1
|
Wu K, Kuang J, Huang N, Sheng L, Li J, Li R, Gong L, Lu Q, Liu R, Sun R. Shouhui Tongbian Capsule ameliorates obesity by enhancing energy consumption and promoting lipolysis via cAMP-PKA pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156375. [PMID: 39848021 DOI: 10.1016/j.phymed.2025.156375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND The prevalence of obesity and its associated diseases has sharply increased, becoming a global health issue. White adipose tissue (WAT), responsible for lipid storage via hyperplasia and hypertrophy, and brown adipose tissue (BAT), which facilitates energy dissipation, have increasingly been recognized as critical regulators of weight loss. Shouhui Tongbian Capsule (SHTB) has traditionally been used for detoxification, weight loss, and lipid reduction, and clinical evidence supports its use for relieving constipation. In traditional Chinese medicine (TCM), "dissipating turbidity" is seen as a shared approach to treating both constipation and obesity. Our evidence suggests that SHTB improves obesity and metabolic disorders, but the underlying mechanisms remain unclear. PURPOSE This study aimed to evaluate the pharmacological effects of SHTB on obesity and to explore the underlying mechanisms involved. METHODS Obese mice induced by a high-fat diet were treated with SHTB, and effects on body weight, adipose tissue, and metabolism were assessed. Active ingredients were identified through UPLC-MS, while metabolomics and RNA sequencing were performed to explore the mechanisms of SHTB in obesity, and molecular biology techniques validated its effects on energy consumption and lipolysis in adipose tissue. Finally, rescue experiments in vivo and in vitro confirmed the proposed mechanisms. RESULTS SHTB significantly reduced body weight, body fat percentage, and WAT mass while increasing BAT weight, and enhancing energy expenditure. Metabolomics and RNA sequencing indicated activation of the G-protein coupled receptor signaling and cAMP-PKA pathway, leading to increased lipolysis in WAT and enhanced thermogenesis in BAT. H89, a PKA agonist, counteracted these effects, supporting the involvement of cAMP-PKA signaling. CONCLUSION SHTB may prevent obesity by promoting lipolysis and enhancing BAT thermogenesis via the cAMP-PKA pathway, offering a potential therapeutic approach for obesity management.
Collapse
Affiliation(s)
- Kaiyi Wu
- The Second Hospital of Shandong University, Jinan, Shandong, PR China; Tianjin University of Traditional Chinese Medicine (TCM), Tianjin PR China
| | - Jiangying Kuang
- The Second Hospital of Shandong University, Jinan, Shandong, PR China
| | - Nana Huang
- The Second Hospital of Shandong University, Jinan, Shandong, PR China; Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Lisong Sheng
- Advanced Medical Research Institute, Shandong University, Shandong University, Jinan, Shandong, PR China
| | - Jianchao Li
- The Second Hospital of Shandong University, Jinan, Shandong, PR China; Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Rongrong Li
- The Second Hospital of Shandong University, Jinan, Shandong, PR China; Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Liping Gong
- The Second Hospital of Shandong University, Jinan, Shandong, PR China
| | - Qinghua Lu
- The Second Hospital of Shandong University, Jinan, Shandong, PR China.
| | - Runping Liu
- Beijing University of Chinese Medicine, Beijing, PR China.
| | - Rong Sun
- The Second Hospital of Shandong University, Jinan, Shandong, PR China; Advanced Medical Research Institute, Shandong University, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
2
|
Oh JM, Kim G, Jeong J, Chun S. Compound K promotes thermogenic signature and mitochondrial biogenesis via the UCP1-SIRT3-PGC1α signaling pathway. Biomed Pharmacother 2025; 183:117838. [PMID: 39799670 DOI: 10.1016/j.biopha.2025.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
Compound K (CK), an active ingredient in ginseng, has anti-cancer, anti-inflammatory, and antioxidant properties. However, its effects on thermogenesis and mitochondrial dynamics in white adipose tissue (WAT) adipocytes are not well understood. This study explores CK's impact on thermogenesis and mitochondrial metabolism in cold-exposed mice and mouse stromal vascular fraction (SVF) cells. CK increased the expression of UCP1 and other brown/beige adipocyte markers (Cd137, Cytb, Letm1, Pgc1α, Prdm16, Tbp1, Tbx1, Uqcrc1) and mitochondrial biogenesis/dynamics factors (Cidea, Cox8b, Cycs, Dio2, Drp1, Fis1, Fgf21, Nrf1, Sirt3, Tfam) in 3T3-L1/iWAT SVF cells. CK enhanced mitochondrial respiration, reduced mitochondrial ROS levels, and restored MMP in iWAT SVF cells, leading to the differentiation of WAT into beige adipocytes, and that was also observed in cold-exposed subcutaneous tissue. CK administration to cold-exposed mice reduced fat droplet size and increased the number of mitochondria. Additionally, CK stimulated non-shivering thermogenesis, indicated by the upregulation of thermogenic and mitochondrial division proteins. The browning effect of CK was nullified by SIRT3 knockdown, suggesting that CK induces beige remodeling of WAT by regulating mitochondrial dynamics and SIRT3 expression. These findings suggest CK's potential as a therapeutic agent for obesity and metabolic disorders that promotes the transformation of WAT into a metabolically active beige phenotype.
Collapse
Affiliation(s)
- Jung-Mi Oh
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea
| | - Geonhyeong Kim
- Department of Orthopaedic Surgery, Seogwipo Medical Center, Seogwipo-si, Jeju-do 63585, South Korea
| | - Jiho Jeong
- Department of Orthopaedic Surgery, Seogwipo Medical Center, Seogwipo-si, Jeju-do 63585, South Korea
| | - Sungkun Chun
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea.
| |
Collapse
|
3
|
Sana SS, Chandel AKS, Raorane CJ, Aly Aly Saad M, Kim SC, Raj V, Sangkil Lee. Recent advances in nano and micro formulations of Ginsenoside to enhance their therapeutic efficacy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156007. [PMID: 39276537 DOI: 10.1016/j.phymed.2024.156007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND AND AIMS Ginsenosides, the main component of Panax ginseng, have long been recognized for their therapeutic benefits and are thought to have neuroprotective, antidiabetic, anti-depressant, antioxidant, anti-cancer, and anti-stress properties. However, due to their low water solubility, low biomembrane permeability, gastrointestinal dysfunction, and total metabolism in the body, ginsenosides have a poor absorption profile that has hindered the therapeutic potential of these organic molecules. METHODS Initially, we broadly illuminated the several techniques of extraction of Ginsenosides using Panax quinquefolius and Panax ginseng. Subsequently, we focused on different delivery methods to improve the stability, permeability, and solubility of natural chemicals, which raises the bioavailability of ginsenoside. Lastly, we explained significance of a variety of nano and microscale delivery systems, including liposomes, ethosomes, transfersomes, metal/metal oxide systems, micro/nanoemulsions, polymeric micro/nanoparticles (NPs), liposomes, transfersomes, and micelles to increase the bioavailability of ginsenosides. RESULTS The utilization of micro/nanoscale delivery methods, such as liposome-based delivery, polymer micro/nanoparticle distribution, and micro/nanoemulsion, to increase the bioavailability of ginsenosides has recently advanced, and we have emphasized these advances in this study. Furthermore, the disadvantages of ginsenosides were also discussed, including the challenges associated with putting these delivery systems into practice in clinical settings and suggestions for further research. CONCLUSION In summary, ginsenosides-based administration has several benefits that make it a potentially useful substance for a range of therapeutic purposes.
Collapse
Affiliation(s)
- Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | | | - Mohamed Aly Aly Saad
- Department of Electrical and Computer Engineering, Georgia Tech Shenzhen Institute (GTSI), Shenzhen, Guangdong 518052, China
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Wang Q, Du J, Ma R. White adipocyte-derived exosomal miR-23b inhibits thermogenesis by targeting Elf4 to regulate GLP-1R transcription. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5847-5860. [PMID: 38334823 DOI: 10.1007/s00210-024-02984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Promoting non-trembling thermogenesis of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) helps prevent obesity. MiR-23b is highly expressed in adipose tissue-derived exosomes obtained from obese people, but the role of exosomal miR-23b in regulating thermogenesis and obesity progression remains to be further explored. Here, a mouse obesity model was established through high-fat diet (HFD), and inguinal WAT (iWAT)-derived exosomes and miR-23b antagomir were administered by intraperitoneal injection. The results showed that WAT-derived exosomal miR-23b upregulated body weight and adipocyte hypertrophy and enhanced insulin resistance. Moreover, exosomal miR-23b restrained mtDNA copy number and the expression of genes related to thermogenesis and mitochondrial biogenesis in BAT, and suppressed the expression of WAT browning-related genes under cold stimulation, indicating that exosomal miR-23b hindered non-trembling thermogenesis of BAT and WAT browning. Mechanism studies found that miR-23b targeted Elf4 to inhibit its expression. And Elf4 bound to the GLP-1R promoter region to promote GLP-1R transcription. In addition, silencing miR-23b effectively abolished the inhibitory effect of WAT-derived exosomes on thermogenic gene expression and mitochondrial respiration in adipocytes isolated from BAT and iWAT, which was reversed by GLP-1R knockdown. In conclusion, WAT-derived exosomal miR-23b suppressed thermogenesis by targeting Elf4 to regulate GLP-1R transcription, which contributed to the progression of obesity.
Collapse
Affiliation(s)
- Qian Wang
- Functional Experiment Center, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China.
| | - Junkai Du
- Department of Emergency, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruili Ma
- Functional Experiment Center, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| |
Collapse
|
5
|
Yin Y, Wang Z, Yang Y, Shen M, Hu H, Chen C, Zhou H, Li Z, Wu S. Ginsenoside Rb1 regulates CPT1A deacetylation to inhibit intramuscular fat infiltration after rotator cuff tear. iScience 2024; 27:110331. [PMID: 39071885 PMCID: PMC11277379 DOI: 10.1016/j.isci.2024.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024] Open
Abstract
Fat infiltration (FI) in the rotator cuff muscle is associated with poor clinical outcomes and failed repair of rotator cuff tears (RCTs) in patients. In this study, we aimed to investigate the function of ginsenoside Rb1 in inhibiting FI in muscles after RCT and its underlying molecular mechanism. After TT modeling, mice treated with Rb1 for 6 weeks showed lower FI in the SS muscle compared with mice in the control groups and those treated with other ginsenoside components. Mechanically, Rb1 binds to the NAD+ domain of SIRT1, activating its expression and enzyme activity. This activation stimulates the deacetylation of CPT1A at site K195, thereby promoting fatty acid β-oxidation in adipocyte cells and improving lipolysis. These findings suggest that Rb1 is a potential therapeutic component for improving the outcomes of patients with RCTs.
Collapse
Affiliation(s)
- Yuesong Yin
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Zili Wang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Yian Yang
- Department of Oncology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Minren Shen
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Hai Hu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Chuanshun Chen
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Hecheng Zhou
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| |
Collapse
|
6
|
Kim TH. Ginsenosides for the treatment of insulin resistance and diabetes: Therapeutic perspectives and mechanistic insights. J Ginseng Res 2024; 48:276-285. [PMID: 38707641 PMCID: PMC11068994 DOI: 10.1016/j.jgr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a systemic disorder of energy metabolism characterized by a sustained elevation of blood glucose in conjunction with impaired insulin action in multiple peripheral tissues (i.e., insulin resistance). Although extensive research has been conducted to identify therapeutic targets for the treatment of DM, its global prevalence and associated mortailty rates are still increasing, possibly because of challenges related to long-term adherence, limited efficacy, and undesirable side effects of currently available medications, implying an urgent need to develop effective and safe pharmacotherapies for DM. Phytochemicals have recently drawn attention as novel pharmacotherapies for DM based on their clinical relevance, therapeutic efficacy, and safety. Ginsenosides, pharmacologically active ingredients primarily found in ginseng, have long been used as adjuvants to traditional medications in Asian countries and have been reported to exert promising therapeutic efficacy in various metabolic diseases, including hyperglycemia and diabetes. This review summarizes the current pharmacological effects of ginsenosides and their mechanistic insights for the treatment of insulin resistance and DM, providing comprehensive perspectives for the development of novel strategies to treat DM and related metabolic complications.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Cui Z, Gu L, Liu T, Liu Y, Yu B, Kou J, Li F, Yang K. Ginsenoside Rd attenuates myocardial ischemia injury through improving mitochondrial biogenesis via WNT5A/Ca 2+ pathways. Eur J Pharmacol 2023; 957:176044. [PMID: 37660968 DOI: 10.1016/j.ejphar.2023.176044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Ginsenoside Rd, one of the main active components in ginseng, exerts various biological activities. However, its effectiveness on myocardial ischemia injury and its potential mechanism need further clarification. The model of isoproterenol (ISO)-induced myocardial ischemia injury (MI) mice and cobalt chloride (CoCl2)-induced cardiomyocytes injury were performed. Ginsenoside Rd significantly alleviated MI injury, as evidenced by ameliorated cardiac pathological features and improved cardiac function. Simultaneously, ginsenoside Rd notably mitigated CoCl2-induced cell injury, decreased the lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) generation in vitro. Additionally, ginsenoside Rd increased nicotinamide adenine dinucleotide (NADH) and mitochondrial membrane potential (MMP). Moreover, we found that ginsenoside Rd could increase the mitochondrial DNA (mtDNA) and promote the expression of Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α), nuclear factor erythroid 2 related factor-1 (NRF1), nuclear factor erythroid 2 related factor-2 (NRF2) and activating mitochondrial transcription factor A (TFAM), which suggested that ginsenoside Rd might accelerate mitochondrial biogenesis function to ameliorate MI injury. Importantly, ginsenoside Rd treatment significantly inhibited the WNT5A/calcium (Ca2+) signaling pathway, decreased the expression of WNT5A, Frizzled2, phosphorylated calmodulin kinase II/calmodulin kinase II (p-CaMKII/CaMKII) and the calcium overload. Meanwhile, WNT5A siRNA was further conducted to elucidate the effect of ginsenoside Rd on CoCl2-induced cardiomyocyte injury. And we found that WNT5A siRNA partially weakened the protective effects of ginsenoside Rd on mitochondrial function and mitochondrial biogenesis, suggesting that ginsenoside Rd might suppress myocardial ischemia injury through WNT5A. Overall, this study demonstrated that ginsenoside Rd could alleviate myocardial ischemia injury through improving mitochondrial biogenesis via WNT5A/Ca2+ pathways, which provided a rationale for future clinical applications and potential drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Zekun Cui
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Lifei Gu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Tao Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yining Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Kun Yang
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Cui T, Xiao X, Pan Z, Tang K, Zhong Y, Chen Y, Guo J, Duan S, Zhong G, Li T, Li X, Wu X, Lin C, Yang X, Gao Y, Zhang D. Harnessing the Therapeutic Potential of Ginsenoside Rd for Activating SIRT6 in Treating a Mouse Model of Nonalcoholic Fatty Liver Disease. ACS OMEGA 2023; 8:29735-29745. [PMID: 37599957 PMCID: PMC10433470 DOI: 10.1021/acsomega.3c04122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent global condition and a common precursor to liver cancer, yet there is currently no specific medication available for its treatment. Ginseng, renowned for its medicinal and dietary properties, has been utilized in NAFLD management, although the precise underlying mechanism remains elusive. To investigate the effectiveness of ginsenoside Rd, we employed mouse and cell models to induce NAFLD using high-fat diets, oleic acid, and palmitic acid. We explored and confirmed the specific mechanism of ginsenoside Rd-induced hepatic steatosis through experiments involving mice with a liver-specific knockout of SIRT6, a crucial protein involved in metabolic regulation. Our findings revealed that administration of ginsenoside Rd significantly reduced the inflammatory response, reactive oxygen species (ROS) levels, lipid peroxide levels, and mitochondrial stress induced by oleic acid and palmitic acid in primary hepatocytes, thereby mitigating excessive lipid accumulation. Moreover, ginsenoside Rd administration effectively enhanced the mRNA content of key proteins involved in fatty acid oxidation, with a particular emphasis on SIRT6 and its target proteins. We further validated that ginsenoside Rd directly binds to SIRT6, augmenting its deacetylase activity. Notably, we made a significant observation that the protective effect of ginsenoside Rd against hepatic disorders induced by a fatty diet was almost entirely reversed in mice with a liver-specific SIRT6 knockout. Our findings highlight the potential therapeutic impact of Ginsenoside Rd in NAFLD treatment by activating SIRT6. These results warrant further investigation into the development of Ginsenoside Rd as a promising agent for managing this prevalent liver disease.
Collapse
Affiliation(s)
- Tianqi Cui
- The
Fourth Clinical Medical College of Guangzhou University of Chinese
Medicine, Shenzhen 518033, China
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoxia Xiao
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Zhisen Pan
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Kaijia Tang
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Yadi Zhong
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Yingjian Chen
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Jingyi Guo
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Siwei Duan
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Guangcheng Zhong
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Tianyao Li
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiang Li
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiumei Wu
- Emergency
Department of the First Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510006, China
| | - Chuanquan Lin
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoying Yang
- Jiangsu
Key Laboratory of Immunity and Metabolism, Department of Pathogen
Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yong Gao
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Dong Zhang
- The
Fourth Clinical Medical College of Guangzhou University of Chinese
Medicine, Shenzhen 518033, China
| |
Collapse
|
10
|
Yang SJ, Wang JJ, Cheng P, Chen LX, Hu JM, Zhu GQ. Ginsenoside Rg1 in neurological diseases: From bench to bedside. Acta Pharmacol Sin 2023; 44:913-930. [PMID: 36380226 PMCID: PMC10104881 DOI: 10.1038/s41401-022-01022-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Ginseng has been used in China as a superior medicinal material for thousands of years that can nourish the five internal organs, calm the mind and benefit wisdom. Due to its anti-inflammatory, antioxidant and neuroprotective activities, one of the active components of ginseng, ginsenoside Rg1, has been extensively investigated in the remedy of brain disorders, especially dementia and depression. In this review, we summarized the research progress on the action mechanisms of Rg1 ameliorating depression-like behaviors, including inhibition of hyperfunction of hypothalamic-pituitary-adrenal (HPA) axis, regulation of synaptic plasticity and gut flora. Rg1 may alleviate Alzheimer's disease in the early phase, as well as in the middle-late phases through repairing dendrite, axon and microglia- and astrocyte-related inflammations. We also proposed that Rg1 could regulate memory state (the imbalance of working and aversive memory) caused by distinct stimuli. These laboratory studies would further the clinical trials on Rg1. From the prospective of drug development, we discussed the limitations of the present investigations and proposed our ideas to increase permeability and bioavailability of Rg1. Taken together, Rg1 has the potential to treat neuropsychiatric disorders, but a future in-depth investigation of the mechanisms is still required. In addition, drug development will benefit from the clinical trials in one specific neuropsychiatric disorder.
Collapse
Affiliation(s)
- Shao-Jie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing-Ji Wang
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China.
| | - Ping Cheng
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Li-Xia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jia-Min Hu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guo-Qi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
11
|
Wan S, Cui Z, Wu L, Zhang F, Liu T, Hu J, Tian J, Yu B, Liu F, Kou J, Li F. Ginsenoside Rd promotes omentin secretion in adipose through TBK1-AMPK to improve mitochondrial biogenesis via WNT5A/Ca 2+ pathways in heart failure. Redox Biol 2023; 60:102610. [PMID: 36652744 PMCID: PMC9860421 DOI: 10.1016/j.redox.2023.102610] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Ginsenoside Rd is an active ingredient in Panax ginseng CA Mey and can be absorbed into the adipose tissue. Adipokines play an important role in the treatment of cardiovascular diseases. However, the potential benefit of Rd on heart failure (HF) and the underlying mechanism associated with the crosstalk between adipocytes and cardiomyocytes remains to be illustrated. Here, the results identified that Rd improved cardiac function and inhibited cardiac pathological changes in transverse aortic constriction (TAC), coronary ligation (CAL) and isoproterenol (ISO)-induced HF mice. And Rd promoted the release of omentin from the adipose tissue and up-regulated omentin expression in lipopolysaccharide (LPS)-induced 3T3-L1 adipocytes. Further, Rd could increase TBK1 and AMPK phosphorylation in adipocytes. And also, the TBK1-AMPK signaling pathway regulated the expression of omentin in LPS-induced adipocytes. Moreover, the omentin mRNA expression was significantly decreased by TBK1 knockdown in LPS-induced 3T3-L1 adipocytes. Additionally, molecular docking and SPR analysis confirmed that Rd had a certain binding ability with TBK1, and co-treatment with TBK1 inhibitors or TBK1 knockdown partially abolished the effect of Rd on increasing the omentin expression and the ratio of p-AMPK to AMPK in adipocytes. Moreover, we found that circulating omentin level diminished in the HF patients compared with healthy subjects. Meanwhile, the adipose tissue-specific overexpression of omentin improved cardiac function, reduced myocardial infarct size and ameliorated cardiac pathological features in CAL-induced HF mice. Consistently, exogenous omentin reduced mtROS levels and restored ΔψM to improve oxygen and glucose deprivation (OGD)-induced cardiomyocytes injury. Further, omentin inhibited the WNT5A/Ca2+ signaling pathway and promoted mitochondrial biogenesis function to ameliorate myocardial ischemia injury. However, WNT5A knockdown inhibited the impairment of mitochondrial biogenesis and partially counteracted the cardioprotective effect of omentin in vitro. Therefore, this study indicated that Rd promoted omentin secretion from adipocytes through the TBK1-AMPK pathway to improve mitochondrial biogenesis function via WNT5A/Ca2+ signaling pathway to ameliorate myocardial ischemia injury, which provided a new therapeutic mechanism and potential drugs for the treatment of HF.
Collapse
Affiliation(s)
- Shiyao Wan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - ZeKun Cui
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingling Wu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tao Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingui Hu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiangwei Tian
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fuming Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
12
|
Li J, Huang Q, Yao Y, Ji P, Mingyao E, Chen J, Zhang Z, Qi H, Liu J, Chen Z, Zhao D, Zhou L, Li X. Biotransformation, Pharmacokinetics, and Pharmacological Activities of Ginsenoside Rd Against Multiple Diseases. Front Pharmacol 2022; 13:909363. [PMID: 35928281 PMCID: PMC9343777 DOI: 10.3389/fphar.2022.909363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022] Open
Abstract
Panax ginseng C.A. Mey. has a history of more than 4000 years and is widely used in Asian countries. Modern pharmacological studies have proved that ginsenosides and their compounds have a variety of significant biological activities on specific diseases, including neurodegenerative diseases, certain types of cancer, gastrointestinal disease, and metabolic diseases, in which most of the interest has focused on ginsenoside Rd. The evidentiary basis showed that ginsenoside Rd ameliorates ischemic stroke, nerve injury, cancer, and other diseases involved in apoptosis, inflammation, oxidative stress, mitochondrial damage, and autophagy. In this review, we summarized available reports on the molecular biological mechanisms of ginsenoside Rd in neurological diseases, cancer, metabolic diseases, and other diseases. We also discussed the main biotransformation pathways of ginsenoside Rd obtained by fermentation.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Ji
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - E. Mingyao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Lei Zhou, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Lei Zhou, ; Xiangyan Li,
| |
Collapse
|
13
|
Insights into Recent Studies on Biotransformation and Pharmacological Activities of Ginsenoside Rd. Biomolecules 2022; 12:biom12040512. [PMID: 35454101 PMCID: PMC9031344 DOI: 10.3390/biom12040512] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
It is well known that ginsenosides—major bioactive constituents of Panax ginseng—are attracting more attention due to their beneficial pharmacological activities. Ginsenoside Rd, belonging to protopanaxadiol (PPD)-type ginsenosides, exhibits diverse and powerful pharmacological activities. In recent decades, nearly 300 studies on the pharmacological activities of Rd—as a potential treatment for a variety of diseases—have been published. However, no specific, comprehensive reviews have been documented to date. The present review not only summarizes the in vitro and in vivo studies on the health benefits of Rd, including anti-cancer, anti-diabetic, anti-inflammatory, neuroprotective, cardioprotective, ischemic stroke, immunoregulation, and other pharmacological effects, it also delves into the inclusion of potential molecular mechanisms, providing an overview of future prospects for the use of Rd in the treatment of chronic metabolic diseases and neurodegenerative disorders. Although biotransformation, pharmacokinetics, and clinical studies of Rd have also been reviewed, clinical trial data of Rd are limited; the only data available are for its treatment of acute ischemic stroke. Therefore, clinical evidence of Rd should be considered in future studies.
Collapse
|
14
|
Natural bioactive constituents from herbs and nutraceuticals promote browning of white adipose tissue. Pharmacol Res 2022; 178:106175. [DOI: 10.1016/j.phrs.2022.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
|
15
|
Pu J, Akter R, Rupa EJ, Awais M, Mathiyalagan R, Han Y, Kang J, Yang DC, Kang SC. Role of Ginsenosides in Browning of White Adipose Tissue to Combat Obesity: A Narrative Review on Molecular Mechanism. Arch Med Res 2021; 53:231-239. [DOI: 10.1016/j.arcmed.2021.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022]
|
16
|
Zhang Y, Li J, Wang HH, Li J, Yu Y, Li B, Huang L, Wu C, Liu X. Phytohemagglutinin ameliorates HFD-induced obesity by increasing energy expenditure. J Mol Endocrinol 2021; 67:1-14. [PMID: 33983894 PMCID: PMC8240727 DOI: 10.1530/jme-20-0349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/13/2021] [Indexed: 12/01/2022]
Abstract
Despite all modern advances in medicine, there are few reports of effective and safe drugs to treat obesity. Our objective was to screen anti-obesity natural compounds, and to verify whether they can reduce the body weight gain and investigate their molecular mechanisms. By using drug-screening methods, Phytohemagglutinin (PHA) was found to be the most anti-obesity candidate natural compound. Six-week-old C57BL/6J mice were fed with a high-fat diet (HFD) and intraperitoneally injected with 0.25 mg/kg PHA everyday for 8 weeks. The body weight, glucose homeostasis, oxygen consumption and physical activity were assessed. We also measured the heat intensity, body temperature and the gene expression of key regulators of energy expenditure. Prevention study results showed PHA treatment not only reduced the body weight gain but also maintained glucose homeostasis in HFD-fed mice. Further study indicated energy expenditure and uncoupling protein 1 (UCP-1) expression of brown adipose tissue (BAT) and white adipose tissue (WAT) in HFD-fed mice were significantly improved by PHA. In the therapeutic study, a similar effect was observed. PHA inhibited lipid droplet formation and upregulated mitochondrial-related gene expression during adipogenesis in vitro. UCP-1 KO mice displayed no differences in body weight, glucose homeostasis and core body temperature between PHA and control groups. Our results suggest that PHA prevent and treat obesity by increasing energy expenditure through upregulation of BAT thermogenesis.
Collapse
Affiliation(s)
- Yunxia Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jin Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Hui-hui Wang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jiao Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Yue Yu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Bo Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Li Huang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Changjing Wu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
17
|
Zhang X, Zhang B, Zhang C, Sun G, Sun X. Effect of Panax notoginseng Saponins and Major Anti-Obesity Components on Weight Loss. Front Pharmacol 2021; 11:601751. [PMID: 33841133 PMCID: PMC8027240 DOI: 10.3389/fphar.2020.601751] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
The prevalence of individuals who are overweight or obese is rising rapidly globally. Currently, majority of drugs used to treat obesity are ineffective or are accompanied by obvious side effects; hence, the options are very limited. Therefore, it is necessary to find more effective and safer anti-obesity drugs. It has been proven in vivo and in vitro that the active ingredient notoginsenosides isolated from traditional Chinese medicine Panax notoginseng (Burk.) F. H. Chen exhibits anti-obesity effects. Notoginsenosides can treat obesity by reducing lipid synthesis, inhibiting adipogenesis, promoting white adipose tissue browning, increasing energy consumption, and improving insulin sensitivity. Although notoginsenosides are potential drugs for the treatment of obesity, their effects and mechanisms have not been analyzed in depth. In this review, the anti-obesity potential and mechanism of action of notoginsenosides were analyzed; thus laying emphasis on the timely prevention and treatment of obesity.
Collapse
Affiliation(s)
- Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Kang Z, Zhonga Y, Wu T, Huang J, Zhao H, Liu D. Ginsenoside from ginseng: a promising treatment for inflammatory bowel disease. Pharmacol Rep 2021; 73:700-711. [PMID: 33462754 PMCID: PMC8180475 DOI: 10.1007/s43440-020-00213-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease mediated by immune disorder and termed as one of the most refractory diseases by the Word Health Organization. Its morbidity has increased steadily over the past half century worldwide. Environmental, genetic, infectious, and immune factors are integral to the pathogenesis of IBD. Commonly known as the king of herbs, ginseng has been consumed in many countries for the past 2000 years. Its active ingredient ginsenosides, as the most prominent saponins of ginseng, have a wide range of pharmacological effects. Recent studies have confirmed that the active components of Panax ginseng have anti-inflammatory and immunomodulatory effects on IBD, including regulating the balance of immune cells, inhibiting the expression of cytokines, as well as activating Toll-like receptor 4, Nuclear factor-kappa B (NF-κB), nucleotide-binding oligomerization domain-like receptor (NLRP), mitogen-activated protein kinase signaling, and so on. Accumulated evidence indicates that ginsenosides may serve as a potential novel therapeutic drug or health product additive in IBD prevention and treatment in the future.
Collapse
Affiliation(s)
- Zengping Kang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Youbao Zhonga
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China.,Experimental Animal Science and Technology Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Tiantian Wu
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jiaqi Huang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, Jiangxi, China.
| | - Duanyong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, 1689 Meiling Road, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
19
|
Therapeutic Effect of Ginsenoside Rd on Experimental Autoimmune Encephalomyelitis Model Mice: Regulation of Inflammation and Treg/Th17 Cell Balance. Mediators Inflamm 2021; 2020:8827527. [PMID: 33380901 PMCID: PMC7762661 DOI: 10.1155/2020/8827527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease. Inflammatory infiltrates and demyelination of the CNS are the major characteristics of MS and its related animal model-experimental autoimmune encephalomyelitis (EAE). Immoderate autoimmune responses of Th17 cells and dysfunction of Treg cells critically contribute to the pathogenesis of MS and EAE. Our previous study showed that Ginsenoside Rd effectively ameliorated the clinical severity in EAE mice, but the mechanism remains unclear. In this study, we investigated the therapeutic effect of Ginsenoside Rd on EAE in vivo and in vitro and also explored the potential mechanisms for alleviating the injury of EAE. The results indicated that Ginsenoside Rd was effective for the treatment of EAE in mice and splenocytes. Ginsenoside Rd treatment on EAE mice ameliorated the severity of EAE and attenuated the characteristic signs of disease. Ginsenoside Rd displayed the therapeutic function to EAE by modulating inflammation and autoimmunity, via the downregulation of related proinflammatory cytokines IL-6 and IL-17, upregulation of inhibitory cytokines TGF-β and IL-10, and modulation of Treg/Th17 imbalance. And the Foxp3/RORγt/JAK2/STAT3 signaling was found to be associated with this protective function. In addition, analysis of gut microbiota showed that Ginsenoside Rd also had modulation potential on gut microbiota in EAE mice. Based on this study, we hypothesize that Ginsenoside Rd could be a potential and promising agent for the treatment of MS.
Collapse
|