1
|
Coughlin TM, Makarewich CA. Emerging roles for microproteins as critical regulators of endoplasmic reticulum function and cellular homeostasis. Semin Cell Dev Biol 2025; 170:103608. [PMID: 40245464 DOI: 10.1016/j.semcdb.2025.103608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle essential for key cellular processes including protein synthesis, calcium homeostasis, and the cellular stress response. It is composed of distinct domains, such as the rough and smooth ER, as well as membrane regions that facilitate direct communication with other organelles, enabling its diverse functions. While many well-characterized ER proteins contribute to these processes, recent studies have revealed a previously underappreciated class of small proteins that play critical regulatory roles. Microproteins, typically under 100 amino acids in length, were historically overlooked due to size-based biases in genome annotation and often misannotated as noncoding RNAs. Advances in ribosome profiling, mass spectrometry, and computational approaches have now enabled the discovery of numerous previously unrecognized microproteins, significantly expanding our understanding of the proteome. While some ER-associated microproteins, such as phospholamban and sarcolipin, were identified decades ago, newly discovered microproteins share similar fundamental characteristics, underscoring the need to refine our understanding of the coding potential of the genome. Molecular studies have demonstrated that ER microproteins play essential roles in calcium regulation, ER stress response, organelle communication, and protein translocation. Moreover, growing evidence suggests that ER microproteins contribute to cellular homeostasis and are implicated in disease processes, including cardiovascular disease and cancer. This review examines the shared and unique functions of ER microproteins, their implications for health and disease, and their potential as therapeutic targets for conditions associated with ER dysfunction.
Collapse
Affiliation(s)
- Taylor M Coughlin
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Qiu X, Wu W, Zhang S, Huang C, Lin D. 3-Hydroxybutyrate Promotes Myoblast Proliferation and Differentiation through Energy Metabolism and GPR109a-Mediated Ca 2+-NFAT Signaling Pathways. J Proteome Res 2025; 24:2063-2080. [PMID: 40099866 DOI: 10.1021/acs.jproteome.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Skeletal muscle wasting is a critical clinical problem associated with several diseases that significantly impair patient outcomes due to the progressive loss of muscle mass and function. This study explores the potential of 3-hydroxybutyrate (3-HB) as a therapeutic agent to counteract muscle atrophy by promoting the proliferation and differentiation of C2C12 myoblasts. Using nuclear magnetic resonance (NMR)-based metabolomics analysis, we uncover the underlying mechanisms by which 3-HB exerts its effects. Our findings demonstrate that 3-HB exerts its effects through two distinct mechanisms: as a metabolic substrate and as a signaling molecule. As a metabolic substrate, 3-HB enhances myoblast energy efficiency by stimulating the expression of G protein-coupled receptor 109a (GPR109a), which subsequently upregulates the 3-HB transporters MCT1 and CD147, the utilization enzyme OXCT1, and phosphorylated AMPK, thereby increasing ATP production. As a signaling molecule, 3-HB activates GPR109a, promoting calcium influx, improving calcium homeostasis, and increasing the expression of Ca2+-related proteins such as CAMKK2. This signaling cascade activates calcineurin (CaN), facilitating NFAT translocation to the nucleus and gene expression that drives myoblast proliferation and differentiation. By elucidating the dual regulatory roles of 3-HB in energy metabolism and cellular signaling, this study not only advances our understanding of muscle physiology but also highlights the potential of 3-HB as a novel therapeutic approach for the prevention or treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Xu Qiu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenfang Wu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuya Zhang
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361024, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Wang Y, Chen R, Jiang FL, Jiang X, Zhou Y, Zhou Y, Hong X, Lin C, Wang WJ, Qiu S. Exploring the prognostic significance of lactate-mitochondria-related genes in prostate cancer. Front Genet 2025; 15:1515045. [PMID: 39834542 PMCID: PMC11743670 DOI: 10.3389/fgene.2024.1515045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Prostate cancer (PCa) is a common and serious health issue among older men globally. Metabolic reprogramming, particularly involving lactate and mitochondria, plays a key role in PCa progression, but studies linking these factors to prognosis are limited. To identify novel prognostic markers of PCa based on lactate-mitochondria-related genes (LMRGs), RNA sequencing data and clinical information of PCa from The Cancer Genome Atlas (TCGA) and the cBioPortal database were used to construct a lactate-mitochondria-related risk signature. Here, we established a novel nine-LMRG risk signature for PCa, and Kaplan-Meier curves confirmed a worse prognosis for high-risk subgroups in the TCGA dataset. Meanwhile, a nomogram that effectively predicts the prognosis of PCa patients was also constructed. Next, close associations between the lactate-mitochondria-related signature and the immune microenvironment were examined to clarify the role of LMRGs in shaping the immune landscape. Furthermore, as the only lactate-related gene among the nine key prognostic risk genes, myeloperoxidase (MPO) was identified as a key factor that mediates lactate production in vitro and in vivo through attenuation of the glycolytic pathway. More importantly, MPO significantly inhibited PCa cell migration, invasion, and epithelial-mesenchymal transition (EMT), indicating its potential as an anticancer gene. Additionally, PCa with high MPO expression is highly sensitive to chemotherapeutic agents and mitochondrial inhibitors, highlighting its potential as an improved therapeutic strategy for PCa management.
Collapse
Affiliation(s)
- Yuan Wang
- The school of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ronghui Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Feng-Le Jiang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Xin Jiang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Yuehong Zhou
- The school of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingying Zhou
- The school of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyi Hong
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Chaoying Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Wei-Jia Wang
- Fujian Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Sufang Qiu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| |
Collapse
|
4
|
Li T, Liang Y. The effects of different post-activation potentiation strategies on the performance of elite female track cyclists in position 1 of team sprint. Sci Rep 2024; 14:24604. [PMID: 39427021 PMCID: PMC11490493 DOI: 10.1038/s41598-024-75464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
The study aimed to optimise post-activation potentiation (PAP) strategies for Rider 1 in elite team sprints to improve performance over 250 m (opening lap), with a focus on female cyclists. Eight national-level track cyclists participated in this study, undergoing four sets of activation strategies: control (CON), dynamic high inertia (DYN, 4 × 4 pedal strokes), isometric contraction (ISO, 4 × 4 s, 4 angles), and back squat activation (BSQ, 4 × 4 rep, 80%1RM). The tests were divided into pre-activation and post-activation phases, including measurements at 4 min, 8 min, and 12 min after activation. The tests included a 250 m time trial (TT) and segment timing, with measurements of peak torque, peak power, average power, and cadence. The mean cadence, torque, and power for the first 62.5 m of pedal revolutions were collected. Paired-sample t-tests were used to assess activation differences. Multiple group comparisons were conducted using analysis of variance (ANOVA). The Bonferroni correction was used to control Type I errors. For significant activation strategies, linear or non-linear regression was applied to extrapolate the torque-cadence and power-cadence profiles, and the parameter differences were examined to investigate profile changes. Cohen's d and Cohen's f were used as effect sizes. After DYN activation, the 250 m TT significantly improved (p = 0.018), primarily through a reduction in the 62.5 m time (p = 0.006) and an increase in peak torque (p = 0.018). After 12 min of ISO activation, the 250 m TT showed a large effect but did not reach the significance level under Bonferroni correction (p = 0.135, d = 0.860), with a notable reduction in the 62.5 m time (p = 0.003). PAP can be strategically employed to enhance the performance of elite female Rider 1 in team sprints.
Collapse
Affiliation(s)
- Tianhe Li
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, China
- Engineering Research Center of Strength and Conditioning Training Key Core Technology Integrated System and Equipment, Ministry of Education, Beijing, China
| | - Yapu Liang
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, China.
- Engineering Research Center of Strength and Conditioning Training Key Core Technology Integrated System and Equipment, Ministry of Education, Beijing, China.
| |
Collapse
|
5
|
Khan B, Lanzuolo C, Rosti V, Santarelli P, Pich A, Kraft T, Amrute-Nayak M, Nayak A. Sorafenib induces cachexia by impeding transcriptional signaling of the SET1/MLL complex on muscle-specific genes. iScience 2024; 27:110913. [PMID: 39386761 PMCID: PMC11462028 DOI: 10.1016/j.isci.2024.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Chemotherapeutics used in cancer therapy are often linked to muscle wasting or cachexia. Insights into the molecular basis of chemotherapy-induced cachexia is essential to improve treatment strategies. Here, we demonstrated that Sorafenib-tyrosine kinase inhibitor (TKI) class of chemotherapeutic agents-induced cachexia. System-wide analyses revealed that Sorafenib alters the global transcriptional program and proteostasis in muscle cells. Mechanistically, Sorafenib treatment reduced active epigenetic mark H3K4 methylation on distinct muscle-specific genes by impeding chromatin association of SET1A-catalytic component of the SET1/MLL histone methyltransferase complex. This mechanism favored transcriptional disorientation that led to disrupted sarcomere assembly, calcium homeostasis and mitochondrial respiration. Consequently, the contractile ability of muscle cells was severely compromised. Interestingly, the other prominent TKIs Nilotinib and Imatinib did not exert similar effects on muscle cell physiology. Collectively, we identified an unanticipated transcriptional mechanism underlying Sorafenib-induced cachexia. Our findings hold the potential to strategize therapy regimens to minimize chemotherapy-induced cachexia.
Collapse
Affiliation(s)
- Bushra Khan
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Chiara Lanzuolo
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Rosti
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Philina Santarelli
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Andreas Pich
- Institute of Toxicology, Core Facility Proteomics, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Morales ED, Wang D, Burke MJ, Han J, Devine DD, Zhang K, Duan D. Transcriptional changes of genes encoding sarcoplasmic reticulum calcium binding and up-taking proteins in normal and Duchenne muscular dystrophy dogs. BMC Musculoskelet Disord 2024; 25:811. [PMID: 39402529 PMCID: PMC11472500 DOI: 10.1186/s12891-024-07927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cytosolic calcium overload contributes to muscle degradation in Duchenne muscular dystrophy (DMD). The sarcoplasmic reticulum (SR) is the primary calcium storage organelle in muscle. The sarco-endoplasmic reticulum ATPase (SERCA) pumps cytosolic calcium to the SR during muscle relaxation. Calcium is kept in the SR by calcium-binding proteins. METHODS Given the importance of the canine DMD model in translational studies, we examined transcriptional changes of SERCA (SERCA1 and SERCA2a), SERCA regulators (phospholamban, sarcolipin, myoregulin, and dwarf open reading frame), and SR calcium-binding proteins (calreticulin, calsequestrin 1, calsequestrin 2, and sarcalumenin) in skeletal muscle (diaphragm and extensor carpi ulnaris) and heart (left ventricle) in normal and affected male dogs by droplet digital PCR before the onset (≤ 2-m-old), at the active stage (8 to 16-m-old), and at the terminal stage (30 to 50-m-old) of the disease. Since many of these proteins are expressed in a fiber type-specific manner, we also evaluated fiber type composition in skeletal muscle. RESULTS In affected dog skeletal muscle, SERCA and its regulators were down-regulated at the active stage, but calcium-binding proteins (except for calsequestrin 1) were upregulated at the terminal stage. Surprisingly, nominal differences were detected in the heart. We also examined whether there exists sex-biased expression in 8 to 16-m-old dogs. Multiple transcripts were significantly downregulated in the heart and extensor carpi ulnaris muscle of female dogs. In fiber type analysis, we found significantly more type I fiber in the diaphragm of 8 to 16-m-old affected dogs, and significantly more type II fibers in the extensor carpi ulnaris of 30 to 50-m-old affected dogs. However, no difference was detected between male and female dogs. CONCLUSIONS Our study adds new knowledge to the understanding of muscle calcium regulation in normal and dystrophic canines.
Collapse
Affiliation(s)
- Emily D Morales
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Dongxin Wang
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Matthew J Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Jin Han
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Drake D Devine
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA.
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA.
- Department of Chemical and Biomedical Engineering, College of Engineering, The University of Missouri, Columbia, MO, 65212, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
7
|
Nishikawa T, Miyahara E, Yamazaki I, Ikawa K, Nakagawa S, Kodama Y, Kawano Y, Okamoto Y. Effects of High-Dose Cyclophosphamide on Ultrastructural Changes and Gene Expression Profiles in the Cardiomyocytes of C57BL/6J Mice. Diseases 2024; 12:85. [PMID: 38785740 PMCID: PMC11120609 DOI: 10.3390/diseases12050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The pathogenesis of cyclophosphamide (CY)-induced cardiotoxicity remains unknown, and methods for its prevention have not been established. To elucidate the acute structural changes that take place in myocardial cells and the pathways leading to myocardial damage under high-dose CY treatments, we performed detailed pathological analyses of myocardial tissue obtained from C57BL/6J mice subjected to a high-dose CY treatment. Additionally, we analysed the genome-wide cardiomyocyte expression profiles of mice subjected to the high-dose CY treatment. Treatment with CY (400 mg/kg/day intraperitoneally for two days) caused marked ultrastructural aberrations, as observed using electron microscopy, although these aberrations could not be observed using optical microscopy. The expansion of the transverse tubule and sarcoplasmic reticulum, turbulence in myocardial fibre travel, and a low contractile protein density were observed in cardiomyocytes. The high-dose CY treatment altered the cardiomyocyte expression of 1210 genes (with 675 genes upregulated and 535 genes downregulated) associated with cell-cell junctions, inflammatory responses, cardiomyopathy, and cardiac muscle function, as determined using microarray analysis (|Z-score| > 2.0). The expression of functionally important genes related to myocardial contraction and the regulation of calcium ion levels was validated using real-time polymerase chain reaction analysis. The results of the gene expression profiling, functional annotation clustering, and Kyoto Encyclopedia of Genes and Genomes pathway functional-classification analysis suggest that CY-induced cardiotoxicity is associated with the disruption of the Ca2+ signalling pathway.
Collapse
Affiliation(s)
- Takuro Nishikawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | - Emiko Miyahara
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | | | - Kazuro Ikawa
- Department of Clinical Pharmacotherapy, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Shunsuke Nakagawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | - Yuichi Kodama
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | - Yoshifumi Kawano
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | - Yasuhiro Okamoto
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| |
Collapse
|
8
|
Jorgenson KW, Hibbert JE, Sayed RKA, Lange AN, Godwin JS, Mesquita PHC, Ruple BA, McIntosh MC, Kavazis AN, Roberts MD, Hornberger TA. A novel imaging method (FIM-ID) reveals that myofibrillogenesis plays a major role in the mechanically induced growth of skeletal muscle. eLife 2024; 12:RP92674. [PMID: 38466320 PMCID: PMC10928493 DOI: 10.7554/elife.92674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
An increase in mechanical loading, such as that which occurs during resistance exercise, induces radial growth of muscle fibers (i.e. an increase in cross-sectional area). Muscle fibers are largely composed of myofibrils, but whether radial growth is mediated by an increase in the size of the myofibrils (i.e. myofibril hypertrophy) and/or the number of myofibrils (i.e. myofibrillogenesis) is not known. Electron microscopy (EM) can provide images with the level of resolution that is needed to address this question, but the acquisition and subsequent analysis of EM images is a time- and cost-intensive process. To overcome this, we developed a novel method for visualizing myofibrils with a standard fluorescence microscope (fluorescence imaging of myofibrils with image deconvolution [FIM-ID]). Images from FIM-ID have a high degree of resolution and contrast, and these properties enabled us to develop pipelines for automated measurements of myofibril size and number. After extensively validating the automated measurements, we used both mouse and human models of increased mechanical loading to discover that the radial growth of muscle fibers is largely mediated by myofibrillogenesis. Collectively, the outcomes of this study offer insight into a fundamentally important topic in the field of muscle growth and provide future investigators with a time- and cost-effective means to study it.
Collapse
Affiliation(s)
- Kent W Jorgenson
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| | - Jamie E Hibbert
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| | - Ramy KA Sayed
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag UniversitySohagEgypt
| | - Anthony N Lange
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| | | | | | | | | | | | | | - Troy A Hornberger
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
9
|
Jorgenson KW, Hibbert JE, Sayed RKA, Lange AN, Godwin JS, Mesquita PHC, Ruple BA, McIntosh MC, Kavazis AN, Roberts MD, Hornberger TA. A Novel Imaging Method (FIM-ID) Reveals that Myofibrillogenesis Plays a Major Role in the Mechanically Induced Growth of Skeletal Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557204. [PMID: 37745462 PMCID: PMC10515927 DOI: 10.1101/2023.09.13.557204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
An increase in mechanical loading, such as that which occurs during resistance exercise, induces radial growth of muscle fibers (i.e., an increase in cross-sectional area). Muscle fibers are largely composed of myofibrils, but whether radial growth is mediated by an increase in the size of the myofibrils (i.e., myofibril hypertrophy) and/or the number of myofibrils (i.e., myofibrillogenesis) is not known. Electron microscopy (EM) can provide images with the level of resolution that is needed to address this question, but the acquisition and subsequent analysis of EM images is a time- and cost-intensive process. To overcome this, we developed a novel method for visualizing myofibrils with a standard fluorescence microscope (FIM-ID). Images from FIM-ID have a high degree of resolution and contrast, and these properties enabled us to develop pipelines for automated measurements of myofibril size and number. After extensively validating the automated measurements, we used both mouse and human models of increased mechanical loading to discover that the radial growth of muscle fibers is largely mediated by myofibrillogenesis. Collectively, the outcomes of this study offer insight into a fundamentally important topic in the field of muscle growth and provide future investigators with a time- and cost-effective means to study it.
Collapse
|
10
|
O’Connor TN, Zhao N, Orciuoli HM, Brasile A, Pietrangelo L, He M, Groom L, Leigh J, Mahamed Z, Liang C, Malik S, Protasi F, Dirksen RT. Voluntary wheel running mitigates disease in an Orai1 gain-of-function mouse model of tubular aggregate myopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.559036. [PMID: 37808709 PMCID: PMC10557777 DOI: 10.1101/2023.09.29.559036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Tubular aggregate myopathy (TAM) is an inherited skeletal muscle disease associated with progressive muscle weakness, cramps, and myalgia. Tubular aggregates (TAs) are regular arrays of highly ordered and densely packed SR straight-tubes in muscle biopsies; the extensive presence of TAs represent a key histopathological hallmark of this disease in TAM patients. TAM is caused by gain-of-function mutations in proteins that coordinate store-operated Ca2+ entry (SOCE): STIM1 Ca2+ sensor proteins in the sarcoplasmic reticulum (SR) and Ca2+-permeable ORAI1 channels in the surface membrane. We have previously shown that voluntary wheel running (VWR) prevents formation of TAs in aging mice. Here, we assessed the therapeutic potential of endurance exercise (in the form of VWR) in mitigating the functional and structural alterations in a knock-in mouse model of TAM (Orai1G100S/+ or GS mice) based on a gain-of-function mutation in the ORAI1 pore. WT and GS mice were singly-housed for six months (from two to eight months of age) with either free-spinning or locked low profile wheels. Six months of VWR exercise significantly increased soleus peak tetanic specific force production, normalized FDB fiber Ca2+ store content, and markedly reduced TAs in EDL muscle from GS mice. Six months of VWR exercise normalized the expression of mitochondrial proteins found to be altered in soleus muscle of sedentary GS mice in conjunction with a signature of increased protein translation and biosynthetic processes. Parallel proteomic analyses of EDL muscles from sedentary WT and GS mice revealed changes in a tight network of pathways involved in formation of supramolecular complexes, which were also normalized following six months of VWR. In summary, sustained voluntary endurance exercise improved slow twitch muscle function, reduced the presence of TAs in fast twitch muscle, and normalized the muscle proteome of GS mice consistent with protective adaptions in proteostasis, mitochondrial structure/function, and formation of supramolecular complexes.
Collapse
Affiliation(s)
- Thomas N. O’Connor
- Department of Biomedical Genetics, Genetics and Genomics Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nan Zhao
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Haley M. Orciuoli
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biology, Biological Sciences, University of Rochester, Rochester, NY, USA
| | - Alice Brasile
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer Leigh
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Zahra Mahamed
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Chen Liang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
11
|
Sarcoplasmic Reticulum Ca 2+ Buffer Proteins: A Focus on the Yet-To-Be-Explored Role of Sarcalumenin in Skeletal Muscle Health and Disease. Cells 2023; 12:cells12050715. [PMID: 36899851 PMCID: PMC10000884 DOI: 10.3390/cells12050715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Sarcalumenin (SAR) is a luminal Ca2+ buffer protein with high capacity but low affinity for calcium binding found predominantly in the longitudinal sarcoplasmic reticulum (SR) of fast- and slow-twitch skeletal muscles and the heart. Together with other luminal Ca2+ buffer proteins, SAR plays a critical role in modulation of Ca2+ uptake and Ca2+ release during excitation-contraction coupling in muscle fibers. SAR appears to be important in a wide range of other physiological functions, such as Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) stabilization, Store-Operated-Calcium-Entry (SOCE) mechanisms, muscle fatigue resistance and muscle development. The function and structural features of SAR are very similar to those of calsequestrin (CSQ), the most abundant and well-characterized Ca2+ buffer protein of junctional SR. Despite the structural and functional similarity, very few targeted studies are available in the literature. The present review provides an overview of the role of SAR in skeletal muscle physiology, as well as of its possible involvement and dysfunction in muscle wasting disorders, in order to summarize the current knowledge on SAR and drive attention to this important but still underinvestigated/neglected protein.
Collapse
|
12
|
Morales ED, Yue Y, Watkins TB, Han J, Pan X, Gibson AM, Hu B, Brito‐Estrada O, Yao G, Makarewich CA, Babu GJ, Duan D. Dwarf Open Reading Frame (DWORF) Gene Therapy Ameliorated Duchenne Muscular Dystrophy Cardiomyopathy in Aged mdx Mice. J Am Heart Assoc 2023; 12:e027480. [PMID: 36695318 PMCID: PMC9973626 DOI: 10.1161/jaha.122.027480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
Background Cardiomyopathy is a leading health threat in Duchenne muscular dystrophy (DMD). Cytosolic calcium upregulation is implicated in DMD cardiomyopathy. Calcium is primarily removed from the cytosol by the sarcoendoplasmic reticulum calcium ATPase (SERCA). SERCA activity is reduced in DMD. Improving SERCA function may treat DMD cardiomyopathy. Dwarf open reading frame (DWORF) is a recently discovered positive regulator for SERCA, hence, a potential therapeutic target. Methods and Results To study DWORF's involvement in DMD cardiomyopathy, we quantified DWORF expression in the heart of wild-type mice and the mdx model of DMD. To test DWORF gene therapy, we engineered and characterized an adeno-associated virus serotype 9-DWORF vector. To determine if this vector can mitigate DMD cardiomyopathy, we delivered it to 6-week-old mdx mice (6×1012 vector genome particles/mouse) via the tail vein. Exercise capacity, heart histology, and cardiac function were examined at 18 months of age. We found DWORF expression was significantly reduced at the transcript and protein levels in mdx mice. Adeno-associated virus serotype 9-DWORF vector significantly enhanced SERCA activity. Systemic adeno-associated virus serotype 9-DWORF therapy reduced myocardial fibrosis and improved treadmill running, electrocardiography, and heart hemodynamics. Conclusions Our data suggest that DWORF deficiency contributes to SERCA dysfunction in mdx mice and that DWORF gene therapy holds promise to treat DMD cardiomyopathy.
Collapse
Affiliation(s)
- Emily D. Morales
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Thais B. Watkins
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Jin Han
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Aaron M. Gibson
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical CenterThe Heart InstituteCincinnatiOH
| | - Bryan Hu
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Omar Brito‐Estrada
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical CenterThe Heart InstituteCincinnatiOH
| | - Gang Yao
- Department of Biomedical, Biological & Chemical Engineering, College of EngineeringThe University of MissouriColumbiaMO
| | - Catherine A. Makarewich
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical CenterThe Heart InstituteCincinnatiOH
- Department of PediatricsThe University of Cincinnati College of MedicineCincinnatiOH
| | - Gopal J. Babu
- Department of Cell Biology and Molecular MedicineRutgers, New Jersey Medical SchoolNewarkNJ
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
- Department of Biomedical, Biological & Chemical Engineering, College of EngineeringThe University of MissouriColumbiaMO
- Department of Neurology, School of MedicineThe University of MissouriColumbiaMO
- Department of Biomedical Sciences, College of Veterinary MedicineThe University of MissouriColumbiaMO
| |
Collapse
|
13
|
Younger DS. Congenital myopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:533-561. [PMID: 37562885 DOI: 10.1016/b978-0-323-98818-6.00027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The congenital myopathies are inherited muscle disorders characterized clinically by hypotonia and weakness, usually from birth, with a static or slowly progressive clinical course. Historically, the congenital myopathies have been classified according to major morphological features seen on muscle biopsy as nemaline myopathy, central core disease, centronuclear or myotubular myopathy, and congenital fiber type disproportion. However, in the past two decades, the genetic basis of these different forms of congenital myopathy has been further elucidated with the result being improved correlation with histological and genetic characteristics. However, these notions have been challenged for three reasons. First, many of the congenital myopathies can be caused by mutations in more than one gene that suggests an impact of genetic heterogeneity. Second, mutations in the same gene can cause different muscle pathologies. Third, the same genetic mutation may lead to different pathological features in members of the same family or in the same individual at different ages. This chapter provides a clinical overview of the congenital myopathies and a clinically useful guide to its genetic basis recognizing the increasing reliance of exome, subexome, and genome sequencing studies as first-line analysis in many patients.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
14
|
García-Castañeda M, Michelucci A, Zhao N, Malik S, Dirksen RT. Postdevelopmental knockout of Orai1 improves muscle pathology in a mouse model of Duchenne muscular dystrophy. J Gen Physiol 2022; 154:213383. [PMID: 35939054 PMCID: PMC9365874 DOI: 10.1085/jgp.202213081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), an X-linked disorder caused by loss-of-function mutations in the dystrophin gene, is characterized by progressive muscle degeneration and weakness. Enhanced store-operated Ca2+ entry (SOCE), a Ca2+ influx mechanism coordinated by STIM1 sensors of luminal Ca2+ within the sarcoplasmic reticulum (SR) and Ca2+-permeable Orai1 channels in the sarcolemma, is proposed to contribute to Ca2+-mediated muscle damage in DMD. To directly determine the impact of Orai1-dependent SOCE on the dystrophic phenotype, we crossed mdx mice with tamoxifen-inducible, muscle-specific Orai1 knockout mice (mdx-Orai1 KO mice). Both constitutive and SOCE were significantly increased in flexor digitorum brevis fibers from mdx mice, while SOCE was absent in fibers from both Orai1 KO and mdx-Orai1 KO mice. Compared with WT mice, fibers from mdx mice exhibited (1) increased resting myoplasmic Ca2+ levels, (2) reduced total releasable Ca2+ store content, and (3) a prolonged rate of electrically evoked Ca2+ transient decay. These effects were partially normalized in fibers from mdx-Orai1 KO mice. Intact extensor digitorum longus muscles from mdx mice exhibited a significant reduction of maximal specific force, which was rescued in muscles from mdx-Orai1 KO mice. Finally, during exposure to consecutive eccentric contractions, muscles from mdx mice displayed a more pronounced decline in specific force compared with that of WT mice, which was also significantly attenuated by Orai1 ablation. Together, these results indicate that enhanced Orai1-dependent SOCE exacerbates the dystrophic phenotype and that Orai1 deficiency improves muscle pathology by both normalizing Ca2+ homeostasis and promoting sarcolemmal integrity/stability.
Collapse
Affiliation(s)
- Maricela García-Castañeda
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Antonio Michelucci
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY,Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Nan Zhao
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
15
|
Nemirovskaya TL, Sharlo KA. Roles of ATP and SERCA in the Regulation of Calcium Turnover in Unloaded Skeletal Muscles: Current View and Future Directions. Int J Mol Sci 2022; 23:ijms23136937. [PMID: 35805949 PMCID: PMC9267070 DOI: 10.3390/ijms23136937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
A decrease in skeletal muscle contractile activity or its complete cessation (muscle unloading or disuse) leads to muscle fibers’ atrophy and to alterations in muscle performance. These changes negatively affect the quality of life of people who, for one reason or another, are forced to face a limitation of physical activity. One of the key regulatory events leading to the muscle disuse-induced changes is an impairment of calcium homeostasis, which leads to the excessive accumulation of calcium ions in the sarcoplasm. This review aimed to analyze the triggering mechanisms of calcium homeostasis impairment (including those associated with the accumulation of high-energy phosphates) under various types of muscle unloading. Here we proposed a hypothesis about the regulatory mechanisms of SERCA and IP3 receptors activity during muscle unloading, and about the contribution of these mechanisms to the excessive calcium ion myoplasmic accumulation and gene transcription regulation via excitation–transcription coupling.
Collapse
|
16
|
Calcium supplementation in low nutrient density diet for meat ducks improves breast meat tenderness associated with myocyte apoptosis and proteolytic changes. ANIMAL NUTRITION 2022; 9:49-59. [PMID: 35949985 PMCID: PMC9344325 DOI: 10.1016/j.aninu.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/12/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022]
|
17
|
Chan S, Kueh SLL, Morley JW, Head SI. Sarcoplasmic reticulum calcium handling in unbranched, immediately post-necrotic fast-twitch mdx fibres is similar to wild-type littermates. Exp Physiol 2022; 107:601-614. [PMID: 35471703 DOI: 10.1113/ep090057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/19/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS Central question: What are the early effects of dystrophin deficiency on SR Ca2+ handling in the mdx mouse? MAIN FINDING In the mdx mouse, Ca2+ handling by the SR is little affected by the absence of dystrophin when looking at fibres without branches that have just regenerated following massive myonecrosis. This has important implications for our understanding of Ca2+ pathology in the mdx mouse. ABSTRACT There is a variety of results in the literature regarding the effects of dystrophin deficiency on the Ca2+ -handling properties of the SR in mdx mice, an animal model of Duchenne muscular dystrophy. One possible source of variation is the presence of branched fibres. Fibre branching, a consequence of degenerative-regenerative processes such as muscular dystrophy, has in itself a significant influence on the function of the SR. In our present study we attempt to detect early effects of dystrophin deficiency on SR Ca2+ handling by using unbranched fibres from the immediate post-necrotic stage in mdx mice (just regenerated following massive necrosis). Using kinetically-corrected Fura-2 fluorescence signals measured during twitch and tetanus, we analysed the amplitude, rise time and decay time of Δ[Ca2+ ]i in unfatigued and fatigued fibres. Decay was also resolved into SR pump and SR leak components. Fibres from mdx mice were similar in all respects to fibres from wt littermates apart from: (i) a smaller amplitude of the initial spike of Δ[Ca2+ ]i during a tetanus; and (ii) a mitigation of the fall in Δ[Ca2+ ]i amplitude during the course of fatigue. Our findings suggest that the early effects of a loss of dystrophin on SR Ca2+ handling in mdx mice are subtle, and emphasise the importance of distinguishing between Ca2+ pathology that is due to lack of dystrophin and Ca2+ pathology that is due to muscle degeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Stephen Chan
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia.,Department of Physiology, Faculty of Science, Mahidol University, Ratchatewi, Bangkok, Thailand
| | - Sindy L L Kueh
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Stewart I Head
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| |
Collapse
|
18
|
Fusto A, Cassandrini D, Fiorillo C, Codemo V, Astrea G, D’Amico A, Maggi L, Magri F, Pane M, Tasca G, Sabbatini D, Bello L, Battini R, Bernasconi P, Fattori F, Bertini ES, Comi G, Messina S, Mongini T, Moroni I, Panicucci C, Berardinelli A, Donati A, Nigro V, Pini A, Giannotta M, Dosi C, Ricci E, Mercuri E, Minervini G, Tosatto S, Santorelli F, Bruno C, Pegoraro E. Expanding the clinical-pathological and genetic spectrum of RYR1-related congenital myopathies with cores and minicores: an Italian population study. Acta Neuropathol Commun 2022; 10:54. [PMID: 35428369 PMCID: PMC9013059 DOI: 10.1186/s40478-022-01357-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Mutations in the RYR1 gene, encoding ryanodine receptor 1 (RyR1), are a well-known cause of Central Core Disease (CCD) and Multi-minicore Disease (MmD). We screened a cohort of 153 patients carrying an histopathological diagnosis of core myopathy (cores and minicores) for RYR1 mutation. At least one RYR1 mutation was identified in 69 of them and these patients were further studied. Clinical and histopathological features were collected. Clinical phenotype was highly heterogeneous ranging from asymptomatic or paucisymptomatic hyperCKemia to severe muscle weakness and skeletal deformity with loss of ambulation. Sixty-eight RYR1 mutations, generally missense, were identified, of which 16 were novel. The combined analysis of the clinical presentation, disease progression and the structural bioinformatic analyses of RYR1 allowed to associate some phenotypes to mutations in specific domains. In addition, this study highlighted the structural bioinformatics potential in the prediction of the pathogenicity of RYR1 mutations. Further improvement in the comprehension of genotype-phenotype relationship of core myopathies can be expected in the next future: the actual lack of the human RyR1 crystal structure paired with the presence of large intrinsically disordered regions in RyR1, and the frequent presence of more than one RYR1 mutation in core myopathy patients, require designing novel investigation strategies to completely address RyR1 mutation effect.
Collapse
|
19
|
Antioxidant Cardioprotection against Reperfusion Injury: Potential Therapeutic Roles of Resveratrol and Quercetin. Molecules 2022; 27:molecules27082564. [PMID: 35458766 PMCID: PMC9027566 DOI: 10.3390/molecules27082564] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion myocardial damage is a paradoxical tissue injury occurring during percutaneous coronary intervention (PCI) in acute myocardial infarction (AMI) patients. Although this damage could account for up to 50% of the final infarct size, there has been no available pharmacological treatment until now. Oxidative stress contributes to the underlying production mechanism, exerting the most marked injury during the early onset of reperfusion. So far, antioxidants have been shown to protect the AMI patients undergoing PCI to mitigate these detrimental effects; however, no clinical trials to date have shown any significant infarct size reduction. Therefore, it is worthwhile to consider multitarget antioxidant therapies targeting multifactorial AMI. Indeed, this clinical setting involves injurious effects derived from oxygen deprivation, intracellular pH changes and increased concentration of cytosolic Ca2+ and reactive oxygen species, among others. Thus, we will review a brief overview of the pathological cascades involved in ischemia-reperfusion injury and the potential therapeutic effects based on preclinical studies involving a combination of antioxidants, with particular reference to resveratrol and quercetin, which could contribute to cardioprotection against ischemia-reperfusion injury in myocardial tissue. We will also highlight the upcoming perspectives of these antioxidants for designing future studies.
Collapse
|
20
|
Pakarinen E, Lindholm P, Saarma M, Lindahl M. CDNF and MANF regulate ER stress in a tissue-specific manner. Cell Mol Life Sci 2022; 79:124. [PMID: 35129674 PMCID: PMC8821067 DOI: 10.1007/s00018-022-04157-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 12/19/2022]
Abstract
Cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) display cytoprotective effects in animal models of neurodegenerative diseases. These endoplasmic reticulum (ER)-resident proteins belong to the same protein family and function as ER stress regulators. The relationship between CDNF and MANF function, as well as their capability for functional compensation, is unknown. We aimed to investigate these questions by generating mice lacking both CDNF and MANF. Results showed that CDNF-deficient Manf−/− mice presented the same phenotypes of growth defect and diabetes as Manf−/− mice. In the muscle, CDNF deficiency resulted in increased activation of unfolded protein response (UPR), which was aggravated when MANF was ablated. In the brain, the combined loss of CDNF and MANF did not exacerbate UPR activation caused by the loss of MANF alone. Consequently, CDNF and MANF deficiency in the brain did not cause degeneration of dopamine neurons. In conclusion, CDNF and MANF present functional redundancy in the muscle, but not in the other tissues examined here. Thus, they regulate the UPR in a tissue-specific manner.
Collapse
Affiliation(s)
- Emmi Pakarinen
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, 00014, Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, 00014, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, 00014, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
21
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
22
|
Mengeste AM, Lund J, Katare P, Ghobadi R, Bakke HG, Lunde PK, Eide L, Mahony GO, Göpel S, Peng XR, Kase ET, Thoresen GH, Rustan AC. The small molecule SERCA activator CDN1163 increases energy metabolism in human skeletal muscle cells. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100060. [PMID: 34909682 PMCID: PMC8663964 DOI: 10.1016/j.crphar.2021.100060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background and objective A number of studies have highlighted muscle-specific mechanisms of thermogenesis involving futile cycling of Ca2+ driven by sarco (endo)plasmic reticulum Ca2+-ATPase (SERCA) and generating heat from ATP hydrolysis to be a promising strategy to counteract obesity and metabolic dysfunction. However, to the best of our knowledge, no experimental studies concerning the metabolic effects of pharmacologically targeting SERCA in human skeletal muscle cells have been reported. Thus, in the present study, we aimed to explore the effects of SERCA-activating compound, CDN1163, on energy metabolism in differentiated human skeletal muscle cells (myotubes). Methods In this study, we used primary myotube cultures derived from muscle biopsies of the musculus vastus lateralis and musculi interspinales from lean, healthy male donors. Energy metabolism in myotubes was studied using radioactive substrates. Oxygen consumption rate was assessed with the Seahorse XF24 bioanalyzer, whereas metabolic genes and protein expressions were determined by qPCR and immunoblotting, respectively. Results Both acute (4 h) and chronic (5 days) treatment of myotubes with CDN1163 showed increased uptake and oxidation of glucose, as well as complete fatty acid oxidation in the presence of carbonyl cyanide 4-(trifluromethoxy)phenylhydrazone (FCCP). These effects were supported by measurement of oxygen consumption rate, in which the oxidative spare capacity and maximal respiration were enhanced after CDN1163-treatment. In addition, chronic treatment with CDN1163 improved cellular uptake of oleic acid (OA) and fatty acid β-oxidation. The increased OA metabolism was accompanied by enhanced mRNA-expression of carnitine palmitoyl transferase (CPT) 1B, pyruvate dehydrogenase kinase (PDK) 4, as well as increased AMP-activated protein kinase (AMPK)Thr172 phosphorylation. Moreover, following chronic CDN1163 treatment, the expression levels of stearoyl-CoA desaturase (SCD) 1 was decreased together with de novo lipogenesis from acetic acid and formation of diacylglycerol (DAG) from OA. Conclusion Altogether, these results suggest that SERCA activation by CDN1163 enhances energy metabolism in human myotubes, which might be favourable in relation to disorders that are related to metabolic dysfunction such as obesity and type 2 diabetes mellitus. CDN1163 induced an increase in glucose and fatty acid metabolism in primary human myotubes. Myotubes treated with CDN1163 showed lower intramyocellular lipid accumulation and higher rate of β-oxidation. AMPK activity was upregulated in CDN1163-treated myotubes.
Collapse
Key Words
- AMPK
- AMPK, AMP-activated protein kinase
- ASM, acid-soluble metabolites
- CE, cholesteryl ester
- DAG, diacylglycerol
- FA, fatty acid
- FCCP, 4-(trifluromethoxy)phenylhydrazone
- Glucose metabolism
- Lipid metabolism
- OA, oleic acid
- OCR, oxygen consumption rate
- Obesity
- SCD1, stearoyl-CoA desaturase 1
- SERCA
- SERCA, sarco(endo)plasmic reticulum Ca2+-ATPase
- Skeletal muscle
- T2DM, type 2 diabetes mellitus
- Type 2 diabetes
Collapse
Affiliation(s)
- Abel M Mengeste
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Parmeshwar Katare
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Roya Ghobadi
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Hege G Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Per Kristian Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Norway
| | - Gavin O' Mahony
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sven Göpel
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| |
Collapse
|
23
|
Rodrigo R, Prieto JC, Aguayo R, Ramos C, Puentes Á, Gajardo A, Panieri E, Rojas-Solé C, Lillo-Moya J, Saso L. Joint Cardioprotective Effect of Vitamin C and Other Antioxidants against Reperfusion Injury in Patients with Acute Myocardial Infarction Undergoing Percutaneous Coronary Intervention. Molecules 2021; 26:molecules26185702. [PMID: 34577176 PMCID: PMC8468345 DOI: 10.3390/molecules26185702] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Percutaneous coronary intervention (PCI) has long remained the gold standard therapy to restore coronary blood flow after acute myocardial infarction (AMI). However, this procedure leads to the development of increased production of reactive oxygen species (ROS) that can exacerbate the damage caused by AMI, particularly during the reperfusion phase. Numerous attempts based on antioxidant treatments, aimed to reduce the oxidative injury of cardiac tissue, have failed in achieving an effective therapy for these patients. Among these studies, results derived from the use of vitamin C (Vit C) have been inconclusive so far, likely due to suboptimal study designs, misinterpretations, and the erroneous conclusions of clinical trials. Nevertheless, recent clinical trials have shown that the intravenous infusion of Vit C prior to PCI-reduced cardiac injury biomarkers, as well as inflammatory biomarkers and ROS production. In addition, improvements of functional parameters, such as left ventricular ejection fraction (LVEF) and telediastolic left ventricular volume, showed a trend but had an inconclusive association with Vit C. Therefore, it seems reasonable that these beneficial effects could be further enhanced by the association with other antioxidant agents. Indeed, the complexity and the multifactorial nature of the mechanism of injury occurring in AMI demands multitarget agents to reach an enhancement of the expected cardioprotection, a paradigm needing to be demonstrated. The present review provides data supporting the view that an intravenous infusion containing combined safe antioxidants could be a suitable strategy to reduce cardiac injury, thus improving the clinical outcome, life quality, and life expectancy of patients subjected to PCI following AMI.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
- Correspondence:
| | - Juan Carlos Prieto
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Rubén Aguayo
- Cardiology Unit, Department of Medicine, Occident Division, San Juan de Dios Hospital, Avenida Portales 3239, Santiago 8500000, Chile; (R.A.); (Á.P.)
| | - Cristóbal Ramos
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Ángel Puentes
- Cardiology Unit, Department of Medicine, Occident Division, San Juan de Dios Hospital, Avenida Portales 3239, Santiago 8500000, Chile; (R.A.); (Á.P.)
| | - Abraham Gajardo
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
| | - José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| |
Collapse
|
24
|
Herrera NJ, Bland NA, Ribeiro FA, Henriott ML, Hofferber EM, Meier J, Petersen JL, Iverson NM, Calkins CR. Oxidative stress and postmortem meat quality in crossbred lambs. J Anim Sci 2021; 99:6276237. [PMID: 33991192 DOI: 10.1093/jas/skab156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 01/05/2023] Open
Abstract
The objective of this study was to evaluate effects of different levels of lipopolysaccharide (LPS)-mediated oxidative stress on fresh meat quality. Crossbred lambs (n = 29) were blocked by weight and fed a standard finishing ration for the duration of the study. Lambs were individually housed and treatment groups were administered one of three intravenous injections every 72 h across a three-injection (9-day) cycle: saline control (control), 50 ng LPS/kg body weight (BW) (LPS50), or 100 ng LPS/kg BW (LPS100). Rectal temperatures were measured to indicate inflammatory response. Lambs were harvested at the Loeffel Meat Laboratory and 80 mg of pre-rigor Longissimus lumborum were collected in control and LPS100 treatments within 30 min postmortem for RNA analysis. Wholesale loins were split and randomly assigned 1 or 14 d of wet aging. Chops were fabricated after aging and placed under retail display (RD) for 0 or 7 d. Animal was the experimental unit. LPS-treated lambs had increased (P < 0.05) rectal temperatures at 1, 2, 4, and 24 h post-injection. Transcriptomics revealed significant (Praw < 0.05) upregulation in RNA pathways related to generation of oxidative stress in LPS100 compared with control. A trend was found for tenderness (Warner-Bratzler shear force, WBSF; P = 0.10), chops from LPS50 having lower shear force compared with control at 1 d postmortem. Muscle from LPS50 treatment lambs exhibited greater troponin T degradation (P = 0.02) compared with all treatments at 1 d. Aging decreased WBSF (P < 0.0001), increased sarcoplasmic calcium concentration (P < 0.0001), pH (P < 0.0001), and proteolysis (P < 0.0001) across treatments. Following aging, chops increased discoloration as RD increased (P < 0.0001), with control chops aged 14 d being the most discolored. Chops from lambs given LPS had higher (P < 0.05) a* values compared with control at 14 d of aging. The L* values were greater (P < 0.05) in LPS100 compared with both LPS50 and control. Aging tended (P = 0.0608) to increase lipid oxidation during RD across either aging period. No significant differences (P > 0.05) in sarcomere length, proximate composition, fatty acid composition, or isoprostane content were found. These results suggest that defined upregulation of oxidative stress has no detriment on fresh meat color, but may alter biological pathways responsible for muscle stress response, apoptosis, and enzymatic processes, resulting in changes in tenderness early postmortem.
Collapse
Affiliation(s)
- Nicolas J Herrera
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Nicolas A Bland
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Felipe A Ribeiro
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Morgan L Henriott
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Eric M Hofferber
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| | - Jakob Meier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Nicole M Iverson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| | - Chris R Calkins
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| |
Collapse
|
25
|
Pathophysiological Effects of Overactive STIM1 on Murine Muscle Function and Structure. Cells 2021; 10:cells10071730. [PMID: 34359900 PMCID: PMC8304505 DOI: 10.3390/cells10071730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous mechanism regulating extracellular Ca2+ entry to control a multitude of Ca2+-dependent signaling pathways and cellular processes. SOCE relies on the concerted activity of the reticular Ca2+ sensor STIM1 and the plasma membrane Ca2+ channel ORAI1, and dysfunctions of these key factors result in human pathologies. STIM1 and ORAI1 gain-of-function (GoF) mutations induce excessive Ca2+ influx through SOCE over-activation, and cause tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK), two overlapping disorders characterized by muscle weakness and additional multi-systemic signs affecting growth, platelets, spleen, skin, and intellectual abilities. In order to investigate the pathophysiological effect of overactive SOCE on muscle function and structure, we combined transcriptomics with morphological and functional studies on a TAM/STRMK mouse model. Muscles from Stim1R304W/+ mice displayed aberrant expression profiles of genes implicated in Ca2+ handling and excitation-contraction coupling (ECC), and in vivo investigations evidenced delayed muscle contraction and relaxation kinetics. We also identified signs of reticular stress and abnormal mitochondrial activity, and histological and respirometric analyses on muscle samples revealed enhanced myofiber degeneration associated with reduced mitochondrial respiration. Taken together, we uncovered a molecular disease signature and deciphered the pathomechanism underlying the functional and structural muscle anomalies characterizing TAM/STRMK.
Collapse
|
26
|
Zimmermann HB, Costa FE, Sakugawa R, MacIntosh B, Diefenthaeler F, Dal Pupo J. Plyometric exercise enhances twitch contractile properties but fails to improve voluntary rate of torque development in highly trained sprint athletes. Eur J Sport Sci 2021; 22:857-866. [PMID: 33840359 DOI: 10.1080/17461391.2021.1916083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: The objective of this study was to evaluate a plyometric conditioning activity (3 sets of 5 countermovement jumps, [CA]) for twitch properties and voluntary knee extension. Methods: After a familiarization session, fourteen highly trained sprint athletes, 12 men (23.25 ± 7.17 years) and 2 women (23.0 ± 2.8 years) performed 2 experiments, each in a randomized order (crossover design). In one experiment, the time-course of twitch contractile properties was evaluated with and without the previous CA at 2, min intervals to 10 min of recovery. In the second session, maximal voluntary knee extension was evaluated at the same recovery intervals, for control and experimental condition in random order. Results: Mixed-model ANOVA with Bonferroni post-hoc revealed significant differences between pre-test and 2 min (p < 0.01, ES = 0.42) and 4 min (p < 0.01, ES = 0.20) for peak twitch torque of quadriceps femoris muscles confirming postactivation potentiation [PAP] at these times. Twitch rate of torque development (RTD) was significantly greater than pre-test value only at 2 min (p < 0.01, ES = 0.58) after the CA. Twitch contraction time and ½ relaxation time were not significantly difference from pre-test values after the CA (p > 0.05). No significant difference was observed for voluntary RTD following CA. Conclusion: The plyometric CA increased twitch peak torque and RTD consistent with PAP; however, there was no effect of CA on voluntary RTD of knee extension at any time after the plyometric CA. Even with PAP confirmed, we observed that the CA fails to improve isometric RTD of quadriceps femoris muscles. HighlightsA plyometric CA significantly increased twitch peak torque (at 2 and 4 min) and twitch rate of torque development (at 2 min) of quadriceps femoris muscles, indicating postactivation potentiation (PAP).No effect was observed for twitch contraction time and ½ relaxation time after the CA.No improvement was observed on voluntary rate of torque development evaluated at the same time intervals.
Collapse
Affiliation(s)
- Haiko Bruno Zimmermann
- Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Filipe Estácio Costa
- Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Raphael Sakugawa
- Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Brian MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Fernando Diefenthaeler
- Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Juliano Dal Pupo
- Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
27
|
Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D, Panieri E, Saso L, Rodrigo R. Targeting Ferroptosis against Ischemia/Reperfusion Cardiac Injury. Antioxidants (Basel) 2021; 10:antiox10050667. [PMID: 33922912 PMCID: PMC8145541 DOI: 10.3390/antiox10050667] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic heart disease is a leading cause of death worldwide. Primarily, ischemia causes decreased oxygen supply, resulting in damage of the cardiac tissue. Naturally, reoxygenation has been recognized as the treatment of choice to recover blood flow through primary percutaneous coronary intervention. This treatment is the gold standard therapy to restore blood flow, but paradoxically it can also induce tissue injury. A number of different studies in animal models of acute myocardial infarction (AMI) suggest that ischemia-reperfusion injury (IRI) accounts for up to 50% of the final myocardial infarct size. Oxidative stress plays a critical role in the pathological process. Iron is an essential mineral required for a variety of vital biological functions but also has potentially toxic effects. A detrimental process induced by free iron is ferroptosis, a non-apoptotic type of programmed cell death. Accordingly, efforts to prevent ferroptosis in pathological settings have focused on the use of radical trapping antioxidants (RTAs), such as liproxstatin-1 (Lip-1). Hence, it is necessary to develop novel strategies to prevent cardiac IRI, thus improving the clinical outcome in patients with ischemic heart disease. The present review analyses the role of ferroptosis inhibition to prevent heart IRI, with special reference to Lip-1 as a promising drug in this clinicopathological context.
Collapse
Affiliation(s)
- José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Diego Muñoz-Salamanca
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer“, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer“, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
- Correspondence:
| |
Collapse
|
28
|
Romer SH, Metzger S, Peraza K, Wright MC, Jobe DS, Song LS, Rich MM, Foy BD, Talmadge RJ, Voss AA. A mouse model of Huntington's disease shows altered ultrastructure of transverse tubules in skeletal muscle fibers. J Gen Physiol 2021; 153:211860. [PMID: 33683318 PMCID: PMC7931643 DOI: 10.1085/jgp.202012637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/05/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Huntington’s disease (HD) is a fatal and progressive condition with severe debilitating motor defects and muscle weakness. Although classically recognized as a neurodegenerative disorder, there is increasing evidence of cell autonomous toxicity in skeletal muscle. We recently demonstrated that skeletal muscle fibers from the R6/2 model mouse of HD have a decrease in specific membrane capacitance, suggesting a loss of transverse tubule (t-tubule) membrane in R6/2 muscle. A previous report also indicated that Cav1.1 current was reduced in R6/2 skeletal muscle, suggesting defects in excitation–contraction (EC) coupling. Thus, we hypothesized that a loss and/or disruption of the skeletal muscle t-tubule system contributes to changes in EC coupling in R6/2 skeletal muscle. We used live-cell imaging with multiphoton confocal microscopy and transmission electron microscopy to assess the t-tubule architecture in late-stage R6/2 muscle and found no significant differences in the t-tubule system density, regularity, or integrity. However, electron microscopy images revealed that the cross-sectional area of t-tubules at the triad were 25% smaller in R6/2 compared with age-matched control skeletal muscle. Computer simulation revealed that the resulting decrease in the R6/2 t-tubule luminal conductance contributed to, but did not fully explain, the reduced R6/2 membrane capacitance. Analyses of bridging integrator-1 (Bin1), which plays a primary role in t-tubule formation, revealed decreased Bin1 protein levels and aberrant splicing of Bin1 mRNA in R6/2 muscle. Additionally, the distance between the t-tubule and sarcoplasmic reticulum was wider in R6/2 compared with control muscle, which was associated with a decrease in junctophilin 1 and 2 mRNA levels. Altogether, these findings can help explain dysregulated EC coupling and motor impairment in Huntington’s disease.
Collapse
Affiliation(s)
- Shannon H Romer
- Department of Biological Sciences, Wright State University, Dayton, OH.,Odyssey Systems, Environmental Health Effects Laboratory, Navy Medical Research Unit, Dayton, Wright-Patterson Air Force Base, Dayton, OH
| | - Sabrina Metzger
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH
| | - Kristiana Peraza
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA
| | - Matthew C Wright
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA
| | - D Scott Jobe
- Department of Biological Sciences, Wright State University, Dayton, OH
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH
| | - Brent D Foy
- Department of Physics, Wright State University, Dayton, OH
| | - Robert J Talmadge
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA
| | - Andrew A Voss
- Department of Biological Sciences, Wright State University, Dayton, OH
| |
Collapse
|
29
|
Alomar FA, Tian C, Dash PK, McMillan JM, Gendelman HE, Gorantla S, Bidasee KR. Efavirenz, atazanavir, and ritonavir disrupt sarcoplasmic reticulum Ca 2+ homeostasis in skeletal muscles. Antiviral Res 2021; 187:104975. [PMID: 33450312 DOI: 10.1016/j.antiviral.2020.104975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 11/07/2020] [Indexed: 01/05/2023]
Abstract
While muscle fatigue, pain and weakness are common co-morbidities in HIV-1 infected people, their underlying cause remain poorly defined. To this end, we evaluated whether the common antiretroviral drugs efavirenz (EFV), atazanavir (ATV) and ritonavir (RTV) could be a contributing factor by pertubating sarcoplasmic reticulum (SR) Ca2+ cycling. In live-cell imaging, EFV (6.0 μM), ATV (6.0 μM), and RTV (3.0 μM) elicited Ca2+ transients and blebbing of the plasma membranes of C2C12 skeletal muscle myotubes. Pretreating C2C12 skeletal muscle myotubes with the SR Ca2+ release channel blocker ryanodine (50 μM), slowed the rate and amplitude of Ca2+ release from and reuptake of Ca2+ into the SR. EFV, ATV and RTV (1 nM - 20 μM) potentiated and then displaced [3H] ryanodine binding to rabbit skeletal muscle ryanodine receptor Ca2+ release channel (RyR1). These drugs at concentrations 0.25-31.2 μM also increased and or decreased the open probability of RyR1 by altering its gating and conductance. ATV (≤5 μM) potentiated and >5μM inhibited the ability of sarco (endo)plasmic reticulum Ca2+-ATPase (SERCA1) to hydrolyze ATP and transport Ca2+. RTV (2.5-31.5 μM) dose-dependently inhibited SERCA1-mediated, ATP-dependent Ca2+ transport. EFV (0.25-31.5 μM) had no measurable effect on SERCA1's ability to hydrolyze ATP and transport Ca2+. These data support the notion that EFV, ATV and RTV could be contributing to skeletal muscle co-morbidities in PLWH by modulating SR Ca2+ homeostasis.
Collapse
Affiliation(s)
- Fadhel A Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Chengju Tian
- Departments of Pharmacology and Experimental Neuroscience, USA
| | - Prasanta K Dash
- Departments of Pharmacology and Experimental Neuroscience, USA
| | - JoEllyn M McMillan
- Departments of Pharmacology and Experimental Neuroscience, USA; Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Santhi Gorantla
- Departments of Pharmacology and Experimental Neuroscience, USA
| | - Keshore R Bidasee
- Departments of Pharmacology and Experimental Neuroscience, USA; Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Nebraska Redox Biology Center, Lincoln, NE, USA.
| |
Collapse
|
30
|
Wang Q, Paskevicius T, Filbert A, Qin W, Kim HJ, Chen XZ, Tang J, Dacks JB, Agellon LB, Michalak M. Phylogenetic and biochemical analysis of calsequestrin structure and association of its variants with cardiac disorders. Sci Rep 2020; 10:18115. [PMID: 33093545 PMCID: PMC7582152 DOI: 10.1038/s41598-020-75097-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Calsequestrin is among the most abundant proteins in muscle sarcoplasmic reticulum and displays a high capacity but a low affinity for Ca2+ binding. In mammals, calsequestrin is encoded by two genes, CASQ1 and CASQ2, which are expressed almost exclusively in skeletal and cardiac muscles, respectively. Phylogenetic analysis indicates that calsequestrin is an ancient gene in metazoans, and that the duplication of the ancestral calsequestrin gene took place after the emergence of the lancelet. CASQ2 gene variants associated with catecholaminergic polymorphic ventricular tachycardia (CPVT) in humans are positively correlated with a high degree of evolutionary conservation across all calsequestrin homologues. The mutations are distributed in diverse locations of the calsequestrin protein and impart functional diversity but remarkably manifest in a similar phenotype in humans.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Tautvydas Paskevicius
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Alexander Filbert
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Wenying Qin
- Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Fermentation Engineering, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
| | - Hyeong Jin Kim
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Xing-Zhen Chen
- Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Fermentation Engineering, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China.,Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Jingfeng Tang
- Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Fermentation Engineering, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2G3, Canada.
| | - Luis B Agellon
- School of Dietetics and Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, H9X 3V9, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada. .,Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Fermentation Engineering, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
31
|
|
32
|
Vornanen M. Effects of acute warming on cardiac and myotomal sarco(endo)plasmic reticulum ATPase (SERCA) of thermally acclimated brown trout (Salmo trutta). J Comp Physiol B 2020; 191:43-53. [PMID: 32980918 PMCID: PMC7819936 DOI: 10.1007/s00360-020-01313-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/21/2020] [Accepted: 09/09/2020] [Indexed: 11/24/2022]
Abstract
At high temperatures, ventricular beating rate collapses and depresses cardiac output in fish. The role of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) in thermal tolerance of ventricular function was examined in brown trout (Salmo trutta) by measuring heart SERCA and comparing it to that of the dorsolateral myotomal muscle. Activity of SERCA was measured from crude homogenates of cold-acclimated (+ 3 °C, c.a.) and warm-acclimated (+ 13 °C, w.a.) brown trout as cyclopiazonic acid (20 µM) sensitive Ca2+-ATPase between + 3 and + 33 °C. Activity of the heart SERCA was significantly higher in c.a. than w.a. trout and increased strongly between + 3 and + 23 °C with linear Arrhenius plots but started to plateau between + 23 and + 33 °C in both acclimation groups. The rate of thermal inactivation of the heart SERCA at + 35 °C was similar in c.a. and w.a. fish. Activity of the muscle SERCA was less temperature dependent and more heat resistant than that of the heart SERCA and showed linear Arrhenius plots between + 3 and + 33 °C in both c.a. and w.a. fish. SERCA activity of the c.a. muscle was slightly higher than that of w.a. muscle. The rate of thermal inactivation at + 40 °C was similar for both c.a. and w.a. muscle SERCA at + 40 °C. Although the heart SERCA is more sensitive to high temperatures than the muscle SERCA, it is unlikely to be a limiting factor for heart rate, because its heat tolerance, unlike that of the ventricular beating rate, was not changed by temperature acclimation.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland.
| |
Collapse
|
33
|
ER Stress-Induced Secretion of Proteins and Their Extracellular Functions in the Heart. Cells 2020; 9:cells9092066. [PMID: 32927693 PMCID: PMC7563782 DOI: 10.3390/cells9092066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a result of conditions that imbalance protein homeostasis or proteostasis at the ER, for example ischemia, and is a common event in various human pathologies, including the diseased heart. Cardiac integrity and function depend on the active secretion of mature proteins from a variety of cell types in the heart, a process that requires an intact ER environment for efficient protein folding and trafficking to the secretory pathway. As a consequence of ER stress, most protein secretion by the ER secretory pathway is decreased. Strikingly, there is a select group of proteins that are secreted in greater quantities during ER stress. ER stress resulting from the dysregulation of ER Ca2+ levels, for instance, stimulates the secretion of Ca2+-binding ER chaperones, especially GRP78, GRP94, calreticulin, and mesencephalic astrocyte-derived neurotrophic factor (MANF), which play a multitude of roles outside the cell, strongly depending on the cell type and tissue. Here we review current insights in ER stress-induced secretion of proteins, particularly from the heart, and highlight the extracellular functions of these proteins, ranging from the augmentation of cardiac cell viability to the modulation of pro- and anti-apoptotic, oncogenic, and immune-stimulatory cell signaling, cell invasion, extracellular proteostasis, and more. Many of the roles of ER stress-induced protein secretion remain to be explored in the heart. This article is part of a special issue entitled “The Role of Proteostasis Derailment in Cardiac Diseases.”
Collapse
|
34
|
Protasi F, Pietrangelo L, Boncompagni S. Calcium entry units (CEUs): perspectives in skeletal muscle function and disease. J Muscle Res Cell Motil 2020; 42:233-249. [PMID: 32812118 PMCID: PMC8332569 DOI: 10.1007/s10974-020-09586-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
In the last decades the term Store-operated Ca2+ entry (SOCE) has been used in the scientific literature to describe an ubiquitous cellular mechanism that allows recovery of calcium (Ca2+) from the extracellular space. SOCE is triggered by a reduction of Ca2+ content (i.e. depletion) in intracellular stores, i.e. endoplasmic or sarcoplasmic reticulum (ER and SR). In skeletal muscle the mechanism is primarily mediated by a physical interaction between stromal interaction molecule-1 (STIM1), a Ca2+ sensor located in the SR membrane, and ORAI1, a Ca2+-permeable channel of external membranes, located in transverse tubules (TTs), the invaginations of the plasma membrane (PM) deputed to propagation of action potentials. It is generally accepted that in skeletal muscle SOCE is important to limit muscle fatigue during repetitive stimulation. We recently discovered that exercise promotes the assembly of new intracellular junctions that contains colocalized STIM1 and ORAI1, and that the presence of these new junctions increases Ca2+ entry via ORAI1, while improving fatigue resistance during repetitive stimulation. Based on these findings we named these new junctions Ca2+ Entry Units (CEUs). CEUs are dynamic organelles that assemble during muscle activity and disassemble during recovery thanks to the plasticity of the SR (containing STIM1) and the elongation/retraction of TTs (bearing ORAI1). Interestingly, similar structures described as SR stacks were previously reported in different mouse models carrying mutations in proteins involved in Ca2+ handling (calsequestrin-null mice; triadin and junctin null mice, etc.) or associated to microtubules (MAP6 knockout mice). Mutations in Stim1 and Orai1 (and calsequestrin-1) genes have been associated to tubular aggregate myopathy (TAM), a muscular disease characterized by: (a) muscle pain, cramping, or weakness that begins in childhood and worsens over time, and (b) the presence of large accumulations of ordered SR tubes (tubular aggregates, TAs) that do not contain myofibrils, mitochondria, nor TTs. Interestingly, TAs are also present in fast twitch muscle fibers of ageing mice. Several important issues remain un-answered: (a) the molecular mechanisms and signals that trigger the remodeling of membranes and the functional activation of SOCE during exercise are unclear; and (b) how dysfunctional SOCE and/or mutations in Stim1, Orai1 and calsequestrin (Casq1) genes lead to the formation of tubular aggregates (TAs) in aging and disease deserve investigation.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy.
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy.
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
- DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
35
|
Horton KA, Sporer KRB, Tempelman RJ, Malila Y, Reed KM, Velleman SG, Strasburg GM. Knockdown of Death-Associated Protein Expression Induces Global Transcriptome Changes in Proliferating and Differentiating Muscle Satellite Cells. Front Physiol 2020; 11:1036. [PMID: 32922311 PMCID: PMC7457014 DOI: 10.3389/fphys.2020.01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Death-associated protein (DAP) undergoes substantial changes in expression during turkey skeletal muscle development, decreasing from the 18 day embryonic stage to 1 day posthatch, and again from 1 day posthatch to 16 weeks of age. These changes suggest that DAP plays an important role at critical stages of the developmental process. The objective of this study was to elucidate the role of DAP in muscle development by examining the effect of reduced DAP expression on global gene expression in proliferating and differentiating turkey pectoralis major muscle satellite cells. Small interfering RNA was used to knock down expression of DAP and the transcriptome was subsequently profiled using a turkey skeletal muscle long oligonucleotide microarray. Microarray data were corroborated using quantitative real-time PCR. In proliferating cells, 458 loci, resulting in 378 uniquely annotated genes, showed differential expression (false discovery rate, FDR < 0.05). Pathway analysis highlighted altered eukaryotic translational initiation factors (eIFs) signaling, protein ubiquitination, sirtuin signaling, and mechanistic target of rapamycin (mTOR) signaling as the primary pathways affected in the knockdown proliferating cells. The findings underpinned the potential DAP involvement in cell proliferation of turkey satellite cells through the coordination between protein synthesis and cell cycle. In differentiating cells, 270 loci, accounting for 189 unique genes, showed differential expression (FDR < 0.05). Decreased expression of genes encoding various myofibrillar proteins and proteins involved in sarcoplasmic reticulum calcium flux suggests that DAP may affect regulation of calcium homeostasis and cytoskeleton signaling. This study provides the first evidence that reduced expression of DAP significantly alters the transcriptome profile of pectoralis major muscle satellite cells, thereby reducing proliferation and differentiation.
Collapse
Affiliation(s)
- Katherine A Horton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kelly R B Sporer
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Robert J Tempelman
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Kent M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Sandra G Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
36
|
Groenendyk J, Wang Q, Wagg C, Lee D, Robinson A, Barr A, Light PE, Lopaschuk GD, Agellon LB, Michalak M. Selective enhancement of cardiomyocyte efficiency results in a pernicious heart condition. PLoS One 2020; 15:e0236457. [PMID: 32790682 PMCID: PMC7425937 DOI: 10.1371/journal.pone.0236457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022] Open
Abstract
Transgenic mice with selective induction of calreticulin transgene expression in cardiomyocytes (CardiacCRT+) were analyzed. CardiacCRT+ cardiomyocytes showed increased contractility and Ca2+ transients. Yet, in vivo assessment of cardiac performance, and ischemic tolerance of CardiacCRT+ mice demonstrated right ventricle dilation and reduced cardiac output, increased QT interval and decreased P amplitude. Paradoxically, ex vivo working hearts from CardiacCRT+ mice showed enhanced ischemic cardio-protection and cardiac efficiency. Under aerobic conditions, CardiacCRT+ hearts showed less efficient cardiac function than sham control hearts due to an increased ATP production from glycolysis relative to glucose oxidation. During reperfusion, this inefficiency was reversed, with CardiacCRT+ hearts exhibiting better functional recovery and increased cardiac efficiency compared to sham control hearts. On the other hand, mechanical stretching of isolated cardiac fibroblasts activated the IRE1α branch of the unfolded protein response pathway as well as induction of Col1A2 and TGFβ gene expression ex vivo, which were all suppressed by tauroursodeoxycholic acid.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Cory Wagg
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Dukgyu Lee
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Alison Robinson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Amy Barr
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Peter E. Light
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D. Lopaschuk
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Luis B. Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- * E-mail: (MM); (LBA)
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (MM); (LBA)
| |
Collapse
|
37
|
Dhanyasi N, VijayRaghavan K, Shilo BZ, Schejter ED. Microtubules provide guidance cues for myofibril and sarcomere assembly and growth. Dev Dyn 2020; 250:60-73. [PMID: 32725855 DOI: 10.1002/dvdy.227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/09/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Muscle myofibrils and sarcomeres present exceptional examples of highly ordered cytoskeletal filament arrays, whose distinct spatial organization is an essential aspect of muscle cell functionality. We utilized ultra-structural analysis to investigate the assembly of myofibrils and sarcomeres within developing myotubes of the indirect flight musculature of Drosophila. RESULTS A temporal sequence composed of three major processes was identified: subdivision of the unorganized cytoplasm of nascent, multi-nucleated myotubes into distinct organelle-rich and filament-rich domains; initial organization of the filament-rich domains into myofibrils harboring nascent sarcomeric units; and finally, maturation of the highly-ordered pattern of sarcomeric thick (myosin-based) and thin (microfilament-based) filament arrays in parallel to myofibril radial growth. Significantly, organized microtubule arrays were present throughout these stages and exhibited dynamic changes in their spatial patterns consistent with instructive roles. Genetic manipulations confirm these notions, and imply specific and critical guidance activities of the microtubule-based cytoskeleton, as well as structural interdependence between the myosin- and actin-based filament arrays. CONCLUSIONS Our observations highlight a surprisingly significant, behind-the-scenes role for microtubules in establishment of myofibril and sarcomere spatial patterns and size, and provide a detailed account of the interplay between major cytoskeletal elements in generating these essential contractile myogenic units.
Collapse
Affiliation(s)
- Nagaraju Dhanyasi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,National Centre for Biological Sciences, TIFR, Bangalore, India
| | - K VijayRaghavan
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
38
|
Lee Y, Chakraborty S, Muthuchamy M. Roles of sarcoplasmic reticulum Ca 2+ ATPase pump in the impairments of lymphatic contractile activity in a metabolic syndrome rat model. Sci Rep 2020; 10:12320. [PMID: 32704072 PMCID: PMC7378550 DOI: 10.1038/s41598-020-69196-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
The intrinsic lymphatic contractile activity is necessary for proper lymph transport. Mesenteric lymphatic vessels from high-fructose diet-induced metabolic syndrome (MetSyn) rats exhibited impairments in its intrinsic phasic contractile activity; however, the molecular mechanisms responsible for the weaker lymphatic pumping activity in MetSyn conditions are unknown. Several metabolic disease models have shown that dysregulation of sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump is one of the key determinants of the phenotypes seen in various muscle tissues. Hence, we hypothesized that a decrease in SERCA pump expression and/or activity in lymphatic muscle influences the diminished lymphatic vessel contractions in MetSyn animals. Results demonstrated that SERCA inhibitor, thapsigargin, significantly reduced lymphatic phasic contractile frequency and amplitude in control vessels, whereas, the reduced MetSyn lymphatic contractile activity was not further diminished by thapsigargin. While SERCA2a expression was significantly decreased in MetSyn lymphatic vessels, myosin light chain 20, MLC20 phosphorylation was increased in these vessels. Additionally, insulin resistant lymphatic muscle cells exhibited elevated intracellular calcium and decreased SERCA2a expression and activity. The SERCA activator, CDN 1163 partially restored lymphatic contractile activity in MetSyn lymphatic vessel by increasing phasic contractile frequency. Thus, our data provide the first evidence that SERCA2a modulates the lymphatic pumping activity by regulating phasic contractile amplitude and frequency, but not the lymphatic tone. Diminished lymphatic contractile activity in the vessels from the MetSyn animal is associated with the decreased SERCA2a expression and impaired SERCA2 activity in lymphatic muscle.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA.
| |
Collapse
|
39
|
Molenaar JP, Verhoeven JI, Rodenburg RJ, Kamsteeg EJ, Erasmus CE, Vicart S, Behin A, Bassez G, Magot A, Péréon Y, Brandom BW, Guglielmi V, Vattemi G, Chevessier F, Mathieu J, Franques J, Suetterlin K, Hanna MG, Guyant-Marechal L, Snoeck MM, Roberts ME, Kuntzer T, Fernandez-Torron R, Martínez-Arroyo A, Seeger J, Kusters B, Treves S, van Engelen BG, Eymard B, Voermans NC, Sternberg D. Clinical, morphological and genetic characterization of Brody disease: an international study of 40 patients. Brain 2020; 143:452-466. [PMID: 32040565 PMCID: PMC7009512 DOI: 10.1093/brain/awz410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/30/2019] [Accepted: 11/16/2019] [Indexed: 11/17/2022] Open
Abstract
Brody disease is an autosomal recessive myopathy characterized by exercise-induced muscle stiffness due to mutations in the ATP2A1 gene. Almost 50 years after the initial case presentation, only 18 patients have been reported and many questions regarding the clinical phenotype and results of ancillary investigations remain unanswered, likely leading to incomplete recognition and consequently under-diagnosis. Additionally, little is known about the natural history of the disorder, genotype-phenotype correlations, and the effects of symptomatic treatment. We studied the largest cohort of Brody disease patients to date (n = 40), consisting of 22 new patients (19 novel mutations) and all 18 previously published patients. This observational study shows that the main feature of Brody disease is an exercise-induced muscle stiffness of the limbs, and often of the eyelids. Onset begins in childhood and there was no or only mild progression of symptoms over time. Four patients had episodes resembling malignant hyperthermia. The key finding at physical examination was delayed relaxation after repetitive contractions. Additionally, no atrophy was seen, muscle strength was generally preserved, and some patients had a remarkable athletic build. Symptomatic treatment was mostly ineffective or produced unacceptable side effects. EMG showed silent contractures in approximately half of the patients and no myotonia. Creatine kinase was normal or mildly elevated, and muscle biopsy showed mild myopathic changes with selective type II atrophy. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity was reduced and western blot analysis showed decreased or absent SERCA1 protein. Based on this cohort, we conclude that Brody disease should be considered in cases of exercise-induced muscle stiffness. When physical examination shows delayed relaxation, and there are no myotonic discharges at electromyography, we recommend direct sequencing of the ATP2A1 gene or next generation sequencing with a myopathy panel. Aside from clinical features, SERCA activity measurement and SERCA1 western blot can assist in proving the pathogenicity of novel ATP2A1 mutations. Finally, patients with Brody disease may be at risk for malignant hyperthermia-like episodes, and therefore appropriate perioperative measures are recommended. This study will help improve understanding and recognition of Brody disease as a distinct myopathy in the broader field of calcium-related myopathies.
Collapse
Affiliation(s)
- Joery P Molenaar
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jamie I Verhoeven
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Richard J Rodenburg
- Department of Pediatrics, Translational Metabolic Laboratory, Radboud Center for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Erik J Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corrie E Erasmus
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Savine Vicart
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Anthony Behin
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Guillaume Bassez
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Armelle Magot
- CHU Nantes, Centre de Référence Maladies Neuromusculaires AOC, Nantes, France
| | - Yann Péréon
- CHU Nantes, Centre de Référence Maladies Neuromusculaires AOC, Nantes, France
| | - Barbara W Brandom
- Department of Anesthesiology, Children's Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Valeria Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | | | - Jean Mathieu
- Neuromuscular Clinic, Centre de Réadaptation en Déficience Physique de Jonquière, Jonquière, Québec, Canada
| | - Jérôme Franques
- Centre de référence des maladies neuromusculaires et de la SLA, hôpital La Timone, AP-HM, Aix-Marseille université, avenue Jean-Moulin, Marseille, France
| | - Karen Suetterlin
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | | - Marc M Snoeck
- Department of Anaesthesiology, Canisius-Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - Mark E Roberts
- Department of Neurology, Salford Royal NHS Foundation Trust, Greater Manchester, UK
| | - Thierry Kuntzer
- Nerve-Muscle Unit, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Roberto Fernandez-Torron
- Neuromuscular Area, Biodonostia Health Research Institute, Department of Neurology, University Hospital Donostia, CIBERNED, San Sebastián, Spain
| | | | - Juergen Seeger
- Sozialpädiatrisches Zentrum Frankfurt Mitte, Neuromuskulares Zentrum, Frankfurt, Germany
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Susan Treves
- Departments of Anesthesia and Biomedicine, Basel University and Basel University Hospital, Basel, Switzerland.,Department of Life Sciences, University of Ferrara, Ferrara, Italy
| | - Baziel G van Engelen
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bruno Eymard
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Nicol C Voermans
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Damien Sternberg
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
40
|
Wang Q, Michalak M. Calsequestrin. Structure, function, and evolution. Cell Calcium 2020; 90:102242. [PMID: 32574906 DOI: 10.1016/j.ceca.2020.102242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/25/2022]
Abstract
Calsequestrin is the major Ca2+ binding protein in the sarcoplasmic reticulum (SR), serves as the main Ca2+ storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal and cardiac muscle. It is anchored at the junctional SR membrane through interactions with membrane proteins and undergoes reversible polymerization with increasing Ca2+ concentration. Calsequestrin provides high local Ca2+ at the junctional SR and communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an essential component of excitation-contraction coupling. Recent studies reveal new insights on calsequestrin trafficking, Ca2+ binding, protein evolution, protein-protein interactions, stress responses and the molecular basis of related human muscle disease, including catecholaminergic polymorphic ventricular tachycardia (CPVT). Here we provide a comprehensive overview of calsequestrin, with recent advances in structure, diverse functions, phylogenetic analysis, and its role in muscle physiology, stress responses and human pathology.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada.
| |
Collapse
|
41
|
Sztretye M, Singlár Z, Szabó L, Angyal Á, Balogh N, Vakilzadeh F, Szentesi P, Dienes B, Csernoch L. Improved Tetanic Force and Mitochondrial Calcium Homeostasis by Astaxanthin Treatment in Mouse Skeletal Muscle. Antioxidants (Basel) 2020; 9:antiox9020098. [PMID: 31979219 PMCID: PMC7070261 DOI: 10.3390/antiox9020098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Astaxanthin (AX) a marine carotenoid is a powerful natural antioxidant which protects against oxidative stress and improves muscle performance. Retinol and its derivatives were described to affect lipid and energy metabolism. Up to date, the effects of AX and retinol on excitation-contraction coupling (ECC) in skeletal muscle are poorly described. METHODS 18 C57Bl6 mice were divided into two groups: Control and AX supplemented in rodent chow for 4 weeks (AstaReal A1010). In vivo and in vitro force and intracellular calcium homeostasis was studied. In some experiments acute treatment with retinol was employed. RESULTS The voltage activation of calcium transients (V50) were investigated in single flexor digitorum brevis isolated fibers under patch clamp and no significant changes were found following AX supplementation. Retinol shifted V50 towards more positive values and decreased the peak F/F0 of the calcium transients. The amplitude of tetani in the extensor digitorum longus was significantly higher in AX than in control group. Lastly, the mitochondrial calcium uptake was found to be less prominent in AX. CONCLUSION AX supplementation increases in vitro tetanic force without affecting ECC and exerts a protecting effect on the mitochondria. Retinol treatment has an inhibitory effect on ECC in skeletal muscle.
Collapse
Affiliation(s)
- Mónika Sztretye
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
| | - Zoltán Singlár
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ágnes Angyal
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Faranak Vakilzadeh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
- Correspondence: ; Tel.: +36-52-255575; Fax: +36-52-255116
| |
Collapse
|
42
|
Wasala NB, Yue Y, Lostal W, Wasala LP, Niranjan N, Hajjar RJ, Babu GJ, Duan D. Single SERCA2a Therapy Ameliorated Dilated Cardiomyopathy for 18 Months in a Mouse Model of Duchenne Muscular Dystrophy. Mol Ther 2020; 28:845-854. [PMID: 31981493 DOI: 10.1016/j.ymthe.2019.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 01/16/2023] Open
Abstract
Loss of dystrophin leads to Duchenne muscular dystrophy (DMD). A pathogenic feature of DMD is the significant elevation of cytosolic calcium. Supraphysiological calcium triggers protein degradation, membrane damage, and eventually muscle death and dysfunction. Sarcoplasmic/endoplasmic reticulum (SR) calcium ATPase (SERCA) is a calcium pump that transports cytosolic calcium to the SR during excitation-contraction coupling. We hypothesize that a single systemic delivery of SERCA2a with adeno-associated virus (AAV) may improve calcium recycling and provide long-lasting benefits in DMD. To test this, we injected an AAV9 human SERCA2a vector (6 × 1012 viral genome particles/mouse) intravenously to 3-month-old mdx mice, the most commonly used DMD model. Immunostaining and western blot showed robust human SERCA2a expression in the heart and skeletal muscle for 18 months. Concomitantly, SR calcium uptake was significantly improved in these tissues. SERCA2a therapy significantly enhanced grip force and treadmill performance, completely prevented myocardial fibrosis, and normalized electrocardiograms (ECGs). Cardiac catheterization showed normalization of multiple systolic and diastolic hemodynamic parameters in treated mice. Importantly, chamber dilation was completely prevented, and ejection fraction was restored to the wild-type level. Our results suggest that a single systemic AAV9 SERCA2a therapy has the potential to provide long-lasting benefits for DMD.
Collapse
Affiliation(s)
- Nalinda B Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - William Lostal
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Lakmini P Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Nandita Niranjan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | | | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
43
|
Bella P, Farini A, Banfi S, Parolini D, Tonna N, Meregalli M, Belicchi M, Erratico S, D'Ursi P, Bianco F, Legato M, Ruocco C, Sitzia C, Sangiorgi S, Villa C, D'Antona G, Milanesi L, Nisoli E, Mauri P, Torrente Y. Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Mol Med 2020; 12:e11019. [PMID: 31793167 PMCID: PMC6949491 DOI: 10.15252/emmm.201911019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating fatal X-linked muscle disorder. Recent findings indicate that IGFs play a central role in skeletal muscle regeneration and development. Among IGFs, insulinlike growth factor 2 (IGF2) is a key regulator of cell growth, survival, migration and differentiation. The type 2 IGF receptor (IGF2R) modulates circulating and tissue levels of IGF2 by targeting it to lysosomes for degradation. We found that IGF2R and the store-operated Ca2+ channel CD20 share a common hydrophobic binding motif that stabilizes their association. Silencing CD20 decreased myoblast differentiation, whereas blockade of IGF2R increased proliferation and differentiation in myoblasts via the calmodulin/calcineurin/NFAT pathway. Remarkably, anti-IGF2R induced CD20 phosphorylation, leading to the activation of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA) and removal of intracellular Ca2+ . Interestingly, we found that IGF2R expression was increased in dystrophic skeletal muscle of human DMD patients and mdx mice. Blockade of IGF2R by neutralizing antibodies stimulated muscle regeneration, induced force recovery and normalized capillary architecture in dystrophic mdx mice representing an encouraging starting point for the development of new biological therapies for DMD.
Collapse
Affiliation(s)
- Pamela Bella
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Andrea Farini
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Stefania Banfi
- Hematology Department Fondazione IRCCSDepartment of Oncology and Hemato‐oncologyIstituto Nazionale dei TumoriUniversitá degli Studi di MilanoMilanItaly
| | | | | | - Mirella Meregalli
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Marzia Belicchi
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | | | - Pasqualina D'Ursi
- Institute of Technologies in BiomedicineNational Research Council (ITB‐CNR)MilanItaly
| | | | - Mariella Legato
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Chiara Ruocco
- Department of Medical Biotechnology and Translational MedicineCenter for Study and Research on ObesityMilan UniversityMilanItaly
| | - Clementina Sitzia
- UOC SMEL‐1Scuola di Specializzazione di Patologia Clinica e Biochimica ClinicaUniversità degli Studi di MilanoMilanItaly
| | - Simone Sangiorgi
- Neurosurgery UnitDepartment of SurgeryASST Lariana‐S. Anna HospitalComoItaly
| | - Chiara Villa
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Giuseppe D'Antona
- Department of Public Health, Experimental and Forensic MedicinePavia UniversityPaviaItaly
| | - Luciano Milanesi
- Institute of Technologies in BiomedicineNational Research Council (ITB‐CNR)MilanItaly
| | - Enzo Nisoli
- Department of Medical Biotechnology and Translational MedicineCenter for Study and Research on ObesityMilan UniversityMilanItaly
| | - PierLuigi Mauri
- Institute of Technologies in BiomedicineNational Research Council (ITB‐CNR)MilanItaly
| | - Yvan Torrente
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| |
Collapse
|
44
|
Ca 2+ Channels Mediate Bidirectional Signaling between Sarcolemma and Sarcoplasmic Reticulum in Muscle Cells. Cells 2019; 9:cells9010055. [PMID: 31878335 PMCID: PMC7016941 DOI: 10.3390/cells9010055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
The skeletal muscle and myocardial cells present highly specialized structures; for example, the close interaction between the sarcoplasmic reticulum (SR) and mitochondria—responsible for excitation-metabolism coupling—and the junction that connects the SR with T-tubules, critical for excitation-contraction (EC) coupling. The mechanisms that underlie EC coupling in these two cell types, however, are fundamentally distinct. They involve the differential expression of Ca2+ channel subtypes: CaV1.1 and RyR1 (skeletal), vs. CaV1.2 and RyR2 (cardiac). The CaV channels transform action potentials into elevations of cytosolic Ca2+, by activating RyRs and thus promoting SR Ca2+ release. The high levels of Ca2+, in turn, stimulate not only the contractile machinery but also the generation of mitochondrial reactive oxygen species (ROS). This forward signaling is reciprocally regulated by the following feedback mechanisms: Ca2+-dependent inactivation (of Ca2+ channels), the recruitment of Na+/Ca2+ exchanger activity, and oxidative changes in ion channels and transporters. Here, we summarize both well-established concepts and recent advances that have contributed to a better understanding of the molecular mechanisms involved in this bidirectional signaling.
Collapse
|
45
|
Sánchez-Gómez L, Guerrero-Hernández A, Santillán M. Polymerization of sarcoplasmic-reticulum calcium-binding proteins might explain observed reticulum kinetics-on-demand behavior. J Theor Biol 2019; 482:109986. [PMID: 31465729 DOI: 10.1016/j.jtbi.2019.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 11/20/2022]
Abstract
Reported experimental results, in which transient elevations of sarcoplasmic calcium levels are induced by caffeine in smooth muscle cells, apparently contradict the principle of mass conservation. The commonly accepted model assumes that the total number of Ca2+ binding sites is fixed. A former work dealing with this problem proved that assuming the presence within the reticulum of calcium sequestering proteins whose total number of calcium binding sites increases as the existent sites get occupied, is enough to explain the above referred counter-intuitive experimental results. However, no chemical explanation was given to account for this binding-site count increase. In the present work, we propose a chemical-kinetics scheme for the binding of calcium to calsequestrin (a protein found within the reticulum) and the polymerization of this protein. On the one hand, this scheme is in agreement with reported results on calsequestrin binding kinetics, but it is also fully capable of explaining the observed intriguing performance of the sarcoplasmic reticulum. We further explore the behavior of the resulting nonlinear dynamic system and discuss possible physiological implications of the proposed scheme.
Collapse
Affiliation(s)
- Laura Sánchez-Gómez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Vía del Conocimiento 201, Apodaca, NL 66600, México
| | - Agustín Guerrero-Hernández
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Zacatenco, Departamento de Bioquímica, Av. Instituto Politécnico Nacional 2508, Ciudad de México, 07000, México
| | - Moisés Santillán
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Vía del Conocimiento 201, Apodaca, NL 66600, México.
| |
Collapse
|
46
|
Wang WA, Agellon LB, Michalak M. Organellar Calcium Handling in the Cellular Reticular Network. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a038265. [PMID: 31358518 DOI: 10.1101/cshperspect.a038265] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ is an important intracellular messenger affecting diverse cellular processes. In eukaryotic cells, Ca2+ is handled by a myriad of Ca2+-binding proteins found in organelles that are organized into the cellular reticular network (CRN). The network is comprised of the endoplasmic reticulum, Golgi apparatus, lysosomes, membranous components of the endocytic and exocytic pathways, peroxisomes, and the nuclear envelope. Membrane contact sites between the different components of the CRN enable the rapid movement of Ca2+, and communication of Ca2+ status, within the network. Ca2+-handling proteins that reside in the CRN facilitate Ca2+ sensing, buffering, and cellular signaling to coordinate the many processes that operate within the cell.
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| |
Collapse
|
47
|
Lasa-Elgarresta J, Mosqueira-Martín L, Naldaiz-Gastesi N, Sáenz A, López de Munain A, Vallejo-Illarramendi A. Calcium Mechanisms in Limb-Girdle Muscular Dystrophy with CAPN3 Mutations. Int J Mol Sci 2019; 20:E4548. [PMID: 31540302 PMCID: PMC6770289 DOI: 10.3390/ijms20184548] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Limb-girdle muscular dystrophy recessive 1 (LGMDR1), previously known as LGMD2A, is a rare disease caused by mutations in the CAPN3 gene. It is characterized by progressive weakness of shoulder, pelvic, and proximal limb muscles that usually appears in children and young adults and results in loss of ambulation within 20 years after disease onset in most patients. The pathophysiological mechanisms involved in LGMDR1 remain mostly unknown, and to date, there is no effective treatment for this disease. Here, we review clinical and experimental evidence suggesting that dysregulation of Ca2+ homeostasis in the skeletal muscle is a significant underlying event in this muscular dystrophy. We also review and discuss specific clinical features of LGMDR1, CAPN3 functions, novel putative targets for therapeutic strategies, and current approaches aiming to treat LGMDR1. These novel approaches may be clinically relevant not only for LGMDR1 but also for other muscular dystrophies with secondary calpainopathy or with abnormal Ca2+ homeostasis, such as LGMD2B/LGMDR2 or sporadic inclusion body myositis.
Collapse
Affiliation(s)
- Jaione Lasa-Elgarresta
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Laura Mosqueira-Martín
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Neia Naldaiz-Gastesi
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Amets Sáenz
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
| | - Adolfo López de Munain
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
- Departmento de Neurosciencias, Universidad del País Vasco UPV/EHU, 20014 San Sebastian, Spain.
- Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Neurology Department, 20014 San Sebastian, Spain.
| | - Ainara Vallejo-Illarramendi
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain.
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain.
- Grupo Neurociencias, Departmento de Pediatría, Hospital Universitario Donostia, UPV/EHU, 20014 San Sebastian, Spain.
| |
Collapse
|
48
|
Wang Q, Groenendyk J, Paskevicius T, Qin W, Kor KC, Liu Y, Hiess F, Knollmann BC, Chen SRW, Tang J, Chen XZ, Agellon LB, Michalak M. Two pools of IRE1α in cardiac and skeletal muscle cells. FASEB J 2019; 33:8892-8904. [PMID: 31051095 PMCID: PMC6662970 DOI: 10.1096/fj.201802626r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/08/2019] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum (ER) plays a central role in cellular stress responses via mobilization of ER stress coping responses, such as the unfolded protein response (UPR). The inositol-requiring 1α (IRE1α) is an ER stress sensor and component of the UPR. Muscle cells also have a well-developed and highly subspecialized membrane network of smooth ER called the sarcoplasmic reticulum (SR) surrounding myofibrils and specialized for Ca2+ storage, release, and uptake to control muscle excitation-contraction coupling. Here, we describe 2 distinct pools of IRE1α in cardiac and skeletal muscle cells, one localized at the perinuclear ER and the other at the junctional SR. We discovered that, at the junctional SR, calsequestrin binds to the ER luminal domain of IRE1α, inhibiting its dimerization. This novel interaction of IRE1α with calsequestrin, one of the highly abundant Ca2+ handling proteins at the junctional SR, provides new insights into the regulation of stress coping responses in muscle cells.-Wang, Q., Groenendyk, J., Paskevicius, T., Qin, W., Kor, K. C., Liu, Y., Hiess, F., Knollmann, B. C., Chen, S. R. W., Tang, J., Chen, X.-Z., Agellon, L. B., Michalak, M. Two pools of IRE1α in cardiac and skeletal muscle cells.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Wenying Qin
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Kaylen C. Kor
- Division of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yingjie Liu
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Florian Hiess
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bjorn C. Knollmann
- Division of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - S. R. Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Xing-Zhen Chen
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Luis B. Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| |
Collapse
|
49
|
Pierantozzi E, Szentesi P, Al-Gaadi D, Oláh T, Dienes B, Sztretye M, Rossi D, Sorrentino V, Csernoch L. Calcium Homeostasis Is Modified in Skeletal Muscle Fibers of Small Ankyrin1 Knockout Mice. Int J Mol Sci 2019; 20:ijms20133361. [PMID: 31323924 PMCID: PMC6651408 DOI: 10.3390/ijms20133361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 11/16/2022] Open
Abstract
Small Ankyrins (sAnk1) are muscle-specific isoforms generated by the Ank1 gene that participate in the organization of the sarcoplasmic reticulum (SR) of striated muscles. Accordingly, the volume of SR tubules localized around the myofibrils is strongly reduced in skeletal muscle fibers of 4- and 10-month-old sAnk1 knockout (KO) mice, while additional structural alterations only develop with aging. To verify whether the lack of sAnk1 also alters intracellular Ca2+ handling, cytosolic Ca2+ levels were analyzed in stimulated skeletal muscle fibers from 4- and 10-month-old sAnk1 KO mice. The SR Ca2+ content was reduced in sAnk1 KO mice regardless of age. The amplitude of the Ca2+ transients induced by depolarizing pulses was decreased in myofibers of sAnk1 KO with respect to wild type (WT) fibers, while their voltage dependence was not affected. Furthermore, analysis of spontaneous Ca2+ release events (sparks) on saponin-permeabilized muscle fibers indicated that the frequency of sparks was significantly lower in fibers from 4-month-old KO mice compared to WT. Furthermore, both the amplitude and spatial spread of sparks were significantly smaller in muscle fibers from both 4- and 10-month-old KO mice compared to WT. These data suggest that the absence of sAnk1 results in an impairment of SR Ca2+ release, likely as a consequence of a decreased Ca2+ store due to the reduction of the SR volume in sAnk1 KO muscle fibers.
Collapse
Affiliation(s)
- Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - Péter Szentesi
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Dána Al-Gaadi
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, H-4002 Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Mónika Sztretye
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy
| | - László Csernoch
- Department of Physiology, Medical Faculty, University of Debrecen, H-4002 Debrecen, Hungary.
| |
Collapse
|
50
|
Wang Y, Liu R, Tian X, Fan X, Shi Y, Zhang W, Hou Q, Zhou G. Comparison of Activity, Expression, and S-Nitrosylation of Calcium Transfer Proteins between Pale, Soft, and Exudative and Red, Firm, and Non-exudative Pork during Post-Mortem Aging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3242-3248. [PMID: 30807139 DOI: 10.1021/acs.jafc.8b06448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The research was performed to investigate the difference of activity, expression, and S-nitrosylation of calcium transfer proteins between pale, soft, and exudative (PSE) and red, firm, and non-exudative (RFN) pork. Seven PSE and seven RFN pork longissimus thoracis (LT) muscles were chosen according to pH and L* at 1 h post-mortem and identified by drip loss at 24 h. The nitric oxide synthase (NOS) activity and neuronal nitric oxide synthase (nNOS) expression showed a significant difference between two groups ( p < 0.05). PSE meat had a considerably higher sarcoplasmic calcium concentration compared to RFN meat at 1 h post-mortem aging ( p < 0.05). In PSE meat, the expression of ryanodine receptor 1 (RyR1) and sarcoplasmic reticulum calcium ATPase 1 (SERCA1) was lower than that in RFN meat, while the relative S-nitrosylation level of RyR1 and SERCA1 was higher ( p < 0.05). In addition, a lower activity of SERCA was detected in PSE meat compared to RFN meat ( p < 0.05). Those results indicate that S-nitrosylation of RyR1 and SERCA1 can putatively play a crucial part in regulating calcium homeostasis. A high level of RyR1 and SERCA1 S-nitrosylation can induce the imbalance of calcium in cytoplasm, leading to accelerated pH decline and the development of PSE meat.
Collapse
Affiliation(s)
- Yingying Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture, and Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control , Nanjing Agricultural University ; Nanjing , Jiangsu 210095 , People's Republic of China
| | - Rui Liu
- College of Food Science and Engineering , Yangzhou University , Yangzhou , Jiangsu 225127 , People's Republic of China
| | - Xiaona Tian
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture, and Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control , Nanjing Agricultural University ; Nanjing , Jiangsu 210095 , People's Republic of China
| | - Xiaoquan Fan
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture, and Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control , Nanjing Agricultural University ; Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yingwu Shi
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture, and Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control , Nanjing Agricultural University ; Nanjing , Jiangsu 210095 , People's Republic of China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture, and Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control , Nanjing Agricultural University ; Nanjing , Jiangsu 210095 , People's Republic of China
| | - Qin Hou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture, and Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control , Nanjing Agricultural University ; Nanjing , Jiangsu 210095 , People's Republic of China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture, and Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control , Nanjing Agricultural University ; Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|