1
|
Yoshimaru D, Tsurugizawa T, Hayashi N, Hata J, Shibukawa S, Hagiya K, Oshiro H, Kishi N, Saito K, Okano H, Okano HJ. Relationship between regional volume changes and water diffusion in fixed marmoset brains: an in vivo and ex vivo comparison. Sci Rep 2024; 14:26901. [PMID: 39505977 PMCID: PMC11541870 DOI: 10.1038/s41598-024-78246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Ex vivo studies of the brain are often employed as experimental systems in neuroscience. In general, brains for ex vivo MRI studies are usually fixed with paraformaldehyde to preserve molecular structure and prevent tissue destruction during long-term storage. As a result, fixing brain tissue causes microstructural changes and a decrease in brain volume. Therefore, the purpose of this study was to investigate the regional effect of brain volume and microstructural changes on the restricted diffusion of water molecules in the common marmoset brain using in vivo and ex vivo brains from the same individual. We used 9.4T magnetic resonance imaging and also compared the T2-weighted images and diffusion-weighted imaging (DWI) data between in vivo and ex vivo brains to investigate changes in brain volume and diffusion of water molecules in 12 common marmosets. We compared fractional anisotropy, mean diffusivity, AD (axial diffusivity), and radial diffusivity values in white matter and gray matter between in vivo and ex vivo brains. We observed that AD showed the strongest correlation with regional volume changes in gray matter. The results showed a strong correlation between AD and changes in brain volume. By comparing the in vivo and ex vivo brains of the same individual, we identified significant correlations between the local effects of perfusion fixation on microstructural and volumetric changes of the brain and alterations in the restricted diffusion of water molecules within the brain. These findings provide valuable insights into the complex relationships between tissue fixation, brain structure, and water diffusion properties in the marmoset brain.
Collapse
Affiliation(s)
- Daisuke Yoshimaru
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Engineering, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tomokazu Tsurugizawa
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Engineering, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Hayashi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Junichi Hata
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shuhei Shibukawa
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
- Faculty of Health Science, Department of Radiological Technology, Juntendo University, Tokyo, Japan
| | - Kei Hagiya
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Hinako Oshiro
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Noriyuki Kishi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuhiro Saito
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
2
|
Naito E, Nakata K, Sakai H, Yamato O, Islam MS, Maeda S, Kamishina H. Diffusion tensor imaging-based quantitative analysis of the spinal cord in Pembroke Welsh Corgis with degenerative myelopathy. J Vet Med Sci 2021; 84:199-207. [PMID: 34897158 PMCID: PMC8920728 DOI: 10.1292/jvms.21-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Canine degenerative myelopathy (DM) is a progressive neurodegenerative disease of the
spinal cord. The diagnosis is based on the observation of clinical signs, genetic testing,
and exclusion of other spinal cord diseases, and a definitive diagnosis of DM can only be
confirmed by postmortem histopathological findings. The aim of this study was to
investigate the diagnostic ability of diffusion tensor imaging (DTI) for DM. Eight
DM-affected Pembroke Welsh Corgis, thirteen dogs with thoracolumbar intervertebral disk
herniation (IVDH), and six healthy control dogs were included. All dogs were scanned using
a 3.0-T MRI system. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA)
values were calculated for each intervertebral disk level slice between T8–T9 and L2–L3
intervertebral disk levels, and the entire area of the thoracolumbar spinal cord between
T8–T9 and L2–L3 intervertebral disk levels (T8–L3 region). The ADC and FA values of the
T8–L3 region were significantly lower in the DM group than in the IVDH group. The ADC
values for the T8–L3 region had a moderate negative correlation with clinical duration
(rs= −0.723, P=0.043); however, the FA
values of other intervertebral disk levels and T8–L3 region had no correlation with
clinical durations. The measurement of DTI indices can be used to quantitatively assess
neurodegeneration and may have diagnostic value for DM. In particular, the ADC value of
the T8–L3 region may aid in making a non-invasive premortem diagnosis of DM.
Collapse
Affiliation(s)
- Eiji Naito
- Joint Graduate School of Veterinary Sciences, Gifu University
| | - Kohei Nakata
- The Animal Medical Center of Gifu University, Faculty of Applied Biological Sciences, Gifu University
| | - Hiroki Sakai
- Joint Graduate School of Veterinary Sciences, Gifu University
| | - Osamu Yamato
- Joint Faculty of Veterinary Medicine Kagoshima University
| | | | - Sadatoshi Maeda
- Joint Graduate School of Veterinary Sciences, Gifu University.,The Animal Medical Center of Gifu University, Faculty of Applied Biological Sciences, Gifu University
| | - Hiroaki Kamishina
- Joint Graduate School of Veterinary Sciences, Gifu University.,The Animal Medical Center of Gifu University, Faculty of Applied Biological Sciences, Gifu University
| |
Collapse
|
3
|
Lee TH, Yang JT, Lin JR, Hu CJ, Chou WH, Lin CP, Chi NF. Protective effects of ischemic preconditioning against neuronal apoptosis and dendritic injury in the hippocampus are age-dependent. J Neurochem 2020; 155:430-447. [PMID: 32314365 DOI: 10.1111/jnc.15029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
Ischemic preconditioning with non-lethal ischemia can be protective against lethal forebrain ischemia. We hypothesized that aging may aggravate ischemic susceptibility and reduce brain plasticity against preconditioning. Magnetic resonance diffusion tensor imaging (DTI) is a sensitive tool to detect brain integrity and white matter architecture. This study used DTI and histopathology to investigate the effect of aging on ischemic preconditioning. In this study, adult and middle-aged male Mongolian gerbils were subjected to non-lethal 5-min forebrain ischemia (ischemic preconditioning) or sham-operation, followed by 3 days of reperfusion, and then lethal 15-min forebrain ischemia. A 9.4-Tesla MR imaging system was used to study DTI indices, namely fractional anisotropy (FA), mean diffusivity (MD), and intervoxel coherence (IC) in the hippocampal CA1 and dentate gyrus (DG) areas. In situ expressions of microtubule-associated protein 2 (MAP2, dendritic marker protein) and apoptosis were also examined. The 5-min ischemia did not cause dendritic and neuronal injury and any significant change in DTI indices and MAP2 in adult and middle-aged gerbils. The 15-min ischemia-induced significant delayed neuronal apoptosis and early dendritic injury evidenced by DTI and MAP2 studies in both CA1 and DG areas with more severe injury in middle-aged gerbils than adult gerbils. Ischemic preconditioning could improve neuronal apoptosis in CA1 area and dendritic integrity in both CA1 and DG areas with better improvement in adult gerbils than middle-aged gerbils. This study thus suggests an age-dependent protective effect of ischemic preconditioning against both neuronal apoptosis and dendritic injury in hippocampus after forebrain ischemia.
Collapse
Affiliation(s)
- Tsong-Hai Lee
- Stroke Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jr-Rung Lin
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Hai Chou
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Nai-Fang Chi
- Department of Neurology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
4
|
Gangolli M, Holleran L, Hee Kim J, Stein TD, Alvarez V, McKee AC, Brody DL. Quantitative validation of a nonlinear histology-MRI coregistration method using generalized Q-sampling imaging in complex human cortical white matter. Neuroimage 2017; 153:152-167. [PMID: 28365421 DOI: 10.1016/j.neuroimage.2017.03.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022] Open
Abstract
Advanced diffusion MRI methods have recently been proposed for detection of pathologies such as traumatic axonal injury and chronic traumatic encephalopathy which commonly affect complex cortical brain regions. However, radiological-pathological correlations in human brain tissue that detail the relationship between the multi-component diffusion signal and underlying pathology are lacking. We present a nonlinear voxel based two dimensional coregistration method that is useful for matching diffusion signals to quantitative metrics of high resolution histological images. When validated in ex vivo human cortical tissue at a 250×250×500 μm spatial resolution, the method proved robust in correlations between generalized q-sampling imaging and histologically based white matter fiber orientations, with r=0.94 for the primary fiber direction and r=0.88 for secondary fiber direction in each voxel. Importantly, however, the correlation was substantially worse with reduced spatial resolution or with fiber orientations derived using a diffusion tensor model. Furthermore, we have detailed a quantitative histological metric of white matter fiber integrity termed power coherence capable of distinguishing architecturally complex but intact white matter from disrupted white matter regions. These methods may allow for more sensitive and specific radiological-pathological correlations of neurodegenerative diseases affecting complex gray and white matter.
Collapse
Affiliation(s)
- Mihika Gangolli
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | - Laurena Holleran
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joong Hee Kim
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA
| | - Victor Alvarez
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA
| | - David L Brody
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Tran N, Giannakidis A, Gullberg GT, Seo Y. Quantitative analysis of hypertrophic myocardium using diffusion tensor magnetic resonance imaging. J Med Imaging (Bellingham) 2016; 3:046001. [PMID: 27872872 DOI: 10.1117/1.jmi.3.4.046001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/28/2016] [Indexed: 11/14/2022] Open
Abstract
Systemic hypertension is a causative factor in left ventricular hypertrophy (LVH). This study is motivated by the potential to reverse or manage the dysfunction associated with structural remodeling of the myocardium in this pathology. Using diffusion tensor magnetic resonance imaging, we present an analysis of myocardial fiber and laminar sheet orientation in ex vivo hypertrophic (6 SHR) and normal (5 WKY) rat hearts using the covariance of the diffusion tensor. First, an atlas of normal cardiac microstructure was formed using the WKY b0 images. Then, the SHR and WKY b0 hearts were registered to the atlas. The acquired deformation fields were applied to the SHR and WKY heart tensor fields followed by the preservation of principal direction (PPD) reorientation strategy. A mean tensor field was then formed from the registered WKY tensor images. Calculating the covariance of the registered tensor images about this mean for each heart, the hypertrophic myocardium exhibited significantly increased myocardial fiber derangement ([Formula: see text]) with a mean dispersion of 38.7 deg, and an increased dispersion of the laminar sheet normal ([Formula: see text]) of 54.8 deg compared with 34.8 deg and 51.8 deg, respectively, in the normal hearts. Results demonstrate significantly altered myocardial fiber and laminar sheet structure in rats with hypertensive LVH.
Collapse
Affiliation(s)
- Nicholas Tran
- University of California , Department of Radiology and Biomedical Imaging, Physics Research Laboratory, 185 Berry Street, Ste 350, San Francisco, United States
| | - Archontis Giannakidis
- Royal Brompton Hospital, Cardiovascular Biomedical Research Unit, Sydney Street, London SW3 6NP, United Kingdom; National Heart and Lung Institute, Imperial College London, Sydney Street, London SW3 6NP, United Kingdom; Lawrence Berkeley National Laboratory, Structural Biology and Imaging Department, One Cyclotron Road, Berkeley, California, United States
| | - Grant T Gullberg
- University of California, Department of Radiology and Biomedical Imaging, Physics Research Laboratory, 185 Berry Street, Ste 350, San Francisco, United States; Lawrence Berkeley National Laboratory, Structural Biology and Imaging Department, One Cyclotron Road, Berkeley, California, United States; University of California, Joint Graduate Group in Bioengineering, 1700 4th Street, San Francisco, United States
| | - Youngho Seo
- University of California, Department of Radiology and Biomedical Imaging, Physics Research Laboratory, 185 Berry Street, Ste 350, San Francisco, United States; Lawrence Berkeley National Laboratory, Structural Biology and Imaging Department, One Cyclotron Road, Berkeley, California, United States; University of California, Joint Graduate Group in Bioengineering, 1700 4th Street, San Francisco, United States; University of California, Department of Radiation Oncology, 1600 Divisadero Street, San Francisco, United States
| |
Collapse
|
6
|
Gimenez U, Perles-Barbacaru AT, Millet A, Appaix F, El-Atifi M, Pernet-Gallay K, van der Sanden B, Berger F, Lahrech H. Microscopic DTI accurately identifies early glioma cell migration: correlation with multimodal imaging in a new glioma stem cell model. NMR IN BIOMEDICINE 2016; 29:1553-1562. [PMID: 27717043 DOI: 10.1002/nbm.3608] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Monitoring glioma cell infiltration in the brain is critical for diagnosis and therapy. Using a new glioma Glio6 mouse model derived from human stem cells we show how diffusion tensor imaging (DTI) may predict glioma cell migration/invasion. In vivo multiparametric MRI was performed at one, two and three months of Glio6 glioma growth (Glio6 (n = 6), sham (n = 3)). This longitudinal study reveals the existence of a time window to study glioma cell/migration/invasion selectively. Indeed, at two months only Glio6 cell invasion was detected, while tumor mass formation, edema, blood-brain barrier leakage and tumor angiogenesis were detected later, at three months. To robustly confirm the potential of DTI for detecting glioma cell migration/invasion, a microscopic 3D-DTI (80 μm isotropic spatial resolution) technique was developed and applied to fixed mouse brains (Glio6 (n = 6), sham (n = 3)). DTI changes were predominant in the corpus callosum (CC), a known path of cell migration. Fractional anisotropy (FA) and perpendicular diffusivity (D⊥ ) changes derived from ex vivo microscopic 3D-DTI were significant at two months of tumor growth. In the caudate putamen an FA increase of +38% (p < 0.001) was observed, while in the CC a - 28% decrease in FA (p < 0.005) and a + 95% increase in D⊥ (p < 0.005) were observed. In the CC, DTI changes and fluorescent Glio6 cell density obtained by two-photon microscopy in the same brains were correlated (p < 0.001, r = 0.69), validating FA and D⊥ as early quantitative biomarkers to detect glioma cell migration/invasion. The origin of DTI changes was assessed by electron microscopy of the same tract, showing axon bundle disorganization. During the first two months, Glio6 cells display a migratory phenotype without being associated with the constitution of a brain tumor mass. This offers a unique opportunity to apply microscopic 3D-DTI and to validate DTI parameters FA and D⊥ as biomarkers for glioma cell invasion.
Collapse
Affiliation(s)
| | | | | | - Florence Appaix
- Grenoble Institut des Neurosciences Inserm U836, Grenoble, France
| | | | | | | | | | | |
Collapse
|
7
|
Gilani N, Malcolm P, Johnson G. A model describing diffusion in prostate cancer. Magn Reson Med 2016; 78:316-326. [PMID: 27439379 DOI: 10.1002/mrm.26340] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022]
Abstract
PURPOSE Quantitative diffusion MRI has frequently been studied as a means of grading prostate cancer. Interpretation of results is complicated by the nature of prostate tissue, which consists of four distinct compartments: vascular, ductal lumen, epithelium, and stroma. Current diffusion measurements are an ill-defined weighted average of these compartments. In this study, prostate diffusion is analyzed in terms of a model that takes explicit account of tissue compartmentalization, exchange effects, and the non-Gaussian behavior of tissue diffusion. METHOD The model assumes that exchange between the cellular (ie, stromal plus epithelial) and the vascular and ductal compartments is slow. Ductal and cellular diffusion characteristics are estimated by Monte Carlo simulation and a two-compartment exchange model, respectively. Vascular pseudodiffusion is represented by an additional signal at b = 0. Most model parameters are obtained either from published data or by comparing model predictions with the published results from 41 studies. Model prediction error is estimated using 10-fold cross-validation. RESULTS Agreement between model predictions and published results is good. The model satisfactorily explains the variability of ADC estimates found in the literature. CONCLUSION A reliable model that predicts the diffusion behavior of benign and cancerous prostate tissue of different Gleason scores has been developed. Magn Reson Med 78:316-326, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Nima Gilani
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Paul Malcolm
- Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Glyn Johnson
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
8
|
Deep Into the Fibers! Postmortem Diffusion Tensor Imaging in Forensic Radiology. Am J Forensic Med Pathol 2015; 36:153-61. [DOI: 10.1097/paf.0000000000000177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Caron I, Micotti E, Paladini A, Merlino G, Plebani L, Forloni G, Modo M, Bendotti C. Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis. PLoS One 2015; 10:e0132159. [PMID: 26132656 PMCID: PMC4488470 DOI: 10.1371/journal.pone.0132159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/10/2015] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal disease due to motoneuron degeneration. Magnetic resonance imaging (MRI) is becoming a promising non-invasive approach to monitor the disease course but a direct correlation with neuropathology is not feasible in human. Therefore in this study we aimed to examine MRI changes in relation to histopathology in two mouse models of ALS (C57BL6/J and 129S2/SvHsd SOD1G93A mice) with different disease onset and progression. A longitudinal in vivo analysis of T2 maps, compared to ex vivo histological changes, was performed on cranial motor nuclei. An increased T2 value was associated with a significant tissue vacuolization that occurred prior to motoneuron loss in the cranial nuclei of C57 SOD1G93A mice. Conversely, in 129Sv SOD1G93A mice, which exhibit a more severe phenotype, MRI detected a milder increase of T2 value, associated with a milder vacuolization. This suggests that alteration within brainstem nuclei is not predictive of a more severe phenotype in the SOD1G93A mouse model. Using an ex vivo paradigm, Diffusion Tensor Imaging was also applied to study white matter spinal cord degeneration. In contrast to degeneration of cranial nuclei, alterations in white matter and axons loss reflected the different disease phenotype of SOD1G93A mice. The correspondence between MRI and histology further highlights the potential of MRI to monitor progressive motoneuron and axonal degeneration non-invasively in vivo. The identification of prognostic markers of the disease nevertheless requires validation in multiple models of ALS to ensure that these are not merely model-specific. Eventually this approach has the potential to lead to the development of robust and validated non-invasive imaging biomarkers in ALS patients, which may help to monitor the efficacy of therapies.
Collapse
Affiliation(s)
- Ilaria Caron
- Laboratory of Molecular Neurobiology, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Edoardo Micotti
- Laboratory of Biology of neurodegenerative disorders, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Alessandra Paladini
- Laboratory of Biology of neurodegenerative disorders, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Giuseppe Merlino
- Laboratory of Molecular Neurobiology, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Laura Plebani
- Laboratory of Molecular Neurobiology, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Gianluigi Forloni
- Laboratory of Biology of neurodegenerative disorders, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Michel Modo
- McGowan Institute for Regenerative Medicine & Centre for the Neural Basis of Cognition, Departments of Radiology & Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Neuroscience Department, IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
- * E-mail:
| |
Collapse
|
10
|
Arthurs OJ, Price GC, Carmichael DW, Jones R, Norman W, Taylor AM, Sebire NJ. Diffusion-weighted perinatal postmortem magnetic resonance imaging as a marker of postmortem interval. Eur Radiol 2014; 25:1399-406. [PMID: 25519976 PMCID: PMC4392167 DOI: 10.1007/s00330-014-3525-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/15/2014] [Accepted: 11/19/2014] [Indexed: 12/17/2022]
Abstract
Objective To evaluate perinatal body organ apparent diffusion coefficient (ADC) values at postmortem magnetic resonance imaging (PMMR) in order to evaluate postmortem changes. Methods Postmortem diffusion-weighted imaging (DWI) of the thorax and abdomen were performed with diffusion gradient values b = 0, 500, and 1000 s/mm2 on 15 foetal and childhood cases (mean 33.3 ± 7.8 weeks gestation) compared to 44 live infants (mean age 75.5 ± 53.4 days). Mean ADC values were calculated from regions of interest (ROIs) for the lungs, liver, spleen and renal cortex, compared to normative live infantile body ADC values of similar gestational age. Results Mean ADC values were significantly lower in postmortem cases than in normal controls for liver (0.88 10-3 mm2/s ± SD 0.39 vs. 1.13 ± 0.13; p < 0.05) and renal cortex (0.85 ± 0.26 vs. 1.19 ± 0.13; p < 0.05) but not spleen or muscle. Mean lung ADC values were significantly higher than normal controls (1.06 ± 0.18 vs. 0 ± 0; p < 0.001), and there was a significant correlation between postmortem interval and lung ADC (R2 = 0.55). Conclusion Lung PMMR ADC values are related to postmortem interval, making them a potential marker of time since death. Further research is needed to understand the organ-specific changes which occur in the postmortem period. Key Points • Liver and spleen PM ADC values were lower than controls. • Lung ADC changes correlate with PM interval. • These findings may be useful in medicolegal cases.
Collapse
Affiliation(s)
- Owen J Arthurs
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK,
| | | | | | | | | | | | | |
Collapse
|
11
|
Ouyang A, Jeon T, Sunkin SM, Pletikos M, Sedmak G, Sestan N, Lein ES, Huang H. Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging. Methods 2014; 73:27-37. [PMID: 25448302 DOI: 10.1016/j.ymeth.2014.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 09/08/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023] Open
Abstract
During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain.
Collapse
Affiliation(s)
- Austin Ouyang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Tina Jeon
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Susan M Sunkin
- Allen Institute for Brain Science, Seattle, WA, United States
| | - Mihovil Pletikos
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Goran Sedmak
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States; University of Zagreb School of Medicine, Croatian Institute for Brain Research, Salata 12, 10 000 Zagreb, Croatia
| | - Nenad Sestan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, United States
| | - Hao Huang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
12
|
Budde MD, Shah A, McCrea M, Cullinan WE, Pintar FA, Stemper BD. Primary blast traumatic brain injury in the rat: relating diffusion tensor imaging and behavior. Front Neurol 2013; 4:154. [PMID: 24133481 PMCID: PMC3796287 DOI: 10.3389/fneur.2013.00154] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/21/2013] [Indexed: 12/14/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) among military personnel is at its highest point in U.S. history. Experimental animal models of blast have provided a wealth of insight into blast injury. The mechanisms of neurotrauma caused by blast, however, are still under debate. Specifically, it is unclear whether the blast shockwave in the absence of head motion is sufficient to induce brain trauma. In this study, the consequences of blast injury were investigated in a rat model of primary blast TBI. Animals were exposed to blast shockwaves with peak reflected overpressures of either 100 or 450 kPa (39 and 110 kPa incident pressure, respectively) and subsequently underwent a battery of behavioral tests. Diffusion tensor imaging (DTI), a promising method to detect blast injury in humans, was performed on fixed brains to detect and visualize the spatial dependence of blast injury. Blast TBI caused significant deficits in memory function as evidenced by the Morris Water Maze, but limited emotional deficits as evidenced by the Open Field Test and Elevated Plus Maze. Fractional anisotropy, a metric derived from DTI, revealed significant brain abnormalities in blast-exposed animals. A significant relationship between memory deficits and brain microstructure was evident in the hippocampus, consistent with its role in memory function. The results provide fundamental insight into the neurological consequences of blast TBI, including the evolution of injury during the sub-acute phase and the spatially dependent pattern of injury. The relationship between memory dysfunction and microstructural brain abnormalities may provide insight into the persistent cognitive difficulties experienced by soldiers exposed to blast neurotrauma and may be important to guide therapeutic and rehabilitative efforts.
Collapse
Affiliation(s)
- Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA
| | | | | | | | | | | |
Collapse
|
13
|
Oguz I, Yaxley R, Budin F, Hoogstoel M, Lee J, Maltbie E, Liu W, Crews FT. Comparison of magnetic resonance imaging in live vs. post mortem rat brains. PLoS One 2013; 8:e71027. [PMID: 23967148 PMCID: PMC3742751 DOI: 10.1371/journal.pone.0071027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 06/29/2013] [Indexed: 11/19/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) is an increasingly popular technique for examining neurobiology in rodents because it is both noninvasive and nondestructive. MRI scans can be acquired from either live or post mortem specimens. In vivo scans have a key advantage in that subjects can be scanned at multiple time-points in longitudinal studies. However, repeated exposure to anesthesia and stress may confound studies. In contrast, post mortem scans offer improved image quality and increased signal-to-noise ratio (SNR) due to several key advantages: First, the images are not disrupted by motion and pulsation artifacts. Second, they allow the brain tissue to be perfused with contrast agents, enhancing tissue contrast. Third, they allow longer image acquisition times, yielding higher resolution and/or improved SNR. Fourth, they allow assessment of groups of animals at the same age without scheduling complications. Despite these advantages, researchers are often skeptical of post mortem MRI scans because of uncertainty about whether the fixation process alters the MRI measurements. To address these concerns, we present a thorough comparative study of in vivo and post mortem MRI scans in healthy male Wistar rats at three age points throughout adolescence (postnatal days 28 through 80). For each subject, an in vivo scan was acquired, followed by perfusion and two post mortem scans at two different MRI facilities. The goal was to assess robustness of measurements, to detect any changes in volumetric measurements after fixation, and to investigate any differential bias that may exist between image acquisition techniques. We present this volumetric analysis for comparison of 22 anatomical structures between in vivo and post mortem scans. No significant changes in volumetric measurements were detected; however, as hypothesized, the image quality is dramatically improved in post mortem scans. These findings illustrate the validity and utility of using post mortem scans in volumetric neurobiological studies.
Collapse
Affiliation(s)
- Ipek Oguz
- University of North Carolina at Chapel Hill, Department of Psychiatry, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Oguz I, McMurray MS, Styner M, Johns JM. The translational role of diffusion tensor image analysis in animal models of developmental pathologies. Dev Neurosci 2012; 34:5-19. [PMID: 22627095 DOI: 10.1159/000336825] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 01/24/2012] [Indexed: 12/31/2022] Open
Abstract
Diffusion tensor magnetic resonance imaging (DTI) has proven itself a powerful technique for clinical investigation of the neurobiological targets and mechanisms underlying developmental pathologies. The success of DTI in clinical studies has demonstrated its great potential for understanding translational animal models of clinical disorders, and preclinical animal researchers are beginning to embrace this new technology to study developmental pathologies. In animal models, genetics can be effectively controlled, drugs consistently administered, subject compliance ensured, and image acquisition times dramatically increased to reduce between-subject variability and improve image quality. When pairing these strengths with the many positive attributes of DTI, such as the ability to investigate microstructural brain organization and connectivity, it becomes possible to delve deeper into the study of both normal and abnormal development. The purpose of this review is to provide new preclinical investigators with an introductory source of information about the analysis of data resulting from small animal DTI studies to facilitate the translation of these studies to clinical data. In addition to an in-depth review of translational analysis techniques, we present a number of relevant clinical and animal studies using DTI to investigate developmental insults in order to further illustrate techniques and to highlight where small animal DTI could potentially provide a wealth of translational data to inform clinical researchers.
Collapse
Affiliation(s)
- Ipek Oguz
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
15
|
Kim JH, Song SK, Burke DA, Magnuson DSK. Comprehensive locomotor outcomes correlate to hyperacute diffusion tensor measures after spinal cord injury in the adult rat. Exp Neurol 2011; 235:188-96. [PMID: 22119625 DOI: 10.1016/j.expneurol.2011.11.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 10/10/2011] [Accepted: 11/10/2011] [Indexed: 01/02/2023]
Abstract
In adult rats, locomotor deficits following a contusive thoracic spinal cord injury (SCI) are caused primarily by white matter loss/dysfunction at the epicenter. This loss/dysfunction decreases descending input from the brain and cervical spinal cord, and decreases ascending signals in long propriospinal, spinocerebellar and somatosensory pathways, among many others. Predicting the long-term functional consequences of a contusive injury acutely, without knowledge of the injury severity is difficult due to the temporary flaccid paralysis and loss of reflexes that accompany spinal shock. It is now well known that recovery of high quality hindlimb stepping requires only 12-15% spared white matter at the epicenter, but that forelimb-hindlimb coordination and precision stepping (grid or horizontal ladder) require substantially more trans-contusion communication. In order to translate our understanding of the neural substrates for functional recovery in the rat to the clinical arena, common outcome measures and imaging modalities are required. In the current study we furthered the exploration of one of these approaches, diffusion tensor magnetic resonance imaging (DTI), a technique now used commonly to image the brain in clinical research but rarely used diagnostically or prognostically for spinal cord injury. In the adult rat model of SCI, we found that hyperacute (<3h post-injury) DTI of the lateral and ventral white matter at the injury epicenter was predictive of both electrophysiological and behavioral (locomotor) recovery at 4 weeks post-injury, despite the presence of flaccid paralysis/spinal shock. Regions of white matter with a minimum axial diffusivity of 1.5 μm(2)/ms at 3h were able to conduct action potentials at 4 weeks, and axial diffusivity within the lateral funiculus was highly predictive of locomotor function at 4 weeks. These observations suggest that acute DTI should be useful to provide functional predictions for spared white matter following contusive spinal cord injuries clinically.
Collapse
Affiliation(s)
- Joong H Kim
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
16
|
Zollinger LV, Kim TH, Hill K, Jeong EK, Rose JW. Using diffusion tensor imaging and immunofluorescent assay to evaluate the pathology of multiple sclerosis. J Magn Reson Imaging 2011; 33:557-64. [PMID: 21516179 DOI: 10.1002/jmri.22502] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To determine the ability of the principal diffusion tensor imaging (DTI) indices to predict the underlying histopathology evaluated with immunofluorescent assay (IFA). MATERIALS AND METHODS Conventional T2 and 3D multishot-diffusion weighted echoplanar imaging (3D ms-DWEPI) was performed on a fixed, ex vivo human cervical spinal cord (CSC) from a patient with a history of multiple sclerosis (MS). In all, 170 regions of interest (ROIs) were selected within the white matter and categorized as a high intensity lesion (HIL), low intensity lesion (LIL), and normal-appearing white matter (NAWM). The longitudinal diffusivity (λl), radial diffusivity (λr), and fractional anisotropy (FA) were obtained from each ROI. The underlying histopathology was then evaluated using immunofluorescent assay with antibodies directed to myelin and neurofilament staining. RESULTS The mean values for λl and λr were significantly elevated within HIL relative to NAWM and LIL. IFA analysis of HIL demonstrated significant demyelination, without significant if any axon loss. The FA values were significantly reduced in HIL and LILs. FA values were also reduced in lesions with increased λl and λr values relative to normal. CONCLUSION Aberrant λl, λr, and FA relative to normal values are strong indicators of demyelination. DTI indices are not specific for axon loss. IFA analysis is a reliable method to demonstrate myelin and axon pathology within the ex vivo setting.
Collapse
Affiliation(s)
- Lauren V Zollinger
- University of Utah Department of Radiology, Salt Lake City, Utah 84123-2140, USA.
| | | | | | | | | |
Collapse
|
17
|
Miller KL, Stagg CJ, Douaud G, Jbabdi S, Smith SM, Behrens TEJ, Jenkinson M, Chance SA, Esiri MM, Voets NL, Jenkinson N, Aziz TZ, Turner MR, Johansen-Berg H, McNab JA. Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner. Neuroimage 2011; 57:167-181. [PMID: 21473920 PMCID: PMC3115068 DOI: 10.1016/j.neuroimage.2011.03.070] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/12/2011] [Accepted: 03/25/2011] [Indexed: 11/05/2022] Open
Abstract
Diffusion imaging of post mortem brains has great potential both as a reference for brain specimens that undergo sectioning, and as a link between in vivo diffusion studies and "gold standard" histology/dissection. While there is a relatively mature literature on post mortem diffusion imaging of animals, human brains have proven more challenging due to their incompatibility with high-performance scanners. This study presents a method for post mortem diffusion imaging of whole, human brains using a clinical 3-Tesla scanner with a 3D segmented EPI spin-echo sequence. Results in eleven brains at 0.94 × 0.94 × 0.94 mm resolution are presented, and in a single brain at 0.73 × 0.73 × 0.73 mm resolution. Region-of-interest analysis of diffusion tensor parameters indicate that these properties are altered compared to in vivo (reduced diffusivity and anisotropy), with significant dependence on post mortem interval (time from death to fixation). Despite these alterations, diffusion tractography of several major tracts is successfully demonstrated at both resolutions. We also report novel findings of cortical anisotropy and partial volume effects.
Collapse
Affiliation(s)
- Karla L Miller
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Charlotte J Stagg
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gwenaëlle Douaud
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Saad Jbabdi
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stephen M Smith
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Timothy E J Behrens
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mark Jenkinson
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Steven A Chance
- Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Margaret M Esiri
- Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Natalie L Voets
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ned Jenkinson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Martin R Turner
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Heidi Johansen-Berg
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jennifer A McNab
- A.A.Martinos Centre, Massachusetts General Hospital, Boston, USA
| |
Collapse
|
18
|
Abstract
Different MR techniques, such as relaxation times, diffusion, perfusion, and spectroscopy have been employed to study rodent spinal cord. In this chapter, a description of these methods is given, along with examples of normal metrics that can be derived from the MR acquisitions, as well as examples of applications to pathology.
Collapse
Affiliation(s)
- Virginie Callot
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 6612, CNRS, Université de la Méditerranée, 13385 Marseille Cedex 05, France.
| | | | | |
Collapse
|
19
|
Callot V, Duhamel G, Le Fur Y, Decherchi P, Marqueste T, Kober F, Cozzone PJ. Echo planar diffusion tensor imaging of the mouse spinal cord at thoracic and lumbar levels: A feasibility study. Magn Reson Med 2010; 63:1125-34. [PMID: 20373416 DOI: 10.1002/mrm.22301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diffusion tensor imaging is increasingly used for probing spinal cord (SC) pathologies, especially in mouse models of human diseases. However, diffusion tensor imaging series requires a long acquisition time and mouse experiments rarely use rapid imaging techniques such as echo planar imaging. A recent preliminary study demonstrated the feasibility and robustness of the echo planar imaging sequence for mouse cervical SC diffusion tensor imaging investigations. The feasibility of echo planar imaging at thoracic and lumbar levels, however, remained unknown due to bulk motion, field inhomogeneities, and off-centering of the SC in the axial plane. In the present study, the feasibility and the robustness of an echo planar imaging-based diffusion tensor imaging sequence for mouse thoracic and lumbar SC investigations is demonstrated. Quantitative and accurate diffusion tensor imaging metrics, as well as high spatially resolved images, have been obtained. This successful demonstration may open new perspectives in the field of mouse SC imaging. Echo planar imaging is used in several imaging modalities, such as relaxometry or perfusion, and may prove to be very attractive for multimodal MR investigations to acquire a more detailed characterization of the SC tissue.
Collapse
Affiliation(s)
- Virginie Callot
- Centre de Résonance Magnétique Biologique et Médicale, Faculté de Médecine de Marseille, Université de la Méditerranée (Aix-Marseille II), Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
20
|
Widjaja E, Geibprasert S, Mahmoodabadi SZ, Blaser S, Brown NE, Shannon P. Alteration of human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging. AJNR Am J Neuroradiol 2010; 31:1091-9. [PMID: 20075102 DOI: 10.3174/ajnr.a1985] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The subplate layer and intermediate zone are the precursors for neonatal white matter. The aims of this study were to evaluate 1) T1 and T2 signal intensity, and 2) FA of subplate and intermediate zone in postmortem fetuses and correlate with histology, and 3) T2 signal intensity of subplate and intermediate zone on antenatal MR imaging. MATERIALS AND METHODS Fourteen immersion-fixed normal brains from 18 to 25 gestational weeks underwent 1.5T MR imaging, including DTI and histologic examination. The subplate and intermediate zone were graded on a scale of 1-5 on T1 and T2, and FAs were evaluated and then correlated with age. Seventeen antenatal MR images from 20 to 26 gestational weeks with normal brain were evaluated by using the same grading. RESULTS On T1 postmortem MR imaging, subplate has lower signal intensity compared with intermediate zone; subplate signal intensity correlated positively (r = 0.66, P = .012) with age, and intermediate zone signal intensity correlated negatively (r = -0.78, P = .001) with age. On T2 postmortem MR imaging, subplate has higher signal intensity compared with intermediate zone and remained persistently high in signal intensity; intermediate zone signal intensity showed moderate correlation (r = 0.48, P = .086) with age. FA of subplate correlated positively (r = 0.55, P < .001) with age; FA of intermediate zone correlated negatively (r = -0.64, P < .0001) with age. On histology, extracellular matrix decreased and cellularity increased in subplate layer, tangentially organized cellularity decreased, and projecting fibers became thicker in intermediate zone with increasing gestation. The findings on T2-weighted antenatal MR imaging were similar to T2-weighted postmortem MR imaging. CONCLUSIONS The changes in signal intensity and FA of subplate and intermediate zone in the second trimester reflect microstructural changes on histology.
Collapse
Affiliation(s)
- E Widjaja
- Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
Tatar I, Chou PCT, Desouki MM, El Sayed H, Bilgen M. Evaluating regional blood spinal cord barrier dysfunction following spinal cord injury using longitudinal dynamic contrast-enhanced MRI. BMC Med Imaging 2009; 9:10. [PMID: 19519898 PMCID: PMC2714086 DOI: 10.1186/1471-2342-9-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Accepted: 06/11/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vivo preclinical imaging of spinal cord injury (SCI) in rodent models provides clinically relevant information in translational research. This paper uses multimodal magnetic resonance imaging (MRI) to investigate neurovascular pathology and changes in blood spinal cord barrier (BSCB) permeability following SCI in a mouse model of SCI. METHODS C57BL/6 female mice (n = 5) were subjected to contusive injury at the thoracic T11 level and scanned on post injury days 1 and 3 using anatomical, dynamic contrast-enhanced (DCE-MRI) and diffusion tensor imaging (DTI). The injured cords were evaluated postmortem with histopathological stains specific to neurovascular changes. A computational model was implemented to map local changes in barrier function from the contrast enhancement. The area and volume of spinal cord tissue with dysfunctional barrier were determined using semi-automatic segmentation. RESULTS Quantitative maps derived from the acquired DCE-MRI data depicted the degree of BSCB permeability variations in injured spinal cords. At the injury sites, the damaged barriers occupied about 70% of the total cross section and 48% of the total volume on day 1, but the corresponding measurements were reduced to 55% and 25%, respectively on day 3. These changes implied spatio-temporal remodeling of microvasculature and its architecture in injured SC. Diffusion computations included longitudinal and transverse diffusivities and fractional anisotropy index. Comparison of permeability and diffusion measurements indicated regions of injured cords with dysfunctional barriers had structural changes in the form of greater axonal loss and demyelination, as supported by histopathologic assessments. CONCLUSION The results from this study collectively demonstrated the feasibility of quantitatively mapping regional BSCB dysfunction in injured cord in mouse and obtaining complementary information about its structural integrity using in vivo DCE-MRI and DTI protocols. This capability is expected to play an important role in characterizing the neurovascular changes and reorganization following SCI in longitudinal preclinical experiments, but with potential clinical implications.
Collapse
Affiliation(s)
- Ilkan Tatar
- Preclinical Imaging in Translational Research Laboratory, Radiology and Radiological Science, Medical University of South Carolina, 169 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
22
|
DTI abnormalities in anterior corpus callosum of rats with spike-wave epilepsy. Neuroimage 2009; 47:459-66. [PMID: 19398019 DOI: 10.1016/j.neuroimage.2009.04.060] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/08/2009] [Accepted: 04/15/2009] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Absence epilepsy is a common seizure disorder in children which can produce chronic psychosocial sequelae. Human patients and rat absence models show bilateral spike-wave discharges (SWD) in cortical regions. We employed diffusion tensor imaging (DTI) in rat absence models to detect abnormalities in white matter pathways connecting regions of seizure activity. METHODS We studied Wistar albino Glaxo rats of Rijswijk (WAG/Rij), genetic absence epilepsy rats of Strasbourg (GAERS), and corresponding nonepileptic control strains. Ex vivo DTI was performed at 9.4 T with diffusion gradients applied in 16 orientations. We compared fractional anisotropy (FA), perpendicular (lambda(perpendicular)) and parallel (lambda(||)) diffusivity between groups using t-maps and region of interest (ROI) measurements. RESULTS Adult epileptic WAG/Rij rats exhibited a localized decrease in FA in the anterior corpus callosum. This area was confirmed by tractography to interconnect somatosensory cortex regions most intensely involved in seizures. This FA decrease was not present in young WAG/Rij rats before onset of SWD. GAERS, which have more severe SWD than WAG/Rij, exhibited even more pronounced callosal FA decreases. Reduced FA in the epileptic animals originated from an increased lambda(perpendicular) with no significant changes in lambda(||). INTERPRETATION Reduced FA with increased lambda(perpendicular) suggests that chronic seizures cause reduction in myelin or decreased axon fiber density in white matter pathways connecting regions of seizure activity. These DTI abnormalities may improve the understanding of chronic neurological difficulties in children suffering with absence epilepsy, and may also serve as a noninvasive biomarker for monitoring beneficial effects of treatment.
Collapse
|
23
|
Kim TH, Zollinger L, Shi XF, Rose J, Jeong EK. Diffusion tensor imaging of ex vivo cervical spinal cord specimens: the immediate and long-term effects of fixation on diffusivity. Anat Rec (Hoboken) 2009; 292:234-41. [PMID: 19051255 DOI: 10.1002/ar.20823] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diffusion tensor imaging (DTI) is an emerging noninvasive method for evaluating tissue microstructure, but is highly susceptible to in vivo motion artifact. Ex vivo experiments on fixed tissues are needed to improve DTI techniques, which require fixed tissue specimens. Several efforts have been made to study the effect of fixation on both human and mouse tissue, with varying results. Four human cervical cords and three segments of pig cervical spinal cord specimens were imaged both before and after tissue fixation using 3D multishot diffusion weighted imaging (ms-DWEPI). Fixation caused a significant decrease in the longitudinal diffusivity whereas the relative anisotropy (RA) and radial diffusivity remained unaffected. Additionally, once adequately preserved, the diffusivity parameters of fixed tissue remain constant over time. Fixation has important effects on the diffusivity of tissue specimens. These findings have important implications for the determination of tissue microstructure and function using DTI technologies.
Collapse
Affiliation(s)
- T H Kim
- Department of Radiology, University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108-1218, USA
| | | | | | | | | |
Collapse
|
24
|
Widjaja E, Wei X, Vidarsson L, Moineddin R, Macgowan CK, Nilsson D. Alteration of diffusion tensor parameters in postmortem brain. Magn Reson Imaging 2009; 27:865-70. [PMID: 19152773 DOI: 10.1016/j.mri.2008.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/02/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
In autopsy of humans, there is usually an interval of hours to days between death and tissue fixation, during which the cadaver is stored below room temperature to retard tissue autolysis. We have attempted to model this process and evaluate the alteration in diffusion indices of the postmortem brain in pigs, which were kept at 4 degrees C. The pigs were scanned prior to death and at 3, 6, 9, 12, 18, 24, 30, 36, 42, 48 and 72 h postmortem. Regions of interest were placed in the corpus callosum, internal capsule, periventricular and subcortical white matter anteriorly and posteriorly. There was a slight increase in fractional anisotropy (FA) in the first 3 h postmortem. The FA remained stable up to 72 h postmortem. There was a marked decrease in trace, eigenmajor (lambda major), eigenmedium (lambda medium) and eigenminor (lambda minor), particularly in the first 3 h following death. This study supports the utility of measuring diffusion anisotropy if the time elapsed between death and tissue fixation is within 3 days. However, trace and eigenvalues decreased markedly within the first few hours postmortem. Therefore trace and eigenvalues obtained from ex vivo studies cannot be extrapolated to in vivo studies.
Collapse
Affiliation(s)
- Elysa Widjaja
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.
| | | | | | | | | | | |
Collapse
|
25
|
Gao W, Lin W, Chen Y, Gerig G, Smith JK, Jewells V, Gilmore JH. Temporal and spatial development of axonal maturation and myelination of white matter in the developing brain. AJNR Am J Neuroradiol 2008; 30:290-6. [PMID: 19001533 DOI: 10.3174/ajnr.a1363] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Diffusion tensor imaging (DTI) has been widely used to investigate the development of white matter (WM). However, information about this development in healthy children younger than 2 years of age is lacking, and most previous studies have only measured fractional anisotropy (FA). This study used FA and radial and axonal diffusivities in children younger than 2 years of age, aiming to determine the temporal and spatial development of axonal maturation and myelination of WM in healthy children. MATERIALS AND METHODS A total of 60 healthy pediatric subjects were imaged by using a 3T MR imaging scanner. They were divided into 3 groups: 20 at 3 weeks, 20 at 1 year of age, and 20 at 2 years of age. All subjects were imaged asleep without sedation. FA and axial and radial diffusivities were obtained. Eight regions of interest were defined, including both central and peripheral WM for measuring diffusion parameters. RESULTS A significant elevation in FA (P < .0001) and a reduction in axial and radial diffusivities (P < .0001) were observed from 22 days to 1 year of age, whereas only radial diffusivity showed significant changes (P = .0014) from 1 to 2 years of age. The region-of-interest analysis revealed that FA alone may not depict the underlying biologic underpinnings of WM development, whereas directional diffusivities provide more insights into the development of WM. Finally, the spatial development of WM begins from the central to the peripheral WM and from the occipital to the frontal lobes. CONCLUSIONS With both FA and directional diffusivities, our results demonstrate the temporal and spatial development of WM in healthy children younger than 2 years of age.
Collapse
Affiliation(s)
- W Gao
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Fixation, not death, reduces sensitivity of DTI in detecting optic nerve damage. Neuroimage 2008; 44:611-9. [PMID: 19027864 DOI: 10.1016/j.neuroimage.2008.10.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 10/03/2008] [Accepted: 10/19/2008] [Indexed: 11/21/2022] Open
Abstract
The changes of directional diffusivities derived from diffusion tensor imaging (DTI), i.e. decreased axial diffusivity (lambda(||)) and increased radial diffusivity (lambda( perpendicular)), have shown significant correlation with axonal and myelin damage, respectively. However, after formalin fixation, reduced sensitivity of lambda(||) in detecting axonal damage in tissue has raised the concern of applying DTI ex vivo. In order to distinguish whether death or the fixation process diminishes the sensitivity of DTI in detecting lesions, in vivo, pre-fixed postmortem, and fixed postmortem DTI were conducted on mouse optic nerves 3 and 14 days after transient retinal ischemia. Our data showed that, from in vivo to pre-fixed postmortem, lambda(||) and lambda( perpendicular) decreased by 50 to 70% in both healthy and injured optic nerves (3 and 14 day injury). From pre-fixed postmortem to fixed postmortem, lambda(||) and lambda( perpendicular) decreased by 40 to 50% in normal and 3-day injured optic nerves, but only by 15 to 25% in 14-day injured optic nerves. Consequently, for the 14-day injured optic nerves, the differences between healthy and injured nerves were not preserved after fixation: the 40% decreased lambda(||) and 200% increased lambda( perpendicular) in injured nerves as compared to the normal nerves were measured in vivo and pre-fixed postmortem, but after the fixation process, 300% increased lambda( perpendicular) and insignificant changes in lambda(||) were found in injured nerves as compared to the normal nerves. This study clarified that fixation process, but not death, could change the sensitivity of DTI in detecting injury.
Collapse
|
27
|
Shepherd TM, Flint JJ, Thelwall PE, Stanisz GJ, Mareci TH, Yachnis AT, Blackband SJ. Postmortem interval alters the water relaxation and diffusion properties of rat nervous tissue--implications for MRI studies of human autopsy samples. Neuroimage 2008; 44:820-6. [PMID: 18996206 DOI: 10.1016/j.neuroimage.2008.09.054] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 09/21/2008] [Accepted: 09/28/2008] [Indexed: 10/21/2022] Open
Abstract
High-resolution imaging of human autopsy tissues may improve our understanding of in vivo MRI findings, but interpretation is complicated because samples are obtained by immersion fixation following a postmortem interval (PMI). This study tested the hypotheses that immersion fixation and PMI's from 0-24 h would alter the water relaxation and diffusion properties in rat cortical slice and spinal cord models of human nervous tissue. Diffusion data collected from rat cortical slices at multiple diffusion times (10-60 ms) and b-values (7-15,000 s/mm(2)) were analyzed using a two-compartment model with exchange. Rat spinal cords were characterized with standard diffusion tensor imaging (21 directions, b=1250 s/mm(2)). Switching from perfusion- to immersion-fixation at 0 h PMI altered most MRI properties of rat cortical slices and spinal cords, including a 22% decrease in fractional anisotropy (P<0.001). After 4 h PMI, cortical slice T(1) and T(2) increased 22% and 65% respectively (P<0.001), transmembrane water exchange decreased 23% (P<0.001) and intracellular proton fraction increased 25% (P=0.002). After 6 h PMI, spinal cord white matter fractional anisotropy had decreased 38% (P<0.001). MRI property changes were observed for PMIs up to 24 h. The MRI changes correlated with protease activity and histopathological signs of autolysis. Thus, immersion fixation and/or even short PMIs (4-6 h) altered the MRI properties of rat nervous tissue. This suggests comparisons between in vivo clinical MRI and MRI data from human autopsy tissues should be interpreted with caution.
Collapse
Affiliation(s)
- Timothy M Shepherd
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA 94143-0628, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Callot V, Duhamel G, Cozzone PJ, Kober F. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging. NMR IN BIOMEDICINE 2008; 21:868-877. [PMID: 18574855 DOI: 10.1002/nbm.1274] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images from the SC are needed, in cases of rapidly evolving conditions, to decrease the duration of anesthesia or to improve MR exploration by including additional MR measurements.
Collapse
Affiliation(s)
- Virginie Callot
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR CNRS No. 6612, Faculté de Médecine de Marseille, Université de la Méditerranée, Marseille, France.
| | | | | | | |
Collapse
|
29
|
Diffusion tensor imaging of mouse brain stem and cervical spinal cord. J Neurosci Methods 2008; 176:186-91. [PMID: 18834905 DOI: 10.1016/j.jneumeth.2008.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/16/2008] [Accepted: 09/01/2008] [Indexed: 12/29/2022]
Abstract
In vivo diffusion tensor imaging measurements of the mouse brain stem and cervical spinal cord are presented. Utilizing actively decoupled transmit/receive coils, high resolution diffusion images (117 microm x 59 microm x 500 microm) were acquired at 4.7 T within an hour. Both brain stem and cervical spine displayed clear gray-white matter contrast. The cervical spinal cord white matter showed similar tissue characteristics as seen in the thoracic cord. The coherent fiber orientation in the white matter was observed in both the brain stem and the cervical spinal cord. The results may serve as a reference for future inter-lab comparison in mouse brain stem and cervical spine diffusion measurements.
Collapse
|
30
|
Cohen-Adad J, Benali H, Hoge RD, Rossignol S. In vivo DTI of the healthy and injured cat spinal cord at high spatial and angular resolution. Neuroimage 2007; 40:685-697. [PMID: 18201909 DOI: 10.1016/j.neuroimage.2007.11.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/02/2007] [Accepted: 11/13/2007] [Indexed: 11/26/2022] Open
Abstract
Spinal cord diffusion tensor imaging (DTI) is challenging in many ways: the small size of the cord, physiological motion and susceptibility artifacts pose daunting obstacles to the acquisition of high-quality data. Here, we present DTI results computed from in vivo studies of the healthy and injured spinal cord of five cats. Both high spatial (1.1 mm3) and angular (55 directions) resolutions were used to optimise modelling of the diffusion process. Also, particular effort was directed towards a strategy that limits susceptibility artifacts. For validation purposes, acquisitions were repeated in two cats before and after making a spinal lesion. As a result, various axonal trajectories were identified by tractography including dorsal and ventral columns as well as lateral tracts. Also, fibre bundles showed robust disruption at the site of spinal cord injuries (partial and complete) via tractography, accompanied with significantly lower fractional anisotropy values at the site of lesions. Important outcomes of this work are (i) tractography-based localisation of anatomical tracts in the thoraco-lumbar spinal cord and (ii) in vivo assessment of axonal integrity following experimental spinal cord injury.
Collapse
Affiliation(s)
- J Cohen-Adad
- Groupe de Recherche sur le Système Nerveux Central, Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; INSERM U678, Université Pierre et Marie Curie (Paris VI), CHU Pitié-Salpêtrière, Paris, France; Unité de Neuroimagerie Fonctionnelle, CRIUGM, Université de Montréal, Montreal, QC, Canada; Institute of Biomedical Engineering, Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| | - H Benali
- INSERM U678, Université Pierre et Marie Curie (Paris VI), CHU Pitié-Salpêtrière, Paris, France; Unité de Neuroimagerie Fonctionnelle, CRIUGM, Université de Montréal, Montreal, QC, Canada
| | - R D Hoge
- Unité de Neuroimagerie Fonctionnelle, CRIUGM, Université de Montréal, Montreal, QC, Canada; Institute of Biomedical Engineering, Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - S Rossignol
- Groupe de Recherche sur le Système Nerveux Central, Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Unité de Neuroimagerie Fonctionnelle, CRIUGM, Université de Montréal, Montreal, QC, Canada; Institute of Biomedical Engineering, Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
31
|
Sun SW, Liang HF, Schmidt RE, Cross AH, Song SK. Selective vulnerability of cerebral white matter in a murine model of multiple sclerosis detected using diffusion tensor imaging. Neurobiol Dis 2007; 28:30-8. [PMID: 17683944 PMCID: PMC2905808 DOI: 10.1016/j.nbd.2007.06.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 06/05/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022] Open
Abstract
In this study, axial (lambda(parallel)) and radial (lambda(perpendicular)) diffusivities derived from diffusion tensor imaging (DTI) were used to evaluate white matter injury in brains of mice affected by experimental autoimmune encephalomyelitis (EAE). Sixteen female C57BL/6 mice were immunized with amino acids 35-55 of myelin oligodendrocyte glycoprotein (MOG(35-55)). Three months after immunization, optic nerve and tract were severely affected with 19% and 18% decrease in lambda(parallel) respectively, suggesting the presence of axonal injury. In addition, a 156% and 86% increase in lambda( perpendicular) was observed in optic nerve and tract respectively, suggestive of myelin injury. After in vivo DTI, mice were perfusion fixed and immunohistochemistry for the identification of myelin basic protein (MBP) and phosphorylated neurofilament (pNF) was performed to verify the presence of axonal and myelin injury. The present study demonstrated that the visual pathway is selectively affected in MOG(35-55) induced murine EAE and these injuries are non-invasively detectable using lambda(parallel) and lambda( perpendicular).
Collapse
Affiliation(s)
- Shu-Wei Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
32
|
Kim JH, Loy DN, Liang HF, Trinkaus K, Schmidt RE, Song SK. Noninvasive diffusion tensor imaging of evolving white matter pathology in a mouse model of acute spinal cord injury. Magn Reson Med 2007; 58:253-60. [PMID: 17654597 DOI: 10.1002/mrm.21316] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We examined in vivo measurements of directional diffusivity derived from diffusion tensor imaging (DTI) to study the evolution of ventrolateral white matter (VWM) changes following contusive spinal cord injury (SCI) in C57BL/6 mice at 1, 3, 7, and 14 days postinjury. Relative anisotropy maps provided excellent gray matter (GM)/white matter (WM) contrast for characterization of evolving WM injury at all time points. Longitudinal DTI measurements clearly demonstrated rostral-caudal injury asymmetry. Axial diffusivity provided a sensitive, noninvasive measure of axonal integrity within the injury epicenter and at remote levels. Quantitative measurements of axial and radial diffusivities in VWM showed a trend of acute primary axonal injury followed by delayed, subacute myelin damage at the impact site, with good histological correlation.
Collapse
Affiliation(s)
- Joong Hee Kim
- Department of Radiology, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|