1
|
Er-Rouassi H, Bakour M, Touzani S, Vilas-Boas M, Falcão S, Vidal C, Lyoussi B. Beneficial Effect of Bee Venom and Its Major Components on Facial Nerve Injury Induced in Mice. Biomolecules 2023; 13:680. [PMID: 37189427 PMCID: PMC10135545 DOI: 10.3390/biom13040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Peripheral nerve injury (PNI) is a health problem that affects many people worldwide. This study is the first to evaluate the potential effect of bee venom (BV) and its major components in a model of PNI in the mouse. For that, the BV used in this study was analyzed using UHPLC. All animals underwent a distal section-suture of facial nerve branches, and they were randomly divided into five groups. Group 1: injured facial nerve branches without any treatment. Group 2: the facial nerve branches were injured, and the normal saline was injected similarly as in the BV-treated group. Group 3: injured facial nerve branches with local injections of BV solution. Group 4: injured facial nerve branches with local injections of a mixture of PLA2 and melittin. Group 5: injured facial nerve branches with local injection of betamethasone. The treatment was performed three times a week for 4 weeks. The animals were submitted to functional analysis (observation of whisker movement and quantification of nasal deviation). The vibrissae muscle re-innervation was evaluated by retrograde labeling of facial motoneurons in all experimental groups. UHPLC data showed 76.90 ± 0.13%, 11.73 ± 0.13%, and 2.01 ± 0.01%, respectively, for melittin, phospholipase A2, and apamin in the studied BV sample. The obtained results showed that BV treatment was more potent than the mixture of PLA2 and melittin or betamethasone in behavioral recovery. The whisker movement occurred faster in BV-treated mice than in the other groups, with a complete disappearance of nasal deviation two weeks after surgery. Morphologically, a normal fluorogold labeling of the facial motoneurons was restored 4 weeks after surgery in the BV-treated group, but no such restoration was ever observed in other groups. Our findings indicate the potential of the use of BV injections to enhance appropriate functional and neuronal outcomes after PNI.
Collapse
Affiliation(s)
- Hafsa Er-Rouassi
- Centre Borelli, Université de Paris Cité, National Centre for Scientific Research UMR 9010, 75006 Paris, France
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- The Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco
| | - Soumaya Touzani
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Soraia Falcão
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Catherine Vidal
- Centre Borelli, Université de Paris Cité, National Centre for Scientific Research UMR 9010, 75006 Paris, France
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
2
|
Pottorf TS, Rotterman TM, McCallum WM, Haley-Johnson ZA, Alvarez FJ. The Role of Microglia in Neuroinflammation of the Spinal Cord after Peripheral Nerve Injury. Cells 2022; 11:cells11132083. [PMID: 35805167 PMCID: PMC9265514 DOI: 10.3390/cells11132083] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injuries induce a pronounced immune reaction within the spinal cord, largely governed by microglia activation in both the dorsal and ventral horns. The mechanisms of activation and response of microglia are diverse depending on the location within the spinal cord, type, severity, and proximity of injury, as well as the age and species of the organism. Thanks to recent advancements in neuro-immune research techniques, such as single-cell transcriptomics, novel genetic mouse models, and live imaging, a vast amount of literature has come to light regarding the mechanisms of microglial activation and alluding to the function of microgliosis around injured motoneurons and sensory afferents. Herein, we provide a comparative analysis of the dorsal and ventral horns in relation to mechanisms of microglia activation (CSF1, DAP12, CCR2, Fractalkine signaling, Toll-like receptors, and purinergic signaling), and functionality in neuroprotection, degeneration, regeneration, synaptic plasticity, and spinal circuit reorganization following peripheral nerve injury. This review aims to shed new light on unsettled controversies regarding the diversity of spinal microglial-neuronal interactions following injury.
Collapse
Affiliation(s)
- Tana S. Pottorf
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Travis M. Rotterman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA;
| | - William M. McCallum
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Zoë A. Haley-Johnson
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Francisco J. Alvarez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
- Correspondence:
| |
Collapse
|
3
|
Zhou X, Du J, Qing L, Mee T, Xu X, Wang Z, Xu C, Jia X. Identification of sensory and motor nerve fascicles by immunofluorescence staining after peripheral nerve injury. J Transl Med 2021; 19:207. [PMID: 33985539 PMCID: PMC8117274 DOI: 10.1186/s12967-021-02871-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/03/2021] [Indexed: 11/25/2022] Open
Abstract
Background Inappropriate matching of motor and sensory fibers after nerve repair or nerve grafting can lead to failure of nerve recovery. Identification of motor and sensory fibers is important for the development of new approaches that facilitate neural regeneration and the next generation of nerve signal-controlled neuro-prosthetic limbs with sensory feedback technology. Only a few methods have been reported to differentiate sensory and motor nerve fascicles, and the reliability of these techniques is unknown. Immunofluorescence staining is one of the most commonly used methods to distinguish sensory and motor nerve fibers, however, its accuracy remains unknown. Methods In this study, we aim to determine the efficacy of popular immunofluorescence markers for motor and sensory nerve fibers. We harvested the facial (primarily motor fascicles) and sural (primarily sensory fascicles) nerves in rats, and examined the immunofluorescent staining expressions of motor markers (choline acetyltransferase (ChAT), tyrosine kinase (TrkA)), and sensory markers [neurofilament protein 200 kDa (NF-200), calcitonin gene-related peptide (CGRP) and Transient receptor potential vanillic acid subtype 1 (TRPV1)]. Three methods, including the average area percentage, the mean gray value, and the axon count, were used to quantify the positive expression of nerve markers in the immunofluorescence images. Results Our results suggest the mean gray value method is the most reliable method. The mean gray value of immunofluorescence in ChAT (63.0 ± 0.76%) and TRKA (47.6 ± 0.43%) on the motor fascicles was significantly higher than that on the sensory fascicles (ChAT: 49.2 ± 0.72%, P < 0.001; and TRKA: 29.1 ± 0.85%, P < 0.001). Additionally, the mean gray values of TRPV1 (51.5 ± 0.83%), NF-200 (61.5 ± 0.62%) and CGRP (37.7 ± 1.22%) on the motor fascicles were significantly lower than that on the sensory fascicles respectively (71.9 ± 2.32%, 69.3 ± 0.46%, and 54.3 ± 1.04%) (P < 0.001). The most accurate cutpoint occurred using CHAT/CRCP ratio, where a value of 0.855 had 100% sensitivity and 100% specificity to identify motor and sensory nerve with an area under the ROC curve of 1.000 (P < 0.001). Conclusions A combination of ChAT and CGRP is suggested to distinguish motor and sensory nerve fibers.
Collapse
Affiliation(s)
- Xijie Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children'S Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Liming Qing
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Thomas Mee
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiang Xu
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Zhuoran Wang
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Cynthia Xu
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA. .,Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Shenton FC, Campbell T, Jones JFX, Pyner S. Distribution and morphology of sensory and autonomic fibres in the subendocardial plexus of the rat heart. J Anat 2021; 238:36-52. [PMID: 32783212 PMCID: PMC7754995 DOI: 10.1111/joa.13284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023] Open
Abstract
Cardiac reflexes originating from sensory receptors in the heart ensure blood supply to vital tissues and organs in the face of constantly changing demands. Atrial volume receptors are mechanically sensitive vagal afferents which relay to the medulla and hypothalamus, affecting vasopressin release and renal sympathetic activity. To date, two anatomically distinct sensory endings have been identified which may subserve cardiac mechanosensation: end-nets and flower-spray endings. To map the distribution of atrial receptors in the subendocardial space, we have double-labelled rat right atrial whole mounts for neurofilament heavy chain (NFH) and synaptic vesicle protein 2 (SV2) and generated high-resolution maps of the rat subendocardial neural plexus at the cavo-atrial region. In order to elucidate the nature of these fibres, double labelling with synaptophysin (SYN) and either NFH, calcitonin gene-related peptide (CGRP), choline acetyltransferase (ChAT) or tyrosine hydroxylase (TH) was performed. The findings show that subendocardial nerve nets are denser at the superior cavo-atrial junction than the mid-atrial region. Adluminal plexuses had the finest diameters and stained positively for synaptic vesicles (SV2 and SYN), CGRP and TH. These plexuses may represent sympathetic post-ganglionic fibres and/or sensory afferents. The latter are candidate substrates for type B volume receptors which are excited by stretch during atrial filling. Deeper nerve fibres appeared coarser and may be cholinergic (positive staining for ChAT). Flower-spray endings were never observed using immunohistochemistry but were delineated clearly with the intravital stain methylene blue. We suggest that differing nerve fibre structures form the basis by which atrial deformation and hence atrial filling is reflected to the brain.
Collapse
Affiliation(s)
| | - Thomas Campbell
- Discipline of AnatomySchool of MedicineUniversity College DublinDublin 4Ireland
| | - James F. X. Jones
- Discipline of AnatomySchool of MedicineUniversity College DublinDublin 4Ireland
| | - Susan Pyner
- Department of BiosciencesDurham UniversityDurhamUK
| |
Collapse
|
5
|
Allen D, Zhou Y, Wilhelm A, Blum P. Intracellular G-actin targeting of peripheral sensory neurons by the multifunctional engineered protein C2C confers relief from inflammatory pain. Sci Rep 2020; 10:12789. [PMID: 32732905 PMCID: PMC7393082 DOI: 10.1038/s41598-020-69612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/15/2020] [Indexed: 11/09/2022] Open
Abstract
The engineered multifunctional protein C2C was tested for control of sensory neuron activity by targeted G-actin modification. C2C consists of the heptameric oligomer, C2II-CI, and the monomeric ribosylase, C2I. C2C treatment of sensory neurons and SH-SY5Y cells in vitro remodeled actin and reduced calcium influx in a reversible manner. C2C prepared using fluorescently labeled C2I showed selective in vitro C2I delivery to primary sensory neurons but not motor neurons. Delivery was dependent on presence of both C2C subunits and blocked by receptor competition. Immunohistochemistry of mice treated subcutaneously with C2C showed colocalization of subunit C2I with CGRP-positive sensory neurons and fibers but not with ChAT-positive motor neurons and fibers. The significance of sensory neuron targeting was pursued subsequently by testing C2C activity in the formalin inflammatory mouse pain model. Subcutaneous C2C administration reduced pain-like behaviors by 90% relative to untreated controls 6 h post treatment and similarly to the opioid buprenorphene. C2C effects were dose dependent, equally potent in female and male animals and did not change gross motor function. One dose was effective in 2 h and lasted 1 week. Administration of C2I without C2II-CI did not reduce pain-like behavior indicating its intracellular delivery was required for behavioral effect.
Collapse
Affiliation(s)
- Derek Allen
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - You Zhou
- Center for Biotechnology, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - Audrey Wilhelm
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - Paul Blum
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA.
| |
Collapse
|
6
|
Harris JM, Wang AYD, Boulanger-Weill J, Santoriello C, Foianini S, Lichtman JW, Zon LI, Arlotta P. Long-Range Optogenetic Control of Axon Guidance Overcomes Developmental Boundaries and Defects. Dev Cell 2020; 53:577-588.e7. [PMID: 32516597 PMCID: PMC7375170 DOI: 10.1016/j.devcel.2020.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 01/12/2023]
Abstract
Axons connect neurons together, establishing the wiring architecture of neuronal networks. Axonal connectivity is largely built during embryonic development through highly constrained processes of axon guidance, which have been extensively studied. However, the inability to control axon guidance, and thus neuronal network architecture, has limited investigation of how axonal connections influence subsequent development and function of neuronal networks. Here, we use zebrafish motor neurons expressing a photoactivatable Rac1 to co-opt endogenous growth cone guidance machinery to precisely and non-invasively direct axon growth using light. Axons can be guided over large distances, within complex environments of living organisms, overriding competing endogenous signals and redirecting axons across potent repulsive barriers to construct novel circuitry. Notably, genetic axon guidance defects can be rescued, restoring functional connectivity. These data demonstrate that intrinsic growth cone guidance machinery can be co-opted to non-invasively build new connectivity, allowing investigation of neural network dynamics in intact living organisms.
Collapse
Affiliation(s)
- James M. Harris
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Andy Yu-Der Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Current Address: Tufts University School of Medicine, Boston, MA 02115, USA
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Cristina Santoriello
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02115, USA
| | - Stephan Foianini
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02115, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA.,Lead contact. Correspondence:
| |
Collapse
|
7
|
Guo WL, Qi ZP, Yu L, Sun TW, Qu WR, Liu QQ, Zhu Z, Li R. Melatonin combined with chondroitin sulfate ABC promotes nerve regeneration after root-avulsion brachial plexus injury. Neural Regen Res 2019; 14:328-338. [PMID: 30531017 PMCID: PMC6301163 DOI: 10.4103/1673-5374.244796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
After nerve-root avulsion injury of the brachial plexus, oxidative damage, inflammatory reaction, and glial scar formation can affect nerve regeneration and functional recovery. Melatonin (MT) has been shown to have good anti-inflammatory, antioxidant, and neuroprotective effects. Chondroitin sulfate ABC (ChABC) has been shown to metabolize chondroitin sulfate proteoglycans and can reduce colloidal scar formation. However, the effect of any of these drugs alone in the recovery of nerve function after injury is not completely satisfactory. Therefore, this experiment aimed to explore the effect and mechanism of combined application of melatonin and chondroitin sulfate ABC on nerve regeneration and functional recovery after nerve-root avulsion of the brachial plexus. Fifty-two Sprague-Dawley rats were selected and their C5-7 nerve roots were avulsed. Then, the C6 nerve roots were replanted to construct the brachial plexus nerve-root avulsion model. After successful modeling, the injured rats were randomly divided into four groups. The first group (injury) did not receive any drug treatment, but was treated with a pure gel-sponge carrier nerve-root implantation and an ethanol-saline solution via intraperitoneal (i.p.) injection. The second group (melatonin) was treated with melatonin via i.p. injection. The third group (chondroitin sulfate ABC) was treated with chondroitin sulfate ABC through local administration. The fourth group (melatonin + chondroitin sulfate ABC) was treated with melatonin through i.p. injection and chondroitin sulfate ABC through local administration. The upper limb Terzis grooming test was used 2-6 weeks after injury to evaluate motor function. Inflammation and oxidative damage within 24 hours of injury were evaluated by spectrophotometry. Immunofluorescence and neuroelectrophysiology were used to evaluate glial scar, neuronal protection, and nerve regeneration. The results showed that the Terzis grooming-test scores of the three groups that received treatment were better than those of the injury only group. Additionally, these three groups showed lower levels of C5-7 intramedullary peroxidase and malondialdehyde. Further, glial scar tissue in the C6 spinal segment was smaller and the number of motor neurons was greater. The endplate area of the biceps muscle was larger and the structure was clear. The latency of the compound potential of the myocutaneous nerve-biceps muscle was shorter. All these indexes were even greater in the melatonin + chondroitin sulfate ABC group than in the melatonin only or chondroitin sulfate ABC only groups. Thus, the results showed that melatonin combined with chondroitin sulfate ABC can promote nerve regeneration after nerve-root avulsion injury of the brachial plexus, which may be achieved by reducing oxidative damage and inflammatory reaction in the injury area and inhibiting glial scar formation.
Collapse
Affiliation(s)
- Wen-Lai Guo
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhi-Ping Qi
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Yu
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Tian-Wen Sun
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wen-Rui Qu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qian-Qian Liu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhe Zhu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
8
|
Li H, Wu W. Microtubule stabilization promoted axonal regeneration and functional recovery after spinal root avulsion. Eur J Neurosci 2017; 46:1650-1662. [PMID: 28444817 DOI: 10.1111/ejn.13585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/09/2017] [Accepted: 04/09/2017] [Indexed: 12/20/2022]
Abstract
A spinal root avulsion injury disconnects spinal roots with the spinal cord. The rampant motoneuron death, inhibitory CNS/PNS transitional zone (TZ) for axonal regrowth and limited regeneration speed together lead to motor dysfunction. Microtubules rearrange to assemble a new growth cone and disorganized microtubules underline regeneration failure. It has been shown that microtubule-stabilizing drug, Epothilone B, enhanced axonal regeneration and attenuated fibrotic scaring after spinal cord injury. Here, we are reporting that after spinal root avulsion+ re-implantation in adult rats, EpoB treatment improved motor functional recovery and potentiated electrical responses of motor units. It facilitated axons to cross the TZ and promoted more and bigger axons in the peripheral nerve. Neuromuscular junctions were reformed with better preserved postsynaptic structure, and muscle atrophy was prevented by EpoB administration. Our study showed that EpoB was a promising therapy for promoting axonal regeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- Heng Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, L1-39, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, L1-39, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.,State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Joint Laboratory of Jinan University and the University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Russ JB, Kaltschmidt JA. From induction to conduction: how intrinsic transcriptional priming of extrinsic neuronal connectivity shapes neuronal identity. Open Biol 2015; 4:rsob.140144. [PMID: 25297387 PMCID: PMC4221895 DOI: 10.1098/rsob.140144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Every behaviour of an organism relies on an intricate and vastly diverse network of neurons whose identity and connectivity must be specified with extreme precision during development. Intrinsically, specification of neuronal identity depends heavily on the expression of powerful transcription factors that direct numerous features of neuronal identity, including especially properties of neuronal connectivity, such as dendritic morphology, axonal targeting or synaptic specificity, ultimately priming the neuron for incorporation into emerging circuitry. As the neuron's early connectivity is established, extrinsic signals from its pre- and postsynaptic partners feedback on the neuron to further refine its unique characteristics. As a result, disruption of one component of the circuitry during development can have vital consequences for the proper identity specification of its synaptic partners. Recent studies have begun to harness the power of various transcription factors that control neuronal cell fate, including those that specify a neuron's subtype-specific identity, seeking insight for future therapeutic strategies that aim to reconstitute damaged circuitry through neuronal reprogramming.
Collapse
Affiliation(s)
- Jeffrey B Russ
- Weill Cornell/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA Neuroscience Program, Weill Cornell Medical College, New York, NY 10065, USA Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Julia A Kaltschmidt
- Neuroscience Program, Weill Cornell Medical College, New York, NY 10065, USA Cell and Developmental Biology Program, Weill Cornell Medical College, New York, NY 10065, USA Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
10
|
Ohlsson M, Nieto JH, Christe KL, Havton LA. Long-term effects of a lumbosacral ventral root avulsion injury on axotomized motor neurons and avulsed ventral roots in a non-human primate model of cauda equina injury. Neuroscience 2013; 250:129-39. [PMID: 23830908 DOI: 10.1016/j.neuroscience.2013.06.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 06/03/2013] [Accepted: 06/19/2013] [Indexed: 12/27/2022]
Abstract
Here, we have translated from the rat to the non-human primate a unilateral lumbosacral injury as a model for cauda equina injury. In this morphological study, we have investigated retrograde effects of a unilateral L6-S2 ventral root avulsion (VRA) injury as well as the long-term effects of Wallerian degeneration on avulsed ventral roots at 6-10 months post-operatively in four adult male rhesus monkeys. Immunohistochemistry for choline acetyl transferase and glial fibrillary acidic protein demonstrated a significant loss of the majority of the axotomized motoneurons in the affected L6-S2 segments and signs of an associated astrocytic glial response within the ventral horn of the L6 and S1 spinal cord segments. Quantitative analysis of the avulsed ventral roots showed that they exhibited normal size and were populated by a normal number of myelinated axons. However, the myelinated axons in the avulsed ventral roots were markedly smaller in caliber compared to the fibers of the intact contralateral ventral roots, which served as controls. Ultrastructural studies confirmed the presence of small myelinated axons and a population of unmyelinated axons within the avulsed roots. In addition, collagen fibers were readily identified within the endoneurium of the avulsed roots. In summary, a lumbosacral VRA injury resulted in retrograde motoneuron loss and astrocytic glial activation in the ventral horn. Surprisingly, the Wallerian degeneration of motor axons in the avulsed ventral roots was followed by a repopulation of the avulsed roots by small myelinated and unmyelinated fibers. We speculate that the small axons may represent sprouting or axonal regeneration by primary afferents or autonomic fibers.
Collapse
Affiliation(s)
- M Ohlsson
- Department of Clinical Neuroscience, Division of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Anesthesiology & Perioperative Care, University of California at Irvine, Irvine, CA, USA
| | | | | | | |
Collapse
|
11
|
Functional down-regulation of axotomized rat facial motoneurons. Brain Res 2013; 1507:35-44. [DOI: 10.1016/j.brainres.2013.02.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/22/2013] [Accepted: 02/23/2013] [Indexed: 11/19/2022]
|
12
|
Raslan A, Ernst P, Werle M, Thieme H, Szameit K, Finkensieper M, Guntinas-Lichius O, Irintchev A. Reduced cholinergic and glutamatergic synaptic input to regenerated motoneurons after facial nerve repair in rats: potential implications for recovery of motor function. Brain Struct Funct 2013; 219:891-909. [DOI: 10.1007/s00429-013-0542-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/12/2013] [Indexed: 02/02/2023]
|
13
|
Using comparative anatomy in the axotomy model to identify distinct roles for microglia and astrocytes in synaptic stripping. ACTA ACUST UNITED AC 2012; 7:55-66. [PMID: 22217547 DOI: 10.1017/s1740925x11000135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The synaptic terminals' withdrawal from the somata and proximal dendrites of injured motoneuron by the processes of glial cells following facial nerve axotomy has been the subject of research for many years. This phenomenon is referred to as synaptic stripping, which is assumed to help survival and regeneration of neurons via reduction of synaptic inputs. Because there is no disruption of the blood-brain barrier or infiltration of macrophages, the axotomy paradigm has the advantage of being able to selectively investigate the roles of resident glial cells in the brain. Although there have been numerous studies of synaptic stripping, the detailed mechanisms are still under debate. Here we suggest that the species and strain differences that are often present in previous work might be related to the current controversies of axotomy studies. For instance, the survival ratios of axotomized neurons were generally found to be higher in rats than in mice. However, some studies have used the axotomy paradigm to follow the glial reactions and did not assess variations in neuronal viability. In the first part of this article, we summarize and discuss the current knowledge on species and strain differences in neuronal survival, glial augmentation and synaptic stripping. In the second part, we focus on our recent findings, which show the differential involvement of microglia and astrocytes in synaptic stripping and neuronal survival. This article suggests that the comparative study of the axotomy paradigm across various species and strains may provide many important and unexpected discoveries on the multifaceted roles of microglia and astrocytes in injury and repair.
Collapse
|
14
|
Peddie CJ, Keast JR. Pelvic Nerve Injury Causes a Rapid Decrease in Expression of Choline Acetyltransferase and Upregulation of c-Jun and ATF-3 in a Distinct Population of Sacral Preganglionic Neurons. Front Neurosci 2011; 5:6. [PMID: 21283532 PMCID: PMC3031092 DOI: 10.3389/fnins.2011.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/07/2011] [Indexed: 11/13/2022] Open
Abstract
Autonomic regulation of the urogenital organs is impaired by injuries sustained during pelvic surgery or compression of lumbosacral spinal nerves (e.g., cauda equina syndrome). To understand the impact of injury on both sympathetic and parasympathetic components of this nerve supply, we performed an experimental surgical and immunohistochemical study on adult male rats, where the structure of this complex part of the nervous system has been well defined. We performed unilateral transection of pelvic or hypogastric nerves and analyzed relevant regions of lumbar and sacral spinal cord, up to 4 weeks after injury. Expression of c-Jun, the neuronal injury marker activating transcription factor-3 (ATF-3), and choline acetyltransferase (ChAT) were examined. We found little evidence for chemical or structural changes in substantial numbers of functionally related but uninjured spinal neurons (e.g., in sacral preganglionic neurons after hypogastric nerve injury), failing to support the concept of compensatory events. The effects of injury were greatest in sacral cord, ipsilateral to pelvic nerve transection. Here, around half of all preganglionic neurons expressed c-Jun within 1 week of injury, and substantial ATF-3 expression also occurred, especially in neurons with complete loss of ChAT-immunoreactivity. There did not appear to be any death of retrogradely labeled neurons, in contrast to axotomy studies performed on other regions of spinal cord or sacral ventral root avulsion models. Each of the effects we observed occurred in only a subpopulation of preganglionic neurons at that spinal level, raising the possibility that distinct functional subgroups have different susceptibility to trauma-induced degeneration and potentially different regenerative abilities. Identification of the cellular basis of these differences may provide insights into organ-specific strategies for attenuating degeneration or promoting regeneration of these circuits after trauma.
Collapse
Affiliation(s)
- Christopher J Peddie
- Pain Management Research Institute and Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital St Leonards, NSW, Australia
| | | |
Collapse
|
15
|
Hui KKW, Liadis N, Robertson J, Kanungo A, Henderson JT. Calcineurin inhibition enhances motor neuron survival following injury. J Cell Mol Med 2009; 14:671-86. [PMID: 19243469 PMCID: PMC3823465 DOI: 10.1111/j.1582-4934.2009.00715.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The immunosuppressive agents cyclosporin A (CsA) and FK-506 have previously been shown to exhibit neurotrophic and neuroprotective properties in vivo. Given that significant clinical expertise exists for both drugs, they represent an attractive starting point for treatment of acute neural injuries. One putative mechanism for neuroprotection by these drugs relates to inhibition of calcineurin activity. However each drug-immunophilin complex can potentially influence additional signal transduction pathways. Furthermore, several non-immunosuppressive immunophilin ligands have been described as possessing neuroprotective properties, suggesting that neuroprotection may be separable from calcineurin inhibition. In the present study, we examined the mechanism of this neuroprotection in facial motor neurons following axotomy-induced injury. Similar to previous studies in rats, CsA and FK-506 enhanced motor neuron survival in mice following acute injury. To examine the mechanism responsible for neuroprotection by these agents, pharmacologic inhibitors of several potential alternate signalling pathways (17-(allylamino)-17-demethoxygeldanamycin, rapamycin, cypermethrin) were evaluated with respect to neuroprotection. Of these, only cypermethrin, a direct calcineurin inhibitor not previously associated with neuronal survival properties, was observed to significantly enhance motor neuron survival following injury. The results demonstrate for the first time that direct inhibition of calcineurin is neuroprotective in vivo. These data support a model in which calcineurin inhibition promotes neuronal survival, distinct from effects upon neurite outgrowth.
Collapse
Affiliation(s)
- Kelvin K W Hui
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
16
|
Hoang TX, Akhavan M, Wu J, Havton LA. Minocycline protects motor but not autonomic neurons after cauda equina injury. Exp Brain Res 2008; 189:71-7. [PMID: 18478214 DOI: 10.1007/s00221-008-1398-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 04/21/2008] [Indexed: 12/22/2022]
Abstract
Conus medullaris/cauda equina injuries typically result in loss of bladder, bowel, and sexual functions, partly as a consequence of autonomic and motor neuron death. To mimic these injuries, we previously developed a rodent lumbosacral ventral root avulsion (VRA) injury model, where both autonomic and motor neurons progressively die over several weeks. Here, we investigate whether minocycline, an antibiotic with putative neuroprotective effects, may rescue degenerating autonomic and motor neurons after VRA injury. Adult female rats underwent lumbosacral VRA injuries followed by a 2-week treatment with either minocycline or vehicle injected intraperitoneally. The sacral segment of the spinal cord was studied immunohistochemically using choline acetyltransferase (ChAT) and activated caspase-3 at 4 weeks post-operatively. Minocycline increased the survival of motoneurons but not preganglionic parasympathetic neurons (PPNs). Further investigations demonstrated that a larger proportion of motoneurons expressed activated caspase-3 compared to PPNs after VRA injury and indicated an association with minocycline's differential neuroprotective effect. Our findings suggest that minocycline may protect degenerating motoneurons and expand the therapeutic window of opportunity for surgical repair of proximal root lesions affecting spinal motoneurons.
Collapse
Affiliation(s)
- Thao X Hoang
- Department of Neurology, David Geffen School of Medicine at UCLA, Neuroscience Research Building, 635 Charles E. Young Drive South, Los Angeles, CA 90095-7334, USA
| | | | | | | |
Collapse
|
17
|
Chang HM, Huang YL, Lan CT, Wu UI, Hu ME, Youn SC. Melatonin preserves superoxide dismutase activity in hypoglossal motoneurons of adult rats following peripheral nerve injury. J Pineal Res 2008; 44:172-80. [PMID: 18289169 DOI: 10.1111/j.1600-079x.2007.00505.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peripheral nerve injury (PNI) produces functional changes in lesioned neurons in which oxidative stress is considered to be the main cause of neuronal damage. As superoxide dismutase (SOD) is an important antioxidative enzyme involved in redox regulation of oxidative stress, the present study determined whether melatonin would exert its beneficial effects by preserving the SOD reactivity following PNI. Adult rats subjected to hypoglossal nerve transection were intraperitoneally injected with melatonin at ones for 3, 7, 14, 30 and 60 days successively. The potential neuroprotective effects of melatonin were quantitatively demonstrated by neuronal nitric oxide synthase (nNOS), mitochondrial manganese SOD (Mn-SOD), and cytosolic copper-zinc SOD (Cu/Zn-SOD) immunohistochemistry. The functional recovery of the lesioned neurons was evaluated by choline acetyltransferase (ChAT) immunohistochemistry along with the electromyographic (EMG) recordings of denervation-induced fibrillation activity. The results indicate that following PNI, the nNOS immunoreactivity was significantly increased in lesioned neurons peaking at 14 days. The up-regulation of nNOS temporally coincided with the reduction of ChAT and SOD in which the Cu/Zn-SOD showed a greater diminution than Mn-SOD. However, following melatonin administration, the nNOS augmentation was successfully suppressed and the activities of Mn-SOD, Cu/Zn-SOD, and ChAT were effectively preserved at all postaxotomy periods. EMG data also showed a decreased fibrillation in melatonin-treated groups, suggesting a potential effect of melatonin in promoting functional recovery. In association with its significant capacity in preserving SOD reactivity, melatonin is suggested to serve as a powerful therapeutic agent for treating PNI-relevant oxidative damage.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | | | | | | | | | | |
Collapse
|
18
|
Parsadanian A, Pan Y, Li W, Myckatyn TM, Brakefield D. Astrocyte-derived transgene GDNF promotes complete and long-term survival of adult facial motoneurons following avulsion and differentially regulates the expression of transcription factors of AP-1 and ATF/CREB families. Exp Neurol 2006; 200:26-37. [PMID: 16497298 DOI: 10.1016/j.expneurol.2006.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/08/2006] [Accepted: 01/12/2006] [Indexed: 11/30/2022]
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) is a potent survival factor for motoneurons (MNs). We have previously demonstrated that overexpression of GDNF in astrocytes of GFAP-GDNF mice promotes long-term survival of neonatal MNs after facial nerve axotomy. In the present study, we investigated whether astrocyte-derived GDNF could also have a neuroprotective effect on adult MNs following facial nerve avulsion. We also examined avulsion- and GDNF-induced changes in the expression pattern of several members of the AP-1 and ATF/CREB families of transcription factors, which are involved in the fate determination of neurons following injury. We demonstrated that GDNF promotes complete rescue of avulsed MNs for at least 4 months post-injury. Transgene GDNF significantly upregulates c-Jun expression in naive MNs, further upregulates injury-induced c-Jun expression in facial MNs, and results in its activation in most surviving MNs. No significant changes were found in c-Fos expression. We found that GDNF has an opposing effect on ATF2 and ATF3 expression. It dramatically downregulates increased levels of ATF3 in response to injury, whereas the expression of ATF2, which is normally reduced after injury, is completely preserved in GFAP-GDNF mice. Our data suggest that maintenance of high levels of ATF2 in injured MNs could be crucial in modulating c-Jun function, and c-Jun/ATF2 signaling could be involved in GDNF-mediated survival of mature MNs.
Collapse
Affiliation(s)
- Alexander Parsadanian
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
19
|
Jin YM, Godfrey DA, Sun Y. Effects of cochlear ablation on choline acetyltransferase activity in the rat cochlear nucleus and superior olive. J Neurosci Res 2005; 81:91-101. [PMID: 15931674 DOI: 10.1002/jnr.20536] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using microdissection and quantitative microassay, choline acetyltransferase (ChAT) activity was mapped in the cochlear nucleus (CN) and in the source nuclei of the olivocochlear bundle, the lateral superior olive and ventral nucleus of the trapezoid body. In control rats, gradients of ChAT activity were found within the major subdivisions of the CN and in the lateral superior olive. These gradients correlated with the known tonotopic organizations, with higher activities corresponding to locations representing higher sound frequencies. No gradient was found in the ventral nucleus of the trapezoid body. In rats surviving 7 days or 1 or 2 months after cochlear ablation, ChAT activity was increased 1 month after ablation in the anteroventral CN by 30-50% in most parts of the lesion-side and by 40% in the contralateral ventromedial part. ChAT activity in the lesion-side posteroventral CN was increased by approximately 40-50% at all survival times. Little change was found in the dorsal CN. Decreases of ChAT activity were also found ipsilaterally in the lateral superior olive and bilaterally in the ventral nucleus of the trapezoid body. Our results suggest that cholinergic neurons are involved in plasticity within the CN and superior olive following cochlear lesions.
Collapse
Affiliation(s)
- Yong-Ming Jin
- Division of Otolaryngology, Department of Surgery, Medical College of Ohio, Toledo, Ohio 43614-5807, USA
| | | | | |
Collapse
|
20
|
Morcuende S, Benítez-Temiño B, Pecero ML, Pastor AM, de la Cruz RR. Abducens internuclear neurons depend on their target motoneurons for survival during early postnatal development. Exp Neurol 2005; 195:244-56. [PMID: 15935346 DOI: 10.1016/j.expneurol.2005.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 04/07/2005] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
The highly specific projection of abducens internuclear neurons onto medial rectus motoneurons in the oculomotor nucleus is a good model to evaluate the dependence on target cells for survival during development and in the adult. Thus, the procedure we chose to selectively deprive abducens internuclear neurons of their natural target was the enucleation of postnatal day 1 rats to induce the death of medial rectus motoneurons. Two months later, we evaluated both the extent of reduction in target size, by immunocytochemistry against choline acetyltransferase (ChAT) and Nissl counting, and the percentage of abducens internuclear neurons surviving target loss, by calretinin immunostaining and horseradish peroxidase (HRP) retrograde tracing. Firstly, axotomized oculomotor motoneurons died in a high percentage ( approximately 80%) as visualized 2 months after lesion. In addition, we showed a transient (1 month) and reversible down-regulation of ChAT expression in extraocular motoneurons induced by injury. Secondly, 2 months after enucleation, 61.6% and 60.5% of the population of abducens internuclear neurons appeared stained by retrograde tracing and calretinin immunoreaction, respectively, indicating a significant extent of cell death after target loss (38.4% or 39.5%). By contrast, in the adult rat, neither extraocular motoneurons died in response to axotomy nor abducens internuclear neurons died due to the loss of their target motoneurons induced by the retrograde transport of toxic ricin injected in the medial rectus muscle. These results indicate that, during development, abducens internuclear neurons depend on their target motoneurons for survival, and that they lose this dependence with maturation.
Collapse
Affiliation(s)
- Sara Morcuende
- Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012-Sevilla, Spain
| | | | | | | | | |
Collapse
|
21
|
Chang HM, Wei IH, Tseng CY, Lue JH, Wen CY, Shieh JY. Differential expression of calcitonin gene-related peptide (CGRP) and choline acetyltransferase (ChAT) in the axotomized motoneurons of normoxic and hypoxic rats. J Chem Neuroanat 2004; 28:239-51. [PMID: 15531135 DOI: 10.1016/j.jchemneu.2004.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 07/23/2004] [Accepted: 07/30/2004] [Indexed: 10/26/2022]
Abstract
We employed a double injury model (axotomy along with hypoxia) to determine how nerve injury and hypoxic insult would affect the expression of calcitonin gene-related peptide (CGRP) and choline acetyltransferase (ChAT) in the hypoglossal nucleus (HN) and nucleus ambiguus (NA). Adult rats were subjected to unilateral vagus and hypoglossal nerve transection, following which half of the animals were kept in an altitude chamber (PO2=380 Torr). The immunoexpression of CGRP and ChAT (CGRP-IR/ChAT-IR) were examined by quantitative immunohistochemistry at 3, 7, 14, 30 and 60 days post-axotomy. The results revealed that CGRP-IR in the HN was increased at 3 days but decreased to basal levels at 7 days following nerve injury. The decline was followed by a second rise in CGRP-IR at 30 days post-axotomy, followed again by a return to basal levels at 60 days. In the NA, CGRP-IR was up-regulated at 3 days and remained increased for up to 60 days after nerve injury. Animals treated with a double injury showed a greater CGRP-IR than normoxic group in both nuclei at all post-axtomized periods. In contrast to CGRP, ChAT-IR was markedly reduced in the HN and NA at 3 days reaching its nadir at 14 days following nerve injury. Hypoxic animals showed a stronger reduction of ChAT-IR in both nuclei at all post-axtomized periods. Results of cell counting showed that neuronal loss was somewhat obvious in hypoxic HN than that of normoxic ones. The present results suggest that up-regulation of CGRP-IR may exert its trophic effects while down-regulation of ChAT-IR may correlate with the poor neurotransmission within the injured neurons. It is speculated that the enhanced expression of CGRP-IR and the pronounced reduction of ChAT-IR in hypoxic rats may result from a drastic shift of intracellular metabolic pathways, which in turn could lead to more metabolic loading to the severely damaged neurons following the double insult.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
Zhao Z, Alam S, Oppenheim RW, Prevette DM, Evenson A, Parsadanian A. Overexpression of glial cell line-derived neurotrophic factor in the CNS rescues motoneurons from programmed cell death and promotes their long-term survival following axotomy. Exp Neurol 2004; 190:356-72. [PMID: 15530875 DOI: 10.1016/j.expneurol.2004.06.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Revised: 06/02/2004] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
To study the role of one of the most potent motoneuron (MN) survival factors, glial cell line-derived neurotrophic factor (GDNF) derived from the CNS, we generated transgenic animals overexpressing GDNF under the control of an astrocyte-specific GFAP promoter. In situ hybridization revealed that GDNF was expressed at high levels in astrocytes throughout the brain and spinal cord. We analyzed the effects of CNS-derived GDNF on MN survival during the period of programmed cell death (PCD) and after nerve axotomy. In GFAP-GDNF mice at E15, E18, and P1, the survival of brachial MNs was increased on average by 30%, lumbar MNs by 20%, and thoracic MNs at P1 by 33%. GDNF also prevented MN PCD in several cranial motor nuclei. We demonstrated for the first time that the number of MNs in the mouse abducens nucleus was also increased by 40%, thus extending known MN populations that are responsive to GDNF. Next, we tested if GDNF could support complete and relatively long-term survival of MNs following neonatal facial nerve axotomy. We found that virtually all MNs (91%) in GFAP-GDNF mice survived for up to 18 weeks post-axotomy. This is the longest GDNF-mediated survival of neonatal MNs reported following axotomy. Most of surviving MNs were not atrophic, and MN-specific ChAT and neurofilament immunoreactivity (IR) were preserved. Furthermore, GDNF attenuated axotomy-induced astroglial activation. These data demonstrate that overexpression of GDNF in the CNS has very profound effects on MN survival both during the PCD period and after neuronal injury. GFAP-GDNF mice will be valuable to study the effects of CNS-derived GDNF in mouse models of MN degenerative diseases and axonal regeneration in vivo.
Collapse
Affiliation(s)
- Zhongqiu Zhao
- Center for the Study of Nervous System Injury, Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
23
|
Hoang TX, Nieto JH, Tillakaratne NJK, Havton LA. Autonomic and motor neuron death is progressive and parallel in a lumbosacral ventral root avulsion model of cauda equina injury. J Comp Neurol 2003; 467:477-86. [PMID: 14624482 DOI: 10.1002/cne.10928] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Injuries to the cauda equina of the spinal cord result in autonomic and motor neuron dysfunction. We developed a rodent lumbosacral ventral root avulsion injury model of cauda equina injury to investigate the lesion effect in the spinal cord. We studied the retrograde effects of a unilateral L5-S2 ventral root avulsion on efferent preganglionic parasympathetic neurons (PPNs) and pelvic motoneurons in the L6 and S1 segments at 1, 2, 4, and 6 weeks postoperatively in the adult male rat. We used Fluoro-Gold-prelabeling techniques, immunohistochemistry, and quantitative stereologic analysis to show an injury-induced progressive and parallel death of PPNs and motoneurons. At 6 weeks after injury, only 22% of PPNs and 16% of motoneurons remained. Furthermore, of the neurons that survived at 6 weeks, the soma volume was reduced by 25% in PPNs and 50% in motoneurons. Choline acetyltransferase (ChAT) protein was expressed in only 30% of PPNs, but 80% of motoneurons remaining at 1 week postoperatively, suggesting early differential effects between these two neuronal types. However, all remaining PPNs and motoneurons were ChAT positive at 4 weeks postoperatively. Nuclear condensation and cleaved caspase-3 were detected in axotomized PPNs and motoneurons, suggesting apoptosis as a contributing mechanism of the neural death. We conclude that lumbosacral ventral root avulsions progressively deplete autonomic and motor neurons. The findings suggest that early neuroprotection will be an important consideration in future attempts of treating acute cauda equina injuries.
Collapse
Affiliation(s)
- Thao X Hoang
- Department of Neurology and Brain Research Institute, David Geffen School of Medicine at University of California--Los Angeles, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
24
|
Labombarda F, Gonzalez SL, Gonzalez DMC, Guennoun R, Schumacher M, de Nicola AF. Cellular basis for progesterone neuroprotection in the injured spinal cord. J Neurotrauma 2002; 19:343-55. [PMID: 11939502 DOI: 10.1089/089771502753594918] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Progesterone (PROG) exerts beneficial and neuroprotective effects in the injured central and peripheral nervous system. In the present work, we examine PROG effects on three measures of neuronal function under negative regulation (choline acetyltransferase [ChAT] and Na,K-ATPase) or stimulated (growth-associated protein [GAP-43]) after acute spinal cord transection injury in rats. As expected, spinal cord injury reduced ChAT immunostaining intensity of ventral horn neurons. A 3-day course of intensive PROG treatment of transected rats restored ChAT immunoreactivity, as assessed by frequency histograms that recorded shifts from predominantly light neuronal staining to medium, dark or intense staining typical of control rats. Transection also reduced the expression of the mRNA for the alpha3 catalytic and beta1 regulatory subunits of neuronal Na,K-ATPase, whereas PROG treatment restored both subunit mRNA to normal levels. Additionally, the upregulation observed for GAP-43 mRNA in ventral horn neurons in spinal cord-transected rats, was further enhanced by PROG administration. In no case did PROG modify ChAT immunoreactivity, Na,K-ATPase subunit mRNA or GAP-43 mRNA in control, sham-operated rats. Further, the PROG-mediated effects on these three markers were observed in large, presumably Lamina IX motoneurons, as well as in smaller neurons measuring approximately <500 micro2. Overall, the stimulatory effects of PROG on ChAT appears to replenish acetylcholine, with its stimulatory effects on Na,K-ATPase seems capable of restoring membrane potential, ion transport and nutrient uptake. PROG effects on GAP-43 also appear to accelerate reparative responses to injury. As the cellular basis for PROG neuroprotection becomes better understood it may prove of therapeutic benefit to spinal cord injury patients.
Collapse
Affiliation(s)
- Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, and Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
25
|
Heumann R, Goemans C, Bartsch D, Lingenhöhl K, Waldmeier PC, Hengerer B, Allegrini PR, Schellander K, Wagner EF, Arendt T, Kamdem RH, Obst-Pernberg K, Narz F, Wahle P, Berns H. Transgenic activation of Ras in neurons promotes hypertrophy and protects from lesion-induced degeneration. J Cell Biol 2000; 151:1537-48. [PMID: 11134081 PMCID: PMC2150671 DOI: 10.1083/jcb.151.7.1537] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ras is a universal eukaryotic intracellular protein integrating extracellular signals from multiple receptor types. To investigate its role in the adult central nervous system, constitutively activated V12-Ha-Ras was expressed selectively in neurons of transgenic mice via a synapsin promoter. Ras-transgene protein expression increased postnatally, reaching a four- to fivefold elevation at day 40 and persisting at this level, thereafter. Neuronal Ras was constitutively active and a corresponding activating phosphorylation of mitogen-activated kinase was observed, but there were no changes in the activity of phosphoinositide 3-kinase, the phosphorylation of its target kinase Akt/PKB, or expression of the anti-apoptotic proteins Bcl-2 or Bcl-X(L). Neuronal Ras activation did not alter the total number of neurons, but induced cell soma hypertrophy, which resulted in a 14.5% increase of total brain volume. Choline acetyltransferase and tyrosine hydroxylase activities were increased, as well as neuropeptide Y expression. Degeneration of motorneurons was completely prevented after facial nerve lesion in Ras-transgenic mice. Furthermore, neurotoxin-induced degeneration of dopaminergic substantia nigra neurons and their striatal projections was greatly attenuated. Thus, the Ras signaling pathway mimics neurotrophic effects and triggers neuroprotective mechanisms in adult mice. Neuronal Ras activation might become a tool to stabilize donor neurons for neural transplantation and to protect neuronal populations in neurodegenerative diseases.
Collapse
Affiliation(s)
- R Heumann
- Ruhr-University of Bochum, Molecular Neurobiochemistry, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Complete and long-term rescue of lesioned adult motoneurons by lentiviral-mediated expression of glial cell line-derived neurotrophic factor in the facial nucleus. J Neurosci 2000. [PMID: 10908595 DOI: 10.1523/jneurosci.20-15-05587.2000] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To date, delivery of neurotrophic factors has only allowed to transiently protect axotomized facial motoneurons against cell death. In the present report, long-term protection of these neurons was evaluated by continuously expressing the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) within the facial nucleus using a lentiviral vector system. The viral vector was injected unilaterally into the facial nucleus of 4-month-old Balb/C mice. In contrast to axotomy in other adult rodents, facial nerve lesion in these animals leads to a progressive and sustained loss and/or atrophy of >50% of the motoneurons. This model thus represents an attractive model to evaluate potential protective effects of neurotrophic factors for adult-onset motoneuron diseases, such as amyotrophic lateral sclerosis. One month after unilateral lentiviral vector injection, the facial nerve was sectioned, and the animals were killed 3 months later. Viral delivery of the GDNF gene led to long-term expression and extensive diffusion of GDNF within the brainstem. In addition, axotomized motoneurons were completely protected against cell death, because 95% of the motoneurons were present as demonstrated by both Nissl staining and choline acetyltransferase immunoreactivity. Furthermore, GDNF prevented lesion-induced neuronal atrophy and maintained proximal motoneuron axons, despite the absence of target cell reinnervation. This is the first evidence that viral-mediated delivery of GDNF close to the motoneuron cell bodies of the facial nucleus of adult mice can lead to complete and long-term protection against lesion-induced cell death.
Collapse
|
27
|
Wiese S, Metzger F, Holtmann B, Sendtner M. Mechanical and excitotoxic lesion of motoneurons: effects of neurotrophins and ciliary neurotrophic factor on survival and regeneration. ACTA NEUROCHIRURGICA. SUPPLEMENT 1999; 73:31-9. [PMID: 10494338 DOI: 10.1007/978-3-7091-6391-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Mechanical lesion of peripheral nerves leads to extensive death of corresponding motoneurons in newborn rodents. The extent of cell death can be significantly reduced by neurotrophic factors. These molecules are produced by glial and neuronal cells and play an important role in supporting survival and regeneration of various neuronal populations in the central nervous system, in particular after mechanical, excitotoxic and ischemic insults. In addition, factors such as ciliary neurotrophic factor and neurotrophin-3 influence glial cell proliferation and survival. We have investigated the role of neurotrophic factors on motoneurons, both in cell culture and after axotomy in vivo. Moreover, the role of excitatory neurotransmission in modulating dendritic architecture of these cells was analyzed. Our data suggest that motoneurons are a suitable model for investigating the complex functional and morphological changes after brain lesion and for the identification of new therapeutic strategies to influence survival and functional recovery under such circumstances.
Collapse
Affiliation(s)
- S Wiese
- Dept. of Neurology, University of Würzburg, Germany
| | | | | | | |
Collapse
|
28
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that involves motoneuron degeneration, paralysis, and death. Mutations in Cu, Zn superoxide dismutase (SOD1) are one cause of this disease. It has been a puzzle as to why mutations in SOD1, an enzyme expressed in many neuronal types, selectively kill motoneurons. To begin to explore the factors that determine this selectivity, we carried out peripheral axotomy in mice expressing a mutant SOD1 (G93A mice) and controls (nontransgenic mice and mice expressing wild-type human SOD1). Axotomy in controls induced a predicted axonal atrophy and a small degree of axon loss. The axonal atrophy led to an increase in the number of small axons and a decrease in the number of large axons. In contrast to the controls, axotomy in G93A mice reduced the extent of axon degeneration at the end stage of the disease, leading to an increase in the number of surviving motor axons. Interestingly, all of the increased surviving axons were in the axon group with diameters smaller than 4.5 microm. This result suggests an apparent threshold of vulnerability that is correlated with axon size.
Collapse
Affiliation(s)
- J Kong
- Department of Pharmacology and Molecular Toxicology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
29
|
Kuzis K, Coffin JD, Eckenstein FP. Time course and age dependence of motor neuron death following facial nerve crush injury: role of fibroblast growth factor. Exp Neurol 1999; 157:77-87. [PMID: 10222110 DOI: 10.1006/exnr.1999.7014] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peripheral nerve crush injury (PNCI) has been used for many years in adult animals to study central and peripheral changes related to regeneration across the injury site. While these adult animals experience full recovery with no neuronal cell loss following PNCI, it has been noted that the injury in perinatal animals is followed by retrograde neuronal cell death. The present study determines, in mice of different postnatal ages, the degree to which motor neurons are vulnerable to PNCI induced cell death and examines the rate of neuronal loss. Animals of 4 days of age and younger were found to be significantly more vulnerable to motor neuron cell death following PNCI. There also was a proportional relationship between age at injury and final motor neuronal survival and an inverse relationship between age at injury and rate of neuronal cell death following injury. In addition a proportional relationship was observed between the expression level of acidic fibroblast growth factor within motor neurons and the resistance to PNCI induced neuronal death. It was also found that PNCI in an environment that contained higher levels of FGFs (either in mice treated with acidic FGF or in transgenic mice that overexpress basic FGF) significantly decreases neuronal cell death following early postnatal injury.
Collapse
Affiliation(s)
- K Kuzis
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
30
|
Acetylcholinesterase gene expression in axotomized rat facial motoneurons is differentially regulated by neurotrophins: correlation with trkB and trkC mRNA levels and isoforms. J Neurosci 1998. [PMID: 9822749 DOI: 10.1523/jneurosci.18-23-09936.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the potential influences of muscle-derived neurotrophins on the acetylcholinesterase (AChE) gene expression of adult rat motoneurons. Seven days after facial nerve transection, both AChE mRNA and enzyme activity levels were markedly reduced in untreated and vehicle-treated facial motoneurons, suggesting positive regulation of motoneuron AChE expression by muscle-derived factors. Because skeletal muscle is a source of neurotrophin-3 (NT-3), NT-4/5, and BDNF, these neurotrophins were individually infused onto the proximal nerve stump for 7 d, beginning at the time of axotomy. The trkB ligands NT-4/5 and BDNF prevented the downregulation of AChE mRNA and enzymatic activity, as determined by in situ hybridization, biochemical assay, and histochemical visualization of enzyme activity. In contrast, NT-3 had limited effects, and NGF was without effect. Because motoneurons normally express both trkB and trkC receptors and the trkC ligand NT-3 is the most abundant muscle-derived neurotrophin, we investigated possible reasons for the limited effects of NT-3. In situ hybridization and reverse transcription-PCR both revealed a downregulation of trkC mRNA in axotomized motoneurons, which contrasted the upregulation of trkB expression. Furthermore, isoforms of trkC were detected carrying insertions within their kinase domains, known to limit certain trkC-mediated signal transduction pathways. Because the changes in trkB and trkC mRNA levels were not significantly altered by neurotrophin infusions, it is unlikely they were induced by loss of muscle-derived neurotrophins. These results demonstrate that NT-4/5 and BDNF stimulate AChE gene expression in motoneurons and support the concept that muscle-derived trkB ligands modulate the cholinergic phenotype of their innervating motoneurons.
Collapse
|
31
|
Hopkins DA, Plumier JC, Currie RW. Induction of the 27-kDa heat shock protein (Hsp27) in the rat medulla oblongata after vagus nerve injury. Exp Neurol 1998; 153:173-83. [PMID: 9784277 DOI: 10.1006/exnr.1998.6870] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 27-kDa heat shock protein (Hsp27) is constitutively expressed in motor and sensory neurons of the brainstem. Hsp27 is also rapidly induced in the nervous system following oxidative and cellular metabolic stress. In this study, we examined the distribution of Hsp27 in the rat medulla oblongata by means of immunohistochemistry after the vagus nerve was cut or crushed. After vagal injury, rats were allowed to survive for 6, 12, 24 h, 2, 4, 7, 10, 14, 30, or 90 days. Vagus nerve lesions resulted in a time-dependent up-regulation of Hsp27 in vagal motor and nodose ganglion sensory neurons that expressed Hsp27 constitutively and de novo induction in neurons that did not express Hsp27 constitutively. In the dorsal motor nucleus of the vagus nerve (DMV) and nucleus ambiguus, the levels of Hsp27 in motor neurons were elevated within 24 h of injury and persisted for up to 90 days. Vagal afferents to the nucleus of the tractus solitarius (NTS) and area postrema showed increases in Hsp27 levels within 4 days that were still present 90 days postinjury. In addition, increases in Hsp27 staining of axons in the NTS and DMV suggest that vagus nerve injury resulted in sprouting of afferent axons and spread into areas of the dorsal vagal complex not normally innervated by the vagus. Our observations are consistent with the possibility that Hsp27 plays a role in long-term survival of distinct subpopulations of injured vagal motor and sensory neurons.
Collapse
Affiliation(s)
- D A Hopkins
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scota, B3H 4H7, Canada
| | | | | |
Collapse
|
32
|
Junier MP, Legendre P, Esguerra CV, Tinel M, Coulpier M, Dreyfus PA, Bähr M. Regulation of growth factor gene expression in degenerating motoneurons of the murine mutant wobbler: a cellular patch-sampling/RT-PCR study. Mol Cell Neurosci 1998; 12:168-77. [PMID: 9790737 DOI: 10.1006/mcne.1998.0708] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Motoneuronal degenerative diseases are characterized by their progressivity; once affected, the motoneurons remain in altered states during an intermediate phase of degeneration prior to their final disappearance. Whether this survival period coincides with active metabolic rearrangements in the affected neuron remains unknown. As a first step toward the elucidation of this question, we developed cDNA pooled samples obtained from degenerating and control motoneuron mRNA populations through cellular patch sampling and RT-PCR, using the murine wobbler mutant as a model of spinal atrophy. Hybridization of the cDNA pools to various markers of intact or degenerating motoneurons allowed us to verify the cellular specificity of the patch sampling and indicated conservation of the original mRNA population complexity. Exploration of transcriptional alterations of genes encoding growth factors thought to be involved in motoneuronal development revealed that gene expression of the neurotrophin BDNF was induced in affected motoneurons, while expression of neurotrophin-3 was present in both neuronal types. Likewise, expression of a member of the epidermal growth factor (EGF) family, the neuregulin transcript sensory motor neuron-derived factor, was detected in both control and degenerating motoneurons, while transforming growth factor alpha, the functional homolog of EGF, was present only in the affected motoneurons. Immunohistochemical detection of corresponding proteins corroborated these observations. These results demonstrate that, during the course of their degeneration, motoneurons can initiate expression of novel genes which lead to the production of molecules endowed with trophic and/or differentiative properties for the neurons themselves and their glial environment. They also validate the use of the developed cDNA pooled samples for further exploration of transcriptional alterations taking place in degenerating motoneurons.
Collapse
Affiliation(s)
- M P Junier
- IM3, Fac Médecine, INSERM U421, 8 rue du Gal Sarrail, Créteil, 94010, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Uwabe K, Gahara Y, Yamada H, Miyake T, Kitamura T. Identification and characterization of a novel gene (neurorep 1) expressed in nerve cells and up-regulated after axotomy. Neuroscience 1997; 80:501-9. [PMID: 9284352 DOI: 10.1016/s0306-4522(97)00112-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel gene, designated neurorep 1, was isolated by differential hybridization screening from a complementary DNA library constructed from the rat facial nucleus whose nerve had been transected seven days before sampling. In situ hybridization revealed that this gene was up-regulated in the repair stage after axotomy. The deduced protein, Neurorep 1, consists of 293 amino acid residues, and its molecular mass is approximately 34,000. Protein sequence motif search indicates that this protein has an ecto-5'-nucleotidase consensus sequence at the carboxyl terminal region. In vitro studies showed that Neurorep 1 significantly increased the activity of ecto-5'-nucleotidase, which is considered to be involved in regeneration and repair of the central nervous system. Neurorep 1 might play a significant role in the repair process of nerve tissues by its regulation of ecto-5'-nucleotidase activity.
Collapse
Affiliation(s)
- K Uwabe
- CNS Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan
| | | | | | | | | |
Collapse
|
34
|
Jung HH, Lauterburg T, Burgunder JM. Expression of neurotransmitter genes in rat spinal motoneurons after chemodenervation with botulinum toxin. Neuroscience 1997; 78:469-79. [PMID: 9145803 DOI: 10.1016/s0306-4522(96)00596-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Botulinum toxin is widely used for the treatment of focal movement disorders, where chemodenervation is used to decrease hyperactivity in selected muscles. Beside a focal paresis, widespread effects on neuromuscular synaptic function have been demonstrated. However, reactions of motoneurons after neuromuscular chemodenervation without gross morphological lesions are largely unknown. Peripheral axotomy, in contrast, leads to profound changes in the expression of several genes, including those encoding neurotransmitters, in motoneurons. We therefore examined the expression of neurotransmitter genes in rat motoneurons six days after intramuscular botulinum toxin application in the right gastrocnemius muscle. Similar doses of botulinum toxin as used in human where injected. A focal bilateral increase in expression of the choline acetyltransferase gene and a widespread bilateral increase of the beta-calcitonin-gene-related peptide and the enkephalin genes was measured in motoneurons after botulinum toxin injection. Cholecystokinin had a lower expression after botulinum toxin injections. Growth-associated protein 43, nitric oxide synthase, somatostatin and proopiomelanocortin messenger RNA were not found in motoneurons of both groups. Our results demonstrate that changes in the expression of neurotransmitter genes in motoneurons also occur after chemodenervation but with different patterns to those found after mechanical nerve lesioning. These changes reflect focal and widespread modulative events. The knowledge of these events should lead to a better understanding of the focal paralysis and of the more widespread effects found in human after intramuscular injection of botulinum toxin.
Collapse
Affiliation(s)
- H H Jung
- Neuromorphological Laboratory of the Department of Neurology, University of Berne, Switzerland
| | | | | |
Collapse
|
35
|
Wang W, Salvaterra PM, Loera S, Chiu AY. Brain-derived neurotrophic factor spares choline acetyltransferase mRNA following axotomy of motor neurons in vivo. J Neurosci Res 1997; 47:134-43. [PMID: 9008144 DOI: 10.1002/(sici)1097-4547(19970115)47:2<134::aid-jnr2>3.0.co;2-g] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Choline acetyltransferase (ChAT) is a functional and specific marker gene for neurons such as primary motor neurons that synthesize and release acetylcholine as a neurotransmitter. In adult mammals, transection of the peripheral nerve results in a loss of immunoreactivity for ChAT in the injured motor neurons without affecting their cell number. Using a quantitative RNase protection assay, we have investigated dynamic changes in ChAT mRNA levels following axotomy of motor neurons in the brainstem of adult rats. One week after transection of the left hypoglossal nerve, levels of ChAT mRNA in the ipsilateral side of the hypoglossal motor nucleus decreased dramatically to around 10% when compared to the uninjured contralateral side. When cut axons were chronically exposed to brain-derived neurotrophic factor (BDNF) for 1 week, ChAT mRNA levels were maintained at 63% of control levels. Thus, BDNF can abrogate the injury-induced loss of ChAT mRNA in mature motor neurons in vivo. In contrast, neither neurotrophin 4/5 nor nerve growth factor could prevent the decrease in message. This effect of BDNF on ChAT mRNA levels following peripheral injury to motor neurons demonstrates the existence of regulatory pathways responsive to neurotrophic factors that can "rescue" or "protect" cholinergic gene expression.
Collapse
Affiliation(s)
- W Wang
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
36
|
Hoover DB, Baisden RH, Lewis JV. Axotomy-induced loss of m2 muscarinic receptor mRNA in the rat facial motor nucleus precedes a decrease in concentration of muscarinic receptors. THE HISTOCHEMICAL JOURNAL 1996; 28:771-8. [PMID: 8968729 DOI: 10.1007/bf02272150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The abundance of muscarinic receptors and m2 muscarinic receptor mRNA in the facial nuclei of rats was evaluated by autoradiographic procedures at various times up to 14 days after transection of the right facial nerve. Receptors were labelled by in vitro incubation of brain sections with L-[3H]quinuclidinyl benzilate, while in situ hybridization with a 35S-labelled oligonucleotide was used to identify m2 muscarinic receptor mRNA in neighbouring sections. The right and left facial nuclei of non-operated control rats appeared equivalent in abundance of muscarinic receptors (359 +/- 8 versus 376 +/- 9 fmol per mg tissue, n = 5) and the presence of m2 mRNA. Axotomy had no effect on the concentration of receptors in the contralateral facial nucleus but caused a gradual loss of receptors from the ipsilateral side. No change was detected at 1 day after nerve transection, but a 23% decrease relative to the contralateral facial nucleus had occurred by 3 days. A maximum decrease of 51% was achieved by 1 week after nerve transection. By comparison, m2 mRNA was nearly eliminated from the ipsilateral facial nucleus at 1 day post-taxonomy and remained depleted for the duration of study. Previous work has established that no significant loss of motoneurons occurs within this period. Accordingly, it is postulated that axonal injury inhibits transcription of the m2 muscarinic receptor gene, resulting in a later decrease in muscarinic receptor protein expression.
Collapse
Affiliation(s)
- D B Hoover
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City 37614, USA
| | | | | |
Collapse
|
37
|
Michaelidis TM, Sendtner M, Cooper JD, Airaksinen MS, Holtmann B, Meyer M, Thoenen H. Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development. Neuron 1996; 17:75-89. [PMID: 8755480 DOI: 10.1016/s0896-6273(00)80282-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bcl-2 is a major regulator of programmed cell death, a critical process in shaping the developing nervous system. To assess whether Bcl-2 is involved in regulating neuronal survival and in mediating the neuroprotective action of neurotrophic factors, we generated Bcl-2-deficient mice. At birth, the number of facial motoneurons, sensory, and sympathetic neurons was not significantly changed, and axotomy-induced degeneration of facial motoneurons could still be prevented by brain-derived neurotrophic factor (BDNF) or ciliary neurotrophic factor (CNTF). Interestingly, substantial degeneration of motoneurons, sensory, and sympathetic neurons occurred after the physiological cell death period. Accordingly, Bcl-2 is not a permissive factor for the action of neurotrophic factors, and although it does not influence prenatal neuronal survival, it is crucial for the maintenance of specific populations of neurons during the early postnatal period.
Collapse
Affiliation(s)
- T M Michaelidis
- Department of Neurochemistry, Max-Planck-Institute for Psychiatry, Planegg-Martinsried, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|