was also no significant difference in T 2-weighted signal intensities between NBO and HBO. FLAIR signal intensities were increased only in the vitreous body after NBO and HBO and FLAIR signal of caudate nucleus was decreased after NBO (Dunnett's test, p < 0.05). The statistically significant differences in FLAIR signal intensities were found between NBO and HBO (paired t-test, p < 0.05) in most observed brain structures (paired t-test, p < 0.05). CONCLUSIONS Our results show that NBO and HBO alters signal intensities T 1-weighted and FLAIR images of human brain. The differences between NBO and HBO are most pronounced in FLAIR imaging.
Collapse
Affiliation(s)
- Vida Velej
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Kranj Community Health Center, Gorenjska Basic Healthcare, Kranj, Slovenia
| | - Ksenija Cankar
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Vidmar
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Radiology, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Perez RC, Kim D, Maxwell AWP, Camacho JC. Functional Imaging of Hypoxia: PET and MRI. Cancers (Basel) 2023; 15:3336. [PMID: 37444446 DOI: 10.3390/cancers15133336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular and functional imaging have critical roles in cancer care. Existing evidence suggests that noninvasive detection of hypoxia within a particular type of cancer can provide new information regarding the relationship between hypoxia, cancer aggressiveness and altered therapeutic responses. Following the identification of hypoxia inducible factor (HIF), significant progress in understanding the regulation of hypoxia-induced genes has been made. These advances have provided the ability to therapeutically target HIF and tumor-associated hypoxia. Therefore, by utilizing the molecular basis of hypoxia, hypoxia-based theranostic strategies are in the process of being developed which will further personalize care for cancer patients. The aim of this review is to provide an overview of the significance of tumor hypoxia and its relevance in cancer management as well as to lay out the role of imaging in detecting hypoxia within the context of cancer.
Collapse
Affiliation(s)
- Ryan C Perez
- Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - DaeHee Kim
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Aaron W P Maxwell
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Juan C Camacho
- Department of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Gouel P, Decazes P, Vera P, Gardin I, Thureau S, Bohn P. Advances in PET and MRI imaging of tumor hypoxia. Front Med (Lausanne) 2023; 10:1055062. [PMID: 36844199 PMCID: PMC9947663 DOI: 10.3389/fmed.2023.1055062] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Tumor hypoxia is a complex and evolving phenomenon both in time and space. Molecular imaging allows to approach these variations, but the tracers used have their own limitations. PET imaging has the disadvantage of low resolution and must take into account molecular biodistribution, but has the advantage of high targeting accuracy. The relationship between the signal in MRI imaging and oxygen is complex but hopefully it would lead to the detection of truly oxygen-depleted tissue. Different ways of imaging hypoxia are discussed in this review, with nuclear medicine tracers such as [18F]-FMISO, [18F]-FAZA, or [64Cu]-ATSM but also with MRI techniques such as perfusion imaging, diffusion MRI or oxygen-enhanced MRI. Hypoxia is a pejorative factor regarding aggressiveness, tumor dissemination and resistance to treatments. Therefore, having accurate tools is particularly important.
Collapse
Affiliation(s)
- Pierrick Gouel
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France
| | - Pierre Decazes
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France
| | - Pierre Vera
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France
| | - Isabelle Gardin
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France
| | - Sébastien Thureau
- QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France,Département de Radiothérapie, Centre Henri Becquerel, Rouen, France
| | - Pierre Bohn
- Département d’Imagerie, Centre Henri Becquerel, Rouen, France,QuantIF-LITIS, EA 4108, IRIB, Université de Rouen, Rouen, France,*Correspondence: Pierre Bohn,
| |
Collapse
|
6
|
Bluemke E, Bertrand A, Chu KY, Syed N, Murchison AG, Cooke R, Greenhalgh T, Burns B, Craig M, Taylor N, Shah K, Gleeson F, Bulte D. Oxygen-enhanced MRI and radiotherapy in patients with oropharyngeal squamous cell carcinoma. Clin Transl Radiat Oncol 2022; 39:100563. [PMID: 36655119 PMCID: PMC9841018 DOI: 10.1016/j.ctro.2022.100563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Background and purpose This study aimed to assess the role of T1 mapping and oxygen-enhanced MRI in patients undergoing radical dose radiotherapy for HPV positive oropharyngeal cancer, which has not yet been examined in an OE-MRI study. Materials and methods Variable Flip Angle T1 maps were acquired on a 3T MRI scanner while patients (n = 12) breathed air and/or 100 % oxygen, before and after fraction 10 of the planned 30 fractions of chemoradiotherapy ('visit 1' and 'visit 2', respectively). The analysis aimed to assess to what extent (1) native R1 relates to patient outcome; (2) OE-MRI response relates to patient outcome; (3) changes in mean R1 before and after radiotherapy related to clinical outcome in patients with oropharyngeal squamous cell carcinoma. Results Due to the radiotherapy being largely successful, the sample sizes of non-responder groups were small, and therefore it was not possible to properly assess the predictive nature of OE-MRI. The tumour R1 increased in some patients while decreasing in others, in a pattern that was overall consistent with the underlying OE-MRI theory and previously reported tumour OE-MRI responses. In addition, we discuss some practical challenges faced when integrating this technique into a clinical trial, with the aim that sharing this is helpful to researchers planning to use OE-MRI in future clinical studies. Conclusion Altogether, these results suggest that further clinical OE-MRI studies to assess hypoxia and radiotherapy response are worth pursuing, and that there is important work to be done to improve the robustness of the OE-MRI technique in human applications in order for it to be useful as a widespread clinical technique.
Collapse
Affiliation(s)
- Emma Bluemke
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK,Corresponding author at: Old Road Campus Research Building, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| | - Ambre Bertrand
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - Kwun-Ye Chu
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK,Radiotherapy Department, Oxford University Hospitals NHS Foundation Trust, UK
| | - Nigar Syed
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK
| | - Andrew G. Murchison
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, UK
| | - Rosie Cooke
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK,Radiotherapy Department, Oxford University Hospitals NHS Foundation Trust, UK
| | - Tessa Greenhalgh
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK,University Hospital Southampton NHS Foundation Trust, UK
| | | | | | - Nia Taylor
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, UK
| | - Ketan Shah
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, UK,Radiotherapy Department, Oxford University Hospitals NHS Foundation Trust, UK
| | - Fergus Gleeson
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, UK
| | - Daniel Bulte
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| |
Collapse
|
7
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
8
|
de Ridder M, Raaijmakers CPJ, Pameijer FA, de Bree R, Reinders FCJ, Doornaert PAH, Terhaard CHJ, Philippens MEP. Target Definition in MR-Guided Adaptive Radiotherapy for Head and Neck Cancer. Cancers (Basel) 2022; 14:3027. [PMID: 35740691 PMCID: PMC9220977 DOI: 10.3390/cancers14123027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, MRI-guided radiotherapy (MRgRT) has taken an increasingly important position in image-guided radiotherapy (IGRT). Magnetic resonance imaging (MRI) offers superior soft tissue contrast in anatomical imaging compared to computed tomography (CT), but also provides functional and dynamic information with selected sequences. Due to these benefits, in current clinical practice, MRI is already used for target delineation and response assessment in patients with head and neck squamous cell carcinoma (HNSCC). Because of the close proximity of target areas and radiosensitive organs at risk (OARs) during HNSCC treatment, MRgRT could provide a more accurate treatment in which OARs receive less radiation dose. With the introduction of several new radiotherapy techniques (i.e., adaptive MRgRT, proton therapy, adaptive cone beam computed tomography (CBCT) RT, (daily) adaptive radiotherapy ensures radiation dose is accurately delivered to the target areas. With the integration of a daily adaptive workflow, interfraction changes have become visible, which allows regular and fast adaptation of target areas. In proton therapy, adaptation is even more important in order to obtain high quality dosimetry, due to its susceptibility for density differences in relation to the range uncertainty of the protons. The question is which adaptations during radiotherapy treatment are oncology safe and at the same time provide better sparing of OARs. For an optimal use of all these new tools there is an urgent need for an update of the target definitions in case of adaptive treatment for HNSCC. This review will provide current state of evidence regarding adaptive target definition using MR during radiotherapy for HNSCC. Additionally, future perspectives for adaptive MR-guided radiotherapy will be discussed.
Collapse
Affiliation(s)
- Mischa de Ridder
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Cornelis P. J. Raaijmakers
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Frank A. Pameijer
- Department of Radiology, University Medical Center Utrecht, 3584 Utrecht, The Netherlands;
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, 3584 Utrecht, The Netherlands;
| | - Floris C. J. Reinders
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Patricia A. H. Doornaert
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Chris H. J. Terhaard
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Marielle E. P. Philippens
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| |
Collapse
|
9
|
Bluemke E, Stride E, Bulte DP. A General Model to Calculate the Spin-Lattice Relaxation Rate (R1) of Blood, Accounting for Hematocrit, Oxygen Saturation, Oxygen Partial Pressure, and Magnetic Field Strength Under Hyperoxic Conditions. J Magn Reson Imaging 2022; 55:1428-1439. [PMID: 34596290 DOI: 10.1002/jmri.27938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Under normal physiological conditions, the spin-lattice relaxation rate (R1) in blood is influenced by many factors, including hematocrit, field strength, and the paramagnetic effects of deoxyhemoglobin and dissolved oxygen. In addition, techniques such as oxygen-enhanced magnetic resonance imaging (MRI) require high fractions of inspired oxygen to induce hyperoxia, which complicates the R1 signal further. A quantitative model relating total blood oxygen content to R1 could help explain these effects. PURPOSE To propose and assess a general model to estimate the R1 of blood, accounting for hematocrit, SO2 , PO2 , and B0 under both normal physiological and hyperoxic conditions. STUDY TYPE Mathematical modeling. POPULATION One hundred and twenty-six published values of R1 from phantoms and animal models. FIELD STRENGTH/SEQUENCE 5-8.45 T. ASSESSMENT We propose a two-compartment nonlinear model to calculate R1 as a function of hematocrit, PO2 , and B0. The Akaike Information Criterion (AIC) was used to select the best-performing model with the fewest parameters. A previous model of R1 as a function of hematocrit, SO2 , and B0 has been proposed by Hales et al, and our work builds upon this work to make the model applicable under hyperoxic conditions (SO2 > 0.99). Models were assessed using the AIC, mean squared error (MSE), coefficient of determination (R2 ), and Bland-Altman analysis. The effect of volume fraction constants W RBC and W plasma was assessed by the SD of resulting R1. The range of the model was determined by the maximum and minimum B0, hematocrit, SO2 , and PO2 of the literature data points. STATISTICAL TESTS Bland-Altman, AIC, MSE, coefficient of determination (R2 ), SD. RESULTS The model estimates agreed well with the literature values of R1 of blood (R2 = 0.93, MSE = 0.0013 s-2 ), and its performance was consistent across the range of parameters: B0 = 1.5-8.45 T, SO2 = 0.40-1, PO2 = 30-700 mmHg. DATA CONCLUSION Using the results from this model, we have quantified and explained the contradictory decrease in R1 reported in oxygen-enhanced MRI and oxygen-delivery experiments. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Emma Bluemke
- Department of Engineering Sciences, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Department of Engineering Sciences, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Daniel P Bulte
- Department of Engineering Sciences, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Using Variable Flip Angle (VFA) and Modified Look-Locker Inversion Recovery (MOLLI) T1 mapping in clinical OE-MRI. Magn Reson Imaging 2022; 89:92-99. [PMID: 35341905 DOI: 10.1016/j.mri.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE The imaging technique known as Oxygen-Enhanced MRI is under development as a noninvasive technique for imaging hypoxia in tumours and pulmonary diseases. While promising results have been shown in preclinical experiments, clinical studies have mentioned experiencing difficulties with patient motion, image registration, and the limitations of single-slice images compared to 3D volumes. As clinical studies begin to assess feasibility of using OE-MRI in patients, it is important for researchers to communicate about the practical challenges experienced when using OE-MRI on patients to help the technique advance. MATERIALS AND METHODS We report on our experience with using two types of T1 mapping (MOLLI and VFA) for a recently completed OE-MRI clinical study on oropharyngeal squamous cell carcinoma. RESULTS We report: (1) the artefacts and practical difficulties encountered in this study; (2) the difference in estimated T1 from each method used - the VFA T1 estimation was higher than the MOLLI estimation by 27% on average; (3) the standard deviation within the tumour ROIs - there was no significant difference in the standard deviation seen within the tumour ROIs from the VFA versus MOLLI; and (4) the OE-MRI response collected from either method. Lastly, we collated the MRI acquisition details from over 45 relevant manuscripts as a convenient reference for researchers planning future studies. CONCLUSION We have reported our practical experience from an OE-MRI clinical study, with the aim that sharing this is helpful to researchers planning future studies. In this study, VFA was a more useful technique for using OE-MRI in tumours than MOLLI T1 mapping.
Collapse
|
11
|
Yang DM, Arai TJ, Campbell JW, Gerberich JL, Zhou H, Mason RP. Oxygen-sensitive MRI assessment of tumor response to hypoxic gas breathing challenge. NMR IN BIOMEDICINE 2019; 32:e4101. [PMID: 31062902 PMCID: PMC6581571 DOI: 10.1002/nbm.4101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/16/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Oxygen-sensitive MRI has been extensively used to investigate tumor oxygenation based on the response (R2 * and/or R1 ) to a gas breathing challenge. Most studies have reported response to hyperoxic gas indicating potential biomarkers of hypoxia. Few studies have examined hypoxic gas breathing and we have now evaluated acute dynamic changes in rat breast tumors. Rats bearing syngeneic subcutaneous (n = 15) or orthotopic (n = 7) 13762NF breast tumors were exposed to a 16% O2 gas breathing challenge and monitored using blood oxygen level dependent (BOLD) R2 * and tissue oxygen level dependent (TOLD) T1 -weighted measurements at 4.7 T. As a control, we used a traditional hyperoxic gas breathing challenge with 100% O2 on a subset of the subcutaneous tumor bearing rats (n = 6). Tumor subregions identified as responsive on the basis of R2 * dynamics coincided with the viable tumor area as judged by subsequent H&E staining. As expected, R2 * decreased and T1 -weighted signal increased in response to 100% O2 breathing challenge. Meanwhile, 16% O2 breathing elicited an increase in R2 *, but divergent response (increase or decrease) in T1 -weighted signal. The T1 -weighted signal increase may signify a dominating BOLD effect triggered by 16% O2 in the relatively more hypoxic tumors, whereby the influence of increased paramagnetic deoxyhemoglobin outweighs decreased pO2 . The results emphasize the importance of combined BOLD and TOLD measurements for the correct interpretation of tumor oxygenation properties.
Collapse
Affiliation(s)
- Donghan M Yang
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Tatsuya J Arai
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - James W Campbell
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Heling Zhou
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ralph P Mason
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
O'Connor JPB, Robinson SP, Waterton JC. Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI. Br J Radiol 2019; 92:20180642. [PMID: 30272998 PMCID: PMC6540855 DOI: 10.1259/bjr.20180642] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 01/06/2023] Open
Abstract
Hypoxia is known to be a poor prognostic indicator for nearly all solid tumours and also is predictive of treatment failure for radiotherapy, chemotherapy, surgery and targeted therapies. Imaging has potential to identify, spatially map and quantify tumour hypoxia prior to therapy, as well as track changes in hypoxia on treatment. At present no hypoxia imaging methods are available for routine clinical use. Research has largely focused on positron emission tomography (PET)-based techniques, but there is gathering evidence that MRI techniques may provide a practical and more readily translational alternative. In this review we focus on the potential for imaging hypoxia by measuring changes in longitudinal relaxation [R1; termed oxygen-enhanced MRI or tumour oxygenation level dependent (TOLD) MRI] and effective transverse relaxation [R2*; termed blood oxygenation level dependent (BOLD) MRI], induced by inhalation of either 100% oxygen or the radiosensitising hyperoxic gas carbogen. We explain the scientific principles behind oxygen-enhanced MRI and BOLD and discuss significant studies and their limitations. All imaging biomarkers require rigorous validation in order to translate into clinical use and the steps required to further develop oxygen-enhanced MRI and BOLD MRI into decision-making tools are discussed.
Collapse
Affiliation(s)
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | |
Collapse
|
13
|
Zhou H, Belzile O, Zhang Z, Wagner J, Ahn C, Richardson JA, Saha D, Brekken RA, Mason RP. The effect of flow on blood oxygen level dependent (R * 2 ) MRI of orthotopic lung tumors. Magn Reson Med 2019; 81:3787-3797. [PMID: 30697815 DOI: 10.1002/mrm.27661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE Blood oxygen level dependent (BOLD) MRI based on R 2 * measurements can provide insights into tumor vascular oxygenation. However, measurements are susceptible to blood flow, which may vary accompanying a hyperoxic gas challenge. We investigated flow sensitivity by comparing R 2 * measurements with and without flow suppression (fs) in 2 orthotopic lung xenograft tumor models. METHODS H460 (n = 20) and A549 (n = 20) human lung tumor xenografts were induced by surgical implantation of cancer cells in the right lung of nude rats. MRI was performed at 4.7T after tumors reached 5 to 8 mm in diameter. A multiecho gradient echo MRI sequence was acquired with and without spatial saturation bands on each side of the imaging plane to evaluate the effect of flow on R 2 * . fs and non-fs R 2 * MRI measurements were interleaved during an oxygen breathing challenge (from air to 100% O2 ). T 2 * -weighted signal intensity changes (ΔSI(%)) and R 2 * measurements were obtained for regions of interest and on a voxel-by-voxel basis and discrepancies quantified with Bland-Altman analysis. RESULTS Flow suppression affected ΔSI(%) and R 2 * measurements in each tumor model. Average discrepancy and limits of agreement from Bland-Altman analyses revealed greater flow-related bias in A549 than H460. CONCLUSION The effect of flow on R 2 * , and hence BOLD, was tumor model dependent with measurements being more sensitive in well-perfused A549 tumors.
Collapse
Affiliation(s)
- Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Olivier Belzile
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhang Zhang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jo Wagner
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chul Ahn
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James A Richardson
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
14
|
Koundal S, Liu X, Sanggaard S, Mortensen K, Wardlaw J, Nedergaard M, Benveniste H, Lee H. Brain Morphometry and Longitudinal Relaxation Time of Spontaneously Hypertensive Rats (SHRs) in Early and Intermediate Stages of Hypertension Investigated by 3D VFA-SPGR MRI. Neuroscience 2019; 404:14-26. [PMID: 30690138 DOI: 10.1016/j.neuroscience.2019.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 02/03/2023]
Abstract
Cerebral small vessel disease(s) (SVD) results from pathological changes of the small blood vessels in the brain and is common in older people. The diagnostic features by which SVD manifests in brain includes white matter hyperintensities, lacunes, dilated perivascular spaces, microbleeds, and atrophy. In the present study, we use in vivo magnetic resonance imaging (MRI) to characterize brain morphometry and longitudinal relaxation time (T1) of spontaneously hypertensive rats (SHRs) to study the contribution of chronic hypertension to SVD relevant pathology. Male SHR and Wistar-Kyoto (WKY) rats underwent 3D variable flip angle spoiled gradient echo brain MRI at 9.4 T at early (seven weeks old) and established (19 weeks old) stages of hypertension. The derived proton density weighted and T1 images were utilized for morphometry and to characterize T1 properties in gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). Custom tissue probability maps were constructed for accurate computerized whole brain tissue segmentations and voxel-wise analyses. Characteristic morphological differences between the two strains included enlarged ventricles, smaller corpus callosum (CC) volumes and general 'thinning' of CC in SHR compared to WKY rats at both age groups. While we did not observe parenchymal T1 differences, the T1 of CSF was elevated in SHR compared to controls. Collectively these findings indicate that SHRs develop WM atrophy which is a clinically robust MRI biomarker associated with WM degeneration.
Collapse
Affiliation(s)
- Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Xiaodan Liu
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Simon Sanggaard
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Kristian Mortensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joanna Wardlaw
- Center for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK; Row Fogo Centre for Research into Ageing and the Brain, The University of Edinburgh, Edinburgh, UK
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States of America
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States of America.
| |
Collapse
|
15
|
Moosvi F, Baker JH, Yung A, Kozlowski P, Minchinton AI, Reinsberg SA. Fast and sensitive dynamic oxygen‐enhanced MRI with a cycling gas challenge and independent component analysis. Magn Reson Med 2018; 81:2514-2525. [DOI: 10.1002/mrm.27584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Firas Moosvi
- Department of Physics & Astronomy University of British Columbia Vancouver Canada
| | - Jennifer H.E. Baker
- Radiation Biology Unit British Columbia Cancer Research Centre Vancouver Canada
| | - Andrew Yung
- UBC MRI Research Centre Life Sciences Centre Vancouver Canada
| | - Piotr Kozlowski
- UBC MRI Research Centre Life Sciences Centre Vancouver Canada
- Department of Radiology University of British Columbia Vancouver Canada
| | | | - Stefan A. Reinsberg
- Department of Physics & Astronomy University of British Columbia Vancouver Canada
| |
Collapse
|
16
|
Little RA, Jamin Y, Boult JKR, Naish JH, Watson Y, Cheung S, Holliday KF, Lu H, McHugh DJ, Irlam J, West CML, Betts GN, Ashton G, Reynolds AR, Maddineni S, Clarke NW, Parker GJM, Waterton JC, Robinson SP, O’Connor JPB. Mapping Hypoxia in Renal Carcinoma with Oxygen-enhanced MRI: Comparison with Intrinsic Susceptibility MRI and Pathology. Radiology 2018; 288:739-747. [PMID: 29869970 PMCID: PMC6122194 DOI: 10.1148/radiol.2018171531] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022]
Abstract
Purpose To cross-validate T1-weighted oxygen-enhanced (OE) MRI measurements of tumor hypoxia with intrinsic susceptibility MRI measurements and to demonstrate the feasibility of translation of the technique for patients. Materials and Methods Preclinical studies in nine 786-0-R renal cell carcinoma (RCC) xenografts and prospective clinical studies in eight patients with RCC were performed. Longitudinal relaxation rate changes (∆R1) after 100% oxygen inhalation were quantified, reflecting the paramagnetic effect on tissue protons because of the presence of molecular oxygen. Native transverse relaxation rate (R2*) and oxygen-induced R2* change (∆R2*) were measured, reflecting presence of deoxygenated hemoglobin molecules. Median and voxel-wise values of ∆R1 were compared with values of R2* and ∆R2*. Tumor regions with dynamic contrast agent-enhanced MRI perfusion, refractory to signal change at OE MRI (referred to as perfused Oxy-R), were distinguished from perfused oxygen-enhancing (perfused Oxy-E) and nonperfused regions. R2* and ∆R2* values in each tumor subregion were compared by using one-way analysis of variance. Results Tumor-wise and voxel-wise ∆R1 and ∆R2* comparisons did not show correlative relationships. In xenografts, parcellation analysis revealed that perfused Oxy-R regions had faster native R2* (102.4 sec-1 vs 81.7 sec-1) and greater negative ∆R2* (-22.9 sec-1 vs -5.4 sec-1), compared with perfused Oxy-E and nonperfused subregions (all P < .001), respectively. Similar findings were present in human tumors (P < .001). Further, perfused Oxy-R helped identify tumor hypoxia, measured at pathologic analysis, in both xenografts (P = .002) and human tumors (P = .003). Conclusion Intrinsic susceptibility biomarkers provide cross validation of the OE MRI biomarker perfused Oxy-R. Consistent relationship to pathologic analyses was found in xenografts and human tumors, demonstrating biomarker translation. Published under a CC BY 4.0 license. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ross A. Little
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Yann Jamin
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Jessica K. R. Boult
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Josephine H. Naish
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Yvonne Watson
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Susan Cheung
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Katherine F. Holliday
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Huiqi Lu
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Damien J. McHugh
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Joely Irlam
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Catharine M. L. West
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Guy N. Betts
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Garry Ashton
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | | | - Satish Maddineni
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Noel W. Clarke
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Geoff J. M. Parker
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - John C. Waterton
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Simon P. Robinson
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - James P. B. O’Connor
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| |
Collapse
|
17
|
Dregely I, Prezzi D, Kelly‐Morland C, Roccia E, Neji R, Goh V. Imaging biomarkers in oncology: Basics and application to MRI. J Magn Reson Imaging 2018; 48:13-26. [PMID: 29969192 PMCID: PMC6587121 DOI: 10.1002/jmri.26058] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer remains a global killer alongside cardiovascular disease. A better understanding of cancer biology has transformed its management with an increasing emphasis on a personalized approach, so-called "precision cancer medicine." Imaging has a key role to play in the management of cancer patients. Imaging biomarkers that objectively inform on tumor biology, the tumor environment, and tumor changes in response to an intervention complement genomic and molecular diagnostics. In this review we describe the key principles for imaging biomarker development and discuss the current status with respect to magnetic resonance imaging (MRI). LEVEL OF EVIDENCE 5 TECHNICAL EFFICACY: Stage 5 J. Magn. Reson. Imaging 2018;48:13-26.
Collapse
Affiliation(s)
- Isabel Dregely
- Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's Health Partners, St Thomas' HospitalLondon, UK
| | - Davide Prezzi
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences King's College London, King's Health Partners, St Thomas' Hospital, LondonUK
- RadiologyGuy's & St Thomas' NHS Foundation TrustLondonUK
| | - Christian Kelly‐Morland
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences King's College London, King's Health Partners, St Thomas' Hospital, LondonUK
- RadiologyGuy's & St Thomas' NHS Foundation TrustLondonUK
| | - Elisa Roccia
- Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's Health Partners, St Thomas' HospitalLondon, UK
| | - Radhouene Neji
- Biomedical Engineering, School of Biomedical Engineering & Imaging SciencesKing's Health Partners, St Thomas' HospitalLondon, UK
- MR Research CollaborationsSiemens HealthcareFrimleyUK
| | - Vicky Goh
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences King's College London, King's Health Partners, St Thomas' Hospital, LondonUK
- RadiologyGuy's & St Thomas' NHS Foundation TrustLondonUK
| |
Collapse
|
18
|
Featherstone AK, O'Connor JP, Little RA, Watson Y, Cheung S, Babur M, Williams KJ, Matthews JC, Parker GJ. Data-driven mapping of hypoxia-related tumor heterogeneity using DCE-MRI and OE-MRI. Magn Reson Med 2018; 79:2236-2245. [PMID: 28856728 PMCID: PMC5836865 DOI: 10.1002/mrm.26860] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/06/2023]
Abstract
PURPOSE Previous work has shown that combining dynamic contrast-enhanced (DCE)-MRI and oxygen-enhanced (OE)-MRI binary enhancement maps can identify tumor hypoxia. The current work proposes a novel, data-driven method for mapping tissue oxygenation and perfusion heterogeneity, based on clustering DCE/OE-MRI data. METHODS DCE-MRI and OE-MRI were performed on nine U87 (glioblastoma) and seven Calu6 (non-small cell lung cancer) murine xenograft tumors. Area under the curve and principal component analysis features were calculated and clustered separately using Gaussian mixture modelling. Evaluation metrics were calculated to determine the optimum feature set and cluster number. Outputs were quantitatively compared with a previous non data-driven approach. RESULTS The optimum method located six robustly identifiable clusters in the data, yielding tumor region maps with spatially contiguous regions in a rim-core structure, suggesting a biological basis. Mean within-cluster enhancement curves showed physiologically distinct, intuitive kinetics of enhancement. Regions of DCE/OE-MRI enhancement mismatch were located, and voxel categorization agreed well with the previous non data-driven approach (Cohen's kappa = 0.61, proportional agreement = 0.75). CONCLUSION The proposed method locates similar regions to the previous published method of binarization of DCE/OE-MRI enhancement, but renders a finer segmentation of intra-tumoral oxygenation and perfusion. This could aid in understanding the tumor microenvironment and its heterogeneity. Magn Reson Med 79:2236-2245, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Adam K. Featherstone
- Division of Informatics, Imaging & Data SciencesThe University of ManchesterManchesterUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and ManchesterUK
| | - James P.B. O'Connor
- CRUK & EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and ManchesterUK
- Division of Cancer StudiesThe University of ManchesterManchesterUK
- Department of RadiologyChristie NHS Foundation TrustManchesterUK
| | - Ross A. Little
- Division of Informatics, Imaging & Data SciencesThe University of ManchesterManchesterUK
| | - Yvonne Watson
- Division of Informatics, Imaging & Data SciencesThe University of ManchesterManchesterUK
| | - Sue Cheung
- Division of Informatics, Imaging & Data SciencesThe University of ManchesterManchesterUK
| | - Muhammad Babur
- Division of Pharmacy & OptometryThe University of ManchesterManchesterUK
| | - Kaye J. Williams
- CRUK & EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and ManchesterUK
- Division of Pharmacy & OptometryThe University of ManchesterManchesterUK
| | - Julian C. Matthews
- Division of Informatics, Imaging & Data SciencesThe University of ManchesterManchesterUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and ManchesterUK
| | - Geoff J.M. Parker
- Division of Informatics, Imaging & Data SciencesThe University of ManchesterManchesterUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and ManchesterUK
- Bioxydyn LtdManchesterUK
| |
Collapse
|
19
|
Zhou H, Zhang Z, Denney R, Williams JS, Gerberich J, Stojadinovic S, Saha D, Shelton JM, Mason RP. Tumor physiological changes during hypofractionated stereotactic body radiation therapy assessed using multi-parametric magnetic resonance imaging. Oncotarget 2018; 8:37464-37477. [PMID: 28415581 PMCID: PMC5514922 DOI: 10.18632/oncotarget.16395] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/02/2017] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy is a primary treatment for non-resectable lung cancer and hypoxia is thought to influence tumor response. Hypoxia is expected to be particularly relevant to the evolving new radiation treatment scheme of hypofractionated stereotactic body radiation therapy (SBRT). As such, we sought to develop non-invasive tools to assess tumor pathophysiology and response to irradiation. We applied blood oxygen level dependent (BOLD) and tissue oxygen level dependent (TOLD) MRI, together with dynamic contrast enhanced (DCE) MRI to explore the longitudinal effects of SBRT on tumor oxygenation and vascular perfusion using A549 human lung cancer xenografts in a subcutaneous rat model. Intra-tumor heterogeneity was seen on multi-parametric maps, especially in BOLD, T2* and DCE. At baseline, most tumors showed a positive BOLD signal response (%ΔSI) and increased T2* in response to oxygen breathing challenge, indicating increased vascular oxygenation. Control tumors showed similar response 24 hours and 1 week later. Twenty-four hours after a single dose of 12 Gy, the irradiated tumors showed a significantly decreased T2* (-2.9±4.2 ms) and further decrease was observed (-4.0±6.0 ms) after 1 week, suggesting impaired vascular oxygenation. DCE revealed tumor heterogeneity, but showed minimal changes following irradiation. Rats were cured of the primary tumors by 3x12 Gy, providing long term survival, though with ultimate metastatic recurrence.
Collapse
Affiliation(s)
- Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Zhang Zhang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Rebecca Denney
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Jessica S Williams
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Jeni Gerberich
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Strahinja Stojadinovic
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
20
|
Özbay PS, Stieb S, Rossi C, Riesterer O, Boss A, Weiss T, Kuhn FP, Pruessmann KP, Nanz D. Lesion magnetic susceptibility response to hyperoxic challenge: A biomarker for malignant brain tumor microenvironment? Magn Reson Imaging 2017; 47:147-153. [PMID: 29221966 DOI: 10.1016/j.mri.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Quantitative susceptibility mapping has been previously used to differentiate lesions in patients with brain tumors. The aim of this work was to characterize the response of magnetic susceptibility differences in malignant brain tumors and surrounding edema to hyperoxic and hypercapnic respiratory challenges. METHODS Images of malignant brain tumor patients (2 glioblastoma multiforme, 2 anaplastic astrocytoma, 1 brain metastasis) with clinical MRI exams (contrast-enhanced T1w) were acquired at 3T. 3D multi-gradient-echo data sets were acquired while the patients inhaled medical-air (21% O2), oxygen (100% O2), and carbogen (95% O2, 5% CO2). Susceptibility maps were generated from real and imaginary data. Regions of interest were analyzed with respect to respiration-gas-induced susceptibility changes. RESULTS Contrast-enhancing tumor regions with high baseline magnetic susceptibility exhibited a marked susceptibility reduction under hyperoxic challenges, with a stronger effect (-0.040 to -0.100ppm) under hypercapnia compared to hyperoxia (-0.010 to -0.067ppm). In contrast, regions attributed to necrotic tissue and to edema showed smaller changes of opposite sign, i.e. paramagnetic shift. There was a correlation between malignant tumor tissue magnetic susceptibility at baseline under normoxia and the corresponding susceptibility reduction under hypercapnia and - to a lesser degree - under hyperoxia. CONCLUSION In this small cohort of analysis, quantification of susceptibility changes in response to respiratory challenges allowed a complementary, functional differentiation of tumorous sub-regions. Those changes, together with the correlations observed between baseline susceptibility under normoxia and susceptibility reduction with challenges, could prove helpful for a non-invasive characterization of local tumor microenvironment.
Collapse
Affiliation(s)
- Pinar Senay Özbay
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Switzerland; Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Switzerland; Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Sonja Stieb
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Switzerland
| | - Cristina Rossi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Switzerland
| | - Oliver Riesterer
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Switzerland
| | - Andreas Boss
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zurich and University of Zurich, Switzerland
| | - Felix Pierre Kuhn
- Department of Nuclear Medicine, University Hospital Zurich and University of Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Switzerland
| | - Daniel Nanz
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Switzerland; Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich
| |
Collapse
|
21
|
Cao-Pham TT, Joudiou N, Van Hul M, Bouzin C, Cani PD, Gallez B, Jordan BF. Combined endogenous MR biomarkers to predict basal tumor oxygenation and response to hyperoxic challenge. NMR IN BIOMEDICINE 2017; 30:e3836. [PMID: 29024086 DOI: 10.1002/nbm.3836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/18/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Hypoxia is a common feature of solid tumors, which translates into increased angiogenesis, malignant phenotype cell selection, change in gene expression and greater resistance to radiotherapy and chemotherapy. Therefore, there is a need for markers of hypoxia to stratify patients, in order to personalize treatment to improve therapeutic outcome. However, no modality has yet been validated for the screening of hypoxia in routine clinical practice. Magnetic resonance imaging (MRI) R1 and R2 * relaxation parameters are sensitive to tissue oxygenation: R1 is sensitive to dissolved oxygen and R2 * is sensitive to intravascular deoxyhemoglobin content. Two rat tumor models with distinct levels of hypoxia, 9L-glioma and rhabdomyosarcoma, were imaged for R1 and R2 * under air and carbogen (95% O2 and 5% CO2 ) breathing conditions. It was observed that the basal tumor oxygenation level had an impact on the amplitude of response to carbogen in the vascular compartment (R2 *), but not in the tissue compartment (R1 ). In addition, the change in tissue oxygenation estimated by ΔR1 correlated with the change in vascular oxygenation estimated by ΔR2 *, which is consistent with an increase in oxygen supply generating an elevated tumor pO2 . At the intra-tumoral level, we identified four types of voxel to which a hypoxic feature was attributed (mild hypoxia, severe hypoxia, normoxia and vascular steal), depending on the carbogen-induced change in R1 and R2 * values for each voxel. The results showed that 9L-gliomas present more normoxic fractions, whereas rhabdomyosarcomas present more hypoxic fractions, which is in accordance with a previous study using 18 F-fluoroazomycin arabinoside (18 F-FAZA) and electron paramagnetic resonance (EPR) oximetry. The response of the combined endogenous MRI contrasts to carbogen challenge could be a useful tool to predict different tumor hypoxic fractions.
Collapse
Affiliation(s)
- Thanh-Trang Cao-Pham
- Université catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Nicolas Joudiou
- Université catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Matthias Van Hul
- Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Caroline Bouzin
- Université catholique de Louvain, IREC Imaging Platform, Brussels, Belgium
| | - Patrice D Cani
- Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Bernard Gallez
- Université catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| | - Bénédicte F Jordan
- Université catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| |
Collapse
|
22
|
Incorporating Oxygen-Enhanced MRI into Multi-Parametric Assessment of Human Prostate Cancer. Diagnostics (Basel) 2017; 7:diagnostics7030048. [PMID: 28837092 PMCID: PMC5617948 DOI: 10.3390/diagnostics7030048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/13/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is associated with prostate tumor aggressiveness, local recurrence, and biochemical failure. Magnetic resonance imaging (MRI) offers insight into tumor pathophysiology and recent reports have related transverse relaxation rate (R2*) and longitudinal relaxation rate (R1) measurements to tumor hypoxia. We have investigated the inclusion of oxygen-enhanced MRI for multi-parametric evaluation of tumor malignancy. Multi-parametric MRI sequences at 3 Tesla were evaluated in 10 patients to investigate hypoxia in prostate cancer prior to radical prostatectomy. Blood oxygen level dependent (BOLD), tissue oxygen level dependent (TOLD), dynamic contrast enhanced (DCE), and diffusion weighted imaging MRI were intercorrelated and compared with the Gleason score. The apparent diffusion coefficient (ADC) was significantly lower in tumor than normal prostate. Baseline R2* (BOLD-contrast) was significantly higher in tumor than normal prostate. Upon the oxygen breathing challenge, R2* decreased significantly in the tumor tissue, suggesting improved vascular oxygenation, however changes in R1 were minimal. R2* of contralateral normal prostate decreased in most cases upon oxygen challenge, although the differences were not significant. Moderate correlation was found between ADC and Gleason score. ADC and R2* were correlated and trends were found between Gleason score and R2*, as well as maximum-intensity-projection and area-under-the-curve calculated from DCE. Tumor ADC and R2* have been associated with tumor hypoxia, and thus the correlations are of particular interest. A multi-parametric approach including oxygen-enhanced MRI is feasible and promises further insights into the pathophysiological information of tumor microenvironment.
Collapse
|
23
|
Belfatto A, Vidal Urbinati AM, Ciardo D, Franchi D, Cattani F, Lazzari R, Jereczek-Fossa BA, Orecchia R, Baroni G, Cerveri P. Comparison between model-predicted tumor oxygenation dynamics and vascular-/flow-related Doppler indices. Med Phys 2017; 44:2011-2019. [PMID: 28273332 DOI: 10.1002/mp.12192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/25/2017] [Accepted: 02/24/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Mathematical modeling is a powerful and flexible method to investigate complex phenomena. It discloses the possibility of reproducing expensive as well as invasive experiments in a safe environment with limited costs. This makes it suitable to mimic tumor evolution and response to radiotherapy although the reliability of the results remains an issue. Complexity reduction is therefore a critical aspect in order to be able to compare model outcomes to clinical data. Among the factors affecting treatment efficacy, tumor oxygenation is known to play a key role in radiotherapy response. In this work, we aim at relating the oxygenation dynamics, predicted by a macroscale model trained on tumor volumetric data of uterine cervical cancer patients, to vascularization and blood flux indices assessed on Ultrasound Doppler images. METHODS We propose a macroscale model of tumor evolution based on three dynamics, namely active portion, necrotic portion, and oxygenation. The model parameters were assessed on the volume size of seven cervical cancer patients administered with 28 fractions of intensity modulated radiation therapy (IMRT) (1.8 Gy/fraction). For each patient, five Doppler ultrasound tests were acquired before, during, and after the treatment. The lesion was manually contoured by an expert physician using 4D View® (General Electric Company - Fairfield, Connecticut, United States), which automatically provided the overall tumor volume size along with three vascularization and/or blood flow indices. Volume data only were fed to the model for training purpose, while the predicted oxygenation was compared a posteriori to the measured Doppler indices. RESULTS The model was able to fit the tumor volume evolution within 8% error (range: 3-8%). A strong correlation between the intrapatient longitudinal indices from Doppler measurements and oxygen predicted by the model (about 90% or above) was found in three cases. Two patients showed an average correlation value (50-70%) and the remaining two presented poor correlations. The latter patients were the ones featuring the smallest tumor reduction throughout the treatment, typical of hypoxic conditions. Moreover, the average oxygenation value predicted by the model was close to the average vascularization-flow index (average difference: 7%). CONCLUSIONS The results suggest that the modeled relation between tumor evolution and oxygen dynamics was reasonable enough to provide realistic oxygenation curves in five cases (correlation greater than 50%) out of seven. In case of nonresponsive tumors, the model failed in predicting the oxygenation trend while succeeded in reproducing the average oxygenation value according to the mean vascularization-flow index. Despite the need for deeper investigations, the outcomes of the present work support the hypothesis that a simple macroscale model of tumor response to radiotherapy is able to predict the tumor oxygenation. The possibility of an objective and quantitative validation on imaging data discloses the possibility to translate them as decision support tools in clinical practice and to move a step forward in the treatment personalization.
Collapse
Affiliation(s)
- Antonella Belfatto
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano University, Piazza Leonardo da Vinci, 32 - 20133, Milan, Italy
| | - Ailyn M Vidal Urbinati
- Preventive Gynecology Unit, Division of Gynecology, European Institute of Oncology, Via Giuseppe Ripamonti, 435 - 20141, Milan, Italy
| | - Delia Ciardo
- Department of Radiation Oncology, European Institute of Oncology, Via Giuseppe Ripamonti, 435 - 20141, Milan, Italy
| | - Dorella Franchi
- Preventive Gynecology Unit, Division of Gynecology, European Institute of Oncology, Via Giuseppe Ripamonti, 435 - 20141, Milan, Italy
| | - Federica Cattani
- Unit of Medical Physics, European Institute of Oncology, Via Giuseppe Ripamonti, 435 - 20141, Milan, Italy
| | - Roberta Lazzari
- Department of Radiation Oncology, European Institute of Oncology, Via Giuseppe Ripamonti, 435 - 20141, Milan, Italy
| | - Barbara A Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology, Via Giuseppe Ripamonti, 435 - 20141, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Via Festa del Perdono, 7 - 20122, Milan, Italy
| | - Roberto Orecchia
- Department of Oncology and Hemato-oncology, University of Milan, Via Festa del Perdono, 7 - 20122, Milan, Italy.,Department of Medical Imaging and Radiation Sciences, European Institute of Oncology, Via Giuseppe Ripamonti, 435 - 20141, Milan, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano University, Piazza Leonardo da Vinci, 32 - 20133, Milan, Italy
| | - Pietro Cerveri
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano University, Piazza Leonardo da Vinci, 32 - 20133, Milan, Italy
| |
Collapse
|
24
|
Abstract
There is interest in identifying and quantifying tumor heterogeneity at the genomic, tissue pathology and clinical imaging scales, as this may help better understand tumor biology and may yield useful biomarkers for guiding therapy-based decision making. This review focuses on the role and value of using x-ray, CT, MRI and PET based imaging methods that identify, measure and map tumor heterogeneity. In particular we highlight the potential value of these techniques and the key challenges required to validate and qualify these biomarkers for clinical use.
Collapse
Affiliation(s)
- James P B O'Connor
- Institute of Cancer Sciences, University of Manchester, Manchester, UK; Department of Radiology, The Christie Hospital NHS Trust, Manchester, UK.
| |
Collapse
|
25
|
Bhogal AA, Siero JC, Zwanenburg J, Luijten PR, Philippens ME, Hoogduin H. Quantitative T1 mapping under precisely controlled graded hyperoxia at 7T. J Cereb Blood Flow Metab 2017; 37:1461-1469. [PMID: 27354092 PMCID: PMC5453465 DOI: 10.1177/0271678x16656864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing the concentration of oxygen dissolved in water is known to increase the recovery rate (R1 = 1/T1) of longitudinal magnetization (T1 relaxation). Direct T1 changes in response to precise hyperoxic gas challenges have not yet been quantified and the actual effect of increasing arterial oxygen concentration on the T1 of brain parenchyma remains unclear. The aim of this work was to use quantitative T1 mapping to measure tissue T1 changes in response to precisely targeted hyperoxic respiratory challenges ranging from baseline end-tidal oxygen (PetO2) to approximately 500 mmHg. We did not observe measureable T1 changes in either gray matter or white matter parenchymal tissue. The T1 of peripheral cerebrospinal fluid located within the sulci, however, was reduced as a function of PetO2. No significant T1 changes were observed in the ventricular cerebrospinal fluid under hyperoxia. Our results indicate that care should be taken to distinguish actual T1 changes from those which may be related to partial volume effects with cerebrospinal fluid, or regions with increased fluid content such as edema when examining hyperoxia-induced changes in T1 using methods based on T1-weighted imaging.
Collapse
Affiliation(s)
- Alex A Bhogal
- 1 Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Cw Siero
- 1 Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jaco Zwanenburg
- 1 Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter R Luijten
- 1 Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marielle Ep Philippens
- 2 Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Hoogduin
- 1 Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
White DA, Zhang Z, Li L, Gerberich J, Stojadinovic S, Peschke P, Mason RP. Developing oxygen-enhanced magnetic resonance imaging as a prognostic biomarker of radiation response. Cancer Lett 2016; 380:69-77. [PMID: 27267808 DOI: 10.1016/j.canlet.2016.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 11/19/2022]
Abstract
Oxygen-Enhanced Magnetic Resonance Imaging (OE-MRI) techniques were evaluated as potential non-invasive predictive biomarkers of radiation response. Semi quantitative blood-oxygen level dependent (BOLD) and tissue oxygen level dependent (TOLD) contrast, and quantitative responses of relaxation rates (ΔR1 and ΔR2*) to an oxygen breathing challenge during hypofractionated radiotherapy were applied. OE-MRI was performed on subcutaneous Dunning R3327-AT1 rat prostate tumors (n=25) at 4.7 T prior to each irradiation (2F × 15 Gy) to the gross tumor volume. Response to radiation, while inhaling air or oxygen, was assessed by tumor growth delay measured up to four times the initial irradiated tumor volume (VQT). Radiation-induced hypoxia changes were confirmed using a double hypoxia marker assay. Inhaling oxygen during hypofractionated radiotherapy significantly improved radiation response. A correlation was observed between the difference in the 2nd and 1st ΔR1 (ΔΔR1) and VQT for air breathing rats. The TOLD response before the 2nd fraction showed a moderate correlation with VQT for oxygen breathing rats. The correlations indicate useful prognostic factors to predict tumor response to hypofractionation and could readily be applied for patient stratification and personalized radiotherapy treatment planning.
Collapse
Affiliation(s)
- Derek A White
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Zhang Zhang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Li Li
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jeni Gerberich
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Strahinja Stojadinovic
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | - Ralph P Mason
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
27
|
Abstract
Abnormal tumor vasculature is a potent mediator of treatment resistance because it results in heterogeneous perfusion, hypoxia, increased interstitial fluid pressure, and incomplete penetration of cytotoxic chemotherapies. Targeting this abnormal tumor vasculature is a promising therapeutic strategy, but results with antiangiogenic drugs in brain cancer have been mixed. Vasculature's response to treatment is a dynamic physiological process that can change rapidly throughout treatment, so it requires noninvasive techniques to serially monitor these changes in order to improve outcome. We review the role of vascular magnetic resonance imaging to measure tumor response to treatment and highlight opportunities and future avenues for expanding these promising techniques.
Collapse
|
28
|
Belfatto A, White DA, Mason RP, Zhang Z, Stojadinovic S, Baroni G, Cerveri P. Tumor radio-sensitivity assessment by means of volume data and magnetic resonance indices measured on prostate tumor bearing rats. Med Phys 2016; 43:1275-84. [PMID: 26936712 PMCID: PMC5148178 DOI: 10.1118/1.4941746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/17/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Radiation therapy is one of the most common treatments in the fight against prostate cancer, since it is used to control the tumor (early stages), to slow its progression, and even to control pain (metastasis). Although many factors (e.g., tumor oxygenation) are known to influence treatment efficacy, radiotherapy doses and fractionation schedules are often prescribed according to the principle "one-fits-all," with little personalization. Therefore, the authors aim at predicting the outcome of radiation therapy a priori starting from morphologic and functional information to move a step forward in the treatment customization. METHODS The authors propose a two-step protocol to predict the effects of radiation therapy on individual basis. First, one macroscopic mathematical model of tumor evolution was trained on tumor volume progression, measured by caliper, of eighteen Dunning R3327-AT1 bearing rats. Nine rats inhaled 100% O2 during irradiation (oxy), while the others were allowed to breathe air. Second, a supervised learning of the weight and biases of two feedforward neural networks was performed to predict the radio-sensitivity (target) from the initial volume and oxygenation-related information (inputs) for each rat group (air and oxygen breathing). To this purpose, four MRI-based indices related to blood and tissue oxygenation were computed, namely, the variation of signal intensity ΔSI in interleaved blood oxygen level dependent and tissue oxygen level dependent (IBT) sequences as well as changes in longitudinal ΔR1 and transverse ΔR2(*) relaxation rates. RESULTS An inverse correlation of the radio-sensitivity parameter, assessed by the model, was found with respect the ΔR2(*) (-0.65) for the oxy group. A further subdivision according to positive and negative values of ΔR2(*) showed a larger average radio-sensitivity for the oxy rats with ΔR2(*)<0 and a significant difference in the two distributions (p < 0.05). Finally, a leave-one-out procedure yielded a radio-sensitivity error lower than 20% in both neural networks. CONCLUSIONS While preliminary, these specific results suggest that subjects affected by the same pathology can benefit differently from the same irradiation modalities and support the usefulness of IBT in discriminating between different responses.
Collapse
Affiliation(s)
- Antonella Belfatto
- Department of Electronics, Information and Bioengineering, Politecnico di Milano University, Milan 20133, Italy
| | - Derek A White
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ralph P Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Zhang Zhang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Strahinja Stojadinovic
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano University, Milan 20133, Italy
| | - Pietro Cerveri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano University, Milan 20133, Italy
| |
Collapse
|
29
|
O'Connor JPB, Boult JKR, Jamin Y, Babur M, Finegan KG, Williams KJ, Little RA, Jackson A, Parker GJM, Reynolds AR, Waterton JC, Robinson SP. Oxygen-Enhanced MRI Accurately Identifies, Quantifies, and Maps Tumor Hypoxia in Preclinical Cancer Models. Cancer Res 2016; 76:787-95. [PMID: 26659574 PMCID: PMC4757751 DOI: 10.1158/0008-5472.can-15-2062] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/09/2015] [Indexed: 01/10/2023]
Abstract
There is a clinical need for noninvasive biomarkers of tumor hypoxia for prognostic and predictive studies, radiotherapy planning, and therapy monitoring. Oxygen-enhanced MRI (OE-MRI) is an emerging imaging technique for quantifying the spatial distribution and extent of tumor oxygen delivery in vivo. In OE-MRI, the longitudinal relaxation rate of protons (ΔR1) changes in proportion to the concentration of molecular oxygen dissolved in plasma or interstitial tissue fluid. Therefore, well-oxygenated tissues show positive ΔR1. We hypothesized that the fraction of tumor tissue refractory to oxygen challenge (lack of positive ΔR1, termed "Oxy-R fraction") would be a robust biomarker of hypoxia in models with varying vascular and hypoxic features. Here, we demonstrate that OE-MRI signals are accurate, precise, and sensitive to changes in tumor pO2 in highly vascular 786-0 renal cancer xenografts. Furthermore, we show that Oxy-R fraction can quantify the hypoxic fraction in multiple models with differing hypoxic and vascular phenotypes, when used in combination with measurements of tumor perfusion. Finally, Oxy-R fraction can detect dynamic changes in hypoxia induced by the vasomodulator agent hydralazine. In contrast, more conventional biomarkers of hypoxia (derived from blood oxygenation-level dependent MRI and dynamic contrast-enhanced MRI) did not relate to tumor hypoxia consistently. Our results show that the Oxy-R fraction accurately quantifies tumor hypoxia noninvasively and is immediately translatable to the clinic.
Collapse
Affiliation(s)
- James P B O'Connor
- Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom. Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom. Department of Radiology, Christie NHS Foundation Trust, Manchester, United Kingdom. james.o'
| | - Jessica K R Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Muhammad Babur
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom
| | - Katherine G Finegan
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom
| | - Kaye J Williams
- Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom. Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom
| | - Ross A Little
- Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Alan Jackson
- Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Geoff J M Parker
- Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew R Reynolds
- Tumour Biology Team, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - John C Waterton
- Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
30
|
Safronova MM, Colliez F, Magat J, Joudiou N, Jordan BF, Raftopoulos C, Gallez B, Duprez T. Mapping of global R1 and R2* values versus lipids R1 values as potential markers of hypoxia in human glial tumors: A feasibility study. Magn Reson Imaging 2016; 34:105-13. [DOI: 10.1016/j.mri.2015.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/25/2015] [Accepted: 10/25/2015] [Indexed: 01/08/2023]
|
31
|
Ma Y, Berman AJ, Pike GB. The effect of dissolved oxygen on the relaxation rates of blood plasma: Implications for hyperoxia calibrated BOLD. Magn Reson Med 2015; 76:1905-1911. [DOI: 10.1002/mrm.26069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/05/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Yuhan Ma
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University; Montreal Quebec Canada
| | - Avery J.L. Berman
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University; Montreal Quebec Canada
- Department of Radiology and Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| | - G. Bruce Pike
- Department of Radiology and Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
32
|
Bane O, Besa C, Wagner M, Oesingmann N, Zhu H, Fiel MI, Taouli B. Feasibility and reproducibility of BOLD and TOLD measurements in the liver with oxygen and carbogen gas challenge in healthy volunteers and patients with hepatocellular carcinoma. J Magn Reson Imaging 2015; 43:866-76. [PMID: 26417669 DOI: 10.1002/jmri.25051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/02/2015] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To quantify baseline relaxation rates R2* and R1 in the abdomen, their changes after respiratory challenges, and their reproducibility in healthy volunteers and patients with hepatocellular carcinoma (HCC) at 1.5T and 3.0T. MATERIALS AND METHODS R2* measurements were acquired in the liver in 8 volunteers and 27 patients with 34 HCCs using multiecho T2* at baseline and after respiratory challenges with 100% oxygen (O2 ) and carbogen (CB = 95%O2 /5%CO2 ). R1 was measured at 1.5T in one volunteer and 21 patients with 23 HCCs. Test-retest coefficient of variation (CV) was assessed in 10 subjects. Intra- and interobserver variability of R2* and R1 measurements was assessed in 12 and 10 patients, respectively. Parameters for HCC, liver, and muscle were compared between baseline and after gas challenges. RESULTS We observed that R2* and R1 imaging of HCCs with O2 and CB is feasible and reproducible (test-retest CV R2*<15%/R1 <5%; intra- and interobserver intraclass correlation coefficient R2*>0.88/R1 >0.7 and CV R2*<7%/R1 <3% at 1.5T). R2* measurements were observed to be less reproducible at 3.0T (CV<35%). There was a statistically significant decrease in R2* values in HCC before and after O2 (P = 0.02) and increase in R1 after O2 (P = 0.004). CB had no significant effect (P R2* = 0.47/R1 = 0.278). CONCLUSION R2* measurements in HCC and liver parenchyma are more reproducible at 1.5T than at 3.0T, and with O2 than with CB challenge. We observed a decrease in R2* and an increase in R1 of HCCs from baseline in response to O2 challenge, as expected with increased tissue and blood oxygenation.
Collapse
Affiliation(s)
- Octavia Bane
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cecilia Besa
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mathilde Wagner
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Hongfa Zhu
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maria Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bachir Taouli
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
33
|
Zhao D, Pacheco-Torres J, Hallac RR, White D, Peschke P, Cerdán S, Mason RP. Dynamic oxygen challenge evaluated by NMR T1 and T2*--insights into tumor oxygenation. NMR IN BIOMEDICINE 2015; 28:937-947. [PMID: 26058575 PMCID: PMC4506740 DOI: 10.1002/nbm.3325] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 05/03/2023]
Abstract
There is intense interest in developing non-invasive prognostic biomarkers of tumor response to therapy, particularly with regard to hypoxia. It has been suggested that oxygen sensitive MRI, notably blood oxygen level-dependent (BOLD) and tissue oxygen level-dependent (TOLD) contrast, may provide relevant measurements. This study examined the feasibility of interleaved T2*- and T1-weighted oxygen sensitive MRI, as well as R2* and R1 maps, of rat tumors to assess the relative sensitivity to changes in oxygenation. Investigations used cohorts of Dunning prostate R3327-AT1 and R3327-HI tumors, which are reported to exhibit distinct size-dependent levels of hypoxia and response to hyperoxic gas breathing. Proton MRI R1 and R2* maps were obtained for tumors of anesthetized rats (isoflurane/air) at 4.7 T. Then, interleaved gradient echo T2*- and T1-weighted images were acquired during air breathing and a 10 min challenge with carbogen (95% O2 -5% CO2). Signals were stable during air breathing, and each type of tumor showed a distinct signal response to carbogen. T2* (BOLD) response preceded T1 (TOLD) responses, as expected. Smaller HI tumors (reported to be well oxygenated) showed the largest BOLD and TOLD responses. Larger AT1 tumors (reported to be hypoxic and resist modulation by gas breathing) showed the smallest response. There was a strong correlation between BOLD and TOLD signal responses, but ΔR2* and ΔR1 were only correlated for the HI tumors. The magnitude of BOLD and TOLD signal responses to carbogen breathing reflected expected hypoxic fractions and oxygen dynamics, suggesting potential value of this test as a prognostic biomarker of tumor hypoxia.
Collapse
Affiliation(s)
- Dawen Zhao
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jesús Pacheco-Torres
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Laboratory for Imaging and Spectroscopy by Magnetic Resonance LISMAR, Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Arturo Duperier 4, Madrid 28029, Spain
| | - Rami R. Hallac
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Derek White
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Peter Peschke
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Cerdán
- Laboratory for Imaging and Spectroscopy by Magnetic Resonance LISMAR, Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Arturo Duperier 4, Madrid 28029, Spain
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- To whom correspondence should be addressed: Ralph P. Mason, PhD Department of Radiology UT Southwestern Medical Center 5323 Harry Hines Blvd. Dallas, TX 75390-9058 USA Phone: +1 (214) 648-8926 Fax: +1 (214) 648-2991
| |
Collapse
|
34
|
Hattingen E, Jurcoane A, Nelles M, Müller A, Nöth U, Mädler B, Mürtz P, Deichmann R, Schild HH. Quantitative MR Imaging of Brain Tissue and Brain Pathologies. Clin Neuroradiol 2015. [PMID: 26223371 DOI: 10.1007/s00062-015-0433-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Measurement of basic quantitative magnetic resonance (MR) parameters (e.g., relaxation times T1, T2*, T2 or respective rates R (1/T)) corrected for radiofrequency (RF) coil bias yields different conventional and new tissue contrasts as well as volumes for tissue segmentation. This approach also provides quantitative measures of microstructural and functional tissue changes. We herein demonstrate some prospects of quantitative MR imaging in neurological diagnostics and science.
Collapse
Affiliation(s)
- E Hattingen
- Neuroradiologie, Radiologische Klinik des Universitätsklinikums Bonn, Sigmund Freud Strasse 25, 53127, Bonn, Germany.
| | - A Jurcoane
- Neuroradiologie, Radiologische Klinik des Universitätsklinikums Bonn, Sigmund Freud Strasse 25, 53127, Bonn, Germany
| | - M Nelles
- Neuroradiologie, Radiologische Klinik des Universitätsklinikums Bonn, Sigmund Freud Strasse 25, 53127, Bonn, Germany
| | - A Müller
- Neuroradiologie, Radiologische Klinik des Universitätsklinikums Bonn, Sigmund Freud Strasse 25, 53127, Bonn, Germany
| | - U Nöth
- Brain Imaging Center, Universitätsklinikum Frankfurt, Frankfurt/Main, Germany
| | - B Mädler
- Philips Medical Systems, Philips GmbH, Hamburg, Germany
| | - P Mürtz
- Neuroradiologie, Radiologische Klinik des Universitätsklinikums Bonn, Sigmund Freud Strasse 25, 53127, Bonn, Germany
| | - R Deichmann
- Brain Imaging Center, Universitätsklinikum Frankfurt, Frankfurt/Main, Germany
| | - H H Schild
- Radiologische Klinik des Universitätsklinikums Bonn, Sigmund Freud Strasse 25, 53127, Bonn, Germany
| |
Collapse
|
35
|
Beeman SC, Shui YB, Perez-Torres CJ, Engelbach JA, Ackerman JJH, Garbow JR. O2 -sensitive MRI distinguishes brain tumor versus radiation necrosis in murine models. Magn Reson Med 2015; 75:2442-7. [PMID: 26175346 DOI: 10.1002/mrm.25821] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/28/2015] [Accepted: 05/31/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE The goal of this study was to quantify the relationship between the (1) H longitudinal relaxation rate constant, R1 , and oxygen (O2 ) concentration (relaxivity, r1 ) in tissue and to quantify O2 -driven changes in R1 (ΔR1 ) during a breathing gas challenge in normal brain, radiation-induced lesions, and tumor lesions. METHODS R1 data were collected in control-state mice (n = 4) during three different breathing gas (and thus tissue O2 ) conditions. In parallel experiments, pO2 was measured in the thalamus of control-state mice (n = 4) under the same breathing gas conditions using an O2 -sensitive microprobe. The relaxivity of tissue O2 was calculated using the R1 and pO2 data. R1 data were collected in control-state (n = 4) mice, a glioma model (n = 7), and a radiation necrosis model (n = 6) during two breathing gas (thus tissue O2 ) conditions. R1 and ΔR1 were calculated for each cohort. RESULTS O2 r1 in the brain was 9 × 10(-4) ± 3 × 10(-4) mm Hg(-1) · s(-1) at 4.7T. R1 and ΔR1 measurements distinguished radiation necrosis from tumor (P< 0.03 and P< 0.01, respectively). CONCLUSION The relaxivity of O2 in the brain is determined. R1 and ΔR1 measurements differentiate tumor lesions from radiation necrosis lesions in the mouse models. These pathologies are difficult to distinguish by traditional imaging techniques; O2 -driven changes in R1 holds promise in this regard. Magn Reson Med 75:2442-2447, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Scott C Beeman
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | - Ying-Bo Shui
- Department of Ophthalmology, Washington University, St. Louis, Missouri, USA
| | | | - John A Engelbach
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | - Joseph J H Ackerman
- Department of Radiology, Washington University, St. Louis, Missouri, USA.,Department of Chemistry, Washington University, St. Louis, Missouri, USA.,Department of Internal Medicine, Washington University, St. Louis, Missouri, USA.,Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri, USA
| | - Joel R Garbow
- Department of Radiology, Washington University, St. Louis, Missouri, USA.,Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
36
|
Huang CH, Shih YYI, Siow TY, Hsu YH, Chen CCV, Lin TN, Jaw FS, Chang C. Temporal assessment of vascular reactivity and functionality using MRI during postischemic proangiogenenic vascular remodeling. Magn Reson Imaging 2015; 33:903-10. [PMID: 25944092 DOI: 10.1016/j.mri.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/13/2015] [Accepted: 04/26/2015] [Indexed: 11/18/2022]
Abstract
Postischemic angiogenesis is an important recovery mechanism. Both arteries and veins are upregulated during angiogenesis, but eventually there are more angiogenic veins than arteries in terms of number and length. It is critical to understand how the veins are modulated after ischemia and then transitioned into angiogenic vessels during the proangiogenic stage to finally serve as a restorative strength to the injured area. Using a rat model of transient focal cerebral ischemia, the hypercapnic blood oxygen level-dependent (BOLD) response was used to evaluate vascular reactivity, while the hyperoxic BOLD and tissue oxygen level-dependent (TOLD) responses were used to evaluate the vascular functionality at 1, 3, and 7days after ischemia. Vessel-like venous signals appeared on R2* maps on days 3 and 7, but not on day 1. The large hypercapnic BOLD responses on days 3 and 7 indicated that these areas have high vascular reactivity. The temporal correlation between vascular reactivity and the immunoreactivity to desmin and VEGF further indicates that the integrity of vascular reactivity is associated with the pericyte coverage as regulated by the VEGF level. Vascular functionality remained low on days 1, 3, and 7, as reflected by the small hyperoxic BOLD and large hyperoxic TOLD responses, indicating the low oxygen consumption of the ischemic tissues. These functional changes in proangiogenic veins may be critical for angiogenesis.
Collapse
Affiliation(s)
- Chien-Hsiang Huang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Yen-Yu Ian Shih
- Experimental Neuroimaging Laboratory, Department of Neurology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Tiing-Yee Siow
- Department of Medical Imaging and Intervention, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Hua Hsu
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Chiao-Chi V Chen
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Fu-Shan Jaw
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chen Chang
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan.
| |
Collapse
|
37
|
Colliez F, Neveu MA, Magat J, Cao Pham TT, Gallez B, Jordan BF. Qualification of a Noninvasive Magnetic Resonance Imaging Biomarker to Assess Tumor Oxygenation. Clin Cancer Res 2014; 20:5403-11. [DOI: 10.1158/1078-0432.ccr-13-3434] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Huen I, Morris DM, Wright C, Sibley CP, Naish JH, Johnstone ED. Absence ofPo2change in fetal brain despitePo2increase in placenta in response to maternal oxygen challenge. BJOG 2014; 121:1588-94. [PMID: 24816043 DOI: 10.1111/1471-0528.12804] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2013] [Indexed: 12/31/2022]
Affiliation(s)
- I Huen
- Centre for Imaging Sciences, University of Manchester, Manchester, UK; The University of Manchester Biomedical Imaging Institute, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
39
|
Linnik IV, Scott MLJ, Holliday KF, Woodhouse N, Waterton JC, O'Connor JPB, Barjat H, Liess C, Ulloa J, Young H, Dive C, Hodgkinson CL, Ward T, Roberts D, Mills SJ, Thompson G, Buonaccorsi GA, Cheung S, Jackson A, Naish JH, Parker GJM. Noninvasive tumor hypoxia measurement using magnetic resonance imaging in murine U87 glioma xenografts and in patients with glioblastoma. Magn Reson Med 2014; 71:1854-62. [PMID: 23798369 DOI: 10.1002/mrm.24826] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/16/2013] [Accepted: 05/05/2013] [Indexed: 01/05/2023]
Abstract
PURPOSE There is a clinical need for noninvasive, nonionizing imaging biomarkers of tumor hypoxia and oxygenation. We evaluated the relationship of T1 -weighted oxygen-enhanced magnetic resonance imaging (OE-MRI) measurements to histopathology measurements of tumor hypoxia in a murine glioma xenograft and demonstrated technique translation in human glioblastoma multiforme. METHODS Preclinical evaluation was performed in a subcutaneous murine human glioma xenograft (U87MG). Animals underwent OE-MRI followed by dynamic contrast-enhanced MRI (DCE-MRI) and histological measurement including reduced pimonidazole adducts and CD31 staining. Area under the curve (AUC) was measured for the R1 curve for OE-MRI and the gadolinium concentration curve for DCE-MRI. Clinical evaluation in five patients used analogous imaging protocols and analyses. RESULTS Changes in AUC of OE-MRI (AUCOE ) signal were regionally heterogeneous across all U87MG tumors. Tumor regions with negative AUCOE typically had low DCE-MRI perfusion, had positive correlation with hypoxic area (P = 0.029), and had negative correlation with vessel density (P = 0.004). DCE-MRI measurements did not relate to either hypoxia or vessel density in U87MG tumors. Clinical data confirmed comparable signal changes in patients with glioblastoma. CONCLUSION These data support further investigation of T1 -weighted OE-MRI to identify regional tumor hypoxia. The quantification of AUCOE has translational potential as a clinical biomarker of hypoxia.
Collapse
Affiliation(s)
- Inna V Linnik
- Centre for Imaging Sciences, The University of Manchester, Manchester, UK; University of Manchester Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Muir ER, Cardenas D, Huang S, Roby J, Li G, Duong TQ. MRI under hyperbaric air and oxygen: effects on local magnetic field and relaxation times. Magn Reson Med 2013; 72:1176-81. [PMID: 24243603 DOI: 10.1002/mrm.25027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/30/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Abstract
PURPOSE Hyperbaric oxygen therapy has shown efficacies in the treatment of a number of diseases. The goal of this study was to develop a rodent hyperbaric chamber for MRI studies and to investigate the effects of hyperbaric air and hyperbaric oxygen on local magnetic field (B0 ) and MRI relaxation parameters in the rat brain. METHODS A hyperbaric chamber, constructed to fit inside an animal MRI scanner, was pressurized with air to four atmospheres, while oxygen was delivered locally via nose cone. B0 , T2 , T2 *, and T1 maps in the rat brain were evaluated under normobaric air, hyperbaric air, and hyperbaric oxygen at 7T. RESULTS Under hyperbaric oxygen, images exhibited artifacts and temporal instability, attributable to fluctuating oxygen concentration from air and oxygen mixing near the imaging region. Physically shielding the imaging region from fluctuating oxygen concentration resolved the problems. With increasing oxygen at hyperbaric pressure, B0 was shifted downfield with increased inhomogeneity near the ear canals and nose. Brain T2 and T2 * were lengthened, and T1 was shortened. CONCLUSION This study establishes the means to perform MRI on rodents under hyperbaric conditions. Hyperbaric air and hyperbaric oxygen have significant effects on B0 and tissue relaxation parameters compared with normobaric air.
Collapse
Affiliation(s)
- Eric R Muir
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio, Texas, USA; Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
41
|
Baker LCJ, Boult JKR, Jamin Y, Gilmour LD, Walker-Samuel S, Burrell JS, Ashcroft M, Howe FA, Griffiths JR, Raleigh JA, van der Kogel AJ, Robinson SP. Evaluation and immunohistochemical qualification of carbogen-induced ΔR₂ as a noninvasive imaging biomarker of improved tumor oxygenation. Int J Radiat Oncol Biol Phys 2013; 87:160-7. [PMID: 23849692 DOI: 10.1016/j.ijrobp.2013.04.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/16/2013] [Accepted: 04/29/2013] [Indexed: 11/24/2022]
Abstract
PURPOSE To evaluate and histologically qualify carbogen-induced ΔR2 as a noninvasive magnetic resonance imaging biomarker of improved tumor oxygenation using a double 2-nitroimidazole hypoxia marker approach. METHODS AND MATERIALS Multigradient echo images were acquired from mice bearing GH3 prolactinomas, preadministered with the hypoxia marker CCI-103F, to quantify tumor R2 during air breathing. With the mouse remaining positioned within the magnet bore, the gas supply was switched to carbogen (95% O2, 5% CO2), during which a second hypoxia marker, pimonidazole, was administered via an intraperitoneal line, and an additional set of identical multigradient echo images acquired to quantify any changes in tumor R2. Hypoxic fraction was quantified histologically using immunofluorescence detection of CCI-103F and pimonidazole adduct formation from the same whole tumor section. Carbogen-induced changes in tumor pO2 were further validated using the Oxylite fiberoptic probe. RESULTS Carbogen challenge significantly reduced mean tumor R2 from 116 ± 13 s(-1) to 97 ± 9 s(-1) (P<.05). This was associated with a significantly lower pimonidazole adduct area (2.3 ± 1%), compared with CCI-103F (6.3 ± 2%) (P<.05). A significant correlation was observed between ΔR2 and Δhypoxic fraction (r=0.55, P<.01). Mean tumor pO2 during carbogen breathing significantly increased from 6.3 ± 2.2 mm Hg to 36.0 ± 7.5 mm Hg (P<.01). CONCLUSIONS The combined use of intrinsic susceptibility magnetic resonance imaging with a double hypoxia marker approach corroborates carbogen-induced ΔR2 as a noninvasive imaging biomarker of increased tumor oxygenation.
Collapse
Affiliation(s)
- Lauren C J Baker
- Cancer Research UK & EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hallac RR, Zhou H, Pidikiti R, Song K, Stojadinovic S, Zhao D, Solberg T, Peschke P, Mason RP. Correlations of noninvasive BOLD and TOLD MRI with pO2 and relevance to tumor radiation response. Magn Reson Med 2013; 71:1863-73. [PMID: 23813468 DOI: 10.1002/mrm.24846] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 05/21/2013] [Accepted: 05/24/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE To examine the potential use of blood oxygenation level dependent (BOLD) and tissue oxygenation level dependent (TOLD) contrast MRI to assess tumor oxygenation and predict radiation response. METHODS BOLD and TOLD MRI were performed on Dunning R3327-AT1 rat prostate tumors during hyperoxic gas breathing challenge at 4.7 T. Animals were divided into two groups. In Group 1 (n = 9), subsequent (19) F MRI based on spin lattice relaxation of hexafluorobenzene reporter molecule provided quantitative oximetry for comparison. For Group 2 rats (n = 13) growth delay following a single dose of 30 Gy was compared with preirradiation BOLD and TOLD assessments. RESULTS Oxygen (100%O2 ) and carbogen (95%O2 /5%CO2 ) challenge elicited similar BOLD, TOLD and pO2 responses. Strong correlations were observed between BOLD or R2* response and quantitative (19) F pO2 measurements. TOLD response showed a general trend with weaker correlation. Irradiation caused a significant tumor growth delay and tumors with larger changes in TOLD and R1 values upon oxygen breathing exhibited significantly increased tumor growth delay. CONCLUSION These results provide further insight into the relationships between oxygen sensitive (BOLD/TOLD) MRI and tumor pO2 . Moreover, a larger increase in R1 response to hyperoxic gas challenge coincided with greater tumor growth delay following irradiation.
Collapse
Affiliation(s)
- Rami R Hallac
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ding Y, Mason RP, McColl RW, Yuan Q, Hallac RR, Sims RD, Weatherall PT. Simultaneous measurement of tissue oxygen level-dependent (TOLD) and blood oxygenation level-dependent (BOLD) effects in abdominal tissue oxygenation level studies. J Magn Reson Imaging 2013; 38:1230-6. [PMID: 23749420 DOI: 10.1002/jmri.24006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 11/29/2012] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To assess oxygenation in abdominal organs with magnetic resonance imaging (MRI), a novel approach is presented to simultaneously measure both T1 - and T2*-maps serially during a single dynamic MRI scan in response to an oxygen challenge. MATERIALS AND METHODS The proposed acquisition scheme consists of a multishot multiecho gradient echo planar imaging sequence (ms-GEPI) interleaved with a multishot inversion recovery echo planar imaging (ms-IR-EPI) sequence. Respiratory motion compensation was accomplished with standard belt triggering and by acquiring all image data at the same phase of expiration. This respiratory-triggered, free-breathing, interleaved tissue oxygenation level-dependent (TOLD) and blood oxygenation level-dependent (BOLD) acquisition technique was validated on phantoms and seven healthy volunteers in response to an oxygen challenge. RESULTS Measurements of relaxation times both in vitro and in vivo were in good agreement with those obtained using conventional pulse sequences and reported in the literature. The interleaved sequence was able to measure oxygen-induced relaxation time changes in human abdominal organs. CONCLUSION The free-breathing respiratory-triggered interleaved T1 and T2* sequence successfully provided relaxation time maps of abdominal organs in a dynamic scan without the need for image registration. The simultaneous monitoring of tissue and blood oxygenation improves time efficiency and should enhance studies comparing dynamic T1 and T2* data within the abdomen.
Collapse
Affiliation(s)
- Yao Ding
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | |
Collapse
|