1
|
Wang F, Deng H, Zhou M, Yang Y, Zhou J, Wang Y, Xie X, Lin X, Liu M, Sun G, Zhou C. Anti-PD-1 exacerbates bleomycin-induced lung injury in mice via Caspase-3/GSDME-mediated pyroptosis. Cell Death Dis 2025; 16:3. [PMID: 39762211 PMCID: PMC11704276 DOI: 10.1038/s41419-024-07319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have significant therapeutic effects but can also cause fatal lung injury. However, the lack of mouse animal models of ICI-related lung injury (ICI-LI) has limited the in-depth exploration of its pathogenesis. In clinical practice, underlying lung diseases increase the risk of lung injury. Thus, we used a mouse model of lung injury induced by bleomycin (BLM) and then administered anti-programmed cell death 1 (aPD-1) antibodies to induce ICI-LI. Compared with the BLM group, the aPD-1 + BLM group presented more significant weight loss, greater levels of lung inflammation and fibrosis, and decreased lung function. In this ICI-LI model, high levels of caspase-3/gasdermin E (GSDME) were detected in the lung tissue of mice, and the JNK inhibitor SP600125 mitigated lung damage by inhibiting GSDME-mediated pyroptosis. Consistent with the findings in the animal model, immunofluorescence and RNA sequencing of lung tissue from ICI-LI patients revealed upregulation of the expression of genes related to the GSDME-related pyroptosis pathway. Our results suggest that GSDME-mediated pyroptosis may be associated with the pathogenesis of ICI-LI, indicating that targeting GSDME could be a potential therapeutic strategy for treating ICI-LI.
Collapse
Affiliation(s)
- Fei Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Haiyi Deng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Maolin Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Yilin Yang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Jiankui Zhou
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510405, China
| | - Yansheng Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Xiaohong Xie
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Xinqing Lin
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Ming Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China.
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
2
|
Guo Y, Liu F, Chi M, Qian H, Zhang Y, Yuan Y, Hou S, Chen X, Ma L. Design and synthesis of JNK1-targeted PROTACs and research on the activity. Bioorg Chem 2025; 154:108044. [PMID: 39700830 DOI: 10.1016/j.bioorg.2024.108044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Kinase dysregulation is greatly associated with cell growth, proliferation, differentiation and apoptosis, which indicates their great potential as therapeutic targets for treatment of numerous progressive disorders, including inflammatory, metabolic and autoimmune disorders, organ fibrosis and cancer. The c‑Jun N‑Terminal Kinase (JNK), as a member of MAPK family, is proved to be a potential target for the treatment of pulmonary fibrosis, which is the most common progressive and fatal fibrotic lung disease. As a new strategy, small-molecule-mediated targeted protein degradation pathway has the advantages of catalytic properties, overcoming drug resistance and expanding target space, which can circumvent the limitations associated with kinase inhibitors. Proteolysis targeting chimeras (PROTAC) contains a linker to concatenate a ligand of E3 ubiquitin ligase and a ligand for a protein of interest (POI). We developed a total of 20 JNK1-targeted PROTACs that induce proteasomal degradation of JNK1 components. The most active PROTAC molecule PA2 was then investigated by JNK1 enzyme assay and protein degradation assay, which suggested that PA2 had an anti-JNK1 ability and provided insights for the future use of JNK1-targeted PROTAC as treatment drugs for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yue Guo
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fengling Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Man Chi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hewen Qian
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ye Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Shurong Hou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
3
|
Xu Y, Wang YR, Peng WP, Bu HM, Zhou Y, Wu Q. Tanshinone IIA Alleviates Pulmonary Fibrosis by Inhibiting Pyroptosis of Alveolar Epithelial Cells Through the MAPK Signaling Pathway. Phytother Res 2025; 39:282-297. [PMID: 39520221 DOI: 10.1002/ptr.8372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024]
Abstract
The current dearth of safe and efficacious pharmaceutical interventions for pulmonary fibrosis (PF) has prompted investigations into alternative treatments. This study aim to investigate the underlying mechanisms of Tanshinone IIA in the treatment of PF. PF was induced in a mouse model by intratracheal infusion of bleomycin (BLM), followed by gavage administration of varying concentrations of Tanshinone IIA. Lung tissue was obtained for pathological slides, proteomic and transcriptomic analyses. The target was predicted and analyzed using network pharmacology. Initially, an in vitro model in A549 cells was established by adding BLM, followed by treatment with varying concentrations of Tanshinone IIA. Subsequently, NAC and the ERK inhibitor, U0126, were individually introduced. Treatment with Tanshinone IIA in vivo decreased lung tissue lesions. Proteomic, transcriptomic, and network pharmacology analyses suggested that Tanshinone IIA may offer therapeutic benefits for PF by mitigating oxidative stress damage via the MAPK signaling pathway. In vitro studies demonstrated that BLM treatment in A549 cells induced exposure of the N-terminal end of the pyroptosis core protein GSDMD, and elevated oxidative stress levels in A549 cells, concomitant with the upregulation of P-ERK protein expression. Subsequent administration of Tanshinone IIA, NAC, and U0126 reduced the number of A549 cells undergoing pyroptosis, decreased oxidative stress levels, and decreased P-ERK protein expression. These findings suggested that Tanshinone IIA potentially delays the progression of PF. The mechanism of action involves the inhibition of oxidative stress and reduced epithelial cell pyroptosis via the MAPK-related pathway. The findings may provide a new reference for treatment of PF.
Collapse
Affiliation(s)
- Yong Xu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi-Ran Wang
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Wen-Pan Peng
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Hui-Min Bu
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yao Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Qi Wu
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Kambhampati V, Eedara A, Andugulapati SB. Yohimbine treatment improves pulmonary fibrosis by attenuating the inflammation and oxidative stress via modulating the MAPK pathway. Biochem Pharmacol 2024; 230:116613. [PMID: 39515589 DOI: 10.1016/j.bcp.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disorder characterized by the accumulation of extracellular matrix and collagen, resulting in significant parenchymal scarring and respiratory failure that leads to mortality. Yohimbine (YBH) is an α-2 adrenergic receptor antagonist with anti-oxidant and anti-inflammatory properties. In the current study, we aimed to investigate the anti-inflammatory, anti-oxidant and anti-fibrotic activity of YBH against LPS/TGF-β-induced differentiation in BEAS-2B/LL29 cells and bleomycin (BLMN) induced pulmonary fibrosis model in rats. Network pharmacology, gene expression, Western-blot analysis, immune-cytochemistry/immunohistochemistry, lung functional analysis, and histology techniques were used to assess the fibrotic marker expression/levels in cells or rat lung tissues. YBH treatment significantly attenuated the LPS-induced pro-inflammatory (identified through a network-pharmacology approach) and oxidative stress markers expression in lung epithelial cells. TGF-β stimulation significantly elevated the fibrotic cascade of markers and treatment with YBH attenuated these markers' expression/levels. Intra-tracheal administration of BLMN caused a significant elevation of various inflammatory/oxidative stress and fibrotic markers expression in lung tissues and treatment with YBH significantly mitigated the same. Ashcroft score analysis revealed that BLMN exhibited severe distortion of the lungs, elevation of thickness of the alveolar walls and accumulation of collagen in tissues, further treatment with YBH significantly suppressed these events and improved the lung architecture. Lung functional parameters demonstrated that BLMN-induced stiffness and resistance were reduced considerably upon YBH treatment and restored lung function dose-dependently. Overall, this study reveals that YBH treatment significantly attenuated the BLMN-induced fibrosis by regulating the MAPK pathway and provided insightful information for progressing towards translational outcomes.
Collapse
Affiliation(s)
- Vaishnavi Kambhampati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | - Abhisheik Eedara
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
5
|
Huang Y, Liu F, Ren S, Ding Y, Chi M, Huang W, Gu W, Qian H, Yuan Y, Hou S, Chen X, Ma L. Structure Optimization of c-Jun N-terminal Kinase 1 Inhibitors for Treating Idiopathic Pulmonary Fibrosis. J Med Chem 2024; 67:17713-17737. [PMID: 39303278 DOI: 10.1021/acs.jmedchem.4c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease with an elusive etiology. Aberrant activation of c-Jun N-terminal kinase 1 (JNK1) has been implicated in its pathogenesis. Through a combination of structure-based drug design and structure-activity relationship (SAR) optimization, a series of pyrimidine-2,4-diamine scaffold derivatives have been developed as potent JNK1 inhibitors. Compound E1 was identified with low nanomolar JNK1 inhibitory potency (IC50 = 2.7 nM). The introduction of a dimethylamine side chain has significantly enhanced the ability of E1 to inhibit c-Jun phosphorylation, surpassing the clinical candidate CC-90001. Molecular dynamics simulations revealed a binding free energy of -50.46 kcal/mol for E1. Moreover, E1 displayed satisfactory pharmacokinetic properties, with a bioavailability of 69% in rats. Furthermore, compound E1 exerted significant antifibrotic effects in a bleomycin-induced IPF mouse model and prevented a TGF-β-induced epithelial-to-mesenchymal transition in vitro. These findings position E1 as a promising lead for further drug development targeting IPF.
Collapse
Affiliation(s)
- Yi Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fengling Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuhua Ren
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuanqing Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Man Chi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Weiwei Huang
- Hangzhou Matrix Biopharmaceutical Co., Ltd, Hangzhou, Zhejiang 311121, China
| | - Wenjing Gu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hewen Qian
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Shurong Hou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
6
|
Aribindi K, Liu GY, Albertson TE. Emerging pharmacological options in the treatment of idiopathic pulmonary fibrosis (IPF). Expert Rev Clin Pharmacol 2024; 17:817-835. [PMID: 39192604 PMCID: PMC11441789 DOI: 10.1080/17512433.2024.2396121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a progressive-fibrosing lung disease with a median survival of less than 5 years. Currently, two agents, pirfenidone and nintedanib are approved for this disease, and both have been shown to reduce the rate of decline in lung function in patients with IPF. However, both have significant adverse effects and neither completely arrest the decline in lung function. AREAS COVERED Thirty experimental agents with unique mechanisms of action that are being evaluated for the treatment of IPF are discussed. These agents work through various mechanisms of action, these include inhibition of transcription nuclear factor k-B on fibroblasts, reduced expression of metalloproteinase 7, the generation of more lysophosphatidic acids, blocking the effects of transforming growth factor ß, and reducing reactive oxygen species as examples of some unique mechanisms of action of these agents. EXPERT OPINION New drug development has the potential to expand the treatment options available in the treatment of IPF patients. It is expected that the adverse drug effect profiles will be more favorable than current agents. It is further anticipated that these new agents or combinations of agents will arrest the fibrosis, not just slow the fibrotic process.
Collapse
Affiliation(s)
- Katyayini Aribindi
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
- Department of Medicine, Department of Veterans Affairs Northern California Health Care System, Mather, CA, USA
| | - Gabrielle Y Liu
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - Timothy E Albertson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
- Department of Medicine, Department of Veterans Affairs Northern California Health Care System, Mather, CA, USA
| |
Collapse
|
7
|
Wei X, Jin C, Li D, Wang Y, Zheng S, Feng Q, Shi N, Kong W, Ma X, Wang J. Single-cell transcriptomics reveals CD8 + T cell structure and developmental trajectories in idiopathic pulmonary fibrosis. Mol Immunol 2024; 172:85-95. [PMID: 38936318 DOI: 10.1016/j.molimm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.
Collapse
Affiliation(s)
- Xuemei Wei
- Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Chengji Jin
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Dewei Li
- Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China
| | - Yujie Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Shaomao Zheng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Qiong Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Ning Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Weina Kong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China.
| | - Jing Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China; NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
8
|
Fortier SM, Walker NM, Penke LR, Baas JD, Shen Q, Speth JM, Huang SK, Zemans RL, Bennett AM, Peters-Golden M. MAPK phosphatase 1 inhibition of p38α within lung myofibroblasts is essential for spontaneous fibrosis resolution. J Clin Invest 2024; 134:e172826. [PMID: 38512415 PMCID: PMC11093610 DOI: 10.1172/jci172826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Fibrosis following tissue injury is distinguished from normal repair by the accumulation of pathogenic and apoptosis-resistant myofibroblasts (MFs), which arise primarily by differentiation from resident fibroblasts. Endogenous molecular brakes that promote MF dedifferentiation and clearance during spontaneous resolution of experimental lung fibrosis may provide insights that could inform and improve the treatment of progressive pulmonary fibrosis in patients. MAPK phosphatase 1 (MKP1) influences the cellular phenotype and fate through precise and timely regulation of MAPK activity within various cell types and tissues, yet its role in lung fibroblasts and pulmonary fibrosis has not been explored. Using gain- and loss-of-function studies, we found that MKP1 promoted lung MF dedifferentiation and restored the sensitivity of these cells to apoptosis - effects determined to be mainly dependent on MKP1's dephosphorylation of p38α MAPK (p38α). Fibroblast-specific deletion of MKP1 following peak bleomycin-induced lung fibrosis largely abrogated its subsequent spontaneous resolution. Such resolution was restored by treating these transgenic mice with the p38α inhibitor VX-702. We conclude that MKP1 is a critical antifibrotic brake whose inhibition of pathogenic p38α in lung fibroblasts is necessary for fibrosis resolution following lung injury.
Collapse
Affiliation(s)
- Sean M. Fortier
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Natalie M. Walker
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Loka R. Penke
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jared D. Baas
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Qinxue Shen
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jennifer M. Speth
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven K. Huang
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rachel L. Zemans
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Mohanan A, Washimkar KR, Mugale MN. Unraveling the interplay between vital organelle stress and oxidative stress in idiopathic pulmonary fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119676. [PMID: 38242330 DOI: 10.1016/j.bbamcr.2024.119676] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive accumulation of extracellular matrix, leading to irreversible fibrosis. Emerging evidence suggests that endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress pathways play crucial roles in the pathogenesis of IPF. ER stress occurs when the protein folding capacity of the ER is overwhelmed, triggering the unfolded protein response (UPR) and contributing to protein misfolding and cellular stress in IPF. Concurrently, mitochondrial dysfunction involving dysregulation of key regulators, including PTEN-induced putative kinase 1 (PINK1), Parkin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and sirtuin 3 (SIRT3), disrupts mitochondrial homeostasis and impairs cellular energy metabolism. This leads to increased reactive oxygen species (ROS) production, release of pro-fibrotic mediators, and activation of fibrotic pathways, exacerbating IPF progression. The UPR-induced ER stress further disrupts mitochondrial metabolism, resulting in altered mitochondrial mechanisms that increase the generation of ROS, resulting in further ER stress, creating a feedback loop that contributes to the progression of IPF. Oxidative stress also plays a pivotal role in IPF, as ROS-mediated activation of TGF-β, NF-κB, and MAPK pathways promotes inflammation and fibrotic responses. This review mainly focuses on the links between ER stress, mitochondrial dysfunctions, and oxidative stress with different signaling pathways involved in IPF. Understanding these mechanisms and targeting key molecules within these pathways may offer promising avenues for intervention.
Collapse
Affiliation(s)
- Anushree Mohanan
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Gairola S, Sinha A, Kaundal RK. Linking NLRP3 inflammasome and pulmonary fibrosis: mechanistic insights and promising therapeutic avenues. Inflammopharmacology 2024; 32:287-305. [PMID: 37991660 DOI: 10.1007/s10787-023-01389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Pulmonary fibrosis is a devastating disorder distinguished by redundant inflammation and matrix accumulation in the lung interstitium. The early inflammatory cascade coupled with recurring tissue injury orchestrates a set of events marked by perturbed matrix hemostasis, deposition of matrix proteins, and remodeling in lung tissue. Numerous investigations have corroborated a direct correlation between the NLR family pyrin domain-containing 3 (NLRP3) activation and the development of pulmonary fibrosis. Dysregulated activation of NLRP3 within the pulmonary microenvironment exacerbates inflammation and may incite fibrogenic responses. Nevertheless, the precise mechanisms through which the NLRP3 inflammasome elicits pro-fibrogenic responses remain inadequately defined. Contemporary findings suggest that the pro-fibrotic consequences stemming from NLRP3 signaling primarily hinge on the action of interleukin-1β (IL-1β). IL-1β instigates IL-1 receptor signaling, potentiating the activity of transforming growth factor-beta (TGF-β). This signaling cascade, in turn, exerts influence over various transcription factors, including SNAIL, TWIST, and zinc finger E-box-binding homeobox 1 (ZEB 1/2), which collectively foster myofibroblast activation and consequent lung fibrosis. Here, we have connected the dots to illustrate how the NLRP3 inflammasome orchestrates a multitude of signaling events, including the activation of transcription factors that facilitate myofibroblast activation and subsequent lung remodeling. In addition, we have highlighted the prominent role played by various cells in the formation of myofibroblasts, the primary culprit in lung fibrosis. We also provided a concise overview of various compounds that hold the potential to impede NLRP3 inflammasome signaling, thus offering a promising avenue for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Shobhit Gairola
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
11
|
Mallek NM, Martin EM, Dailey LA, McCullough SD. Liquid application dosing alters the physiology of air-liquid interface (ALI) primary human bronchial epithelial cell/lung fibroblast co-cultures and in vitro testing relevant endpoints. FRONTIERS IN TOXICOLOGY 2024; 5:1264331. [PMID: 38464699 PMCID: PMC10922929 DOI: 10.3389/ftox.2023.1264331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/14/2023] [Indexed: 03/12/2024] Open
Abstract
Differentiated primary human bronchial epithelial cell (dpHBEC) cultures grown under air-liquid interface (ALI) conditions exhibit key features of the human respiratory tract and are thus critical for respiratory research as well as efficacy and toxicity testing of inhaled substances (e.g., consumer products, industrial chemicals, and pharmaceuticals). Many inhalable substances (e.g., particles, aerosols, hydrophobic substances, reactive substances) have physiochemical properties that challenge their evaluation under ALI conditions in vitro. Evaluation of the effects of these methodologically challenging chemicals (MCCs) in vitro is typically conducted by "liquid application," involving the direct application of a solution containing the test substance to the apical, air-exposed surface of dpHBEC-ALI cultures. We report that the application of liquid to the apical surface of a dpHBEC-ALI co-culture model results in significant reprogramming of the dpHBEC transcriptome and biological pathway activity, alternative regulation of cellular signaling pathways, increased secretion of pro-inflammatory cytokines and growth factors, and decreased epithelial barrier integrity. Given the prevalence of liquid application in the delivery of test substances to ALI systems, understanding its effects provides critical infrastructure for the use of in vitro systems in respiratory research as well as in the safety and efficacy testing of inhalable substances.
Collapse
Affiliation(s)
- Nicholas M. Mallek
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Elizabeth M. Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, United States
| | - Lisa A. Dailey
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Chapel Hill, NC, United States
| | - Shaun D. McCullough
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Chapel Hill, NC, United States
- Exposure and Protection, RTI International, Durham, NC, United States
| |
Collapse
|
12
|
Urban L, Čoma M, Lacina L, Szabo P, Sabová J, Urban T, Šuca H, Lukačín Š, Zajíček R, Smetana K, Gál P. Heterogeneous response to TGF-β1/3 isoforms in fibroblasts of different origins: implications for wound healing and tumorigenesis. Histochem Cell Biol 2023; 160:541-554. [PMID: 37707642 DOI: 10.1007/s00418-023-02221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 09/15/2023]
Abstract
Identification of therapeutic targets for treating fibrotic diseases and cancer remains challenging. Our study aimed to investigate the effects of TGF-β1 and TGF-β3 on myofibroblast differentiation and extracellular matrix deposition in different types of fibroblasts, including normal/dermal, cancer-associated, and scar-derived fibroblasts. When comparing the phenotype and signaling pathways activation we observed extreme heterogeneity of studied markers across different fibroblast populations, even within those isolated from the same tissue. Specifically, the presence of myofibroblast and deposition of extracellular matrix were dependent on the origin of the fibroblasts and the type of treatment they received (TGF-β1 vs. TGF-β3). In parallel, we detected activation of canonical signaling (pSMAD2/3) across all studied fibroblasts, albeit to various extents. Treatment with TGF-β1 and TGF-β3 resulted in the activation of canonical and several non-canonical pathways, including AKT, ERK, and ROCK. Among studied cells, cancer-associated fibroblasts displayed the most heterogenic response to TGF-β1/3 treatments. In general, TGF-β1 demonstrated a more potent activation of signaling pathways compared to TGF-β3, whereas TGF-β3 exhibited rather an inhibitory effect in keloid- and hypertrophic scar-derived fibroblasts suggesting its clinical potential for scar treatment. In summary, our study has implications for comprehending the role of TGF-β signaling in fibroblast biology, fibrotic diseases, and cancer. Future research should focus on unraveling the mechanisms beyond differential fibroblast responses to TGF-β isomers considering inherent fibroblast heterogeneity.
Collapse
Affiliation(s)
- Lukáš Urban
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Ondavská, 040 11, Košice, Slovak Republic
| | - Matúš Čoma
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Ondavská, 040 11, Košice, Slovak Republic
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 2, 128 00, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 128 08, Prague, Czech Republic
| | - Pavol Szabo
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 2, 128 00, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Jana Sabová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic
| | - Tomáš Urban
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic
| | - Hubert Šuca
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic
| | - Štefan Lukačín
- Department of Heart Surgery, East-Slovak Institute of Cardiovascular Diseases Inc, 040 11, Košice, Slovak Republic
| | - Robert Zajíček
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 2, 128 00, Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic.
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic.
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Ondavská, 040 11, Košice, Slovak Republic.
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic.
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, 832 32, Bratislava, Slovak Republic.
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, 040 01, Košice, Slovak Republic.
| |
Collapse
|
13
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
14
|
Kaushik S, Bhargava P, Sharma J, Arava S, Nag TC, Arya DS, Bhatia J. Sesamol attenuates bleomycin-induced pulmonary toxicity and fibrosis in experimental animals. J Biochem Mol Toxicol 2023; 37:e23472. [PMID: 37462223 DOI: 10.1002/jbt.23472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 11/10/2023]
Abstract
Sesamol, a lignan obtained from roasted seeds of Sesamum indicum, has high antioxidant and anti-inflammatory activity. In this study, we have investigated the effect of sesamol on Bleomycin (BLM) induced pulmonary toxicity as well as fibrosis in Wistar rats. Lung toxicity was induced by administration of BLM, 0.015 U/g ip, twice weekly for 28 days whereas lung fibrosis was induced by BLM, 0.015 U/g ip, every 5th day for 49 days. Sesamol administration was started 7 days before first dose of BLM in both the models. It was observed that sesamol 50 mg/kg most effectively attenuated pulmonary toxicity by reducing oxidative stress, inflammation and apoptosis. This dose was further evaluated for its anti-fibrotic effect. It was observed that there was a significant reduction in fibrosis. Lung collagen content was markedly reduced. Furthermore, expression of pro-fibrotic proteins, TGF-β/SMAD and α-SMA, was reduced and that of anti-fibrotic protein, AMPK, was markedly increased. Even though the combination of sesamol with pirfenidone exhibited no additional protection than either drug alone, it is evident from our study that our test drug, sesamol is comparable in efficacy to pirfenidone. Thus, sesamol has promising therapeutic potential in treatment of pulmonary toxicity and fibrosis.
Collapse
Affiliation(s)
- Swati Kaushik
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Poorva Bhargava
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Jatin Sharma
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Sudheer Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Dharamvir S Arya
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Jagriti Bhatia
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Zeng Q, Zhou TT, Huang WJ, Huang XT, Huang L, Zhang XH, Sang XX, Luo YY, Tian YM, Wu B, Liu L, Luo ZQ, He B, Liu W, Tang SY. Asarinin attenuates bleomycin-induced pulmonary fibrosis by activating PPARγ. Sci Rep 2023; 13:14706. [PMID: 37679587 PMCID: PMC10485066 DOI: 10.1038/s41598-023-41933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that lacks effective treatment modalities. Once patients are diagnosed with IPF, their median survival is approximately 3-5 years. PPARγ is an important target for the prevention and treatment of pulmonary fibrosis. Asarinin is a lignan compound that can be extracted from food plant Asarum heterotropoides. In this study, we investigated the therapeutic effects of asarinin in a pulmonary fibrosis model constructed using bleomycin in mice and explored the underlying mechanisms. Intraperitoneal administration of asarinin to mice with pulmonary fibrosis showed that asarinin effectively attenuated pulmonary fibrosis, and this effect was significantly inhibited by the PPARγ inhibitor GW9662. Asarinin inhibited TGF-β1-induced fibroblast-to-myofibroblast transition in vitro, while GW9662 and PPARγ gene silencing significantly inhibited this effect. In addition, asarinin inhibited not only the canonical Smad pathway of TGF-β but also the non-canonical AKT and MAPK pathways by activating PPARγ. Our study demonstrates that asarinin can be used as a therapeutic agent for pulmonary fibrosis, and that PPARγ is its key target.
Collapse
Affiliation(s)
- Qian Zeng
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ting-Ting Zhou
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wen-Jie Huang
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xiao-Ting Huang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Lei Huang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Xiao-Hua Zhang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Xiao-Xue Sang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yu-Yang Luo
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yu-Mei Tian
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Bin Wu
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lin Liu
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zi-Qiang Luo
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bin He
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China.
| | - Wei Liu
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
16
|
Ptasinski V, Monkley SJ, Öst K, Tammia M, Alsafadi HN, Overed-Sayer C, Hazon P, Wagner DE, Murray LA. Modeling fibrotic alveolar transitional cells with pluripotent stem cell-derived alveolar organoids. Life Sci Alliance 2023; 6:e202201853. [PMID: 37230801 PMCID: PMC10213712 DOI: 10.26508/lsa.202201853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Repeated injury of the lung epithelium is proposed to be the main driver of idiopathic pulmonary fibrosis (IPF). However, available therapies do not specifically target the epithelium and human models of fibrotic epithelial damage with suitability for drug discovery are lacking. We developed a model of the aberrant epithelial reprogramming observed in IPF using alveolar organoids derived from human-induced pluripotent stem cells stimulated with a cocktail of pro-fibrotic and inflammatory cytokines. Deconvolution of RNA-seq data of alveolar organoids indicated that the fibrosis cocktail rapidly increased the proportion of transitional cell types including the KRT5 - /KRT17 + aberrant basaloid phenotype recently identified in the lungs of IPF patients. We found that epithelial reprogramming and extracellular matrix (ECM) production persisted after removal of the fibrosis cocktail. We evaluated the effect of the two clinically approved compounds for IPF, nintedanib and pirfenidone, and found that they reduced the expression of ECM and pro-fibrotic mediators but did not completely reverse epithelial reprogramming. Thus, our system recapitulates key aspects of IPF and is a promising system for drug discovery.
Collapse
Affiliation(s)
- Victoria Ptasinski
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Susan J Monkley
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Karolina Öst
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Markus Tammia
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hani N Alsafadi
- Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Catherine Overed-Sayer
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Petra Hazon
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Darcy E Wagner
- Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lynne A Murray
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
17
|
Tang R, Zhou Y, Mei S, Xu Q, Feng J, Xing S, Gao Y, Qin S, He Z. Fibrotic extracellular vesicles contribute to mechanical ventilation-induced pulmonary fibrosis development by activating lung fibroblasts via JNK signalling pathway: an experimental study. BMJ Open Respir Res 2023; 10:e001753. [PMID: 37620111 PMCID: PMC10450055 DOI: 10.1136/bmjresp-2023-001753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Recent research has revealed that mechanical ventilation (MV) could initiate ventilator-induced lung injury along with the initiation of the process of pulmonary fibrosis (PF), leading to MV-induced PF (MVPF). However, the underlying mechanism remains unclear. This study aimed to explore the role of MV-induced extracellular vesicles (MV-EVs) and the c-Jun N-terminal kinase (JNK) signalling pathway in the pathogenesis of MVPF in vivo and in vitro. The process of MV is accompanied by the secretion of MV-EVs, which could induce lung fibroblast activation. Furthermore, single-cell RNA-sequencing analysis revealed that the JNK pathway in lung fibroblasts was activated after MV initiation. Inhibiting the JNK pathway could both restrain MV-EV-induced lung fibroblast activation in vitro or reduce the severity of MVPF in vivo. In conclusion, this study demonstrated that MV-EVs contribute to MVPF progression by activating lung fibroblasts via the JNK signalling pathway and that inhibiting the secretion of EV and the activation of the JNK signalling pathway is a promising strategy for treating MVPF.
Collapse
Affiliation(s)
- Ri Tang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Zhou
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuya Mei
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoyi Xu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhua Feng
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaojie Qin
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyu He
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Wang MC. Natural plant resource flavonoids as potential therapeutic drugs for pulmonary fibrosis. Heliyon 2023; 9:e19308. [PMID: 37664726 PMCID: PMC10470008 DOI: 10.1016/j.heliyon.2023.e19308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Pulmonary fibrosis is an enduring and advancing pulmonary interstitial disease caused by multiple factors that ultimately lead to structural changes in normal lung tissue. Currently, pulmonary fibrosis is a global disease with a high degree of heterogeneity and mortality rate. Nitidine and pirfenidone have been approved for treating pulmonary fibrosis, and the quest for effective therapeutic drugs remains unabated. In recent years, the anti-pulmonary fibrosis properties of natural flavonoids have garnered heightened attention, although further research is needed. In this paper, the resources, structural characteristics, anti-pulmonary fibrosis properties and mechanisms of natural flavonoids were reviewed. We hope to provide potential opportunities for the application of flavonoids in the fight against pulmonary fibrosis.
Collapse
Affiliation(s)
- Meng-Chuan Wang
- Department of Pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| |
Collapse
|
19
|
Qian H, Ding Y, Deng X, Huang W, Li Z, Liu F, Zhang J, Wang L, Liu J, Yuan Y, Hou S, Chen X, Ma L. Synthesis-accessibility-oriented design of c-Jun N-terminal kinase 1 inhibitor. Eur J Med Chem 2023; 256:115442. [PMID: 37156184 DOI: 10.1016/j.ejmech.2023.115442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe and progressive lung disease with poor prognosis and limited treatment options. The c-Jun N-Terminal Kinase 1 (JNK1), a key component of the MAPK pathway, has been implicated in the pathogenesis of IPF and represents a potential therapeutic target. However, the development of JNK1 inhibitors has been slowed, partly due to synthetic complexity in medicinal chemistry modification. Here, we report a synthesis-accessibility-oriented strategy for designing JNK1 inhibitors based on computational prediction of synthetic feasibility and fragment-based molecule generation. This strategy led to the discovery of several potent JNK1 inhibitors, such as compound C6 (IC50 = 33.5 nM), which exhibited comparable activity to the clinical candidate CC-90001 (IC50 = 24.4 nM). The anti-fibrotic effect of C6 was further confirmed in animal model of pulmonary fibrosis. Moreover, compound C6 could be synthesized in only two steps, compared to nine steps for CC-90001. Our findings suggest that compound C6 is a promising lead for further optimization and development as a novel anti-fibrotic agent targeting JNK1. In addition, the discovery of C6 also demonstrates the feasibility of synthesis-accessibility-oriented strategy in lead discovery.
Collapse
Affiliation(s)
- Hewen Qian
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanqing Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xingyu Deng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Weiwei Huang
- Hangzhou Matrix Biopharmaceutical Co., Ltd, Hangzhou, Zhejiang, 311121, China
| | - Zhenzhen Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Fengling Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jie Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Junping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | - Shurong Hou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
20
|
Ligresti G, Raslan AA, Hong J, Caporarello N, Confalonieri M, Huang SK. Mesenchymal cells in the Lung: Evolving concepts and their role in fibrosis. Gene 2023; 859:147142. [PMID: 36603696 PMCID: PMC10068350 DOI: 10.1016/j.gene.2022.147142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Mesenchymal cells in the lung are crucial during development, but also contribute to the pathogenesis of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF), the most common and deadly form of fibrotic interstitial lung diseases. Originally thought to behave as supporting cells for the lung epithelium and endothelium with a singular function of producing basement membrane, mesenchymal cells encompass a variety of cell types, including resident fibroblasts, lipofibroblasts, myofibroblasts, smooth muscle cells, and pericytes, which all occupy different anatomic locations and exhibit diverse homeostatic functions in the lung. During injury, each of these subtypes demonstrate remarkable plasticity and undergo varying capacity to proliferate and differentiate into activated myofibroblasts. Therefore, these cells secrete high levels of extracellular matrix (ECM) proteins and inflammatory cytokines, which contribute to tissue repair, or in pathologic situations, scarring and fibrosis. Whereas epithelial damage is considered the initial trigger that leads to lung injury, lung mesenchymal cells are recognized as the ultimate effector of fibrosis and attempts to better understand the different functions and actions of each mesenchymal cell subtype will lead to a better understanding of why fibrosis develops and how to better target it for future therapy. This review summarizes current findings related to various lung mesenchymal cells as well as signaling pathways, and their contribution to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Giovanni Ligresti
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US.
| | - Ahmed A Raslan
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Jeongmin Hong
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, US
| | - Marco Confalonieri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, US
| |
Collapse
|
21
|
Mallek NM, Martin EM, Dailey LA, McCullough SD. Liquid Application Dosing Alters the Physiology of Air-Liquid Interface Primary Bronchial Epithelial Cultures and In vitro Testing Relevant Endpoints. RESEARCH SQUARE 2023:rs.3.rs-2570280. [PMID: 36865279 PMCID: PMC9980280 DOI: 10.21203/rs.3.rs-2570280/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Differentiated Primary human bronchial epithelial cell (dpHBEC) cultures grown under air-liquid interface (ALI) conditions exhibit key features of the human respiratory tract and are thus critical for respiratory research as well as efficacy and toxicity testing of inhaled substances (e.g., consumer products, industrial chemicals, and pharmaceuticals). Many inhalable substances (e.g., particles, aerosols, hydrophobic substances, reactive substances) have physiochemical properties that challenge their evaluation under ALI conditions in vitro. Evaluation of the effects of these methodologically challenging chemicals (MCCs) in vitro is typically conducted by "liquid application," involving the direct application of a solution containing the test substance to the apical, air-exposed surface of dpHBEC-ALI cultures. We report that the application of liquid to the apical surface of a dpHBEC-ALI co-culture model results in significant reprogramming of the dpHBEC transcriptome and biological pathway activity, alternative regulation of cellular signaling pathways, increased secretion of pro-inflammatory cytokines and growth factors, and decreased epithelial barrier integrity. Given the prevalence of liquid application in the delivery of test substances to ALI systems, understanding its effects provides critical infrastructure for the use of in vitro systems in respiratory research as well as in the safety and efficacy testing of inhalable substances.
Collapse
|
22
|
Prevention of Bleomycin-Induced Pulmonary Inflammation and Fibrosis in Mice by Bilobalide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:1973163. [PMID: 36733844 PMCID: PMC9889159 DOI: 10.1155/2023/1973163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Bilobalide (BB) is a sesquiterpene isolated from Ginkgo biloba, and its role in IPF is poorly understood. Mice were intratracheally instilled with 2.5 mg/kg bleomycin (BLM) to induce IPF and then treated with 2.5, 5, and 10 mg/kg BB daily for 21 days. Treatment with BB ameliorated pathological injury and fibrosis of lung tissues in BLM-induced mice. BB suppressed BLM-induced inflammatory response in mice as demonstrated by reduced inflammatory cells counts (leukocytes, neutrophils, macrophages, and lymphocytes) and pro-inflammatory factors (CCL2 and TNF-α), as well as increased CXCL10 levels in BALF. The expression of BLM-induced hydroxyproline, LDH, and pro-fibrotic mediators including fibronectin, collagen I, α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-β1, matrix metalloproteinase (MMP)-2, and MMP-9 in lung tissue was inhibited by BB treatment, and the tissue inhibitor of metalloproteinase-1 (TIMP-1) expression was increased. BB blocked the phosphorylation of JNK and NF-κB, and the nuclear translocation of NF-κB in the lung tissue of mice induced by BLM. Additionally, it abated the activation of NLRP3 inflammasome in lung tissue induced by BLM, which led to the downregulation of IL-18 and IL-1β in BALF. Our present study suggested that BB might ameliorate BLM-induced pulmonary fibrosis by inhibiting the early inflammatory response, which is probably via the inhibition of the JNK/NF-κB/NLRP3 signal pathway. Thus, BB might serve as a therapeutic potential agent for pulmonary inflammation and fibrosis.
Collapse
|
23
|
Solopov PA, Colunga Biancatelli RML, Dimitropolou C, Day T, Catravas JD. Optimizing antidotal treatment with the oral HSP90 inhibitor TAS-116 against hydrochloric acid-induced pulmonary fibrosis in mice. Front Pharmacol 2022; 13:1034464. [PMID: 36419627 PMCID: PMC9676235 DOI: 10.3389/fphar.2022.1034464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 06/30/2024] Open
Abstract
Exposure to high concentrations of hydrochloric acid (HCl) can lead to severe acute and chronic lung injury. In the aftermath of accidental spills, victims may be treated for the acute symptoms, but the chronic injury is often overlooked. We have developed a mouse model of acute and chronic lung injury, in which the peak of acute lung injury occurs on the day 4 after HCl exposure. We have also demonstrated that HSP90 inhibitors are effective antidotes when administered starting 24 h after HCl. In this study we examined the hypothesis that the novel oral HSP90 inhibitor TAS-116 can effectively ameliorate HCl-induced lung injury even when treatment starts at the peak of the acute injury, as late as 96 h after HCl. C57BI/6J mice were intratracheally instilled with 0.1N HCl. After 24 or 96 h, TAS-116 treatment began (3.5, 7 or 14 mg/kg, 5 times per week, p. o.) for either 2,3 or 4 or weeks. TAS-116 moderated the HCl-induced alveolar inflammation, as reflected in the reduction of white blood cells and total protein content in bronchoalveolar lavage fluid (BALF), overexpression of NLRP3 inflammasome, and inhibited the activation of pro-fibrotic pathways. Furthermore, TAS-116 normalized lung mechanics and decreased the deposition of extracellular matrix proteins in the lungs of mice exposed to HCl. Delayed and shortened treatment with TAS-116, successfully blocked the adverse chronic effects associated with acute exposure to HCl.
Collapse
Affiliation(s)
- Pavel A. Solopov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | | | - Christiana Dimitropolou
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Tierney Day
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - John D. Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
- School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
24
|
Zhang S, Lu X, Fang X, Wang Z, Cheng S, Song J. Cigarette smoke extract combined with LPS reduces ABCA3 expression in chronic pulmonary inflammation may be related to PPARγ/ P38 MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114086. [PMID: 36115154 DOI: 10.1016/j.ecoenv.2022.114086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
ABCA3 (ATP-binding cassette class A3) is a transmembrane transporter that plays a positive role in chronic pulmonary inflammation by regulating lipid metabolism. However, it is not completely clear whether ABCA3 and its signaling factors are involved in chronic pulmonary inflammation induced by the combination of CSE (cigarette smoke extract) and LPS (lipopolysaccharide). In this study, we used the method of combining CSE and LPS which was widely used to study lung inflammation-related diseases and has been proven effective in our group's studies to create in vivo and in vitro pulmonary inflammation models. The result showed that, after CSE in combination with LPS treatment, ABCA3 expression was downregulated in rat lung in vivo and in a human alveolar cell line in vitro. ABCA3 expression was upregulated, and related inflammatory factors were downregulated in the state of overexpression of PPARγ or inhibition of the p38 MAPK pathway, while PPARγ deletion or MAPK14 overexpression showed the opposite results. The level of PPARγ remained unchanged, and the expression of ABCA3 was upregulated in the state of the p38 MAPK pathway was inhibited under overexpression of PPARγ. These results indicate that CSE combined with LPS can result in downregulation of ABCA3 under conditions of inflammation, and that the p38 MAPK signaling pathway mediated by PPARγ can regulate the expression changes of ABCA3, thus providing new targets for treating chronic pulmonary inflammation.
Collapse
Affiliation(s)
- Shuyi Zhang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Xianwang Lu
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Xin Fang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Zihao Wang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Shihao Cheng
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China
| | - Jue Song
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, 230032, Hefei, China.
| |
Collapse
|
25
|
Nitrative inactivation of thioredoxin-1 loses its protective effect in bleomycin-induced pulmonary fibrosis. Int Immunopharmacol 2022; 112:109208. [PMID: 36087509 DOI: 10.1016/j.intimp.2022.109208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Pulmonary fibrosis is common in the development of inflammatory lung diseases with no effective clinical drug treatment currently. As an essential redox enzyme, thioredoxin (Trx) has been reported to be involved in pulmonary fibrosis, but the mechanism is to be revealed. Therefore, in bleomycin-indued pulmonary fibrosis model in C57 mice, Trx activity and nitrated Trx were examined.,p38-MAPK apoptosis pathway was determined in lung tissues. Additionally, before BLM administration, C57/BL6 mice were treated with aminoguanidine (AG, a peroxynitrite scavenger), recombinant human Trx-1 (rhTrx-1), or SIN-1 (a peroxynitrite donor) nitrated Trx-1 (N-Trx-1). In bleomycin (BLM)-induced pulmonary fibrosis model in C57/BL6 mice, we observed that nitrated Trx increased, while its activity decreased, with the increase of alveolar epithelial cells (AECs)apoptosis by p38-MAPK pathway. We demonstrated that AG or rhTrx-1, but not N-Trx-1 significantly reduced pulmonary fibrosis. Taken together, the results above revealed that blockade of Trx-1 nitration, or supplementation of exogenous rhTrx-1, might represent novel therapies to attenuate pulmonary fibrosis in idiopathic pulmonary fibrosis patients.
Collapse
|
26
|
Affiliation(s)
- Michael Schuliga
- College of Health, Medicine and Wellbeing
- School of Biomedical Sciences and Pharmacy The University of Newcastle Callaghan, New South Wales, Australia
| | - Satish K Madala
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati, Ohio
- Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati, Ohio
| |
Collapse
|
27
|
Hasan M, Paul NC, Paul SK, Saikat ASM, Akter H, Mandal M, Lee SS. Natural Product-Based Potential Therapeutic Interventions of Pulmonary Fibrosis. Molecules 2022; 27:1481. [PMID: 35268581 PMCID: PMC8911636 DOI: 10.3390/molecules27051481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis (PF) is a disease-refractive lung condition with an increased rate of mortality. The potential factors causing PF include viral infections, radiation exposure, and toxic airborne chemicals. Idiopathic PF (IPF) is related to pneumonia affecting the elderly and is characterized by recurring scar formation in the lungs. An impaired wound healing process, defined by the dysregulated aggregation of extracellular matrix components, triggers fibrotic scar formation in the lungs. The potential pathogenesis includes oxidative stress, altered cell signaling, inflammation, etc. Nintedanib and pirfenidone have been approved with a conditional endorsement for the management of IPF. In addition, natural product-based treatment strategies have shown promising results in treating PF. In this study, we reviewed the recently published literature and discussed the potential uses of natural products, classified into three types-isolated active compounds, crude extracts of plants, and traditional medicine, consisting of mixtures of different plant products-in treating PF. These natural products are promising in the treatment of PF via inhibiting inflammation, oxidative stress, and endothelial mesenchymal transition, as well as affecting TGF-β-mediated cell signaling, etc. Based on the current review, we have revealed the signaling mechanisms of PF pathogenesis and the potential opportunities offered by natural product-based medicine in treating PF.
Collapse
Affiliation(s)
- Mahbub Hasan
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
- Department of Oriental Biomedical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
| | - Nidhan Chandra Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Shamrat Kumar Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Hafeza Akter
- Pharmacology and Toxicology Research Division, Health Medical Science Research Foundation, Dhaka 1207, Bangladesh;
| | - Manoj Mandal
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Sang-Suk Lee
- Department of Oriental Biomedical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
| |
Collapse
|
28
|
Zhu DW, Yu Q, Jiang MF, Wang DD, Shen YH. Exploring the Anti-Pulmonary Fibrosis Mechanism of Jingyin Granule by Network Pharmacology Strategy. Front Pharmacol 2022; 13:825667. [PMID: 35222040 PMCID: PMC8874130 DOI: 10.3389/fphar.2022.825667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis (PF) is a clinically common disease caused by many factors, which will lead to lung function decline and even respiratory failure. Jingyin granule has been confirmed to have anti-inflammatory and antiviral effects by former studies, and has been recommended for combating H1N1 influenza A virus (H1N1) infection and Coronavirus disease 2019 (COVID-19) in China. At present, studies have shown that patients with severe COVID-19 infection developed lung fibrotic lesions. Although Jingyin granule can improve symptoms in COVID-19 patients, no study has yet reported whether it can attenuate the process of PF. Here, we explored the underlying mechanism of Jingyin granule against PF by network pharmacology combined with in vitro experimental validation. In the present study, the active ingredients as well as the corresponding action targets of Jingyin granule were firstly collected by TCMSP and literature data, and the disease target genes of PF were retrieved by disease database. Then, the common targets were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and then a PPI network and an ingredient–target network were constructed. Next, UPLC-MS was used to isolate and identify selected representative components in Jingyin granule. Finally, LPS was used to induce the A549 cell fibrosis model to verify the anti-PF effect of Jingyin granule in vitro. Our results indicated that STAT3, JUN, RELA, MAPK3, TNF, MAPK1, IL-6, and AKT1 were core targets of action and bound with good affinity to selected components, and Jingyin granule may alleviate PF progression by Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT3), the mammalian nuclear factor-κB (NF-κB), the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), tumor necrosis factor (TNF), and the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathways. Overall, these results provide future therapeutic strategies into the mechanism study of Jingyin granule on PF.
Collapse
Affiliation(s)
- De-wei Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qun Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mei-fang Jiang
- SPH Xing Ling Sci. & Tech. Pharmaceutical Co., Ltd., Shanghai, China
| | - Dan-dan Wang
- SPH Xing Ling Sci. & Tech. Pharmaceutical Co., Ltd., Shanghai, China
| | - Yun-hui Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yun-hui Shen,
| |
Collapse
|
29
|
Wang L, Zhu W, Sun R, Liu J, Ma Q, Zhang B, Shi Y. Network Pharmacology Prediction and Molecular Docking-Based Strategy to Discover the Potential Pharmacological Mechanism of Wen-Yu-Jin against Pulmonary Fibrosis in a Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7753508. [PMID: 35186103 PMCID: PMC8853792 DOI: 10.1155/2022/7753508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a devastating lung disease, resulting in gas exchange dysfunction until death. The two drugs approved by the FDA, pirfenidone and nintedanib, have obvious side effects. Wen-yu-jin (WYJ), one of the commonly used herbs in China, can treat respiratory diseases. The potential effects and the underlying mechanism of WYJ against PF are unclear. PURPOSE Employing network pharmacology, molecular docking, and in vivo and in vitro experiments to explore the potential effects and underlying mechanisms of WYJ in the treatment of PF. METHODS Ultra-high pressure liquid chromatography combined with linear ion trap-orbital tandem mass spectrometry (UHPLC-LTQ-orbital trap) was used to identify compounds of WYJ. We got PF-related targets and WYJ compounds-related targets from public databases and further completed critical targets exploration, network construction, and pathway analysis by network pharmacology. Molecular docking predicted binding activity of WYJ compounds and critical targets. Based on the above results, in vivo and in vitro experiments validated the potential effects and mechanisms of WYJ against PF. RESULTS 23 major compositions of WYJ were identified based on UHPLC-LTQ-Orbitrap. According to the results of network pharmacology, STAT3, SRC, IL6, MAPK1, AKT1, EGFR, MAPK8, MAPK14, and IL1B are critical therapeutic targets. Molecular docking results showed that most of the compounds have good binding activities with critical targets. The results of in vivo and in vitro experiments showed that WYJ alleviated the process of fibrosis by targeting MAPK and STAT3 pathways. CONCLUSION Network pharmacology, molecular docking, and in vivo and in vitro experiments showed the potential effects and mechanisms of WYJ against PF, which provides a theoretical basis for the treatment of WYJ with PF.
Collapse
Affiliation(s)
- Lu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenxiang Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Rui Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qihong Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Binbin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
30
|
Popmihajlov Z, Sutherland DJ, Horan GS, Ghosh A, Lynch DA, Noble PW, Richeldi L, Reiss TF, Greenberg S. CC-90001, a c-Jun N-terminal kinase (JNK) inhibitor, in patients with pulmonary fibrosis: design of a phase 2, randomised, placebo-controlled trial. BMJ Open Respir Res 2022; 9:9/1/e001060. [PMID: 35058236 PMCID: PMC8783810 DOI: 10.1136/bmjresp-2021-001060] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/18/2021] [Indexed: 11/12/2022] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal interstitial lung disease (ILD); other ILDs have a progressive, fibrotic phenotype (PF-ILD). Antifibrotic agents can slow but not stop disease progression in patients with IPF or PF-ILD. c-Jun N-terminal kinases (JNKs) are stress-activated protein kinases implicated in the underlying mechanisms of fibrosis, including epithelial cell death, inflammation and polarisation of profibrotic macrophages, fibroblast activation and collagen production. CC-90001, an orally administered (PO), one time per day, JNK inhibitor, is being evaluated in IPF and PF-ILD. Methods and analysis This is a phase 2, randomised, double-blind, placebo-controlled study evaluating efficacy and safety of CC-90001 in patients with IPF (main study) and patients with PF-ILD (substudy). Both include an 8-week screening period, a 24-week treatment period, up to an 80-week active-treatment extension and a 4-week post-treatment follow-up. Patients with IPF (n=165) will be randomised 1:1:1 to receive 200 mg or 400 mg CC-90001 or placebo administered PO one time per day; up to 25 patients/arm will be permitted concomitant pirfenidone use. Forty-five patients in the PF-ILD substudy will be randomised 2:1 to receive 400 mg CC-90001 or placebo. The primary endpoint is change in per cent predicted forced vital capacity from baseline to Week 24 in patients with IPF. Ethics and dissemination This study will be conducted in accordance with Good Clinical Practice guidelines, Declaration of Helsinki principles and local ethical and legal requirements. Results will be reported in a peer-reviewed publication. Trial registration number NCT03142191.
Collapse
Affiliation(s)
| | | | | | | | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado, USA
| | - Paul W Noble
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Luca Richeldi
- Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli IRCSS, Rome, Italy
| | | | - Steven Greenberg
- Bristol Myers Squibb, Princeton, New Jersey, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
31
|
Xia Y, Cheng M, Hu Y, Li M, Shen L, Ji X, Cui X, Liu X, Wang W, Gao H. Combined transcriptomic and lipidomic analysis of D-4F ameliorating bleomycin-induced pulmonary fibrosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1424. [PMID: 34733976 PMCID: PMC8506780 DOI: 10.21037/atm-21-3777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/26/2021] [Indexed: 11/06/2022]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease that leads to respiratory failure, and for which there is no effective treatment. Apolipoprotein A-1 (ApoA-1) has been reported to ameliorate the bleomycin (BLM)-induced IPF model. Methods To examine the function of D-4F, an ApoA-1 mimetic polypeptide, in IPF, we used an in-vivo BLM-induced model. We assigned mice into the following 3 groups: the Blank Group (BLK Group), the Bleomycin Treatment Group (Model Group), and the D-4F Interference Group (Inter Group). The BLM-induced fibrosis was examined by hematoxylin and eosin, Masson’s trichrome (M-T) staining and immunohistochemical staining. An untargeted lipidomic and transcriptomic analysis were used to examine the function of D-4F. Results There were 35 differentially altered lipids (DALs) in the BLK, Model and Inter Groups. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that glycerophospholipid metabolism was the most highly enriched of the 35 DALs. There were 99 differentially expressed genes (DEGs) in the BLK, Model and Inter Groups. The enriched KEGG pathway analysis showed that the mitogen-activated protein kinase (MAPK) pathway was 1 of the top 10 pathways. The results of the untargeted lipidomic and transcriptomic analysis showed that phospholipase A2 group 4c (Pla2g4c) was a crucial gene in both the MAPK pathway and glycerophospholipid metabolism. Pla2g4c was increased in the Model Group but decreased in the Inter Group. Conclusions It may be that D-4F prevented the BLM-induced pulmonary fibrosis model by inhibiting the expression of pla2g4c. Our findings suggest that D-4F may be a potential treatment of IPF.
Collapse
Affiliation(s)
- Yong Xia
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Yanyan Hu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Man Li
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Lin Shen
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Xiang Ji
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Xiaopei Cui
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Xiangju Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Weiling Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| | - Haiqing Gao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Shandong provincial Key Laboratory of Cardiovascular Proteomics, Shandong University, Jinan, China
| |
Collapse
|
32
|
Samarelli AV, Tonelli R, Marchioni A, Bruzzi G, Gozzi F, Andrisani D, Castaniere I, Manicardi L, Moretti A, Tabbì L, Cerri S, Beghè B, Dominici M, Clini E. Fibrotic Idiopathic Interstitial Lung Disease: The Molecular and Cellular Key Players. Int J Mol Sci 2021; 22:8952. [PMID: 34445658 PMCID: PMC8396471 DOI: 10.3390/ijms22168952] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Interstitial lung diseases (ILDs) that are known as diffuse parenchymal lung diseases (DPLDs) lead to the damage of alveolar epithelium and lung parenchyma, culminating in inflammation and widespread fibrosis. ILDs that account for more than 200 different pathologies can be divided into two groups: ILDs that have a known cause and those where the cause is unknown, classified as idiopathic interstitial pneumonia (IIP). IIPs include idiopathic pulmonary fibrosis (IPF), non-specific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia (COP) known also as bronchiolitis obliterans organizing pneumonia (BOOP), acute interstitial pneumonia (AIP), desquamative interstitial pneumonia (DIP), respiratory bronchiolitis-associated interstitial lung disease (RB-ILD), and lymphocytic interstitial pneumonia (LIP). In this review, our aim is to describe the pathogenic mechanisms that lead to the onset and progression of the different IIPs, starting from IPF as the most studied, in order to find both the common and standalone molecular and cellular key players among them. Finally, a deeper molecular and cellular characterization of different interstitial lung diseases without a known cause would contribute to giving a more accurate diagnosis to the patients, which would translate to a more effective treatment decision.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Bianca Beghè
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Massimo Dominici
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Oncology Unit, University Hospital of Modena, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (B.B.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, 41100 Modena, Italy;
| |
Collapse
|
33
|
Suri GS, Kaur G, Jha CK, Tiwari M. Understanding idiopathic pulmonary fibrosis - Clinical features, molecular mechanism and therapies. Exp Gerontol 2021; 153:111473. [PMID: 34274426 DOI: 10.1016/j.exger.2021.111473] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung fibrosing disease with high prevalence that has a prognosis worse than many cancers. There has been a recent influx of new observations aimed at explaining the mechanisms responsible for the initiation and progression of pulmonary fibrosis. However, despite this, the pathogenesis of the disease is largely unclear. Recent progress has been made in the characterization of specific pathologic and clinical features that have enhanced the understanding of pathologically activated molecular pathways during the onset and progression of IPF. This review highlights several of the advances that have been made and focus on the pathobiology of IPF. The work also details the different factors that are responsible for the disposition of the disease - these may be internal factors such as cellular mechanisms and genetic alterations, or they may be external factors from the environment. The changes that primarily occur in epithelial cells and fibroblasts that lead to the activation of profibrotic pathways are discussed in depth. Finally, a complete repertoire of the treatment therapies that have been used in the past as well as future medications and therapies is provided.
Collapse
|
34
|
Darlyuk-Saadon I, Heng CKM, Bai C, Gilad N, Yu WP, Meng Huang Mok M, Wong WSF, Engelberg D. Expression of a constitutively active p38α mutant in mice causes early death, anemia, and accumulation of immunosuppressive cells. FEBS J 2021; 288:3978-3999. [PMID: 33410203 DOI: 10.1111/febs.15697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The MAP kinase p38α is associated with numerous processes in eukaryotes, and its elevated activity is a prominent feature of inflammatory diseases, allergies, and aging. Since p38α is a nodal component of a complex signaling network, it is difficult to reveal exactly how p38α contributes to disparate outcomes. Identification of p38α -specific effects requires activation of p38α per se in vivo. We generated a transgenic mouse model that meets this requirement by allowing inducible and reversible expression of an intrinsically active p38α molecule (p38αD176A+F327S ). p38α's activation across all murine tissues resulted in a significant loss of body weight and death of about 40% of the mice within 17 weeks of activation, although most tissues were unaffected. Flow cytometric analysis of the lungs and bronchoalveolar lavage fluid detected an accumulation of 'debris' within the airways, suggesting impaired clearance. It also revealed increased numbers of alternatively activated alveolar macrophages and myeloid-derived suppressor cells within the lung, pointing at suppression and resolution of inflammation. Blood count suggested that mice expressing p38αD176A+F327S suffer from hemolytic anemia. Flow cytometry of bone marrow revealed a reduced number of hematopoietic stem cells and abnormalities in the erythroid lineage. Unexpectedly, p38α's substrate MAPKAPK2, mitogen-activated protein kinase-activated protein kinase 2 was downregulated in mice expressing p38αD176A+F327S , suggesting that constitutive activity of p38α may impose pathological phenotypes by downregulating downstream components, perhaps via a feedback inhibition mechanism. In summary, this new mouse model shows that induced p38α activity per se is hazardous to mouse vitality and welfare, although pathological parameters are apparent only in blood count, bone marrow, and lungs.
Collapse
Affiliation(s)
- Ilona Darlyuk-Saadon
- CREATE-NUS-HUJ, Molecular Mechanisms of Inflammatory Diseases Program, National University of Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chew Kiat Matthew Heng
- CREATE-NUS-HUJ, Molecular Mechanisms of Inflammatory Diseases Program, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Chen Bai
- CREATE-NUS-HUJ, Molecular Mechanisms of Inflammatory Diseases Program, National University of Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nechama Gilad
- CREATE-NUS-HUJ, Molecular Mechanisms of Inflammatory Diseases Program, National University of Singapore, Singapore
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Israel
| | - Wei-Ping Yu
- Animal Gene Editing Laboratory (AGEL), Biological Resource Centre, Agency for Science, Technology and Research (A*STAR), Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - W S Fred Wong
- CREATE-NUS-HUJ, Molecular Mechanisms of Inflammatory Diseases Program, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore
| | - David Engelberg
- CREATE-NUS-HUJ, Molecular Mechanisms of Inflammatory Diseases Program, National University of Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
35
|
Fujisawa Y, Matsuda K, Uehara T. Osteopontin enhances the migration of lung fibroblasts via upregulation of interleukin-6 through the extracellular signal-regulated kinase (ERK) pathway. Biol Chem 2021; 401:1071-1080. [PMID: 32924371 DOI: 10.1515/hsz-2020-0125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Fibrosis is a phenomenon in which parenchyma is replaced with fibrous tissue. Persistent inflammation accompanied by dysregulation of cytokine production and repeated cycles of inflammation-associated tissue-repair induces fibrosis in various organs including the liver, lung, and kidney. In idiopathic pulmonary fibrosis, production of interleukin (IL)-6 and osteopontin (OPN) are dysregulated. Fibrosis leads to qualitative rather than quantitative changes of fibroblasts at the sites of tissue repair, and this leads to enlargement of fibrotic foci. These fibroblasts are immunohistochemically positive for OPN; however, the effect of overexpressed OPN in fibroblasts is not fully understood yet. In this study, we investigated the effect of OPN on IL-6 secretion and on migration and proliferation of fibroblasts. Lung fibroblasts overexpressing exogenous OPN showed that OPN was linked to the enhancement of cell migration through increased IL-6 secretion via the extracellular signal-regulated kinase (ERK) pathway. These results suggest that OPN may exert its pro-fibrotic functions, such as enhancement of fibroblasts migration by cooperating with chemoattractant IL-6, and may be involved in enlargement of fibrotic foci.
Collapse
Affiliation(s)
- Yu Fujisawa
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-28621, Nagano, Japan
| | - Kazuyuki Matsuda
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-28621, Nagano, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan
| |
Collapse
|
36
|
Xiong Y, Cui X, Zhou Y, Chai G, Jiang X, Ge G, Wang Y, Sun H, Che H, Nie Y, Zhao P. Dehydrocostus lactone inhibits BLM-induced pulmonary fibrosis and inflammation in mice via the JNK and p38 MAPK-mediated NF-κB signaling pathways. Int Immunopharmacol 2021; 98:107780. [PMID: 34118645 DOI: 10.1016/j.intimp.2021.107780] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and irreversible inflammatory disease with a high mortality rate and limited therapeutic options. This study explored the potential role and mechanisms of Dehydrocostus lactone (DHL) in the inflammatory and fibrotic responses in a bleomycin (BLM) induced model. Treatment with DHL significantly reduced pathological injury and fibrosis, the secretion of BLM-induced pro-fibrotic mediators TGF-β and α-SMA, and components of the extracellular matrix (fibronectin). Additionally, in the early stages of inflammation, DHL administration inhibited the infiltration of inflammatory cells and downregulated the expression of TGF-β, TNF-α, and IL-6, indicating that DHL treatment effectively alleviated BLM-induced pulmonary fibrosis and inflammation in a dose-dependent manner. Furthermore, BLM induced the production of IL-33 in vivo, which initiated and progressed pulmonary fibrosis by activating macrophages and enhancing the production of IL-13 and TGF-β. In contrast, a significant decrease in the expression of IL-33 after DHL treatment in vitro showed that DHL strongly reduced IL-13 and TGF-β. Regarding the mechanism, BLM-induced phosphorylation of JNK, p38 MAPK, and NF-κB were significantly reduced after DHL treatment, which further led to the down-regulation of IL-33 expression, thereby decreasing IL-13 and TGF-β. Collectively, our data suggested that DHL could exert its anti-fibrosis effect via inhibiting the early inflammatory response by downregulating the JNK/p38 MAPK-mediated NF-κB signaling pathway to suppress macrophage activation. Therefore, DHL has therapeutic potential for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yue Xiong
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiaochuan Cui
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yanjun Zhou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Gaoshang Chai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiufeng Jiang
- Department of Respiratory and Critical Care Medicine, Wuxi Fifth People's Hospital, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Guizhi Ge
- The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Jiangsu, PR China
| | - Yue Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hongxu Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Huilian Che
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
37
|
Roberts MJ, May LT, Keen AC, Liu B, Lam T, Charlton SJ, Rosethorne EM, Halls ML. Inhibition of the Proliferation of Human Lung Fibroblasts by Prostacyclin Receptor Agonists is Linked to a Sustained cAMP Signal in the Nucleus. Front Pharmacol 2021; 12:669227. [PMID: 33995100 PMCID: PMC8116805 DOI: 10.3389/fphar.2021.669227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic and progressive fibrotic lung disease, and current treatments are limited by their side effects. Proliferation of human lung fibroblasts in the pulmonary interstitial tissue is a hallmark of this disease and is driven by prolonged ERK signalling in the nucleus in response to growth factors such as platelet-derived growth factor (PDGF). Agents that increase cAMP have been suggested as alternative therapies, as this second messenger can inhibit the ERK cascade. We previously examined a panel of eight Gαs-cAMP-coupled G protein-coupled receptors (GPCRs) endogenously expressed in human lung fibroblasts. Although the cAMP response was important for the anti-fibrotic effects of GPCR agonists, the magnitude of the acute cAMP response was not predictive of anti-fibrotic efficacy. Here we examined the reason for this apparent disconnect by stimulating the Gαs-coupled prostacyclin receptor and measuring downstream signalling at a sub-cellular level. MRE-269 and treprostinil caused sustained cAMP signalling in the nucleus and complete inhibition of PDGF-induced nuclear ERK and fibroblast proliferation. In contrast, iloprost caused a transient increase in nuclear cAMP, there was no effect of iloprost on PDGF-induced ERK in the nucleus, and this agonist was much less effective at reversing PDGF-induced proliferation. This suggests that sustained elevation of cAMP in the nucleus is necessary for efficient inhibition of PDGF-induced nuclear ERK and fibroblast proliferation. This is an important first step towards understanding of the signalling events that drive GPCR inhibition of fibrosis.
Collapse
Affiliation(s)
- Maxine J Roberts
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.,Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Lauren T May
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Alastair C Keen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Bonan Liu
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Terrance Lam
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Steven J Charlton
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.,Excellerate Bioscience Ltd., BioCity, Nottingham, United Kingdom
| | - Elizabeth M Rosethorne
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| |
Collapse
|
38
|
Mahmud SMH, Al-Mustanjid M, Akter F, Rahman MS, Ahmed K, Rahman MH, Chen W, Moni MA. Bioinformatics and system biology approach to identify the influences of SARS-CoV-2 infections to idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease patients. Brief Bioinform 2021; 22:6224261. [PMID: 33847347 PMCID: PMC8083324 DOI: 10.1093/bib/bbab115] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/25/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), better known as COVID-19, has become a current threat to humanity. The second wave of the SARS-CoV-2 virus has hit many countries, and the confirmed COVID-19 cases are quickly spreading. Therefore, the epidemic is still passing the terrible stage. Having idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are the risk factors of the COVID-19, but the molecular mechanisms that underlie IPF, COPD, and CVOID-19 are not well understood. Therefore, we implemented transcriptomic analysis to detect common pathways and molecular biomarkers in IPF, COPD, and COVID-19 that help understand the linkage of SARS-CoV-2 to the IPF and COPD patients. Here, three RNA-seq datasets (GSE147507, GSE52463, and GSE57148) from Gene Expression Omnibus (GEO) is employed to detect mutual differentially expressed genes (DEGs) for IPF, and COPD patients with the COVID-19 infection for finding shared pathways and candidate drugs. A total of 65 common DEGs among these three datasets were identified. Various combinatorial statistical methods and bioinformatics tools were used to build the protein–protein interaction (PPI) and then identified Hub genes and essential modules from this PPI network. Moreover, we performed functional analysis under ontologies terms and pathway analysis and found that IPF and COPD have some shared links to the progression of COVID-19 infection. Transcription factors–genes interaction, protein–drug interactions, and DEGs-miRNAs coregulatory network with common DEGs also identified on the datasets. We think that the candidate drugs obtained by this study might be helpful for effective therapeutic in COVID-19.
Collapse
Affiliation(s)
- S M Hasan Mahmud
- Computer Science and Technology from the University of Electronic Science and Technology of China, China
| | | | - Farzana Akter
- Computer Science and Engineering from Daffodil International University, Bangladesh
| | | | - Kawsar Ahmed
- Information and Communication Technology (ICT) at Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md Habibur Rahman
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Wenyu Chen
- University of Electronic Science and Technology of China, China
| | | |
Collapse
|
39
|
Fortier SM, Penke LR, King D, Pham TX, Ligresti G, Peters-Golden M. Myofibroblast dedifferentiation proceeds via distinct transcriptomic and phenotypic transitions. JCI Insight 2021; 6:144799. [PMID: 33561015 PMCID: PMC8026183 DOI: 10.1172/jci.insight.144799] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Myofibroblasts are the major cellular source of collagen, and their accumulation - via differentiation from fibroblasts and resistance to apoptosis - is a hallmark of tissue fibrosis. Clearance of myofibroblasts by dedifferentiation and restoration of apoptosis sensitivity has the potential to reverse fibrosis. Prostaglandin E2 (PGE2) and mitogens such as FGF2 have each been shown to dedifferentiate myofibroblasts, but - to our knowledge - the resultant cellular phenotypes have neither been comprehensively characterized or compared. Here, we show that PGE2 elicited dedifferentiation of human lung myofibroblasts via cAMP/PKA, while FGF2 utilized MEK/ERK. The 2 mediators yielded transitional cells with distinct transcriptomes, with FGF2 promoting but PGE2 inhibiting proliferation and survival. The gene expression pattern in fibroblasts isolated from the lungs of mice undergoing resolution of experimental fibrosis resembled that of myofibroblasts treated with PGE2 in vitro. We conclude that myofibroblast dedifferentiation can proceed via distinct programs exemplified by treatment with PGE2 and FGF2, with dedifferentiation occurring in vivo most closely resembling the former.
Collapse
Affiliation(s)
| | - Loka R. Penke
- Division of Pulmonary and Critical Care Medicine and
| | - Dana King
- BCRF Bioinformatics Core, University of Michigan, Ann Arbor, Michigan, USA
| | - Tho X. Pham
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
40
|
Karatzas E, Zachariou M, Bourdakou MM, Minadakis G, Oulas A, Kolios G, Delis A, Spyrou GM. PathWalks: identifying pathway communities using a disease-related map of integrated information. Bioinformatics 2020; 36:4070-4079. [PMID: 32369599 PMCID: PMC7332569 DOI: 10.1093/bioinformatics/btaa291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/11/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
MOTIVATION Understanding the underlying biological mechanisms and respective interactions of a disease remains an elusive, time consuming and costly task. Computational methodologies that propose pathway/mechanism communities and reveal respective relationships can be of great value as they can help expedite the process of identifying how perturbations in a single pathway can affect other pathways. RESULTS We present a random-walks-based methodology called PathWalks, where a walker crosses a pathway-to-pathway network under the guidance of a disease-related map. The latter is a gene network that we construct by integrating multi-source information regarding a specific disease. The most frequent trajectories highlight communities of pathways that are expected to be strongly related to the disease under study.We apply the PathWalks methodology on Alzheimer's disease and idiopathic pulmonary fibrosis and establish that it can highlight pathways that are also identified by other pathway analysis tools as well as are backed through bibliographic references. More importantly, PathWalks produces additional new pathways that are functionally connected with those already established, giving insight for further experimentation. AVAILABILITY AND IMPLEMENTATION https://github.com/vagkaratzas/PathWalks. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Evangelos Karatzas
- Department of Informatics and Telecommunications, University of Athens, Athens 15703, Greece
| | - Margarita Zachariou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Marilena M Bourdakou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus.,Department of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Komotini, Greece
| | - George Minadakis
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Anastasis Oulas
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - George Kolios
- Department of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Komotini, Greece
| | - Alex Delis
- Department of Informatics and Telecommunications, University of Athens, Athens 15703, Greece
| | - George M Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| |
Collapse
|
41
|
Transforming Growth Factor-β Signaling in Fibrotic Diseases and Cancer-Associated Fibroblasts. Biomolecules 2020; 10:biom10121666. [PMID: 33322749 PMCID: PMC7763058 DOI: 10.3390/biom10121666] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is essential in embryo development and maintaining normal homeostasis. Extensive evidence shows that TGF-β activation acts on several cell types, including epithelial cells, fibroblasts, and immune cells, to form a pro-fibrotic environment, ultimately leading to fibrotic diseases. TGF-β is stored in the matrix in a latent form; once activated, it promotes a fibroblast to myofibroblast transition and regulates extracellular matrix (ECM) formation and remodeling in fibrosis. TGF-β signaling can also promote cancer progression through its effects on the tumor microenvironment. In cancer, TGF-β contributes to the generation of cancer-associated fibroblasts (CAFs) that have different molecular and cellular properties from activated or fibrotic fibroblasts. CAFs promote tumor progression and chronic tumor fibrosis via TGF-β signaling. Fibrosis and CAF-mediated cancer progression share several common traits and are closely related. In this review, we consider how TGF-β promotes fibrosis and CAF-mediated cancer progression. We also discuss recent evidence suggesting TGF-β inhibition as a defense against fibrotic disorders or CAF-mediated cancer progression to highlight the potential implications of TGF-β-targeted therapies for fibrosis and cancer.
Collapse
|
42
|
Watchorn RE, van den Munckhof EHA, Quint KD, Eliahoo J, de Koning MNC, Quint WGV, Bunker CB. Balanopreputial sac and urine microbiota in patients with male genital lichen sclerosus. Int J Dermatol 2020; 60:201-207. [PMID: 33084022 DOI: 10.1111/ijd.15252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Male genital lichen sclerosus (MGLSc) is a chronic inflammatory scarring dermatosis associated with penile carcinoma. The prepuce is pivotal in its etiology. Other proposed etiological factors are the subject of dispute and include occluded urinary exposure, autoimmunity, immunodysregulation, and infectious agents. OBJECTIVE To determine whether the bacterial microbiota of the balanopreputial sac and urine are associated with MGLSc. SUBJECTS AND METHODS Twenty uncircumcised patients with MGLSc and 20 healthy uncircumcised males were enrolled in a prospective case-control study. Balanopreputial swabs and urine specimens were subjected to 16S rRNA gene amplicon sequencing. RESULTS Microbiota analysis indicated differences between the groups. In the balanopreputial sac, the median relative abundance of Finegoldia spp. was lower (9% [range 0-60%]) in MGLSc patients than in controls (28% [range 0-62%]). Conversely, the median relative abundance of Fusobacterium spp. was higher in MGLSc patients (4% [range 0-41%]) than in controls (0% [range 0-28%]). In the urine, the median relative abundance of Finegoldia spp. was comparable between groups, whereas that of Fusobacterium spp. was higher in MGLSc patients (0% [range 0-18%] vs. 0% [range 0-5%]). There was a strong association between the microbiota composition of the balanopreputial sac and urine in MGLSc. CONCLUSION Dysbiosis could be involved in the etiopathogenesis of MGLSc. Further studies are required to confirm the association suggested herein and to determine its nature.
Collapse
Affiliation(s)
| | | | - Koen D Quint
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Joseph Eliahoo
- Statistical Advisory Service, Imperial College London, London, UK
| | | | | | | |
Collapse
|
43
|
Spred2-deficiency enhances the proliferation of lung epithelial cells and alleviates pulmonary fibrosis induced by bleomycin. Sci Rep 2020; 10:16490. [PMID: 33020583 PMCID: PMC7536438 DOI: 10.1038/s41598-020-73752-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/08/2020] [Indexed: 11/17/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathways are involved in many cellular processes, including the development of fibrosis. Here, we examined the role of Sprouty-related EVH-1-domain-containing protein (Spred) 2, a negative regulator of the MAPK-ERK pathway, in the development of bleomycin (BLM)-induced pulmonary fibrosis (PF). Compared to WT mice, Spred2−/− mice developed milder PF with increased proliferation of bronchial epithelial cells. Spred2−/− lung epithelial cells or MLE-12 cells treated with spred2 siRNA proliferated faster than control cells in vitro. Spred2−/− and WT macrophages produced similar levels of TNFα and MCP-1 in response to BLM or lipopolysaccharide and myeloid cell-specific deletion of Spred2 in mice had no effect. Spred2−/− fibroblasts proliferated faster and produced similar levels of MCP-1 compared to WT fibroblasts. Spred2 mRNA was almost exclusively detected in bronchial epithelial cells of naïve WT mice and it accumulated in approximately 50% of cells with a characteristic of Clara cells, 14 days after BLM treatment. These results suggest that Spred2 is involved in the regulation of tissue repair after BLM-induced lung injury and increased proliferation of lung bronchial cells in Spred2−/− mice may contribute to faster tissue repair. Thus, Spred2 may present a new therapeutic target for the treatment of PF.
Collapse
|
44
|
Matsuda S, Kim JD, Sugiyama F, Matsuo Y, Ishida J, Murata K, Nakamura K, Namiki K, Sudo T, Kuwaki T, Hatano M, Tatsumi K, Fukamizu A, Kasuya Y. Transcriptomic Evaluation of Pulmonary Fibrosis-Related Genes: Utilization of Transgenic Mice with Modifying p38 Signal in the Lungs. Int J Mol Sci 2020; 21:E6746. [PMID: 32937976 PMCID: PMC7555042 DOI: 10.3390/ijms21186746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease that is caused by the dysregulation of alveolar epithelial type II cells (AEC II). The mechanisms involved in the progression of IPF remain incompletely understood, although the immune response accompanied by p38 mitogen-activated protein kinase (MAPK) activation may contribute to some of them. This study aimed to examine the association of p38 activity in the lungs with bleomycin (BLM)-induced pulmonary fibrosis and its transcriptomic profiling. Accordingly, we evaluated BLM-induced pulmonary fibrosis during an active fibrosis phase in three genotypes of mice carrying stepwise variations in intrinsic p38 activity in the AEC II and performed RNA sequencing of their lungs. Stepwise elevation of p38 signaling in the lungs of the three genotypes was correlated with increased severity of BLM-induced pulmonary fibrosis exhibiting reduced static compliance and higher collagen content. Transcriptome analysis of these lung samples also showed that the enhanced p38 signaling in the lungs was associated with increased transcription of the genes driving the p38 MAPK pathway and differentially expressed genes elicited by BLM, including those related to fibrosis as well as the immune system. Our findings underscore the significance of p38 MAPK in the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Shuichi Matsuda
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (S.M.); (M.H.)
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (Y.M.); (K.T.)
| | - Jun-Dal Kim
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
| | - Yuji Matsuo
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (Y.M.); (K.T.)
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
| | - Kazuya Murata
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan;
| | - Kanako Nakamura
- Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan;
| | - Kana Namiki
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan;
| | - Tatsuhiko Sudo
- Chemical Biology Core Facility and Antibiotics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan;
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan;
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (S.M.); (M.H.)
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (Y.M.); (K.T.)
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; (J.-D.K.); (J.I.); (K.M.); (A.F.)
| | - Yoshitoshi Kasuya
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan; (S.M.); (M.H.)
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan;
| |
Collapse
|
45
|
Zhang X, Chen Q, Song H, Jiang W, Xie S, Huang J, Kang G. MicroRNA‑375 prevents TGF‑β‑dependent transdifferentiation of lung fibroblasts via the MAP2K6/P38 pathway. Mol Med Rep 2020; 22:1803-1810. [PMID: 32582987 PMCID: PMC7411355 DOI: 10.3892/mmr.2020.11261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Transdifferentiation of lung fibroblasts to myofibroblasts is a crucial pathophysiological process in pulmonary fibrosis. MicroRNA‑375 (miR‑375) was initially identified as a tumor‑suppressive factor, and its expression was negatively associated with the severity of lung cancer; however, its role and potential mechanism in myofibroblast transdifferentiation and pulmonary fibrosis remain unclear. In the present study, human lung fibroblasts were stimulated with transforming growth factor‑β (TGF‑β) to induce myofibroblast transdifferentiation. A mimic and inhibitor of miR‑375, and their negative controls, were used to overexpress or suppress miR‑375 in lung fibroblasts, respectively. The mRNA expression levels of fibrotic markers, and protein expression of α‑smooth muscle actin and periostin, were subsequently detected by reverse transcription‑quantitative PCR and western blotting, to assess myofibroblast transdifferentiation. miR‑375 was markedly upregulated in human lung fibroblasts after TGF‑β stimulation. The miR‑375 mimic alleviated, whereas the miR‑375 inhibitor aggravated TGF‑β‑dependent transdifferentiation of lung fibroblasts. Mechanistically, miR‑375 prevented myofibroblast transdifferentiation and collagen synthesis by blocking the P38 mitogen‑activated protein kinases (P38) pathway, and P38 suppression abrogated the deleterious effect of the miR‑375 inhibitor on myofibroblast transdifferentiation. Furthermore, the present study revealed that mitogen‑activated protein kinase kinase 6 was involved in P38 inactivation by miR‑375. In conclusion, miR‑375 was implicated in modulating TGF‑β‑dependent transdifferentiation of lung fibroblasts, and targeting miR‑375 expression may help to develop therapeutic approaches for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Xinghua Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hengya Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Huang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ganjun Kang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
46
|
Battagello D, Dragunas G, Klein M, Ayub AL, Velloso F, Correa R. Unpuzzling COVID-19: tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clin Sci (Lond) 2020; 134:2137-2160. [PMID: 32820801 PMCID: PMC7443512 DOI: 10.1042/cs20200904] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
The highly infective coronavirus disease 19 (COVID-19) is caused by a novel strain of coronaviruses - the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - discovered in December 2019 in the city of Wuhan (Hubei Province, China). Remarkably, COVID-19 has rapidly spread across all continents and turned into a public health emergency, which was ultimately declared as a pandemic by the World Health Organization (WHO) in early 2020. SARS-CoV-2 presents similar aspects to other members of the coronavirus family, mainly regarding its genome, protein structure and intracellular mechanisms, that may translate into mild (or even asymptomatic) to severe infectious conditions. Although the mechanistic features underlying the COVID-19 progression have not been fully clarified, current evidence have suggested that SARS-CoV-2 may primarily behave as other β-coronavirus members. To better understand the development and transmission of COVID-19, unveiling the signaling pathways that may be impacted by SARS-CoV-2 infection, at the molecular and cellular levels, is of crucial importance. In this review, we present the main aspects related to the origin, classification, etiology and clinical impact of SARS-CoV-2. Specifically, here we describe the potential mechanisms of cellular interaction and signaling pathways, elicited by functional receptors, in major targeted tissues/organs from the respiratory, gastrointestinal (GI), cardiovascular, renal, and nervous systems. Furthermore, the potential involvement of these signaling pathways in evoking the onset and progression of COVID-19 symptoms in these organ systems are presently discussed. A brief description of future perspectives related to potential COVID-19 treatments is also highlighted.
Collapse
Affiliation(s)
- Daniella S. Battagello
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Guilherme Dragunas
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Marianne O. Klein
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana L.P. Ayub
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Fernando J. Velloso
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-NJMS, Newark, NJ, U.S.A
| | - Ricardo G. Correa
- NCI-Designated Cancer Center, Sanford Burnham Prebys (SBP) Medical Discovery Institute, La Jolla, CA, U.S.A
| |
Collapse
|
47
|
Kim S, Lim JH, Woo CH. Therapeutic potential of targeting kinase inhibition in patients with idiopathic pulmonary fibrosis. Yeungnam Univ J Med 2020; 37:269-276. [PMID: 32693446 PMCID: PMC7606966 DOI: 10.12701/yujm.2020.00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Fibrosis is characterized by excessive accumulation of extracellular matrix components. The fibrotic process ultimately leads to organ dysfunction and failure in chronic inflammatory and metabolic diseases such as pulmonary fibrosis, advanced kidney disease, and liver cirrhosis. Idiopathic pulmonary fibrosis (IPF) is a common form of progressive and chronic interstitial lung disease of unknown etiology. Pathophysiologically, the parenchyma of the lung alveoli, interstitium, and capillary endothelium becomes scarred and stiff, which makes breathing difficult because the lungs have to work harder to transfer oxygen and carbon dioxide between the alveolar space and bloodstream. The transforming growth factor beta (TGF-β) signaling pathway plays an important role in the pathogenesis of pulmonary fibrosis and scarring of the lung tissue. Recent clinical trials focused on the development of pharmacological agents that either directly or indirectly target kinases for the treatment of IPF. Therefore, to develop therapeutic targets for pulmonary fibrosis, it is essential to understand the key factors involved in the pathogenesis of pulmonary fibrosis and the underlying signaling pathway. The objective of this review is to discuss the role of kinase signaling cascades in the regulation of either TGF-β-dependent or other signaling pathways, including Rho-associated coiled-coil kinase, c-jun N-terminal kinase, extracellular signal-regulated kinase 5, and p90 ribosomal S6 kinase pathways, and potential therapeutic targets in IPF.
Collapse
Affiliation(s)
- Suji Kim
- Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea.,Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Chang-Hoon Woo
- Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea.,Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
48
|
Yu J, Sun X, Goie JYG, Zhang Y. Regulation of Host Immune Responses against Influenza A Virus Infection by Mitogen-Activated Protein Kinases (MAPKs). Microorganisms 2020; 8:microorganisms8071067. [PMID: 32709018 PMCID: PMC7409222 DOI: 10.3390/microorganisms8071067] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza is a major respiratory viral disease caused by infections from the influenza A virus (IAV) that persists across various seasonal outbreaks globally each year. Host immune response is a key factor determining disease severity of influenza infection, presenting an attractive target for the development of novel therapies for treatments. Among the multiple signal transduction pathways regulating the host immune activation and function in response to IAV infections, the mitogen-activated protein kinase (MAPK) pathways are important signalling axes, downstream of various pattern recognition receptors (PRRs), activated by IAVs that regulate various cellular processes in immune cells of both innate and adaptive immunity. Moreover, aberrant MAPK activation underpins overexuberant production of inflammatory mediators, promoting the development of the “cytokine storm”, a characteristic of severe respiratory viral diseases. Therefore, elucidation of the regulatory roles of MAPK in immune responses against IAVs is not only essential for understanding the pathogenesis of severe influenza, but also critical for developing MAPK-dependent therapies for treatment of respiratory viral diseases. In this review, we will summarise the current understanding of MAPK functions in both innate and adaptive immune response against IAVs and discuss their contributions towards the cytokine storm caused by highly pathogenic influenza viruses.
Collapse
Affiliation(s)
- Jiabo Yu
- Integrative Biomedical Sciences Programme, University of Edinburgh Institute, Zhejiang University, International Campus Zhejiang University, Haining 314400, China; (J.Y.); (X.S.)
| | - Xiang Sun
- Integrative Biomedical Sciences Programme, University of Edinburgh Institute, Zhejiang University, International Campus Zhejiang University, Haining 314400, China; (J.Y.); (X.S.)
| | - Jian Yi Gerald Goie
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- The Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- The Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Correspondence: ; Tel.: +65-65166407
| |
Collapse
|
49
|
Goda C, Balli D, Black M, Milewski D, Le T, Ustiyan V, Ren X, Kalinichenko VV, Kalin TV. Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway. PLoS Genet 2020; 16:e1008692. [PMID: 32271749 PMCID: PMC7173935 DOI: 10.1371/journal.pgen.1008692] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/21/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease with high mortality and is refractory to treatment. Pulmonary macrophages can both promote and repress fibrosis, however molecular mechanisms regulating macrophage functions during fibrosis remain poorly understood. FOXM1 is a transcription factor and is not expressed in quiescent lungs. Herein, we show that FOXM1 is highly expressed in pulmonary macrophages within fibrotic lungs of IPF patients and mouse fibrotic lungs. Macrophage-specific deletion of Foxm1 in mice (myFoxm1-/-) exacerbated pulmonary fibrosis. Inactivation of FOXM1 in vivo and in vitro increased p38 MAPK signaling in macrophages and decreased DUSP1, a negative regulator of p38 MAPK pathway. FOXM1 directly activated Dusp1 promoter. Overexpression of DUSP1 in FOXM1-deficient macrophages prevented activation of p38 MAPK pathway. Adoptive transfer of wild-type monocytes to myFoxm1-/- mice alleviated bleomycin-induced fibrosis. Altogether, contrary to known pro-fibrotic activities in lung epithelium and fibroblasts, FOXM1 has anti-fibrotic function in macrophages by regulating p38 MAPK.
Collapse
Affiliation(s)
- Chinmayee Goda
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - David Balli
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Markaisa Black
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - David Milewski
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Tien Le
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Vladimir Ustiyan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
- Center for Lung Regenerative Medicine, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Xiaomeng Ren
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
- Center for Lung Regenerative Medicine, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Vladimir V. Kalinichenko
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
- Center for Lung Regenerative Medicine, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Tanya V. Kalin
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| |
Collapse
|
50
|
Halu A, Liu S, Baek SH, Hobbs BD, Hunninghake GM, Cho MH, Silverman EK, Sharma A. Exploring the cross-phenotype network region of disease modules reveals concordant and discordant pathways between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Hum Mol Genet 2020; 28:2352-2364. [PMID: 30997486 DOI: 10.1093/hmg/ddz069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/12/2019] [Accepted: 03/23/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are two pathologically distinct chronic lung diseases that are associated with cigarette smoking. Genetic studies have identified shared loci for COPD and IPF, including several loci with opposite directions of effect. The existence of additional shared genetic loci, as well as potential shared pathobiological mechanisms between the two diseases at the molecular level, remains to be explored. Taking a network-based approach, we built disease modules for COPD and IPF using genome-wide association studies-implicated genes. The two disease modules displayed strong disease signals in an independent gene expression data set of COPD and IPF lung tissue and showed statistically significant overlap and network proximity, sharing 19 genes, including ARHGAP12 and BCHE. To uncover pathways at the intersection of COPD and IPF, we developed a metric, NetPathScore, which prioritizes the pathways of a disease by their network overlap with another disease. Applying NetPathScore to the COPD and IPF disease modules enabled the determination of concordant and discordant pathways between these diseases. Concordant pathways between COPD and IPF included extracellular matrix remodeling, Mitogen-activated protein kinase (MAPK) signaling and ALK pathways, whereas discordant pathways included advanced glycosylation end product receptor signaling and telomere maintenance and extension pathways. Overall, our findings reveal shared molecular interaction regions between COPD and IPF and shed light on the congruent and incongruent biological processes lying at the intersection of these two complex diseases.
Collapse
Affiliation(s)
- Arda Halu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shikang Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Seung Han Baek
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gary M Hunninghake
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amitabh Sharma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|