1
|
Berlin F, Mogren S, Ly C, Ramu S, Hvidtfeldt M, Uller L, Porsbjerg C, Andersson CK. Mast Cell Tryptase Promotes Airway Remodeling by Inducing Anti-Apoptotic and Cell Growth Properties in Human Alveolar and Bronchial Epithelial Cells. Cells 2023; 12:1439. [PMID: 37408273 DOI: 10.3390/cells12101439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
Bronchial and alveolar remodeling and impaired epithelial function are characteristics of chronic respiratory diseases. In these patients, an increased number of mast cells (MCs) positive for serine proteases, tryptase and chymase, infiltrate the epithelium and alveolar parenchyma. However, little is known regarding the implication of intraepithelial MCs on the local environment, such as epithelial cell function and properties. In this study, we investigated whether MC tryptase is involved in bronchial and alveolar remodeling and the mechanisms of regulation during inflammation. Using novel holographic live cell imaging, we found that MC tryptase enhanced human bronchial and alveolar epithelial cell growth and shortened the cell division intervals. The elevated cell growth induced by tryptase remained in a pro-inflammatory state. Tryptase also increased the expression of the anti-apoptotic protein BIRC3, as well as growth factor release in epithelial cells. Thus, our data imply that the intraepithelial and alveolar MC release of tryptase may play a critical role in disturbing bronchial epithelial and alveolar homeostasis by altering cell growth-death regulation.
Collapse
Affiliation(s)
- Frida Berlin
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Sofia Mogren
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Camilla Ly
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Sangeetha Ramu
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Morten Hvidtfeldt
- Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg, 2400 Copenhagen, Denmark
| | - Lena Uller
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Celeste Porsbjerg
- Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg, 2400 Copenhagen, Denmark
| | - Cecilia K Andersson
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| |
Collapse
|
2
|
Kandikattu HK, Upparahalli Venkateshaiah S, Kumar S, Yadavalli CS, Mishra A. IL-18-mediated neutrophil recruitment promotes acute lung injury in inflammation-mediated chronic pancreatitis. Mol Immunol 2023; 155:100-109. [PMID: 36758469 DOI: 10.1016/j.molimm.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Lung injury is the most common secondary complication of pancreatitis and pancreatic malignancy. Around 60-70% of pancreatitis-related deaths are caused by lung injury; however, there is no animal model of the inflammation-mediated progressive pulmonary pathological events that contribute to acute lung injury in chronic pancreatitis (CP). Hence, we developed an inflammation-mediated mouse model and studied the pathological events that have a critical role in promoting the pathogenesis of lung injury. Our proteomic analysis of lung tissue revealed neutrophil-associated induction of neutrophil gelatinase-associated lipocalin (NGAL) and myeloperoxidase enzyme, further supporting a role for neutrophils in promoting IL-18-associated lung injury. We show that neutrophils released IL-18-induced p-NF-κB along with profibrotic and oncogenic proteins like TTF1, PDX1, and SOX9 in lung tissues of a mouse model of chronic pancreatitis. We also show that neutrophil infiltration induces TGF-β and SMAD4 and activates epithelial cells to produce other profibrotic proteins like ZO-1 and MUC2, along with the fibroblast markers FGF-1 and αSMA, that cause mesenchymal transition and accumulation of extracellular matrix collagen. Most importantly, we present evidence that IL-18 inhibition significantly alleviates CP-induced lung injury. This was further established by the finding that IL-18 gene-deficient mice showed improved lung injury by inhibition of TGF-β and fibroblast to mesenchymal transition and reduced collagen accumulation. The present study suggests that inhibition of IL-18 may be a novel treatment for CP-associated induced acute lung injury.
Collapse
Affiliation(s)
- Hemanth Kumar Kandikattu
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Sathisha Upparahalli Venkateshaiah
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Sandeep Kumar
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chandra Sekhar Yadavalli
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Anil Mishra
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
3
|
Wang X, Hou X, Zhao Y, Zhao R, Dai J, Dai H, Wang C. The early and late intervention effects of collagen-binding FGF2 on elastase-induced lung injury. Biomed Pharmacother 2023; 158:114147. [PMID: 36584430 DOI: 10.1016/j.biopha.2022.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) has high morbidity and mortality, with no effective treatment at present. Emphysema, a major component of COPD, is a leading cause of human death worldwide. Fibroblast growth factor 2 (FGF2) is implicated in the pathogenesis of pulmonary emphysema and may play an important role in the lung repair process after injury, but concerns remain with respect to its effectiveness. OBJECTIVE In the present work, we sought to determine how the timing (early and late intervention) of sustained-release FGF2 system administration impacted its effectiveness on a porcine pancreatic elastase (PPE)-induced lung injury mouse model. METHODS To examine the early intervention efficiency of collagen-binding FGF2 (CBD-FGF2), mice received intratracheally nebulized CBD-FGF2 with concurrent intratracheal injection of PPE. To explore the late intervention effect, CBD-FGF2 was intratracheally aerosolized after PPE administration, and lungs were collected after CBD-FGF2 treatment for subsequent analysis. RESULT In response to PPE, mice had significantly increased alveolar diameter, collagen deposition and expression of inflammatory factors and decreased lung function indices and expression of alveolar epithelium markers. Our results indicate that CBD-FGF2 administration was able to prevent and repair elastase-induced lung injury partly through the suppression of the inflammatory response and recovery of the alveolar epithelium. The early use of CBD-FGF2 for the prevention of PPE-induced emphysema showed better results than late therapeutic administration against established emphysema. CONCLUSION These data provide insight regarding the prospective role of a drug-based option (CBD-FGF2) for preventing and curing emphysema.
Collapse
Affiliation(s)
- Xin Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruiming Zhao
- Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China.
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing 100029, China; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China.
| |
Collapse
|
4
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
5
|
Yang L, Zhou F, Zheng D, Wang D, Li X, Zhao C, Huang X. FGF/FGFR signaling: From lung development to respiratory diseases. Cytokine Growth Factor Rev 2021; 62:94-104. [PMID: 34593304 DOI: 10.1016/j.cytogfr.2021.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023]
Abstract
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling system regulates a variety of biological processes, including embryogenesis, angiogenesis, wound repair, tissue homeostasis, and cancer. It exerts these regulatory functions by controlling proliferation, differentiation, migration, survival, and metabolism of target cells. The morphological structure of the lung is a complex tree-like network for effective oxygen exchange, and the airway terminates in the middle and distal ends of many alveoli. FGF/FGFR signaling plays an important role in the pathophysiology of lung development and pathogenesis of various human respiratory diseases. Here, we mainly review recent advances in FGF/FGFR signaling during human lung development and respiratory diseases, including lung cancer, acute lung injury (ALI), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Feng Zhou
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Chengguang Zhao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
6
|
Montaño M, Pérez-Bautista O, Velasco-Torres Y, González-Ávila G, Ramos C. Women with COPD from biomass smoke have reduced serum levels of biomarkers of angiogenesis and cancer, with EGFR predominating, compared to women with COPD from smoking. Chron Respir Dis 2021; 18:14799731211005023. [PMID: 33787367 PMCID: PMC8020220 DOI: 10.1177/14799731211005023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022] Open
Abstract
The main causes of COPD are smoking (COPD-TS) and exposure to biomass smoke (COPD-BS), considered as different phenotypes. The association of COPD-TS with lung cancer (LC) is well established, but not in COPD-BS. Thus, we studied the serum concentration of cytokines that participate in inflammation, angiogenesis, and tumor progression, used frequently as LC biomarkers, in women with COPD-BS compared with COPD-TS (n = 70). Clinical and physiological characteristics and the serum concentration (multiplex immunoassay) of 16 cytokines were evaluated. The analysis revealed that women with COPD-BS were shorter and older, and had lower concentrations of 12 serum cytokines: 6 proinflammatory and angiogenic IL-6Rα, PECAM-1, leptin, osteopontin, prolactin, and follistatin; and 6 that participate in angiogenesis and in tumor progression FGF-2, HGF, sVEGFR-2, sHER2/neu, sTIE-2, G-CSF, and SCF. Notably, there was a significant increase in sEGFR in women with COPD-BS compared to women with COPD-TS. PDGF-AA/BB and sTIE-2 did not change. These findings suggest that women with COPD-BS have markedly decreased proinflammatory, angiogenic, and tumor progression potential, compared to women with COPD-TS, with sEGFR as the predominant mediator, which might reflect a differential pattern of inflammation in women exposed to BS, favoring the development of chronic bronchitis.
Collapse
Affiliation(s)
- Martha Montaño
- Laboratorio de Biología Celular, Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Ciudad de México, México
| | - Oliver Pérez-Bautista
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, (INER), Ciudad de México, México
| | - Yadira Velasco-Torres
- Laboratorio de Biología Celular, Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Ciudad de México, México
| | - Georgina González-Ávila
- Laboratoro de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Ciudad de México, México
| | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Ciudad de México, México
| |
Collapse
|
7
|
Chao CM, Chong L, Chu X, Shrestha A, Behnke J, Ehrhardt H, Zhang J, Chen C, Bellusci S. Targeting Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension (BPD-PH): Potential Role of the FGF Signaling Pathway in the Development of the Pulmonary Vascular System. Cells 2020; 9:cells9081875. [PMID: 32796770 PMCID: PMC7464452 DOI: 10.3390/cells9081875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
More than 50 years after the first description of Bronchopulmonary dysplasia (BPD) by Northway, this chronic lung disease affecting many preterm infants is still poorly understood. Additonally, approximately 40% of preterm infants suffering from severe BPD also suffer from Bronchopulmonary dysplasia-associated pulmonary hypertension (BPD-PH), leading to a significant increase in total morbidity and mortality. Until today, there is no curative therapy for both BPD and BPD-PH available. It has become increasingly evident that growth factors are playing a central role in normal and pathologic development of the pulmonary vasculature. Thus, this review aims to summarize the recent evidence in our understanding of BPD-PH from a basic scientific point of view, focusing on the potential role of Fibroblast Growth Factor (FGF)/FGF10 signaling pathway contributing to disease development, progression and resolution.
Collapse
Affiliation(s)
- Cho-Ming Chao
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center, German Center for Lung Research, 35392 Giessen, Germany; (J.B.); (H.E.)
- Correspondence: (C.-M.C.); (S.B.)
| | - Lei Chong
- Institute of Pediatrics, National Key Clinical Specialty of Pediatric Respiratory Medicine, Discipline of Pediatric Respiratory Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China;
| | - Xuran Chu
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Amit Shrestha
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
| | - Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center, German Center for Lung Research, 35392 Giessen, Germany; (J.B.); (H.E.)
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center, German Center for Lung Research, 35392 Giessen, Germany; (J.B.); (H.E.)
| | - Jinsan Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- International Collaborative Center on Growth Factor Research, Life Science Institute, Wenzhou University, Wenzhou 325035, China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
- Correspondence: (C.-M.C.); (S.B.)
| |
Collapse
|
8
|
Tan Y, Qiao Y, Chen Z, Liu J, Guo Y, Tran T, Tan KS, Wang DY, Yan Y. FGF2, an Immunomodulatory Factor in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Front Cell Dev Biol 2020; 8:223. [PMID: 32300593 PMCID: PMC7142218 DOI: 10.3389/fcell.2020.00223] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
The fibroblast growth factor 2 (FGF2) is a potent mitogenic factor belonging to the FGF family. It plays a role in airway remodeling associated with chronic inflammatory airway diseases, including asthma and chronic obstructive pulmonary disease (COPD). Recently, research interest has been raised in the immunomodulatory function of FGF2 in asthma and COPD, through its involvement in not only the regulation of inflammatory cells but also its participation as a mediator between immune cells and airway structural cells. Herein, this review provides the current knowledge on the biology of FGF2, its expression pattern in asthma and COPD patients, and its role as an immunomodulatory factor. The potential that FGF2 is involved in regulating inflammation indicates that FGF2 could be a therapeutic target for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Yuanyang Tan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | | | - Zhuanggui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Liu
- Department of Respiratory Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yanrong Guo
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, University Health System, National University of Singapore, Singapore, Singapore
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, University Health System, National University of Singapore, Singapore, Singapore
| | - Yan Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
9
|
Shrestha AK, Bettini ML, Menon RT, Gopal VYN, Huang S, Edwards DP, Pammi M, Barrios R, Shivanna B. Consequences of early postnatal lipopolysaccharide exposure on developing lungs in mice. Am J Physiol Lung Cell Mol Physiol 2019; 316:L229-L244. [PMID: 30307313 PMCID: PMC6383495 DOI: 10.1152/ajplung.00560.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of infants that is characterized by interrupted lung development. Postnatal sepsis causes BPD, yet the contributory mechanisms are unclear. To address this gap, studies have used lipopolysaccharide (LPS) during the alveolar phase of lung development. However, the lungs of infants who develop BPD are still in the saccular phase of development, and the effects of LPS during this phase are poorly characterized. We hypothesized that chronic LPS exposure during the saccular phase disrupts lung development by mechanisms that promote inflammation and prevent optimal lung development and repair. Wild-type C57BL6J mice were intraperitoneally administered 3, 6, or 10 mg/kg of LPS or a vehicle once daily on postnatal days (PNDs) 3-5. The lungs were collected for proteomic and genomic analyses and flow cytometric detection on PND6. The impact of LPS on lung development, cell proliferation, and apoptosis was determined on PND7. Finally, we determined differences in the LPS effects between the saccular and alveolar lungs. LPS decreased the survival and growth rate and lung development in a dose-dependent manner. These effects were associated with a decreased expression of proteins regulating cell proliferation and differentiation and increased expression of those mediating inflammation. While the lung macrophage population of LPS-treated mice increased, the T-regulatory cell population decreased. Furthermore, LPS-induced inflammatory and apoptotic response and interruption of cell proliferation and alveolarization was greater in alveolar than in saccular lungs. Collectively, the data support our hypothesis and reveal several potential therapeutic targets for sepsis-mediated BPD in infants.
Collapse
Affiliation(s)
- Amrit Kumar Shrestha
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Matthew L Bettini
- Section of Diabetes and Endocrinology, Department of Pediatrics, McNair Medical Institute, Baylor College of Medicine , Houston, Texas
| | - Renuka T Menon
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Vashisht Y N Gopal
- Department of Melanoma Medical Oncology and Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine , Houston, Texas
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine , Houston, Texas
| | - Mohan Pammi
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital , Houston, Texas
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
10
|
Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP, Thannickal VJ. Developmental pathways in the pathogenesis of lung fibrosis. Mol Aspects Med 2018; 65:56-69. [PMID: 30130563 DOI: 10.1016/j.mam.2018.08.004] [Citation(s) in RCA: 328] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and terminal lung disease with no known cure. IPF is a disease of aging, with median age of diagnosis over 65 years. Median survival is between 3 and 5 years after diagnosis. IPF is characterized primarily by excessive deposition of extracellular matrix (ECM) proteins by activated lung fibroblasts and myofibroblasts, resulting in reduced gas exchange and impaired pulmonary function. Growing evidence supports the concept of a pro-fibrotic environment orchestrated by underlying factors such as genetic predisposition, chronic injury and aging, oxidative stress, and impaired regenerative responses may account for disease development and persistence. Currently, two FDA approved drugs have limited efficacy in the treatment of IPF. Many of the genes and gene networks associated with lung development are induced or activated in IPF. In this review, we analyze current knowledge in the field, gained from both basic and clinical research, to provide new insights into the disease process, and potential approaches to treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Diptiman Chanda
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Eva Otoupalova
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Samuel R Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Thomas Volckaert
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stijn P De Langhe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
11
|
Tsai MJ, Chang WA, Jian SF, Chang KF, Sheu CC, Kuo PL. Possible mechanisms mediating apoptosis of bronchial epithelial cells in chronic obstructive pulmonary disease - A next-generation sequencing approach. Pathol Res Pract 2018; 214:1489-1496. [PMID: 30115538 DOI: 10.1016/j.prp.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory airway disease characterized by persistent airflow limitation. Apoptosis of pulmonary structural cells contributes to pulmonary destruction and dysfunction. This study aimed to explore the possible mechanisms underlying decreased cell proliferation and increased apoptosis of bronchial epithelial cells of COPD. MATERIALS AND METHODS The expression profiles of mRNAs and microRNAs in bronchial epithelial cells from a COPD patient and a normal subject were identified using next-generation sequencing (NGS) and analyzed using bioinformatic tools. RESULTS We identified 233 significantly upregulated and 204 significantly downregulated genes in COPD bronchial epithelial cells. The PI3K-Akt pathway was one of the most important dysregulated pathways in bronchial epithelial cells. We further identified that 3 genes involved in the PI3K-Akt signaling pathway, including IL6, F2R, and FGFR3, might be associated with inhibition of cell proliferation in bronchial epithelial cells, while 5 genes involved in the PI3K-Akt signaling pathway, including TLR4, IL6, F2R, FGFR3, and FGFR1, might be associated with apoptosis of bronchial epithelial cells. FGFR1 was also a predicted target for some up-regulated miRNAs in COPD bronchial epithelial cells, including hsa-miR-195-5p, hsa-miR-424-5p, and hsa-miR-6724-5p. CONCLUSION Our findings suggest PI3K-Akt signaling pathway plays an important role in COPD. We observed altered expression of apoptosis and cell proliferation-related genes that might contribute to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Ming-Ju Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tz-You 1st Rd., Kaohsiung, 807, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan; Department of Respiratory Therapy, School of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan.
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tz-You 1st Rd., Kaohsiung, 807, Taiwan.
| | - Shu-Fang Jian
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan.
| | | | - Chau-Chyun Sheu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tz-You 1st Rd., Kaohsiung, 807, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan; Department of Respiratory Therapy, School of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan.
| |
Collapse
|
12
|
Adaptive Fibrogenic Reprogramming of Osteosarcoma Stem Cells Promotes Metastatic Growth. Cell Rep 2018; 24:1266-1277.e5. [DOI: 10.1016/j.celrep.2018.06.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/28/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
|
13
|
Liu L, Huang C, Li L, Liang N, Li S. [Relationship between FGFR1 Gene Regulation of Circulating Tumor Cells and Clinical Features of Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:365-374. [PMID: 29764586 PMCID: PMC5999920 DOI: 10.3779/j.issn.1009-3419.2018.05.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
背景与目的 目前检测非小细胞肺癌(non-small cell lung cancer, NSCLC)术后患者复发转移的方法均具有一定的滞后性及片面性。本研究总结分析了30例NSCLC患者外周血循环肿瘤细胞(circulating tumor cell, CTC)及成纤维细胞生长因子受体1(fibroblast growth factor receptor 1, FGFR1)表达情况与临床病理之间的关系,以期能够为肿瘤复发转移的检测提供新思路。 方法 分析北京协和医院胸外科2016年11月-2017年6月30例NSCLC患者临床资料及CTC检测数据并进行相关性分析。 结果 相关性数据分析可得,外周血CTC细胞阳性率与吸烟史相关(P=0.016),病理类型与CTC阳性率及FGFR1表达情况之间无明显关联(P=0.202, P=0.806),不同类型CTC细胞FGFR1表达情况并无明显差异(P=0.094)。 结论 CTC阳性率与NSCLC患者吸烟史相关,不同病理类型NSCLC中CTC分类及FGFR1表达情况无明显差异,不同类型CTC之间FGFR1表达情况无明显差异。我们期待着更大样本量及纳入随访数据后可得出与CTC及FGFR1基因表达相关的更多具有临床应用意义的结论。
Collapse
Affiliation(s)
- Lei Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Cheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Li Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
14
|
Zhang Y, Li W, Feng Y, Guo S, Zhao X, Wang Y, He Y, He W, Chen L. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks. Oncotarget 2017; 8:103375-103384. [PMID: 29262568 PMCID: PMC5732734 DOI: 10.18632/oncotarget.21874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD.
Collapse
Affiliation(s)
- Yihua Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuyan Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shanshan Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xilei Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
15
|
Kaufhold I, Osbahr S, Shima K, Marwitz S, Rohmann K, Drömann D, Goldmann T, Dalhoff K, Rupp J. Nontypeable Haemophilus influenzae (NTHi) directly interfere with the regulation of E-cadherin in lung epithelial cells. Microbes Infect 2017; 19:560-566. [PMID: 28802586 DOI: 10.1016/j.micinf.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023]
Abstract
Loss of epithelial barriers characterized by reduction of E-cadherin is a hallmark of chronic obstructive pulmonary disease (COPD). We investigated the effects of nontypeable Haemophilus influenzae (NTHi) infections, associated with acute exacerbations of chronic bronchitis, on the regulation of E-cadherin in host cells. NTHi infection decreased E-cadherin mRNA and protein-levels in lung epithelial cells. E-cadherin reduction was mediated by activation of the fibroblast growth factor 2 (FGF2), the mammalian target of rapamycin (mTOR) and Slug. These data indicate that epithelial integrity and barrier function is disturbed by NTHi infection. Mainly, the destruction of cell-cell contacts is a prominent feature in NTHi infection.
Collapse
Affiliation(s)
- Inga Kaufhold
- Department of Infectious Diseases and Microbiology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Sünja Osbahr
- Department of Infectious Diseases and Microbiology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Sebastian Marwitz
- Clinical and Experimental Pathology, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany; Airway Research Center North (ARCN), German Center for Lung Research, Wöhrendamm 80, 22927 Groβhansdorf, Germany
| | - Kristina Rohmann
- Medical Clinic III, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Daniel Drömann
- Medical Clinic III, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; Airway Research Center North (ARCN), German Center for Lung Research, Wöhrendamm 80, 22927 Groβhansdorf, Germany
| | - Torsten Goldmann
- Clinical and Experimental Pathology, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany; Airway Research Center North (ARCN), German Center for Lung Research, Wöhrendamm 80, 22927 Groβhansdorf, Germany
| | - Klaus Dalhoff
- Medical Clinic III, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; Airway Research Center North (ARCN), German Center for Lung Research, Wöhrendamm 80, 22927 Groβhansdorf, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
16
|
El Agha E, Seeger W, Bellusci S. Therapeutic and pathological roles of fibroblast growth factors in pulmonary diseases. Dev Dyn 2016; 246:235-244. [PMID: 27783451 DOI: 10.1002/dvdy.24468] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
Fibroblast growth factors (FGFs) constitute a large family of polypeptides that are involved in many biological processes, ranging from prenatal cell-fate specification and organogenesis to hormonal and metabolic regulation in postnatal life. During embryonic development, these growth factors are important mediators of the crosstalk among ectoderm-, mesoderm-, and endoderm-derived cells, and they instruct the spatial and temporal growth of organs and tissues such as the brain, bone, lung, gut, and others. The involvement of FGFs in postnatal lung homeostasis is a growing field, and there is emerging literature about their roles in lung pathophysiology. In this review, the involvement of FGF signaling in a wide array of lung diseases will be summarized. Developmental Dynamics 246:235-244, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elie El Agha
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany.,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
17
|
Shimbori C, Bellaye PS, Xia J, Gauldie J, Ask K, Ramos C, Becerril C, Pardo A, Selman M, Kolb M. Fibroblast growth factor-1 attenuates TGF-β1-induced lung fibrosis. J Pathol 2016; 240:197-210. [DOI: 10.1002/path.4768] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Chiko Shimbori
- Firestone Institute for Respiratory Health, Departments of Medicine; McMaster University; Hamilton Ontario Canada
| | - Pierre-Simon Bellaye
- Firestone Institute for Respiratory Health, Departments of Medicine; McMaster University; Hamilton Ontario Canada
| | - Jiaji Xia
- Firestone Institute for Respiratory Health, Departments of Medicine; McMaster University; Hamilton Ontario Canada
| | - Jack Gauldie
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, Departments of Medicine; McMaster University; Hamilton Ontario Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| | - Carlos Ramos
- Instituto Nacional de Enfermedades Respiratorias; México DF México Mexico
| | - Carina Becerril
- Instituto Nacional de Enfermedades Respiratorias; México DF México Mexico
| | - Annie Pardo
- Facultad de Ciencias; Universidad Nacional Autónoma de México; Ciudad de México Mexico
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias; México DF México Mexico
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Departments of Medicine; McMaster University; Hamilton Ontario Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| |
Collapse
|
18
|
Scheraga RG, Thompson C, Tulapurkar ME, Nagarsekar AC, Cowan M, Potla R, Sun J, Cai R, Logun C, Shelhamer J, Todd NW, Singh IS, Luzina IG, Atamas SP, Hasday JD. Activation of heat shock response augments fibroblast growth factor-1 expression in wounded lung epithelium. Am J Physiol Lung Cell Mol Physiol 2016; 311:L941-L955. [PMID: 27638903 DOI: 10.1152/ajplung.00262.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
We previously showed that coincident exposure to heat shock (HS; 42°C for 2 h) and TNF-α synergistically induces apoptosis in mouse lung epithelium. We extended this work by analyzing HS effects on human lung epithelial responses to clinically relevant injury. Cotreatment with TNF-α and HS induced little caspase-3 and poly(ADP-ribose) polymerase cleavage in human small airway epithelial cells, A549 cells, and BEAS2B cells. Scratch wound closure rates almost doubled when A549 and BEAS2B cells and air-liquid interface cultures of human bronchial epithelial cells were heat shocked immediately after wounding. Microarray, qRT-PCR, and immunoblotting showed fibroblast growth factor 1 (FGF1) to be synergistically induced by HS and wounding. Enhanced FGF1 expression in HS/wounded A549 was blocked by inhibitors of p38 MAPK (SB203580) or HS factor (HSF)-1 (KNK-437) and in HSF1 knockout BEAS2B cells. PCR demonstrated FGF1 to be expressed from the two most distal promoters in wounded/HS cells. Wound closure in HS A549 and BEAS2B cells was reduced by FGF receptor-1/3 inhibition (SU-5402) or FGF1 depletion. Exogenous FGF1 accelerated A549 wound closure in the absence but not presence of HS. In the presence of exogenous FGF1, HS slowed wound closure, suggesting that it increases FGF1 expression but impairs FGF1-stimulated wound closure. Frozen sections from normal and idiopathic pulmonary fibrosis (IPF) lung were analyzed for FGF1 and HSP70 by immunofluorescence confocal microscopy and qRT-PCR. FGF1 and HSP70 mRNA levels were 7.5- and 5.9-fold higher in IPF than normal lung, and the proteins colocalized to fibroblastic foci in IPF lung. We conclude that HS signaling may have an important impact on gene expression contributing to lung injury, healing, and fibrosis.
Collapse
Affiliation(s)
- Rachel G Scheraga
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Critical Care Section, National Heart, Lung, Blood Institute, Bethesda, Maryland
| | | | - Mohan E Tulapurkar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ashish C Nagarsekar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mark Cowan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Medicine and Research Services, Baltimore Veterans Affairs Medical Care System, Baltimore, Maryland
| | - Ratnakar Potla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Junfeng Sun
- Critical Care Section, National Heart, Lung, Blood Institute, Bethesda, Maryland
| | - Rongman Cai
- Critical Care Section, National Heart, Lung, Blood Institute, Bethesda, Maryland
| | - Carolea Logun
- Critical Care Section, National Heart, Lung, Blood Institute, Bethesda, Maryland
| | - James Shelhamer
- Critical Care Section, National Heart, Lung, Blood Institute, Bethesda, Maryland
| | - Nevins W Todd
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Medicine and Research Services, Baltimore Veterans Affairs Medical Care System, Baltimore, Maryland
| | - Ishwar S Singh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Medicine and Research Services, Baltimore Veterans Affairs Medical Care System, Baltimore, Maryland
| | - Irina G Luzina
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Medicine and Research Services, Baltimore Veterans Affairs Medical Care System, Baltimore, Maryland
| | - Sergei P Atamas
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Medicine and Research Services, Baltimore Veterans Affairs Medical Care System, Baltimore, Maryland
| | - Jeffrey D Hasday
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; .,Medicine and Research Services, Baltimore Veterans Affairs Medical Care System, Baltimore, Maryland
| |
Collapse
|
19
|
An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Dev Cell 2016; 37:85-97. [PMID: 27046834 PMCID: PMC4825408 DOI: 10.1016/j.devcel.2016.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/06/2016] [Accepted: 03/01/2016] [Indexed: 12/30/2022]
Abstract
The steady-state airway epithelium has a low rate of stem cell turnover but can nevertheless mount a rapid proliferative response following injury. This suggests a mechanism to restrain proliferation at steady state. One such mechanism has been identified in skeletal muscle in which pro-proliferative FGFR1 signaling is antagonized by SPRY1 to maintain satellite cell quiescence. Surprisingly, we found that deletion of Fgfr1 or Spry2 in basal cells of the adult mouse trachea caused an increase in steady-state proliferation. We show that in airway basal cells, SPRY2 is post-translationally modified in response to FGFR1 signaling. This allows SPRY2 to inhibit intracellular signaling downstream of other receptor tyrosine kinases and restrain basal cell proliferation. An FGFR1-SPRY2 signaling axis has previously been characterized in cell lines in vitro. We now demonstrate an in vivo biological function of this interaction and thus identify an active signaling mechanism that maintains quiescence in the airway epithelium.
Collapse
|
20
|
Bozinovski S, Vlahos R, Anthony D, McQualter J, Anderson G, Irving L, Steinfort D. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link. Br J Pharmacol 2016; 173:635-48. [PMID: 26013585 PMCID: PMC4742298 DOI: 10.1111/bph.13198] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/30/2015] [Accepted: 05/14/2015] [Indexed: 12/25/2022] Open
Abstract
Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap.
Collapse
Affiliation(s)
- Steven Bozinovski
- School of Health Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Vic., Australia
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Ross Vlahos
- School of Health Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Vic., Australia
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Desiree Anthony
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Jonathan McQualter
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Gary Anderson
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Louis Irving
- Department of Respiratory Medicine, The Royal Melbourne Hospital, Parkville, Vic., Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, The Royal Melbourne Hospital, Parkville, Vic., Australia
| |
Collapse
|
21
|
MacKenzie B, Korfei M, Henneke I, Sibinska Z, Tian X, Hezel S, Dilai S, Wasnick R, Schneider B, Wilhelm J, El Agha E, Klepetko W, Seeger W, Schermuly R, Günther A, Bellusci S. Increased FGF1-FGFRc expression in idiopathic pulmonary fibrosis. Respir Res 2015; 16:83. [PMID: 26138239 PMCID: PMC4495640 DOI: 10.1186/s12931-015-0242-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 06/24/2015] [Indexed: 01/04/2023] Open
Abstract
Background Recent clinical studies show that tyrosine kinase inhibitors slow the rate of lung function decline and decrease the number of acute exacerbations in patients with Idiopathic Pulmonary Fibrosis (IPF). However, in the murine bleomycin model of fibrosis, not all tyrosine kinase signaling is detrimental. Exogenous ligands Fibroblast Growth Factor (FGF) 7 and 10 improve murine lung repair and increase survival after injury via tyrosine kinase FGF receptor 2b-signaling. Therefore, the level and location of FGF/FGFR expression as well as the exogenous effect of the most highly expressed FGFR2b ligand, FGF1, was analyzed on human lung fibroblasts. Methods FGF ligand and receptor expression was evaluated in donor and IPF whole lung homogenates using western blotting and qPCR. Immunohistochemistry for FGF1 and FGFR1/2/3/4 were performed on human lung tissue. Lastly, the effects of FGF1, a potent, multi-FGFR ligand, were studied on primary cultures of IPF and non-IPF donor fibroblasts. Western blots for pro-fibrotic markers, proliferation, FACS for apoptosis, transwell assays and MetaMorph analyses on cell cultures were performed. Results Whole lung homogenate analyses revealed decreased FGFR b-isoform expression, and an increase in FGFR c-isoform expression. Of the FGFR2b-ligands, FGF1 was the most significantly increased in IPF patients; downstream targets of FGF-signaling, p-ERK1/2 and p-AKT were also increased. Immunohistochemistry revealed FGF1 co-localization within basal cell sheets, myofibroblast foci, and Surfactant protein-C positive alveolar epithelial type-II cells as well as co-localization with FGFR1, FGFR2, FGFR3, FGFR4 and myofibroblasts expressing the migratory marker Fascin. Both alone and in the presence of heparin, FGF1 led to increased MAPK-signaling in primary lung fibroblasts. While smooth muscle actin was unchanged, heparin + FGF1 decreased collagen production in IPF fibroblasts. In addition, FGF1 + heparin increased apoptosis and cell migration. The FGFR inhibitor (PD173074) attenuated these effects. Conclusions Strong expression of FGF1/FGFRs in pathogenic regions of IPF suggest that aberrant FGF1-FGFR signaling is increased in IPF patients and may contribute to the pathogenesis of lung fibrosis by supporting fibroblast migration and increased MAPK-signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0242-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- BreAnne MacKenzie
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Martina Korfei
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Ingrid Henneke
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Zaneta Sibinska
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Xia Tian
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Stefanie Hezel
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Salma Dilai
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Roxana Wasnick
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Beate Schneider
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Jochen Wilhelm
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Elie El Agha
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Walter Klepetko
- Department of Thoracic Surgery, General Hospital University Vienna, Vienna, Austria
| | - Werner Seeger
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany.,German Center for Lung Research, Greifenstein, Germany
| | - Ralph Schermuly
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany.,German Center for Lung Research, Greifenstein, Germany
| | - Andreas Günther
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany.,German Center for Lung Research, Greifenstein, Germany.,AGAPLESION Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany
| | - Saverio Bellusci
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany. .,German Center for Lung Research, Greifenstein, Germany. .,Developmental Biology Program, Division of Surgery, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA. .,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russian Federation.
| |
Collapse
|
22
|
Ding BS, Gomi K, Rafii S, Crystal RG, Walters MS. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells. J Cell Sci 2015; 128:2983-8. [PMID: 26116571 DOI: 10.1242/jcs.168179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/23/2015] [Indexed: 12/28/2022] Open
Abstract
Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell-endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal 'crosstalk' between human airway basal cells and endothelial cells that regulates proliferation of basal cells.
Collapse
Affiliation(s)
- Bi-Sen Ding
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kazunori Gomi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthew S Walters
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
23
|
Guzy RD, Stoilov I, Elton TJ, Mecham RP, Ornitz DM. Fibroblast growth factor 2 is required for epithelial recovery, but not for pulmonary fibrosis, in response to bleomycin. Am J Respir Cell Mol Biol 2015; 52:116-28. [PMID: 24988442 DOI: 10.1165/rcmb.2014-0184oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of pulmonary fibrosis involves lung epithelial injury and aberrant proliferation of fibroblasts, and results in progressive pulmonary scarring and declining lung function. In vitro, fibroblast growth factor (FGF) 2 promotes myofibroblast differentiation and proliferation in cooperation with the profibrotic growth factor, transforming growth factor-β1, but the in vivo requirement for FGF2 in the development of pulmonary fibrosis is not known. The bleomycin model of lung injury and pulmonary fibrosis was applied to Fgf2 knockout (Fgf2(-/-)) and littermate control mice. Weight loss, mortality, pulmonary fibrosis, and histology were analyzed after a single intranasal dose of bleomycin. Inflammation was evaluated in bronchoalveolar lavage (BAL) fluid, and epithelial barrier integrity was assessed by measuring BAL protein and Evans Blue dye permeability. Fgf2 is expressed in mouse and human lung epithelial and inflammatory cells, and, in response to bleomycin, Fgf2(-/-) mice have significantly increased mortality and weight loss. Analysis of BAL fluid and histology show that pulmonary fibrosis is unaltered, but Fgf2(-/-) mice fail to efficiently resolve inflammation, have increased BAL cellularity, and, importantly, deficient recovery of epithelial integrity. Fgf2(-/-) mice similarly have deficient recovery of club cell secretory protein(+) bronchial epithelium in response to naphthalene. We conclude that FGF2 is not required for bleomycin-induced pulmonary fibrosis, but rather is essential for epithelial repair and maintaining epithelial integrity after bleomycin-induced lung injury in mice. These data identify that FGF2 acts as a protective growth factor after lung epithelial injury, and call into question the role of FGF2 as a profibrotic growth factor in vivo.
Collapse
Affiliation(s)
- Robert D Guzy
- Departments of 1 Internal Medicine, Division of Pulmonary and Critical Care Medicine
| | | | | | | | | |
Collapse
|
24
|
Alagappan VKT, de Boer WI, Misra VK, Mooi WJ, Sharma HS. Angiogenesis and vascular remodeling in chronic airway diseases. Cell Biochem Biophys 2014; 67:219-34. [PMID: 23975597 DOI: 10.1007/s12013-013-9713-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease remain a global health problem, with increasing morbidity and mortality. Despite differences in the causal agents, both diseases exhibit various degrees of inflammatory changes, structural alterations of the airways leading to airflow limitation. The existence of transient disease phenotypes which overlap both diseases and which progressively decline the lung function has complicated the search for an effective therapy. Important characteristics of chronic airway diseases include airway and vascular remodeling, of which the molecular mechanisms are complex and poorly understood. Recently, we and others have shown that airway smooth muscle (ASM) cells are not only structural and contractile components of airways, rather they bear capabilities of producing large number of pro-inflammatory and mitogenic factors. Increase in size and number of blood vessels both inside and outside the smooth muscle layer as well as hyperemia of bronchial vasculature are contributing factors in airway wall remodeling in patients with chronic airway diseases, proposing for the ongoing mechanisms like angiogenesis and vascular dilatation. We believe that vascular changes directly add to the airway narrowing and hyper-responsiveness by exudation and transudation of proinflammatory mediators, cytokines and growth factors; facilitating trafficking of inflammatory cells; causing oedema of the airway wall and promoting ASM accumulation. One of the key regulators of angiogenesis, vascular endothelial growth factor in concerted action with other endothelial mitogens play pivotal role in regulating bronchial angiogenesis. In this review article we address recent advances in pulmonary angiogenesis and remodelling that contribute in the pathogenesis of chronic airway diseases.
Collapse
|
25
|
Willems-Widyastuti A, Vanaudenaerde BM, Vos R, Dilisen E, Verleden SE, De Vleeschauwer SI, Vaneylen A, Mooi WJ, de Boer WI, Sharma HS, Verleden GM. Azithromycin attenuates fibroblast growth factors induced vascular endothelial growth factor via p38(MAPK) signaling in human airway smooth muscle cells. Cell Biochem Biophys 2014; 67:331-9. [PMID: 22205500 DOI: 10.1007/s12013-011-9331-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The airways in asthma and COPD are characterized by an increase in airway smooth muscle (ASM) mass and bronchial vascular changes associated with increased expression of pro-angiogenic growth factors, such as fibroblast growth factors (FGF-1 and FGF-2) and vascular endothelial growth factor (VEGF). We investigated the contribution of FGF-1/-2 in VEGF production in ASM cells and assessed the influence of azithromycin and dexamethasone and their underlying signaling mechanisms. Growth-synchronized human ASM cells were pre-treated with MAPK inhibitors, U0126 for ERK1/2(MAPK) and SB239063 for p38(MAPK) as well as with dexamethasone or azithromycin, 30 min before incubation with FGF-1 or FGF-2. Expression of VEGF (VEGF-A, VEGF121, and VEGF165) was assessed by quantitative PCR, VEGF release by ELISA and MAPK phosphorylation by Western blotting. Both FGF-1 and FGF-2 significantly induced mRNA levels of VEGF-A, VEGF121, and VEGF165. The VEGF protein release was increased 1.8-fold (FGF-1) and 5.5-fold (FGF-2) as compared to controls. Rapid transient increase in ERK1/2(MAPK) and p38(MAPK) phosphorylation and subsequent release of VEGF from FGF-1 or FGF-2-treated ASM cells were inhibited by respective blockers. Furthermore, azithromycin and dexamethasone significantly reduced both the VEGF release and the activation of p38(MAPK) pathway in response to FGF-1 or FGF-2 treatment. Our Results demonstrate that FGF-1 and FGF-2 up-regulate VEGF production via ERK1/2(MAPK) and p38(MAPK) pathways. Both azithromycin and dexamethasone elicited their anti-angiogenic effects via p38(MAPK) pathway in vitro, thereby suggesting a possible therapeutic approach to tackle VEGF-mediated vascular remodeling.
Collapse
|
26
|
Caramori G, Adcock IM, Di Stefano A, Chung KF. Cytokine inhibition in the treatment of COPD. Int J Chron Obstruct Pulmon Dis 2014; 9:397-412. [PMID: 24812504 PMCID: PMC4010626 DOI: 10.2147/copd.s42544] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cytokines play an important part in many pathobiological processes of chronic obstructive pulmonary disease (COPD), including the chronic inflammatory process, emphysema, and altered innate immune response. Proinflammatory cytokines of potential importance include tumor necrosis factor (TNF)-α, interferon-γ, interleukin (IL)-1β, IL-6, IL-17, IL-18, IL-32, and thymic stromal lymphopoietin (TSLP), and growth factors such as transforming growth factor-β. The current objectives of COPD treatment are to reduce symptoms, and to prevent and reduce the number of exacerbations. While current treatments achieve these goals to a certain extent, preventing the decline in lung function is not currently achievable. In addition, reversal of corticosteroid insensitivity and control of the fibrotic process while reducing the emphysematous process could also be controlled by specific cytokines. The abnormal pathobiological process of COPD may contribute to these fundamental characteristics of COPD, and therefore targeting cytokines involved may be a fruitful endeavor. Although there has been much work that has implicated various cytokines as potentially playing an important role in COPD, there have been very few studies that have examined the effect of specific cytokine blockade in COPD. The two largest studies that have been reported in the literature involve the use of blocking antibody to TNFα and CXCL8 (IL-8), and neither has provided benefit. Blocking the actions of CXCL8 through its CXCR2 receptor blockade was not successful either. Studies of antibodies against IL-17, IL-18, IL-1β, and TSLP are currently either being undertaken or planned. There is a need to carefully phenotype COPD and discover good biomarkers of drug efficacy for each specific target. Specific groups of COPD patients should be targeted with specific anticytokine therapy if there is evidence of high expression of that cytokine and there are features of the clinical expression of COPD that will respond.
Collapse
Affiliation(s)
- Gaetano Caramori
- Dipartimento di Scienze Mediche, Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate (CEMICEF; formerly Centro di Ricerca su Asma e BPCO), Sezione di Medicina Interna e Cardiorespiratoria, Università di Ferrara, Ferrara, Italy
| | - Ian M Adcock
- Airway Diseases Section, National Heart and Lung Institute, Imperial College London, UK
- Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio-Respiratorio, Fondazione Salvatore Maugeri, IRCCS, Veruno, Italy
| | - Kian Fan Chung
- Airway Diseases Section, National Heart and Lung Institute, Imperial College London, UK
- Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| |
Collapse
|
27
|
Aggarwal S, Gross C, Fineman JR, Black SM. Oxidative stress and the development of endothelial dysfunction in congenital heart disease with increased pulmonary blood flow: lessons from the neonatal lamb. Trends Cardiovasc Med 2012; 20:238-46. [PMID: 22293025 DOI: 10.1016/j.tcm.2011.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital heart diseases associated with increased pulmonary blood flow commonly leads to the development of pulmonary hypertension. However, most patients who undergo histological evaluation have advanced pulmonary hypertension, and therefore it has been difficult to investigate aberrations in signaling cascades that precede the development of overt vascular remodeling. This review discusses the role played by both oxidative and nitrosative stress in the lung and their impact on the signaling pathways that regulate vasodilation, vessel growth, and vascular remodeling in the neonatal lung exposed to increased pulmonary blood flow.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Pulmonary Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
28
|
Hiruma H, Hikawa S, Kawakami T. Immunocytochemical colocalization of fibroblast growth factor-1 with neurotrophin-3 in mouse alveolar macrophages. Acta Histochem Cytochem 2012; 45:131-7. [PMID: 22685355 PMCID: PMC3365304 DOI: 10.1267/ahc.11055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/02/2012] [Indexed: 12/02/2022] Open
Abstract
Alveolar macrophages are known to express a variety of growth factors and neurotrophins. Fibroblast growth factor-1 (FGF-1) is abundantly present in the lung and has mitogenic and neurotrophic activities similarly to neurotrophins. In order to determine whether FGF-1 associates with neurotrophins in alveolar macrophages, we investigated the immunocytochemical colocalization of FGF-1 with neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), in mouse alveolar macrophages. The results showed that 34% of macrophages were immunoreactive for FGF-1, 10% for NGF, 9% for BDNF, and 17% for NT-3. Of FGF-1-immunoreactive (IR) macrophages, 16% were immunoreactive for NT-3, but only small percentages were immunoreactive for NGF (0.8%) and for BDNF (0.3%). FGF-1 and neurotrophins were all localized in the intracellular vesicles. In the vesicles, FGF-1 and NT-3 were frequently colocalized. All macrophages expressed lysosome-associated protein-2 (LAMP-2), a late endosomal and lysosomal marker, and early endosomes antigen 1 (EEA1), an early endosomal marker. FGF-1 and NT-3 were predominantly colocalized with LAMP-2 rather than with EEA1, whereas NGF and BDNF were colocalized with EEA1 rather than with LAMP-2. These results indicate that FGF-1 and NT-3 are substantially expressed in mouse alveolar macrophages and colocalized in vesicles, predominantly in late endosomes and lysosomes.
Collapse
Affiliation(s)
- Hiromi Hiruma
- Department of Physiology, Kitasato University School of Medicine
| | - Shiori Hikawa
- Department of Medicine, Kitasato University School of Medicine
| | - Tadashi Kawakami
- Department of Physiology, Kitasato University School of Medicine
| |
Collapse
|
29
|
Selige J, Hatzelmann A, Dunkern T. The differential impact of PDE4 subtypes in human lung fibroblasts on cytokine-induced proliferation and myofibroblast conversion. J Cell Physiol 2011; 226:1970-80. [DOI: 10.1002/jcp.22529] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Zanini A, Chetta A, Imperatori AS, Spanevello A, Olivieri D. The role of the bronchial microvasculature in the airway remodelling in asthma and COPD. Respir Res 2010; 11:132. [PMID: 20920222 PMCID: PMC2955663 DOI: 10.1186/1465-9921-11-132] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 09/29/2010] [Indexed: 11/10/2022] Open
Abstract
In recent years, there has been increased interest in the vascular component of airway remodelling in chronic bronchial inflammation, such as asthma and COPD, and in its role in the progression of disease. In particular, the bronchial mucosa in asthmatics is more vascularised, showing a higher number and dimension of vessels and vascular area. Recently, insight has been obtained regarding the pivotal role of vascular endothelial growth factor (VEGF) in promoting vascular remodelling and angiogenesis. Many studies, conducted on biopsies, induced sputum or BAL, have shown the involvement of VEGF and its receptors in the vascular remodelling processes. Presumably, the vascular component of airway remodelling is a complex multi-step phenomenon involving several mediators. Among the common asthma and COPD medications, only inhaled corticosteroids have demonstrated a real ability to reverse all aspects of vascular remodelling. The aim of this review was to analyze the morphological aspects of the vascular component of airway remodelling and the possible mechanisms involved in asthma and COPD. We also focused on the functional and therapeutic implications of the bronchial microvascular changes in asthma and COPD.
Collapse
Affiliation(s)
- Andrea Zanini
- Salvatore Maugeri Foundation, Department of Pneumology, IRCCS Rehabilitation Institute of Tradate, Italy
| | - Alfredo Chetta
- Department of Clinical Sciences, Section of Respiratory Diseases, University of Parma, Italy
| | | | - Antonio Spanevello
- Salvatore Maugeri Foundation, Department of Pneumology, IRCCS Rehabilitation Institute of Tradate, Italy
- Department of Respiratory Disease, University of Insubria, Varese, Italy
| | - Dario Olivieri
- Department of Clinical Sciences, Section of Respiratory Diseases, University of Parma, Italy
| |
Collapse
|
31
|
Bossé Y, Stankova J, Rola-Pleszczynski M. Transforming growth factor-beta1 in asthmatic airway smooth muscle enlargement: is fibroblast growth factor-2 required? Clin Exp Allergy 2010; 40:710-24. [PMID: 20447083 DOI: 10.1111/j.1365-2222.2010.03497.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Enlargement of airway smooth muscle (ASM) tissue around the bronchi/bronchioles is a histopathological signature of asthmatic airway remodelling and has been suggested to play a critical role in the increased lung resistance and airway hyperresponsiveness seen in asthmatic patients. The pleiotropic cytokine, TGF-beta1, is believed to contribute to several aspects of asthmatic airway remodelling and is known to influence the growth of many cell types. Increased TGF-beta1 expression/signalling and ASM growth have been shown to occur concurrently in animal models of asthma. Abundant studies further substantiate this association by showing that therapeutic strategies that reduce or prevent TGF-beta1 overexpression/signalling lead to a parallel decrease or prevention of ASM enlargement. Finally, recent findings have supported a direct link of causality between TGF-beta1 overexpression/signalling and the overgrowth of ASM tissue. To follow-up on these in vivo studies, many investigators have pursued detailed investigation of ASM in cell culture conditions, assessing the direct role of TGF-beta1 on cellular proliferation and/or hypertrophy. Inconsistencies among the in vitro studies suggest that the effect of TGF-beta1 on ASM cell proliferation/hypertrophy is contextual. A hypothesis focusing on fibroblast growth factor-2 is presented at the end of this review, which could potentially reconcile the apparent discrepancy between the conflicting in vitro findings with the consistent in vivo finding that TGF-beta1 is required for ASM enlargement in asthma.
Collapse
Affiliation(s)
- Y Bossé
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
32
|
Boelens MC, Gustafson AM, Postma DS, Kok K, van der Vries G, van der Vlies P, Spira A, Lenburg ME, Geerlings M, Sietsma H, Timens W, van den Berg A, Groen HJM. A chronic obstructive pulmonary disease related signature in squamous cell lung cancer. Lung Cancer 2010; 72:177-83. [PMID: 20832896 DOI: 10.1016/j.lungcan.2010.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/09/2010] [Accepted: 08/11/2010] [Indexed: 12/21/2022]
Abstract
The epidemiological relationship between squamous cell lung cancer (SCC) and chronic obstructive pulmonary disease (COPD), both smoking-related diseases, suggests that they have also a genetic basis. We compared 35 SCC patients with and without COPD with whole-genome gene expression profiles of laser microdissected tissue. Validation of differential expression was performed for 25 genes using quantitative (q)RT-PCR. Subsequently, we performed array-based CGH on the same tumor samples. We found that 374 probes were differentially expressed in SCC from patients with and without COPD. Forty-four probes were derived from genes with mitochondrial functions and 34 probes were located on 5q. All these probes showed a lower expression level in SCC from non-COPD patients. For a random selection of 25 mitochondrial and 5q genes, we confirmed the differential expression by qRT-PCR. Loss of 3p, 5q and 9p was observed, via array-CGH, to be more frequent in SCC from non-COPD patients as compared to SCC from COPD patients. Combination of chromosomal aberrations and the location of the differentially expressed genes showed significant association for loss of the 5q31.2-31.3 region and reduced expression of the 5q genes. In conclusion, a more frequent loss of 5q and a low expression of genes located on 5q in SCC tumors of non-COPD patients compared to tumors from COPD patients was identified suggesting that different oncogenetic pathways are operational in patients with and without COPD.
Collapse
Affiliation(s)
- Mirjam C Boelens
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Selige J, Tenor H, Hatzelmann A, Dunkern T. Cytokine-dependent balance of mitogenic effects in primary human lung fibroblasts related to cyclic AMP signaling and phosphodiesterase 4 inhibition. J Cell Physiol 2010; 223:317-26. [PMID: 20082309 DOI: 10.1002/jcp.22037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin-1beta (IL-1beta) and basic fibroblast growth factor (bFGF) are important regulators of proliferation, and their expression is increased in lungs of patients with asthma, idiopathic pulmonary fibrosis (IPF), or chronic obstructive pulmonary disease (COPD). We investigated the effect of IL-1beta and bFGF on proliferation of human lung fibroblasts and the role of COX-2, PGE(2), and cAMP in this process. Furthermore, the effect of phosphodiesterase (PDE) 3 and 4 inhibition was analyzed. In primary human lung fibroblasts low concentrations of IL-1beta (<10 pg/ml) potentiated the bFGF-induced DNA synthesis, whereas higher concentrations revealed antiproliferative effects. Higher concentrations of IL-1beta-induced COX-2 mRNA and protein associated with an increase in PGE(2) and cAMP, and all of these parameters were potentiated by bFGF. The PDE4 inhibitor piclamilast concentration-dependently reduced proliferation by a partial G1 arrest. The PDE3 inhibitor motapizone was inactive by itself but enhanced the effect of the PDE4 inhibitor. This study demonstrates that bFGF and IL-1beta act in concert to fine-tune lung fibroblast proliferation resulting in amplification or reduction. The antiproliferative effect of IL-1beta is likely attributed to the induction of COX-2, which is further potentiated by bFGF, and the subsequent generation of PGE(2) and cAMP. Inhibition of PDE4 inhibition (rather than PDE3) may diminish proliferation of human lung fibroblasts and therefore could be useful in the therapy of pathological remodeling in lung diseases.
Collapse
Affiliation(s)
- Jens Selige
- Department of In-Vitro Biology 1, Nycomed GmbH, Konstanz, Germany.
| | | | | | | |
Collapse
|
34
|
Huertas A, Testa U, Riccioni R, Petrucci E, Riti V, Savi D, Serra P, Bonsignore MR, Palange P. Bone marrow-derived progenitors are greatly reduced in patients with severe COPD and low-BMI. Respir Physiol Neurobiol 2009; 170:23-31. [PMID: 19895908 DOI: 10.1016/j.resp.2009.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 01/08/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) patients have reduced circulating hemopoietic progenitors. We hypothesized that severity of COPD parallels the decrease in progenitors and that the reduction in body mass index (BMI) could be associated with more severe bone marrow dysfunction. We studied 39 patients with moderate to very severe COPD (18 with low-BMI and 21 with normal-BMI) and 12 controls. Disease severity was associated to a greater reduction in circulating progenitors. Proangiogenetic and inflammatory markers correlated with disease severity parameters. Compared to normal-BMI patients, low-BMI patients showed: greater reduction in circulating progenitors; higher VEGF-A, VEGF-C, HGF, Ang-2, TNF-alpha, IL-6 and MCP-1 levels. Furthermore, among patients with similar pulmonary impairment, those who displayed low-BMI had a more markedly reduced number of CD34(+) cells and late endothelial progenitors. We show that the reduction in hematopoietic and endothelial progenitor cells correlates with COPD severity. Our findings also indicate that, in severe low-BMI COPD patients, bone marrow function seems to be further impaired and may lead to reduced reparative capacity.
Collapse
Affiliation(s)
- Alice Huertas
- Department of Clinical Medicine, La Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Bailey SR, Boustany S, Burgess JK, Hirst SJ, Sharma HS, Simcock DE, Suravaram PR, Weckmann M. Airway vascular reactivity and vascularisation in human chronic airway disease. Pulm Pharmacol Ther 2009; 22:417-25. [PMID: 19409504 DOI: 10.1016/j.pupt.2009.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 04/01/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
Abstract
Altered bronchial vascular reactivity and remodelling including angiogenesis are documented features of asthma and other chronic inflammatory airway diseases. Expansion of the bronchial vasculature under these conditions involves both functional (vasodilation, hyperperfusion, increased microvascular permeability, oedema formation, and inflammatory cell recruitment) and structural changes (tissue and vascular remodelling) in the airways. These changes in airway vascular reactivity and vascularisation have significant pathophysiological consequences, which are manifest in the clinical symptoms of airway disease. Airway vascular reactivity is regulated by a wide variety of neurotransmitters and inflammatory mediators. Similarly, multiple growth factors are implicated in airway angiogenesis, with vascular endothelial growth factor amongst the most important. Increasing attention is focused on the complex interplay between angiogenic growth factors, airway smooth muscle and the various collagen-derived fragments that exhibit anti-angiogenic properties. The balance of these dynamic influences in airway neovascularisation processes and their therapeutic implications is just beginning to be elucidated. In this review article, we provide an account of recent developments in the areas of vascular reactivity and airway angiogenesis in chronic airway diseases.
Collapse
Affiliation(s)
- Simon R Bailey
- Faculty of Veterinary Science, University of Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sauleda J, Noguera A, Blanquer D, Pons J, López M, Villena C, Agustí AGN. Pulmonary and systemic hepatocyte and keratinocyte growth factors in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2009; 3:719-25. [PMID: 19281086 PMCID: PMC2650601 DOI: 10.2147/copd.s3078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background The potential role of growth factors in chronic obstructive pulmonary disease (COPD) has begun to be addressed only recently and is still poorly understood. For this study, we investigated potential abnormalities of hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) in patients with COPD. Methods To this end, we compared the levels of HGF and KGF, measured by enzyme-linked immunosorbent assay (ELISA), in bronchoalveolar lavage (BAL) fluid and in serum in 18 patients with COPD (62 ± 9 yrs, forced expiratory volume in one second [FEV1] 57 ± 12% ref, X ± standard deviation of mean), 18 smokers with normal lung function (58 ± 8 yrs, FEV1 90 ± 6% ref) and 8 never smokers (67 ± 9 yrs, 94 ± 14% ref). Results We found that in BAL, HGF levels were higher in patients with COPD than in the other two groups whereas, in serum, HGF concentration was highest in smokers with normal lung function (p < 0.01). KGF levels were not significantly different between groups, neither in blood nor in BAL (most values were below the detection limit). Conclusions These results highlight a different response of HGF in BAL and serum in smokers with and without COPD that may be relevant for tissue repair in COPD.
Collapse
Affiliation(s)
- Jaume Sauleda
- Servei de Pneumologia, Hospital Universitari Son Dureta, Fundació Caubet-Cimera Illes Balears, Illes Balears, Spain.
| | | | | | | | | | | | | |
Collapse
|
38
|
Zanini A, Chetta A, Olivieri D. Therapeutic perspectives in bronchial vascular remodeling in COPD. Ther Adv Respir Dis 2009; 2:179-87. [PMID: 19124370 DOI: 10.1177/1753465808092339] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
COPD may be characterized by significant changes in airway mucosal blood vessels, which may contribute to bronchial airway remodeling. The airway wall is more vascularized in COPD patients than in healthy subjects, though this phenomenon is less evident than in asthmatic patients. The vascular mucosal changes in the airways of patients with COPD are strictly linked to the inflammatory processes. The cellular mechanisms responsible for the microvascular changes are still unclear, however, pro-angiogenic factors, such as VEGF, TGF-beta, FGF, and proteolytic enzymes such as MMPs, may play a role. Up to now, the clinical and functional consequences of this phenomenon and the therapeutic approach have been scarcely investigated. Inhaled corticosteroids seem to have positive effects, by reducing the vascular area and growth factor expression. Specific antagonists to VEGF, TGF- beta, FGF, and MMPs could beneficially control chronic airway inflammation and vascular remodeling in COPD as well as slow down the progression of the disease. Several of these growth factor antagonists are being evaluated and some seem to be effective in reducing vascularity, however further studies are required to ascertain whether or not these antagonists may play a role in COPD therapy.
Collapse
Affiliation(s)
- Andrea Zanini
- Salvatore Maugeri Foundation, Division of Pneumology, IRCCS Rehabilitation Institute of Tradate
| | | | | |
Collapse
|
39
|
Gaschler GJ, Skrtic M, Zavitz CCJ, Lindahl M, Onnervik PO, Murphy TF, Sethi S, Stämpfli MR. Bacteria challenge in smoke-exposed mice exacerbates inflammation and skews the inflammatory profile. Am J Respir Crit Care Med 2009; 179:666-75. [PMID: 19179487 DOI: 10.1164/rccm.200808-1306oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The pathogenesis of chronic obstructive pulmonary disease is associated with acute episodes of bacterial exacerbations. The most commonly isolated bacteria during episodes of exacerbation is nontypeable Haemophilus influenzae (NTHI). OBJECTIVES In this study, we investigated the in vivo consequences of cigarette smoke exposure on the inflammatory response to an NTHI challenge. METHODS C57BL/6 and BALB/c mice were exposed to cigarette smoke for 8 weeks and subsequently challenged intranasally with NTHI. MEASUREMENTS AND MAIN RESULTS We observed increased pulmonary inflammation and lung damage in cigarette smoke-exposed NTHI-challenged mice as compared with control NTHI-challenged mice. Furthermore, although NTHI challenge in control mice was marked by increases in tumor necrosis factor-alpha, IL-6, MIP-2, and KC/GROalpha, NTHI challenge in cigarette smoke-exposed mice led to a prominent up-regulation of a different subset of inflammatory mediators, most notably MCP-1, -3, and -5, IP-10, and MIP-1gamma. This skewed inflammatory mediator expression was also observed after ex vivo NTHI stimulation of alveolar macrophages, signifying their importance to this altered response. Importantly, corticosteroids attenuated inflammation after NTHI challenge in both cigarette smoke-exposed and control mice; however, this was associated with significantly increased bacterial burden. CONCLUSIONS Collectively, these data suggest that cigarette smoke exacerbates the inflammatory response to a bacterial challenge via skewed inflammatory mediator expression.
Collapse
Affiliation(s)
- Gordon J Gaschler
- Medical Sciences Graduate Program, McMaster University, 1200 Main St. West, Hamilton, ON, L8N 3Z5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Marek L, Ware KE, Fritzsche A, Hercule P, Helton WR, Smith JE, McDermott LA, Coldren CD, Nemenoff RA, Merrick DT, Helfrich BA, Bunn PA, Heasley LE. Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells. Mol Pharmacol 2009; 75:196-207. [PMID: 18849352 PMCID: PMC2669785 DOI: 10.1124/mol.108.049544] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 10/09/2008] [Indexed: 01/11/2023] Open
Abstract
Despite widespread expression of epidermal growth factor (EGF) receptors (EGFRs) and EGF family ligands in non-small-cell lung cancer (NSCLC), EGFR-specific tyrosine kinase inhibitors (TKIs) such as gefitinib exhibit limited activity in this cancer. We propose that autocrine growth signaling pathways distinct from EGFR are active in NSCLC cells. To this end, gene expression profiling revealed frequent coexpression of specific fibroblast growth factors (FGFs) and FGF receptors (FGFRs) in NSCLC cell lines. It is noteworthy that FGF2 and FGF9 as well as FGFR1 IIIc and/or FGFR2 IIIc mRNA and protein are frequently coexpressed in NSCLC cell lines, especially those that are insensitive to gefitinib. Specific silencing of FGF2 reduced anchorage-independent growth of two independent NSCLC cell lines that secrete FGF2 and coexpress FGFR1 IIIc and/or FGFR2 IIIc. Moreover, a TKI [(+/-)-1-(anti-3-hydroxy-cyclopentyl)-3-(4-methoxy-phenyl)-7-phenylamino-3,4-dihydro-1H-pyrimido-[4,5-d]pyrimidin-2-one (RO4383596)] that targets FGFRs inhibited basal FRS2 and extracellular signal-regulated kinase phosphorylation, two measures of FGFR activity, as well as proliferation and anchorage-independent growth of NSCLC cell lines that coexpress FGF2 or FGF9 and FGFRs. By contrast, RO4383596 influenced neither signal transduction nor growth of NSCLC cell lines lacking FGF2, FGF9, FGFR1, or FGFR2 expression. Thus, FGF2, FGF9 and their respective high-affinity FGFRs comprise a growth factor autocrine loop that is active in a subset of gefitinib-insensitive NSCLC cell lines.
Collapse
Affiliation(s)
- Lindsay Marek
- Department of Craniofacial Biology, University of Colorado at Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Behrens C, Lin HY, Lee JJ, Raso MG, Hong WK, Wistuba II, Lotan R. Immunohistochemical expression of basic fibroblast growth factor and fibroblast growth factor receptors 1 and 2 in the pathogenesis of lung cancer. Clin Cancer Res 2008; 14:6014-22. [PMID: 18829480 DOI: 10.1158/1078-0432.ccr-08-0167] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To identify the patterns of protein expression of basic fibroblast growth factor (bFGF) and FGF receptors 1 and 2 in non-small cell lung carcinoma (NSCLC) and their role in the early pathogenesis of squamous cell carcinoma (SCC) of the lung. EXPERIMENTAL DESIGN Archived tissue from NSCLC (adenocarcinoma and SCC; n = 321) and adjacent bronchial epithelial specimens (n = 426) were analyzed for the immunohistochemical expression of bFGF, FGFR1, and FGFR2, and the findings were correlated with clinicopathologic features of the patients. RESULTS High expression of bFGF, FGFR1, and FGFR2 was shown in most NSCLC tumors. The pattern of expression for all markers varied according to tumor histologic type and cellular localization. Cytoplasmic expression scores were significantly higher in tumors than in normal epithelia. Nuclear bFGF (P = 0.03) and FGFR1 (P = 0.02) levels were significantly higher in women than in men. Although cytoplasmic FGFR1 expression was significantly higher (P = 0.002) in ever smokers than in never smokers, nuclear FGFR1 (P = 0.0001) and FGFR2 (P = 0.003) expression was significantly higher in never smokers. Different prognostic patterns for the expression of these markers were detected for both NSCLC histologic types. Dysplastic changes showed significantly higher expression of all markers compared with squamous metaplasia. CONCLUSIONS bFGF, FGFR1, and FGFR2 are frequently overexpressed in SCC and adenocarcinoma of the lung. bFGF signaling pathway activation may be an early phenomenon in the pathogenesis of SCC and thus an attractive novel target for lung cancer chemopreventive and therapeutic strategies.
Collapse
Affiliation(s)
- Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
de Boer WI, Alagappan VKT, Sharma HS. Molecular mechanisms in chronic obstructive pulmonary disease: potential targets for therapy. Cell Biochem Biophys 2008; 47:131-48. [PMID: 17406066 DOI: 10.1385/cbb:47:1:131] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/15/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with progressive airflow obstruction. Tobacco smoking is the main risk factor worldwide. In contrast to asthma, antiinflammatory therapies are rather ineffective in improving chronic symptoms and reducing inflammation, lung function decline, and airway remodeling. Specific drugs that are directed against the remodeling and chronic inflammation, thereby preventing lung tissue damage and progressive lung function decline, must be developed. Experimental models and expression studies suggest that anti-vascular endothelial growth factor (VEGF) receptor strategies may be of use in patients with emphysema, whereas anti-HER1-directed strategies may be more useful in patients with pulmonary mucus hypersecretion, as seen in chronic bronchitis and asthma. Growth factors and cytokines including VEGF, fibroblast growth factors, transforming growth factor-beta, tumor necrosis factor-alpha, CXCL1, CXCL8, and CCL2, and signal transduction proteins such as mitogen-activated protein kinase p38 and nuclear factor-kappaB, seem to be important pathogenetic molecules in COPD. Specific antagonists for these proteins may be effective for different inflammatory diseases. However, their efficacy for COPD therapy has not yet been demonstrated. Finally, other drugs such as retinoic acids may provide restoration of lung tissue structure. Such approaches, however, must await the first results of growth factor or cytokine antagonist therapy in chronic lung diseases.
Collapse
|
44
|
Abstract
The pathogenesis of chronic obstructive pulmonary disease (COPD) encompasses a number of injurious processes, including an abnormal inflammatory response in the lungs to inhaled particles and gases. Other processes, such as failure to resolve inflammation, abnormal cell repair, apoptosis, abnormal cellular maintenance programs, extracellular matrix destruction (protease/antiprotease imbalance), and oxidative stress (oxidant/antioxidant imbalance) also have a role. The inflammatory responses to the inhalation of active and passive tobacco smoke and urban and rural air pollution are modified by genetic and epigenetic factors. The subsequent chronic inflammatory responses lead to mucus hypersecretion, airway remodeling, and alveolar destruction. This article provides an update on the cellular and molecular mechanisms of these processes in the pathogenesis of COPD.
Collapse
Affiliation(s)
- William Macnee
- ELEGI Colt Research Laboratories, MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Avenue, Edinburgh EH16 4TJ, Scotland, UK.
| |
Collapse
|
45
|
Lee JS, Rosengart MR, Kondragunta V, Zhang Y, McMurray J, Branch RA, Choi AMK, Sciurba FC. Inverse association of plasma IL-13 and inflammatory chemokines with lung function impairment in stable COPD: a cross-sectional cohort study. Respir Res 2007; 8:64. [PMID: 17868461 PMCID: PMC2064925 DOI: 10.1186/1465-9921-8-64] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/14/2007] [Indexed: 11/10/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome characterized by varying degrees of airflow limitation and diffusion impairment. There is increasing evidence to suggest that COPD is also characterized by systemic inflammation. The primary goal of this study was to identify soluble proteins in plasma that associate with the severity of airflow limitation in a COPD cohort with stable disease. A secondary goal was to assess whether unique markers associate with diffusion impairment, based on diffusion capacity of carbon monoxide (DLCO), independent of the forced expiratory volume in 1 second (FEV1). Methods A cross sectional study of 73 COPD subjects was performed in order to examine the association of 25 different plasma proteins with the severity of lung function impairment, as defined by the baseline measurements of the % predicted FEV1 and the % predicted DLCO. Plasma protein concentrations were assayed using multiplexed immunobead-based cytokine profiling. Associations between lung function and protein concentrations were adjusted for age, gender, pack years smoking history, current smoking, inhaled corticosteroid use, systemic corticosteroid use and statin use. Results Plasma concentrations of CCL2/monocyte chemoattractant protein-1 (CCL2/MCP-1), CCL4/macrophage inflammatory protein-1β (CCL4/MIP -1β), CCL11/eotaxin, and interleukin-13 (IL-13) were inversely associated with the % FEV1. Plasma concentrations of soluble Fas were associated with the % DLCO, whereas CXCL9/monokine induced by interferon-γ (CXCL9/Mig), granulocyte- colony stimulating factor (G-CSF) and IL-13 showed inverse relationships with the % DLCO. Conclusion Systemic inflammation in a COPD cohort is characterized by cytokines implicated in inflammatory cell recruitment and airway remodeling. Plasma concentrations of IL-13 and chemoattractants for monocytes, T lymphocytes, and eosinophils show associations with increasing severity of disease. Soluble Fas, G-CSF and CXCL9/Mig may be unique markers that associate with disease characterized by disproportionate abnormalities in DLCO independent of the FEV1.
Collapse
Affiliation(s)
- Janet S Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Matthew R Rosengart
- Division of Trauma/General Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Venkateswarlu Kondragunta
- Division of Clinical Pharmacology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jessica McMurray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert A Branch
- Division of Trauma/General Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Augustine MK Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Frank C Sciurba
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
46
|
Yoshida T, Tuder RM. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev 2007; 87:1047-82. [PMID: 17615396 DOI: 10.1152/physrev.00048.2006] [Citation(s) in RCA: 377] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary diseases (COPD), comprised of pulmonary emphysema, chronic bronchitis, and structural and inflammatory changes of small airways, is a leading cause of morbidity and mortality in the world. A better understanding of the pathobiology of COPD is critical for the developing of novel therapies, as the majority of patients with the disease have little therapeutic options at the present time. The pathobiology of COPD encompasses multiple injurious processes including inflammation (excessive or inappropriate innate and adaptive immunity), cellular apoptosis, altered cellular and molecular alveolar maintenance program, abnormal cell repair, extracellular matrix destruction (protease and anti-protease imbalance), and oxidative stress (oxidant and antioxidant imbalance). These processes are triggered by urban and rural air pollutants and active and/or passive cigarette smoke and modified by cellular senescence and infection. A series of receptor-mediated signal transduction pathways are activated by reactive oxygen species and tobacco components, resulting in impairment of a variety of cell signaling and cytokine networks, subsequently leading to chronic airway responses with mucus production, airway remodeling, and alveolar destruction. The authors provide an updated insight into the molecular and cellular pathobiology of COPD based on human and/or animal data.
Collapse
Affiliation(s)
- Toshinori Yoshida
- Division of Cardiopulmonary Pathology, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
47
|
Kranenburg AR, Willems-Widyastuti A, Moori WJ, Sterk PJ, Alagappan VKT, de Boer WI, Sharma HS. Enhanced bronchial expression of extracellular matrix proteins in chronic obstructive pulmonary disease. Am J Clin Pathol 2006; 126:725-35. [PMID: 17111536 DOI: 10.1309/jc477fael1ykv54w] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Remodeling of airways and blood vessels is an important feature in chronic obstructive pulmonary disease (COPD). By using immunohistochemical analysis, we examined bronchial expression patterns of various extracellular matrix (ECM) components such as collagens (subtypes I, III, and IV), fibronectin, and laminin beta2 in patients with COPD (forced expiratory volume in 1 second [FEV1] <or=75%; n = 15) and without COPD (FEV1 >or=85%; n = 16) and correlated expression data with lung function. Quantitative analysis revealed enhanced levels (P < .01) of total collagens I, III, and IV in surface epithelial basement membrane (SEBM) and collagens I and III in bronchial lamina propria (P < .02) and adventitia (P < .05) in COPD. Distinct and increased (P < .05) vascular expression of fibronectin accounts for intimal vascular fibrosis, whereas laminin beta2 (P < .05) was elevated in airway smooth muscle (ASM). FEV1 values inversely correlated with collagens in the SEBM, fibronectin in bronchial vessels, and laminin in the ASM. Our data suggest that COPD exhibits increased bronchial deposition of ECM proteins that contribute to deteriorated lung function and airway remodeling.
Collapse
Affiliation(s)
- Andor R Kranenburg
- Department of Pharmacology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Beck LA, Tancowny B, Brummet ME, Asaki SY, Curry SL, Penno MB, Foster M, Bahl A, Stellato C. Functional analysis of the chemokine receptor CCR3 on airway epithelial cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:3344-54. [PMID: 16920975 DOI: 10.4049/jimmunol.177.5.3344] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The function of chemokine receptors on structural cells is only partially known. We previously reported the expression of a functional CCR3 receptor on airway epithelial cells (EC). We speculated that CCR3 might drive wound repair and expression of inflammatory genes in epithelium. The human airway EC lines BEAS-2B, 16-HBE, and primary bronchial EC were used to test the effect of in vitro challenge with the CCR3 ligands CCL11/eotaxin, CCL24/eotaxin-2, or CCL26/eotaxin-3 on 1) wound repair, using an established wound model; 2) cell proliferation and chemotaxis, using specific fluorometric assays; and 3) gene expression, using pathway-specific arrays for inflammatory and profibrotic cytokines, chemokines, and chemokine receptor genes. Agonist specificity was tested by cell pretreatment with an AstraZeneca CCR3 antagonist (10(-8) - 10(-6) M). CCL24 challenge significantly accelerated epithelial wound closure, with similar effects exerted by CCL11 and CCL26. This effect was time dependent, submaximal at 1 nM, and comparable in potency to epidermal growth factor. CCL24 induced a concentration-dependent increase in EC proliferation and chemotaxis, with significant effects observed at 10 nM. The AstraZeneca compound selectively inhibited these CCL24-mediated responses. CCL11 induced the up-regulation of several profibrogenic molecules such as fibroblast growth factor 1 and 5 and of several CC and CXC chemokines. Epithelial immunostaining for CCR3 was stronger in bronchial biopsies of asthmatics displaying marked inflammatory changes than in nondiseased samples. Epithelial CCR3 participates in key functions for wound repair, amplifies the expression of profibrogenic and chemokine transcripts, and appears up-regulated in inflamed asthmatic airways.
Collapse
Affiliation(s)
- Lisa A Beck
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chan V, Burgess JK, Ratoff JC, O'connor BJ, Greenough A, Lee TH, Hirst SJ. Extracellular matrix regulates enhanced eotaxin expression in asthmatic airway smooth muscle cells. Am J Respir Crit Care Med 2006; 174:379-85. [PMID: 16709936 DOI: 10.1164/rccm.200509-1420oc] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Altered airway smooth muscle (ASM) function and enrichment of the extracellular matrix (ECM) with fibronectin and collagen are key features of asthma. Previously, we have reported these ECM proteins enhance ASM synthetic function. OBJECTIVE We compared ASM cultured from endobronchial biopsies from subjects with and without asthma to assess if asthmatic cells were hypersecretory and determined whether the underlying mechanism involved autocrine ECM production. METHODS AND MEASUREMENTS Cells from subjects with and without asthma were cultured on plastic or in plates precoated with ECM proteins. Cytokine production was evaluated by enzyme-linked immunosorbent assay and by reverse transcriptase-polymerase chain reaction. Function-blocking integrin antibodies were used to identify integrin involvement. RESULTS Baseline eotaxin and its production after stimulation with interleukin (IL)-13, IL-1beta, or tumor necrosis factor-alpha was increased (2.5- to 6.0-fold) in ASM cells cultured from subjects with asthma compared with healthy subjects. When seeded on ECM from asthmatic ASM, IL-13-dependent eotaxin release from healthy or asthmatic ASM was enhanced compared with culture on healthy ECM. The ECM substrates fibronectin and type I collagen each enhanced IL-13-dependent eotaxin release, and Western immunoblot indicated that fibronectin expression was higher in asthmatic ASM cells. Integrin-blocking antibodies revealed that alpha5beta1 was required for more than 50% of the enhanced IL-13-dependent eotaxin release by ASM cells from subjects with asthma, whereas alpha2beta1 or alphavbeta3 neutralization lacked effect. CONCLUSION The data indicate that ASM cells cultured from subjects with asthma are hypersecretory compared with cells from healthy donors and that autocrine fibronectin secretion acting via alpha5beta1 in part underlies this effect.
Collapse
Affiliation(s)
- Vivien Chan
- King's College London School of Medicine, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Thomas Guy House, Guy's Hospital Campus, London SE1 9RT, UK
| | | | | | | | | | | | | |
Collapse
|