1
|
Cazier P, Chassagnon G, Dhote T, Da Silva J, Kanaan R, Honoré I, Carlier N, Revel MP, Canniff E, Martin C, Burgel PR. Reversal of cylindrical bronchial dilatations in a subset of adults with cystic fibrosis treated with elexacaftor/tezacaftor/ivacaftor. Eur Respir J 2024; 63:2301794. [PMID: 38331460 DOI: 10.1183/13993003.01794-2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND This study sought to evaluate the impact of elexacaftor/tezacaftor/ivacaftor (ETI) on lung structural abnormalities in adults with cystic fibrosis (awCF) with a specific focus on the reversal of bronchial dilatations. METHODS Chest computed tomography (CT) scans performed prior to and 12 months after initiation of ETI were visually reviewed for possible reversal of bronchial dilatations. AwCF with and without reversal of bronchial dilatations (the latter served as controls, with three controls per case) were selected. Visual Brody score, bronchial and arterial diameters, and lung volume were measured on CT. RESULTS Reversal of bronchial dilatations was found in 12/235 (5%) awCF treated with ETI. 12 awCF with and 36 without reversal of bronchial dilatations were further analysed (male 56%, mean±sd age 31.6±8.5 years, F508del/F508del CFTR 54% and mean forced expiratory volume in 1 s 58.8±22.3% predicted). The Brody score improved overall from 79.4±29.8 to 54.8±32.3 (p<0.001). Reversal of bronchial dilatations was confirmed by a decrease in bronchial lumen diameter in cases from 3.9±0.9 to 3.2±1.1 mm (p<0.001), whereas it increased in awCF without reversal of bronchial dilatations (from 3.5±1.1 to 3.6±1.2 mm; p=0.002). Reversal of bronchial dilatations occurred in cylindrical (not varicose or saccular) bronchial dilatations. Lung volumes decreased by -6.6±10.7% in awCF with reversal of bronchial dilatations but increased by +2.3±9.6% in controls (p=0.007). CONCLUSIONS Although bronchial dilatations are generally considered irreversible, ETI was associated with reversal, which was limited to the cylindrical bronchial dilatation subtype, and occurred in a small subset of awCF. Initiating ETI earlier in life may reverse early bronchial dilatations.
Collapse
Affiliation(s)
- Paul Cazier
- Radiology Department, Hôpital Cochin, AP-HP, Centre Université Paris Cité, Paris, France
- These authors equally contributed to this work
| | - Guillaume Chassagnon
- Radiology Department, Hôpital Cochin, AP-HP, Centre Université Paris Cité, Paris, France
- Université Paris Cité and Institut Cochin, Inserm U1016, Paris, France
- These authors equally contributed to this work
| | - Théo Dhote
- Respiratory Medicine and Cystic Fibrosis National Reference Centre, Hôpital Cochin, AP-HP, Centre Université Paris Cité, Paris, France
- ERN-Lung CF Network, Frankfurt, Germany
| | - Jennifer Da Silva
- Respiratory Medicine and Cystic Fibrosis National Reference Centre, Hôpital Cochin, AP-HP, Centre Université Paris Cité, Paris, France
- ERN-Lung CF Network, Frankfurt, Germany
| | - Reem Kanaan
- Respiratory Medicine and Cystic Fibrosis National Reference Centre, Hôpital Cochin, AP-HP, Centre Université Paris Cité, Paris, France
- ERN-Lung CF Network, Frankfurt, Germany
| | - Isabelle Honoré
- Respiratory Medicine and Cystic Fibrosis National Reference Centre, Hôpital Cochin, AP-HP, Centre Université Paris Cité, Paris, France
- ERN-Lung CF Network, Frankfurt, Germany
| | - Nicolas Carlier
- Respiratory Medicine and Cystic Fibrosis National Reference Centre, Hôpital Cochin, AP-HP, Centre Université Paris Cité, Paris, France
- ERN-Lung CF Network, Frankfurt, Germany
| | - Marie-Pierre Revel
- Radiology Department, Hôpital Cochin, AP-HP, Centre Université Paris Cité, Paris, France
- Université Paris Cité and Institut Cochin, Inserm U1016, Paris, France
| | - Emma Canniff
- Radiology Department, Hôpital Cochin, AP-HP, Centre Université Paris Cité, Paris, France
- Université Paris Cité and Institut Cochin, Inserm U1016, Paris, France
| | - Clémence Martin
- Université Paris Cité and Institut Cochin, Inserm U1016, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Centre, Hôpital Cochin, AP-HP, Centre Université Paris Cité, Paris, France
- ERN-Lung CF Network, Frankfurt, Germany
| | - Pierre-Régis Burgel
- Université Paris Cité and Institut Cochin, Inserm U1016, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Centre, Hôpital Cochin, AP-HP, Centre Université Paris Cité, Paris, France
- ERN-Lung CF Network, Frankfurt, Germany
| |
Collapse
|
2
|
Restoring airway epithelial homeostasis in Cystic Fibrosis. J Cyst Fibros 2023; 22 Suppl 1:S27-S31. [PMID: 36216743 DOI: 10.1016/j.jcf.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Cystic fibrosis (CF), the most common life-threatening genetic disorder in Caucasians, is caused by recessive mutations in the Cystic Fibrosis Transmembrane Regulator (CFTR) gene encoding a chloride ion channel. Aberrant function of CFTR involves mucus- and sweat-producing epithelia affecting multiple organs, including airways and lungs. This condition facilitates the colonization of fungi, bacteria, or viruses. Recurrent antibiotic administration is commonly used to treat pathogen infections leading to the insurgence of resistant bacteria and to a chronic inflammatory state that jeopardizes airway epithelium repair. The phenotype of patients carrying CFTR mutations does not always present a strict correlation with their genotype, suggesting that the disease may occur because of multiple additive effects. Among them, the frequent microbiota dysbiosis observed in patients affected by CF, might be one cause of the discrepancy observed in their genotype-phenotype correlation. Interestingly, the abnormal polarity of the CF airway epithelium has been observed also under non-infectious and non-inflammatory conditions, suggesting that CFTR dysfunction "per se" perturbs epithelial homeostasis. New pathogen- or host-directed strategies are thus needed to counteract bacterial infections and restore epithelial homeostasis in individuals with CF. In this review, we summarized alternative cutting-edge approaches to high-efficiency modulator therapy that might be promising for these patients.
Collapse
|
3
|
Human Amniotic Mesenchymal Stem Cells and Fibroblasts Accelerate Wound Repair of Cystic Fibrosis Epithelium. Life (Basel) 2022; 12:life12050756. [PMID: 35629422 PMCID: PMC9144497 DOI: 10.3390/life12050756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) airways are affected by a deranged repair of the damaged epithelium resulting in altered regeneration and differentiation. Previously, we showed that human amniotic mesenchymal stem cells (hAMSCs) corrected base defects of CF airway epithelial cells via connexin (CX)43-intercellular gap junction formation. In this scenario, it is unknown whether hAMSCs, or fibroblasts sharing some common characteristics with MSCs, can operate a faster repair of a damaged airway epithelium. A tip-based scratch assay was employed to study wound repair in monolayers of CFBE14o- cells (CFBE, homozygous for the F508del mutation). hAMSCs were either co-cultured with CFBE cells before the wound or added to the wounded monolayers. NIH-3T3 fibroblasts (CX43+) were added to wounded cells. HeLa cells (CX43-) were used as controls. γ-irradiation was optimized to block CFBE cell proliferation. A specific siRNA was employed to downregulate CX43 expression in CFBE cells. CFBE cells showed a delayed repair as compared with wt-CFTR cells (16HBE41o-). hAMSCs enhanced the wound repair rate of wounded CFBE cell monolayers, especially when added post wounding. hAMSCs and NIH-3T3 fibroblasts, but not HeLa cells, increased wound closure of irradiated CFBE monolayers. CX43 downregulation accelerated CFBE wound repair rate without affecting cell proliferation. We conclude that hAMSCs and fibroblasts enhance the repair of a wounded CF airway epithelium, likely through a CX43-mediated mechanism mainly involving cell migration.
Collapse
|
4
|
Wellmerling J, Rayner RE, Chang SW, Kairis EL, Kim SH, Sharma A, Boyaka PN, Cormet-Boyaka E. Targeting the EGFR-ERK axis using the compatible solute ectoine to stabilize CFTR mutant F508del. FASEB J 2022; 36:e22270. [PMID: 35412656 PMCID: PMC9009300 DOI: 10.1096/fj.202100458rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/11/2022]
Abstract
Mutations in the CFTR gene lead to cystic fibrosis, a genetic disease associated with chronic infection and inflammation and ultimately respiratory failure. The most common CF-causing mutation is F508del and CFTR modulators (correctors and potentiators) are being developed to rescue its trafficking and activity defects. However, there are currently no modulators that stabilize the rescued membrane F508del-CFTR which is endocytosed and quickly degraded resulting in a shorter half-life than wild-type (WT). We previously reported that the extracellular signal-regulated kinase (ERK) MAPK pathway is involved in CFTR degradation upon cigarette smoke exposure. Interestingly, we found that ERK phosphorylation was increased in CF human bronchial epithelial (HBE) cells (CF-HBE41o- and primary CF-HBE) compared to non-CF controls, and this was likely due to signaling by the epidermal growth factor receptor (EGFR). EGFR can be activated by several ligands, and we provide evidence that amphiregulin (AREG) is important for activating this signaling axis in CF. The natural osmolyte ectoine stabilizes membrane macromolecules. We show that ectoine decreases ERK phosphorylation, increases the half-life of rescued CFTR, and increases CFTR-mediated chloride transport in combination with the CFTR corrector VX-661. Additionally, ectoine reduces production of AREG and interleukin-8 by CF primary bronchial epithelial cells. In conclusion, EGFR-ERK signaling negatively regulates CFTR and is hyperactive in CF, and targeting this axis with ectoine may prove beneficial for CF patients.
Collapse
Affiliation(s)
- Jack Wellmerling
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Rachael E Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Sheng-Wei Chang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Elizabeth L Kairis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Amit Sharma
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Collin AM, Lecocq M, Detry B, Carlier FM, Bouzin C, de Sany P, Hoton D, Verleden S, Froidure A, Pilette C, Gohy S. Loss of ciliated cells and altered airway epithelial integrity in cystic fibrosis. J Cyst Fibros 2021; 20:e129-e139. [PMID: 34657818 DOI: 10.1016/j.jcf.2021.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/28/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND In cystic fibrosis, the respiratory epithelium is the target tissue of both the genetic abnormality of the disease and of external aggressions, notably by pathogens (Pseudomonas aeruginosa). A detailed characterisation of the cystic fibrosis bronchial epithelium is however lacking, as most previous studies focused on the nasal epithelium or on cell lines. This study aimed to characterise the abnormal phenotype and epithelial-to-mesenchymal transition in cystic fibrosis bronchial epithelium and to evaluate in cell cultures whether abnormalities persist ex vivo. METHODS Explant lung tissues (n = 44) were assessed for bronchial epithelial cell phenotyping by immunostaining. Human bronchial epithelial cells were derived from basal cells isolated from cystic fibrosis patients or control donors and cultured in air-liquid interface for 2, 4 or 6 weeks. RESULTS Enhanced mucin 5AC and decreased β-tubulin expression were observed in cystic fibrosis airways reflecting a decreased ciliated/goblet cell ratio, associated with increased number of vimentin-positive cells, indicating epithelial-to-mesenchymal transition process. These features were recapitulated in vitro, in cystic fibrosis-derived reconstituted epithelium. However, they were not induced by CFTR inhibition or Pseudomonas infection, and most abnormalities tended to disappear in long-term culture (6 weeks) except for increased fibronectin release, an epithelial-to-mesenchymal transition marker. CONCLUSIONS This study provides new insights into airway epithelial changes in cystic fibrosis, which are imprinted through an acquired mechanism that we could not relate to CFTR function.
Collapse
Affiliation(s)
- Amandine M Collin
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marylène Lecocq
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bruno Detry
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - François M Carlier
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Philippe de Sany
- Pole of Microbiology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Delphine Hoton
- Department of Pathology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Stijn Verleden
- Lung Transplant Unit, Division of Respiratory Disease, Department of chronic disease, metabolism and aging, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Antoine Froidure
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Pneumology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Pneumology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Sophie Gohy
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental & Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Pneumology, Cliniques universitaires Saint-Luc, Brussels, Belgium; Centre de référence pour la mucoviscidose, Cliniques universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
6
|
Pai AC, Parekh KR, Engelhardt JF, Lynch TJ. Ferret respiratory disease models for the study of lung stem cells. LUNG STEM CELLS IN DEVELOPMENT, HEALTH AND DISEASE 2021. [DOI: 10.1183/2312508x.10010320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
7
|
Pathophysiology of Lung Disease and Wound Repair in Cystic Fibrosis. PATHOPHYSIOLOGY 2021; 28:155-188. [PMID: 35366275 PMCID: PMC8830450 DOI: 10.3390/pathophysiology28010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive, life-threatening condition affecting many organs and tissues, the lung disease being the chief cause of morbidity and mortality. Mutations affecting the CF Transmembrane Conductance Regulator (CFTR) gene determine the expression of a dysfunctional protein that, in turn, triggers a pathophysiological cascade, leading to airway epithelium injury and remodeling. In vitro and in vivo studies point to a dysregulated regeneration and wound repair in CF airways, to be traced back to epithelial CFTR lack/dysfunction. Subsequent altered ion/fluid fluxes and/or signaling result in reduced cell migration and proliferation. Furthermore, the epithelial-mesenchymal transition appears to be partially triggered in CF, contributing to wound closure alteration. Finally, we pose our attention to diverse approaches to tackle this defect, discussing the therapeutic role of protease inhibitors, CFTR modulators and mesenchymal stem cells. Although the pathophysiology of wound repair in CF has been disclosed in some mechanisms, further studies are warranted to understand the cellular and molecular events in more details and to better address therapeutic interventions.
Collapse
|
8
|
Quaresma MC, Pankonien I, Clarke LA, Sousa LS, Silva IAL, Railean V, Doušová T, Fuxe J, Amaral MD. Mutant CFTR Drives TWIST1 mediated epithelial-mesenchymal transition. Cell Death Dis 2020; 11:920. [PMID: 33106471 PMCID: PMC7588414 DOI: 10.1038/s41419-020-03119-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is a monogenetic disease resulting from mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene encoding an anion channel. Recent evidence indicates that CFTR plays a role in other cellular processes, namely in development, cellular differentiation and wound healing. Accordingly, CFTR has been proposed to function as a tumour suppressor in a wide range of cancers. Along these lines, CF was recently suggested to be associated with epithelial–mesenchymal transition (EMT), a latent developmental process, which can be re-activated in fibrosis and cancer. However, it is unknown whether EMT is indeed active in CF and if EMT is triggered by dysfunctional CFTR itself or a consequence of secondary complications of CF. In this study, we investigated the occurrence of EMT in airways native tissue, primary cells and cell lines expressing mutant CFTR through the expression of epithelial and mesenchymal markers as well as EMT-associated transcription factors. Transepithelial electrical resistance, proliferation and regeneration rates, and cell resistance to TGF-β1induced EMT were also measured. CF tissues/cells expressing mutant CFTR displayed several signs of active EMT, namely: destructured epithelial proteins, defective cell junctions, increased levels of mesenchymal markers and EMT-associated transcription factors, hyper-proliferation and impaired wound healing. Importantly, we found evidence that the mutant CFTR triggered EMT was mediated by EMT-associated transcription factor TWIST1. Further, our data show that CF cells are over-sensitive to EMT but the CF EMT phenotype can be reversed by CFTR modulator drugs. Altogether, these results identify for the first time that EMT is intrinsically triggered by the absence of functional CFTR through a TWIST1 dependent mechanism and indicate that CFTR plays a direct role in EMT protection. This mechanistic link is a plausible explanation for the high incidence of fibrosis and cancer in CF, as well as for the role of CFTR as tumour suppressor protein.
Collapse
Affiliation(s)
- Margarida C Quaresma
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Ines Pankonien
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Luís S Sousa
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Iris A L Silva
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Violeta Railean
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Tereza Doušová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jonas Fuxe
- Division of Pathology, Department of Laboratory Medicine (LABMED), Karolinska Institutet and Karolinska University hospital, Huddinge, Stockholm, Sweden
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal.
| |
Collapse
|
9
|
Parekh KR, Nawroth J, Pai A, Busch SM, Senger CN, Ryan AL. Stem cells and lung regeneration. Am J Physiol Cell Physiol 2020; 319:C675-C693. [PMID: 32783658 PMCID: PMC7654650 DOI: 10.1152/ajpcell.00036.2020] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
The ability to replace defective cells in an airway with cells that can engraft, integrate, and restore a functional epithelium could potentially cure a number of lung diseases. Progress toward the development of strategies to regenerate the adult lung by either in vivo or ex vivo targeting of endogenous stem cells or pluripotent stem cell derivatives is limited by our fundamental lack of understanding of the mechanisms controlling human lung development, the precise identity and function of human lung stem and progenitor cell types, and the genetic and epigenetic control of human lung fate. In this review, we intend to discuss the known stem/progenitor cell populations, their relative differences between rodents and humans, their roles in chronic lung disease, and their therapeutic prospects. Additionally, we highlight the recent breakthroughs that have increased our understanding of these cell types. These advancements include novel lineage-traced animal models and single-cell RNA sequencing of human airway cells, which have provided critical information on the stem cell subtypes, transition states, identifying cell markers, and intricate pathways that commit a stem cell to differentiate or to maintain plasticity. As our capacity to model the human lung evolves, so will our understanding of lung regeneration and our ability to target endogenous stem cells as a therapeutic approach for lung disease.
Collapse
Affiliation(s)
- Kalpaj R Parekh
- Department Surgery, Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Janna Nawroth
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Albert Pai
- Department Surgery, Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Shana M Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Christiana N Senger
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Amy L Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
10
|
Impact of KLF4 on Cell Proliferation and Epithelial Differentiation in the Context of Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21186717. [PMID: 32937756 PMCID: PMC7555189 DOI: 10.3390/ijms21186717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) cells display a more cancer-like phenotype vs. non-CF cells. KLF4 overexpression has been described in CF and this transcriptional factor acts as a negative regulator of wt-CFTR. KLF4 is described as exerting its effects in a cell-context-dependent fashion, but it is generally considered a major regulator of proliferation, differentiation, and wound healing, all the processes that are also altered in CF. Therefore, it is relevant to characterize the differential role of KLF4 in these processes in CF vs. non-CF cells. To this end, we used wt- and F508del-CFTR CFBE cells and their respective KLF4 knockout (KO) counterparts to evaluate processes like cell proliferation, polarization, and wound healing, as well as to compare the expression of several epithelial differentiation markers. Our data indicate no major impact of KLF4 KO in proliferation and a differential impact of KLF4 KO in transepithelial electrical resistance (TEER) acquisition and wound healing in wt- vs. F508del-CFTR cells. In parallel, we also observed a differential impact on the levels of some differentiation markers and epithelial-mesencymal transition (EMT)-associated transcription factors. In conclusion, KLF4 impacts TEER acquisition, wound healing, and the expression of differentiation markers in a way that is partially dependent on the CFTR-status of the cell.
Collapse
|
11
|
Lung immunoglobulin A immunity dysregulation in cystic fibrosis. EBioMedicine 2020; 60:102974. [PMID: 32927272 PMCID: PMC7495088 DOI: 10.1016/j.ebiom.2020.102974] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In cystic fibrosis (CF), recurrent infections suggest impaired mucosal immunity but whether production of secretory immunoglobulin A (S-IgA) is impaired remains elusive. S-IgA is generated following polymeric immunoglobulin receptor (pIgR)-mediated transepithelial transport of dimeric (d-)IgA and represents a major defence through neutralisation of inhaled pathogens like Pseudomonas aeruginosa (Pa). METHODS Human lung tissue (n = 74), human sputum (n = 118), primary human bronchial epithelial cells (HBEC) (cultured in air-liquid interface) (n = 19) and mouse lung tissue and bronchoalveolar lavage were studied for pIgR expression, IgA secretion and regulation. FINDINGS Increased epithelial pIgR immunostaining was observed in CF lung explants, associated with more IgA-producing plasma cells, sputum and serum IgA, especially Pa-specific IgA. In contrast, pIgR and IgA transport were downregulated in F508del mice, CFTR-inhibited HBEC, and CF HBEC. Moreover, the unfolded protein response (UPR) due to F508del mutation, inhibited IgA transport in Calu-3 cells. Conversely, pIgR expression and IgA secretion were strongly upregulated following Pa lung infection in control and F508del mice, through an inflammatory host response involving interleukin-17. INTERPRETATION A complex regulation of IgA secretion occurs in the CF lung, UPR induced by CFTR mutation/dysfunction inhibiting d-IgA transcytosis, and Pa infection unexpectedly unleashing this secretory defence mechanism. FUNDING This work was supported by the Forton's grant of the King Baudouin's Foundation, Belgium, the Fondazione Ricerca Fibrosi Cistica, Italy, and the Fonds National de la Recherche Scientifique, Belgium.
Collapse
|
12
|
Airway Inflammation and Host Responses in the Era of CFTR Modulators. Int J Mol Sci 2020; 21:ijms21176379. [PMID: 32887484 PMCID: PMC7504341 DOI: 10.3390/ijms21176379] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
The arrival of cystic fibrosis transmembrane conductance regulator (CFTR) modulators as a new class of treatment for cystic fibrosis (CF) in 2012 represented a pivotal advance in disease management, as these small molecules directly target the upstream underlying protein defect. Further advancements in the development and scope of these genotype-specific therapies have been transformative for an increasing number of people with CF (PWCF). Despite clear improvements in CFTR function and clinical endpoints such as lung function, body mass index (BMI), and frequency of pulmonary exacerbations, current evidence suggests that CFTR modulators do not prevent continued decline in lung function, halt disease progression, or ameliorate pathogenic organisms in those with established lung disease. Furthermore, it remains unknown whether their restorative effects extend to dysfunctional CFTR expressed in phagocytes and other immune cells, which could modulate airway inflammation. In this review, we explore the effects of CFTR modulators on airway inflammation, infection, and their influence on the impaired pulmonary host defences associated with CF lung disease. We also consider the role of inflammation-directed therapies in light of the widespread clinical use of CFTR modulators and identify key areas for future research.
Collapse
|
13
|
Sousa L, Pankonien I, Clarke LA, Silva I, Kunzelmann K, Amaral MD. KLF4 Acts as a wt-CFTR Suppressor through an AKT-Mediated Pathway. Cells 2020; 9:cells9071607. [PMID: 32630830 PMCID: PMC7408019 DOI: 10.3390/cells9071607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cystic Fibrosis (CF) is caused by >2000 mutations in the CF transmembrane conductance regulator (CFTR) gene, but one mutation-F508del-occurs in ~80% of patients worldwide. Besides its main function as an anion channel, the CFTR protein has been implicated in epithelial differentiation, tissue regeneration, and, when dysfunctional, cancer. However, the mechanisms that regulate such relationships are not fully elucidated. Krüppel-like factors (KLFs) are a family of transcription factors (TFs) playing central roles in development, stem cell differentiation, and proliferation. Herein, we hypothesized that these TFs might have an impact on CFTR expression and function, being its missing link to differentiation. Our results indicate that KLF4 (but not KLF2 nor KLF5) is upregulated in CF vs. non-CF cells and that it negatively regulates wt-CFTR expression and function. Of note, F508del-CFTR expressing cells are insensitive to KLF4 modulation. Next, we investigated which KLF4-related pathways have an effect on CFTR. Our data also show that KLF4 modulates wt-CFTR (but not F508del-CFTR) via both the serine/threonine kinase AKT1 (AKT) and glycogen synthase kinase 3 beta (GSK3β) signaling. While AKT acts positively, GSK3β is a negative regulator of CFTR. This crosstalk between wt-CFTR and KLF4 via AKT/ GSK3β signaling, which is disrupted in CF, constitutes a novel mechanism linking CFTR to the epithelial differentiation.
Collapse
Affiliation(s)
- Luis Sousa
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
| | - Ines Pankonien
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
| | - Luka A Clarke
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
| | - Iris Silva
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg, 93053 Regensburg, Germany;
| | - Margarida D Amaral
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (L.S.); (I.P.); (L.A.C.); (I.S.)
- Correspondence: ; Tel.: +351-21-750-08-61; Fax: +351-21-750-00-88
| |
Collapse
|
14
|
What Role Does CFTR Play in Development, Differentiation, Regeneration and Cancer? Int J Mol Sci 2020; 21:ijms21093133. [PMID: 32365523 PMCID: PMC7246864 DOI: 10.3390/ijms21093133] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Abstract
One of the key features associated with the substantial increase in life expectancy for individuals with CF is an elevated predisposition to cancer, firmly established by recent studies involving large cohorts. With the recent advances in cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies and the increased long-term survival rate of individuals with cystic fibrosis (CF), this is a novel challenge emerging at the forefront of this disease. However, the mechanisms linking dysfunctional CFTR to carcinogenesis have yet to be unravelled. Clues to this challenging open question emerge from key findings in an increasing number of studies showing that CFTR plays a role in fundamental cellular processes such as foetal development, epithelial differentiation/polarization, and regeneration, as well as in epithelial–mesenchymal transition (EMT). Here, we provide state-of-the-art descriptions on the moonlight roles of CFTR in these processes, highlighting how they can contribute to novel therapeutic strategies. However, such roles are still largely unknown, so we need rapid progress in the elucidation of the underlying mechanisms to find the answers and thus tailor the most appropriate therapeutic approaches.
Collapse
|
15
|
Barbry P, Cavard A, Chanson M, Jaffe AB, Plasschaert LW. Regeneration of airway epithelial cells to study rare cell states in cystic fibrosis. J Cyst Fibros 2020; 19 Suppl 1:S42-S46. [DOI: 10.1016/j.jcf.2019.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
|
16
|
Zoso A, Sofoluwe A, Bacchetta M, Chanson M. Transcriptomic profile of cystic fibrosis airway epithelial cells undergoing repair. Sci Data 2019; 6:240. [PMID: 31664037 PMCID: PMC6820749 DOI: 10.1038/s41597-019-0256-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/20/2019] [Indexed: 01/08/2023] Open
Abstract
Pathological remodeling of the airway epithelium is commonly observed in Cystic Fibrosis (CF). The different cell types that constitute the airway epithelium are regenerated upon injury to restore integrity and maintenance of the epithelium barrier function. The molecular signature of tissue repair in CF airway epithelial cells has, however, not well been investigated in primary cultures. We therefore collected RNA-seq data from well-differentiated primary cultures of bronchial human airway epithelial cells (HAECs) of CF (F508del/F508del) and non-CF (NCF) origins before and after mechanical wounding, exposed or not to flagellin. We identified the expression changes with time of repair of genes, the products of which are markers of the different cell types that constitute the airway epithelium (basal, suprabasal, intermediate, secretory, goblet and ciliated cells as well as ionocytes). Researchers in the CF field may benefit from this transcriptomic profile, which covers the initial steps of wound repair and revealed differences in this process between CF and NCF cultures.
Collapse
Affiliation(s)
- Alice Zoso
- Departments of Pediatrics, Gynecology & Obstetrics and of Cell Physiology & Metabolism, Geneva University Hospitals and Medical School of the University of Geneva, Geneva, Switzerland
| | - Aderonke Sofoluwe
- Departments of Pediatrics, Gynecology & Obstetrics and of Cell Physiology & Metabolism, Geneva University Hospitals and Medical School of the University of Geneva, Geneva, Switzerland
| | - Marc Bacchetta
- Departments of Pediatrics, Gynecology & Obstetrics and of Cell Physiology & Metabolism, Geneva University Hospitals and Medical School of the University of Geneva, Geneva, Switzerland
| | - Marc Chanson
- Departments of Pediatrics, Gynecology & Obstetrics and of Cell Physiology & Metabolism, Geneva University Hospitals and Medical School of the University of Geneva, Geneva, Switzerland.
| |
Collapse
|
17
|
Kunzelmann K, Ousingsawat J, Cabrita I, Doušová T, Bähr A, Janda M, Schreiber R, Benedetto R. TMEM16A in Cystic Fibrosis: Activating or Inhibiting? Front Pharmacol 2019; 10:3. [PMID: 30761000 PMCID: PMC6362895 DOI: 10.3389/fphar.2019.00003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
The inflammatory airway disease cystic fibrosis (CF) is characterized by airway obstruction due to mucus hypersecretion, airway plugging, and bronchoconstriction. The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is dysfunctional in CF, leading to defects in epithelial transport. Although CF pathogenesis is still disputed, activation of alternative Cl- channels is assumed to improve lung function in CF. Two suitable non-CFTR Cl- channels are present in the airway epithelium, the Ca2+ activated channel TMEM16A and SLC26A9. Activation of these channels is thought to be feasible to improve hydration of the airway mucus and to increase mucociliary clearance. Interestingly, both channels are upregulated during inflammatory lung disease. They are assumed to support fluid secretion, necessary to hydrate excess mucus and to maintain mucus clearance. During inflammation, however, TMEM16A is upregulated particularly in mucus producing cells, with only little expression in ciliated cells. Recently it was shown that knockout of TMEM16A in ciliated cells strongly compromises Cl- conductance and attenuated mucus secretion, but does not lead to a CF-like lung disease and airway plugging. Along this line, activation of TMEM16A by denufosol, a stable purinergic ligand, failed to demonstrate any benefit to CF patients in earlier studies. It rather induced adverse effects such as cough. A number of studies suggest that TMEM16A is essential for mucus secretion and possibly also for mucus production. Evidence is now provided for a crucial role of TMEM16A in fusion of mucus-filled granules with the apical plasma membrane and cellular exocytosis. This is probably due to local Ca2+ signals facilitated by TMEM16A. Taken together, TMEM16A supports fluid secretion by ciliated airway epithelial cells, but also maintains excessive mucus secretion during inflammatory airway disease. Because TMEM16A also supports airway smooth muscle contraction, inhibition rather than activation of TMEM16A might be the appropriate treatment for CF lung disease, asthma and COPD. As a number of FDA-approved and well-tolerated drugs have been shown to inhibit TMEM16A, evaluation in clinical trials appears timely.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | | | - Inês Cabrita
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Tereza Doušová
- Department of Pediatrics, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
- Innere Medizin I, Klinikum Rechts der Isar der TU München, München, Germany
| | - Melanie Janda
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
18
|
Guillon A, Brea D, Luczka E, Hervé V, Hasanat S, Thorey C, Pérez-Cruz M, Hordeaux J, Mankikian J, Gosset P, Coraux C, Si-Tahar M. Inactivation of the interleukin-22 pathway in the airways of cystic fibrosis patients. Cytokine 2019; 113:470-474. [PMID: 30377053 DOI: 10.1016/j.cyto.2018.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022]
Abstract
Interleukin (IL)-22 plays a critical role in regulating the maintenance of the mucosal barrier. As airway epithelial regeneration is abnormal in cystic fibrosis (CF), we investigated IL-22 integrity in CF. We first demonstrated, using Il-22-/- mice, that IL-22 is important to prevent lung damage induced by the CF pathogen Pseudomonas aeruginosa. Next, IL-22 receptor was found normally expressed at the airway epithelial surfaces of CF patients. In wound-healing assays, IL-22-treated CF cultures had higher wound-closure rate than controls, suggesting that IL-22 signaling per se could be functional in a CF context. However, persistence of neutrophil-derived serine-proteases is a major feature of CF airways. Remarkably, IL-22 was found altered in this protease-rich inflammatory microenvironment; the serine protease-3 being the most prone to fully degrade IL-22. Consequently, we suspect an acquired deficiency of the IL-22 pathway in the lungs of CF patients due to IL-22 cleavage by the surrounding neutrophil serine-proteases.
Collapse
Affiliation(s)
- Antoine Guillon
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France; CHRU de Tours, Service de Médecine Intensive Réanimation, 37000 Tours, France
| | - Deborah Brea
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Emilie Luczka
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR-S 1250, 51100 Reims, France; Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Virginie Hervé
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Soujoud Hasanat
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Camille Thorey
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Magdiel Pérez-Cruz
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, LI3, Team 12, 59019 Lille, France; Université Lille Nord de France, 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, 59021 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59019 Lille, France
| | | | | | - Philippe Gosset
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, LI3, Team 12, 59019 Lille, France; Université Lille Nord de France, 59000 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, 59021 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, 59019 Lille, France
| | - Christelle Coraux
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR-S 1250, 51100 Reims, France; Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Mustapha Si-Tahar
- Institut National de la Santé et de la Recherche Médicale, Centre d'Etude des Pathologies Respiratoires (CEPR), INSERM UMR 1100, 37032 Tours, France; Université de Tours, F-37032 Tours, France.
| |
Collapse
|
19
|
Castellani S, Di Gioia S, di Toma L, Conese M. Human Cellular Models for the Investigation of Lung Inflammation and Mucus Production in Cystic Fibrosis. Anal Cell Pathol (Amst) 2018; 2018:3839803. [PMID: 30581723 PMCID: PMC6276497 DOI: 10.1155/2018/3839803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation, oxidative stress, mucus plugging, airway remodeling, and respiratory infections are the hallmarks of the cystic fibrosis (CF) lung disease. The airway epithelium is central in the innate immune responses to pathogens colonizing the airways, since it is involved in mucociliary clearance, senses the presence of pathogens, elicits an inflammatory response, orchestrates adaptive immunity, and activates mesenchymal cells. In this review, we focus on cellular models of the human CF airway epithelium that have been used for studying mucus production, inflammatory response, and airway remodeling, with particular reference to two- and three-dimensional cultures that better recapitulate the native airway epithelium. Cocultures of airway epithelial cells, macrophages, dendritic cells, and fibroblasts are instrumental in disease modeling, drug discovery, and identification of novel therapeutic targets. Nevertheless, they have to be implemented in the CF field yet. Finally, novel systems hijacking on tissue engineering, including three-dimensional cocultures, decellularized lungs, microfluidic devices, and lung organoids formed in bioreactors, will lead the generation of relevant human preclinical respiratory models a step forward.
Collapse
Affiliation(s)
- Stefano Castellani
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorena di Toma
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Laboratory of Regenerative and Experimental Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
20
|
Ferreira VFC, Oliveira BL, Santos JD, Correia JDG, Farinha CM, Mendes F. Targeting of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Protein with a Technetium-99m Imaging Probe. ChemMedChem 2018; 13:1469-1478. [PMID: 29864241 DOI: 10.1002/cmdc.201800187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/18/2018] [Indexed: 12/28/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene that encodes the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, F508del, leads to almost total absence of CFTR at the plasma membrane, a defect potentially corrected via drug-based therapies. Herein, we report the first proof-of-principle study of a noninvasive imaging probe able to detect CFTR at the plasma membrane. We radiolabeled the CFTR inhibitor, CFTRinh -172a, with technetium-99m via a pyrazolyl-diamine chelating unit, yielding a novel 99m Tc(CO)3 complex. A non-radioactive surrogate showed that the structural modifications introduced in the inhibitor did not affect its activity. The radioactive complex was able to detect plasma membrane CFTR, shown by its significantly higher uptake in wild-type versus mutated cells. Furthermore, assessment of F508del CFTR pharmacological correction in human cells using the radioactive complex revealed differences in corrector versus control uptake, recapitulating the biochemical correction observed for the protein.
Collapse
Affiliation(s)
- Vera F C Ferreira
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Bruno L Oliveira
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- Current address: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - João D Santos
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande C8, 1749-016, Lisboa, Portugal
| | - João D G Correia
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Carlos M Farinha
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande C8, 1749-016, Lisboa, Portugal
| | - Filipa Mendes
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| |
Collapse
|
21
|
Adam D, Bilodeau C, Sognigbé L, Maillé É, Ruffin M, Brochiero E. CFTR rescue with VX-809 and VX-770 favors the repair of primary airway epithelial cell cultures from patients with class II mutations in the presence of Pseudomonas aeruginosa exoproducts. J Cyst Fibros 2018; 17:705-714. [PMID: 29661510 DOI: 10.1016/j.jcf.2018.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/08/2018] [Accepted: 03/25/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Progressive airway damage due to bacterial infections, especially with Pseudomonas aeruginosa remains the first cause of morbidity and mortality in CF patients. Our previous work revealed a repair delay in CF airway epithelia compared to non-CF. This delay was partially prevented after CFTR correction (with VRT-325) in the absence of infection. Our goals were now to evaluate the effect of the Orkambi combination (CFTR VX-809 corrector + VX-770 potentiator) on the repair of CF primary airway epithelia, in infectious conditions. METHODS Primary airway epithelial cell cultures from patients with class II mutations were mechanically injured and wound healing rates and transepithelial resistances were monitored after CFTR rescue, in the absence and presence of P. aeruginosa exoproducts. RESULTS Our data revealed that combined treatment with VX-809 and VX-770 elicited a greater beneficial impact on airway epithelial repair than VX-809 alone, in the absence of infection. The treatment with Orkambi was effective not only in airway epithelial cell cultures from patients homozygous for the F508del mutation but also from heterozygous patients carrying F508del and another class II mutation (N1303 K, I507del). The stimulatory effect of the Orkambi treatment was prevented by CFTR inhibition with GlyH101. Finally, Orkambi combination elicited a slight but significant improvement in airway epithelial repair and transepithelial resistance, despite the presence of P. aeruginosa exoproducts. CONCLUSIONS Our findings indicate that Orkambi may favor airway epithelial integrity in CF patients with class II mutations. Complementary approaches would however be needed to further improve CFTR rescue and airway epithelial repair.
Collapse
Affiliation(s)
- Damien Adam
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de médecine, Université de Montréal, Montréal, Québec, Canada.
| | - Claudia Bilodeau
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de médecine, Université de Montréal, Montréal, Québec, Canada.
| | - Laura Sognigbé
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de médecine, Université de Montréal, Montréal, Québec, Canada.
| | - Émilie Maillé
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.
| | - Manon Ruffin
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de médecine, Université de Montréal, Montréal, Québec, Canada.
| | - Emmanuelle Brochiero
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
22
|
De Rose V, Molloy K, Gohy S, Pilette C, Greene CM. Airway Epithelium Dysfunction in Cystic Fibrosis and COPD. Mediators Inflamm 2018; 2018:1309746. [PMID: 29849481 PMCID: PMC5911336 DOI: 10.1155/2018/1309746] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/15/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis is a genetic disease caused by mutations in the CFTR gene, whereas chronic obstructive pulmonary disease (COPD) is mainly caused by environmental factors (mostly cigarette smoking) on a genetically susceptible background. Although the etiology and pathogenesis of these diseases are different, both are associated with progressive airflow obstruction, airway neutrophilic inflammation, and recurrent exacerbations, suggesting common mechanisms. The airway epithelium plays a crucial role in maintaining normal airway functions. Major molecular and morphologic changes occur in the airway epithelium in both CF and COPD, and growing evidence suggests that airway epithelial dysfunction is involved in disease initiation and progression in both diseases. Structural and functional abnormalities in both airway and alveolar epithelium have a relevant impact on alteration of host defences, immune/inflammatory response, and the repair process leading to progressive lung damage and impaired lung function. In this review, we address the evidence for a critical role of dysfunctional airway epithelial cells in chronic airway inflammation and remodelling in CF and COPD, highlighting the common mechanisms involved in the epithelial dysfunction as well as the similarities and differences of the two diseases.
Collapse
Affiliation(s)
- Virginia De Rose
- Department of Clinical and Biological Sciences, University of Torino, A.O.U. S. Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Kevin Molloy
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| | - Sophie Gohy
- Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Charles Pilette
- Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Université Catholique de Louvain (UCL), Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Catherine M. Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Dublin, Ireland
| |
Collapse
|
23
|
Pattison SH, Gibson DS, Johnston E, Peacock S, Rivera K, Tunney MM, Pappin DJ, Elborn JS. Proteomic profile of cystic fibrosis sputum cells in adults chronically infected with Pseudomonas aeruginosa. Eur Respir J 2017; 50:50/1/1601569. [DOI: 10.1183/13993003.01569-2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
Abstract
Lung disease is the main cause of morbidity and mortality in cystic fibrosis (CF), and involves chronic infection and perturbed immune responses. Tissue damage is mediated mostly by extracellular proteases, but other cellular proteins may also contribute to damage through their effect on cell activities and/or release into sputum fluid by means of active secretion or cell death.We employed MudPIT (multidimensional protein identification technology) to identify sputum cellular proteins with consistently altered abundance in adults with CF, chronically infected with Pseudomonas aeruginosa, compared with healthy controls. Ingenuity Pathway Analysis, Gene Ontology, protein abundance and correlation with lung function were used to infer their potential clinical significance.Differentially abundant proteins relate to Rho family small GTPase activity, immune cell movement/activation, generation of reactive oxygen species, and dysregulation of cell death and proliferation. Compositional breakdown identified high abundance of proteins previously associated with neutrophil extracellular traps. Furthermore, negative correlations with lung function were detected for 17 proteins, many of which have previously been associated with lung injury.These findings expand our current understanding of the mechanisms driving CF lung disease and identify sputum cellular proteins with potential for use as indicators of disease status/prognosis, stratification determinants for treatment prescription or therapeutic targets.
Collapse
|
24
|
Deng M, Li J, Gan Y, Chen P. [Advances in Classification and Research Methods of Lung Epithelial Stem
and Progenitor Cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 20:130-137. [PMID: 28228225 PMCID: PMC5972970 DOI: 10.3779/j.issn.1009-3419.2017.02.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
分离和鉴定肺上皮干/祖细胞,深入了解他们在肺脏生理病理条件下的具体作用机理,对于防治包括肺癌在内的肺脏疾病有重要意义。本综述介绍了已鉴定的肺上皮干/祖细胞种类和肺上皮干/祖细胞研究方法的最新进展,前者具有区域特异性,主要包括位近端气道的基底细胞和导管细胞,位细支气管的Clara细胞、变异Clara细胞、细支气管肺泡干细胞和诱导出的krt5+细胞及位肺泡的Ⅱ型肺泡上皮细胞和Ⅱ型肺泡上皮祖细胞;后者主要包括肺损伤模型、谱系示踪技术、三维培养技术、移植、慢性标记细胞法及单细胞转录组学分析等。最后简述了肺上皮干/祖细胞与肺癌的关系以及肺癌干细胞靶向药物治疗进展。
Collapse
Affiliation(s)
- Minhua Deng
- Department of Respiratory Medicine, PLA Rocket Force General Hospital, Beijing 100088, China;Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jinhua Li
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ye Gan
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ping Chen
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
25
|
Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci 2016; 74:93-115. [PMID: 27714410 PMCID: PMC5209439 DOI: 10.1007/s00018-016-2391-y] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
Salt and fluid absorption and secretion are two processes that are fundamental to epithelial function and whole body fluid homeostasis, and as such are tightly regulated in epithelial tissues. The CFTR anion channel plays a major role in regulating both secretion and absorption in a diverse range of epithelial tissues, including the airways, the GI and reproductive tracts, sweat and salivary glands. It is not surprising then that defects in CFTR function are linked to disease, including life-threatening secretory diarrhoeas, such as cholera, as well as the inherited disease, cystic fibrosis (CF), one of the most common life-limiting genetic diseases in Caucasian populations. More recently, CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease (COPD), and the hyper-responsiveness in asthma, underscoring its fundamental role in whole body health and disease. CFTR regulates many mechanisms in epithelial physiology, such as maintaining epithelial surface hydration and regulating luminal pH. Indeed, recent studies have identified luminal pH as an important arbiter of epithelial barrier function and innate defence, particularly in the airways and GI tract. In this chapter, we will illustrate the different operational roles of CFTR in epithelial function by describing its characteristics in three different tissues: the airways, the pancreas, and the sweat gland.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Michael A. Gray
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
26
|
Bou Saab J, Bacchetta M, Chanson M. Ineffective correction of PPARγ signaling in cystic fibrosis airway epithelial cells undergoing repair. Int J Biochem Cell Biol 2016; 78:361-369. [DOI: 10.1016/j.biocel.2016.07.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022]
|
27
|
Vladar EK, Nayak JV, Milla CE, Axelrod JD. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation. JCI Insight 2016; 1. [PMID: 27570836 DOI: 10.1172/jci.insight.88027] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease.
Collapse
Affiliation(s)
- Eszter K Vladar
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Carlos E Milla
- Division of Pulmonary Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
28
|
Ruffin M, Bilodeau C, Maillé É, LaFayette SL, McKay GA, Trinh NTN, Beaudoin T, Desrosiers MY, Rousseau S, Nguyen D, Brochiero E. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair. FASEB J 2016; 30:3011-25. [PMID: 27178322 DOI: 10.1096/fj.201500166r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/02/2016] [Indexed: 12/19/2022]
Abstract
Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.
Collapse
Affiliation(s)
- Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Claudia Bilodeau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Émilie Maillé
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Shantelle L LaFayette
- The Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Geoffrey A McKay
- The Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Nguyen Thu Ngan Trinh
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Trevor Beaudoin
- The Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Martin-Yvon Desrosiers
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Simon Rousseau
- The Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Dao Nguyen
- The Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de Médecine, Université de Montréal, Montréal, Québec, Canada;
| |
Collapse
|
29
|
Nagy B, Nagy B, Fila L, Clarke LA, Gönczy F, Bede O, Nagy D, Újhelyi R, Szabó Á, Anghelyi A, Major M, Bene Z, Fejes Z, Antal-Szalmás P, Bhattoa HP, Balla G, Kappelmayer J, Amaral MD, Macek M, Balogh I. Human Epididymis Protein 4: A Novel Serum Inflammatory Biomarker in Cystic Fibrosis. Chest 2016; 150:661-72. [PMID: 27105680 DOI: 10.1016/j.chest.2016.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increased expression of the human epididymis protein 4 (HE4) was previously described in lung biopsy samples from patients with cystic fibrosis (CF). It remains unknown, however, whether serum HE4 concentrations are elevated in CF. METHODS Seventy-seven children with CF from six Hungarian CF centers and 57 adult patients with CF from a Czech center were enrolled. In addition, 94 individuals with non-CF lung diseases and 117 normal control subjects with no pulmonary disorders were analyzed. Serum HE4 levels were measured by using an immunoassay, and their expression was further investigated via the quantification of HE4 messenger RNA by using quantitative reverse transcription polymerase chain reaction in CF vs non-CF respiratory epithelium biopsy specimens. The expression of the potential regulator miR-140-5p was analyzed by using an UPL-based quantitative reverse transcription polymerase chain reaction assay. HE4 was measured in the supernatants from unpolarized and polarized cystic fibrosis bronchial epithelial cells expressing wild-type or F508del-CFTR. RESULTS Median serum HE4 levels were significantly elevated in children with CF (99.5 [73.1-128.9] pmol/L) compared with control subjects (36.3 [31.1-43.4] pmol/L; P < .0001). This observation was replicated in adults with CF (115.7 [77.8-148.7] pmol/L; P < .0001). In contrast, abnormal but lower HE4 concentrations were found in cases of severe bronchitis, asthma, pneumonia, and bronchiectasis. In patients with CF, the concentrations of HE4 were positively correlated with overall disease severity and C-reactive protein concentrations, whereas a significant inverse relationship was found between HE4 and the spirometric FEV1 value. Relative HE4 mRNA levels were significantly upregulated (P = .011) with a decreased miR-140-5p expression (P = .020) in the CF vs non-CF airway biopsy specimens. Twofold higher HE4 concentrations were recorded in the supernatant of polarized F508del-CF transmembrane conductance regulator/bronchial epithelial cells compared with wild-type cells. CONCLUSIONS HE4 serum levels positively correlate with the overall severity of CF and the degree of pulmonary dysfunction. HE4 may thus be used as a novel inflammatory biomarker and possibly also as a measure of treatment efficacy in CF lung disease.
Collapse
Affiliation(s)
- Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Béla Nagy
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Libor Fila
- Department of Pulmonology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | | | - Olga Bede
- Department of Pediatrics, Szent-Györgyi Albert Medical University, Szeged, Hungary
| | - Dóra Nagy
- Department of Pediatrics, Szent-Györgyi Albert Medical University, Szeged, Hungary
| | | | - Ágnes Szabó
- Department of Pediatrics, Szent-Györgyi Albert Medical University, Szeged, Hungary
| | | | - Miklós Major
- Markusovszky Lajos County Hospital, Szombathely, Hungary
| | - Zsolt Bene
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Antal-Szalmás
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Harjit Pal Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Balla
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Milan Macek
- Department of Biology and Medical Genetics, Motol University Hospital, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - István Balogh
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Division of Clinical Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
30
|
Iosifidis T, Garratt LW, Coombe DR, Knight DA, Stick SM, Kicic A. Airway epithelial repair in health and disease: Orchestrator or simply a player? Respirology 2016; 21:438-48. [PMID: 26804630 DOI: 10.1111/resp.12731] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/01/2015] [Accepted: 12/03/2015] [Indexed: 12/21/2022]
Abstract
Epithelial cells represent the most important surface of contact in the body and form the first line of defence of the body to external environment. Consequently, epithelia have numerous roles in order to maintain a homeostatic defence barrier. Although the epithelium has been extensively studied over several decades, it remains the focus of new research, indicating a lack of understanding that continues to exist around these cells in specific disease settings. Importantly, evidence is emerging that airway epithelial cells in particular have varied complex functions rather than simple passive roles. One area of current interest is its role following injury. In particular, the epithelial-specific cellular mechanisms regulating their migration during wound repair remain poorly understood and remain an area that requires much needed investigation. A better understanding of the physiological, cellular and molecular wound repair mechanisms could assist in elucidating pathological processes that contribute to airway epithelial pathology. This review attempts to highlight migration-specific and cell-extracellular matrix (ECM) aspects of repair used by epithelial cells under normal and disease settings, in the context of human airways.
Collapse
Affiliation(s)
- Thomas Iosifidis
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Luke W Garratt
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, Western Australia, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Deirdre R Coombe
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,School of Biomedical Science and Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Stephen M Stick
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| |
Collapse
|
31
|
Affiliation(s)
- Brian R Davis
- Center for Stem Cell & Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
32
|
Amaral MD, Balch WE. Hallmarks of therapeutic management of the cystic fibrosis functional landscape. J Cyst Fibros 2015; 14:687-99. [PMID: 26526359 PMCID: PMC4644672 DOI: 10.1016/j.jcf.2015.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023]
Abstract
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein does not operate in isolation, rather in a dynamic network of interacting components that impact its synthesis, folding, stability, intracellular location and function, referred to herein as the 'CFTR Functional Landscape (CFFL)'. For the prominent F508del mutation, many of these interactors are deeply connected to a protein fold management system, the proteostasis network (PN). However, CF encompasses an additional 2000 CFTR variants distributed along its entire coding sequence (referred to as CFTR2), and each variant contributes a differential liability to PN management of CFTR and to a protein 'social network' (SN) that directs the probability of the (patho)physiologic events that impact ion transport in each cell, tissue and patient in health and disease. Recognition of the importance of the PN and SN in driving the unique patient CFFL leading to disease highlights the importance of precision medicine in therapeutic management of disease progression. We take the view herein that it is not CFTR, rather the PN/SN, and their impact on the CFFL, that are the key physiologic forces driving onset and clinical progression of CF. We posit that a deep understanding of each patients PN/SN gained by merging genomic, proteomic (mass spectrometry (MS)), and high-content microscopy (HCM) technologies in the context of novel network learning algorithms will lead to a paradigm shift in CF clinical management. This should allow for generation of new classes of patient specific PN/SN directed therapeutics for personalized management of the CFFL in the clinic.
Collapse
Affiliation(s)
- Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal.
| | - William E Balch
- Department of Chemical Physiology, Department of Cell and Molecular Biology, The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
33
|
Dong J, Jiang X, Zhang X, Liu KS, Zhang J, Chen J, Yu MK, Tsang LL, Chung YW, Wang Y, Zhou WL, Chan HC. Dynamically Regulated CFTR Expression and Its Functional Role in Cutaneous Wound Healing. J Cell Physiol 2015; 230:2049-58. [PMID: 25641604 DOI: 10.1002/jcp.24931] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022]
Abstract
The physiological role of cystic fibrosis transmembrane conductance regulator (CFTR) in keratinocytes and skin wound healing is completely unknown. The present study shows that CFTR is expressed in the multiple layers of keratinocytes in mouse epidermis and exhibits a dynamic expression pattern in a dorsal skin wound healing model, with diminishing levels observed from day 3 to day 5 and re-appearing from day 7 to day 10 after wounding. Knockdown of CFTR in cultured human keratinocytes promotes cell migration but inhibits differentiation, while overexpression of CFTR suppresses migration but enhances differentiation, indicating an important role of CFTR in regulating keratinocyte behavior. In addition, we have demonstrated a direct association of CFTR with epithelial junction formation as knockdown of CFTR downregulates the expression of adhesion molecules, such as E-cadherin, ZO-1 and β-catenin, and disrupts the formation of cell junction, while overexpression of CFTR enhances cell junction formation. More importantly, we have shown that ΔF508cftr-/- mice with defective CFTR exhibit delayed wound healing as compared to wild type mice, indicating that normal function of CFTR is critical for wound repair. Taken together, the present study has revealed a previously undefined role of CFTR in regulating skin wound healing processes, which may have implications in injury repair of other epithelial tissues.
Collapse
Affiliation(s)
- Jianda Dong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong.,Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, Key Laboratory of Fertility Preservation and Maintenance of Ningxia Medical University and Ministry of Education of China, Yinchuan, China
| | - Xiaohua Jiang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong.,Key Laboratory for Regenerative Medicine (Ji Nan University - The Chinese University of Hong Kong), Ministry of Education of the People's Republic of China, China
| | - Xiaohu Zhang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong
| | - Kai Sheng Liu
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong
| | - Jieting Zhang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong
| | - Jing Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong.,Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, China
| | - Mei Kuen Yu
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong
| | - Lai Ling Tsang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong
| | - Yiu Wa Chung
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong
| | - Yanrong Wang
- Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, Key Laboratory of Fertility Preservation and Maintenance of Ningxia Medical University and Ministry of Education of China, Yinchuan, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong.,Key Laboratory for Regenerative Medicine (Ji Nan University - The Chinese University of Hong Kong), Ministry of Education of the People's Republic of China, China.,Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, China
| |
Collapse
|
34
|
Clarke LA, Botelho HM, Sousa L, Falcao AO, Amaral MD. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators. Genomics 2015. [PMID: 26225835 DOI: 10.1016/j.ygeno.2015.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A meta-analysis of 13 independent microarray data sets was performed and gene expression profiles from cystic fibrosis (CF), similar disorders (COPD: chronic obstructive pulmonary disease, IPF: idiopathic pulmonary fibrosis, asthma), environmental conditions (smoking, epithelial injury), related cellular processes (epithelial differentiation/regeneration), and non-respiratory "control" conditions (schizophrenia, dieting), were compared. Similarity among differentially expressed (DE) gene lists was assessed using a permutation test, and a clustergram was constructed, identifying common gene markers. Global gene expression values were standardized using a novel approach, revealing that similarities between independent data sets run deeper than shared DE genes. Correlation of gene expression values identified putative gene regulators of the CF transmembrane conductance regulator (CFTR) gene, of potential therapeutic significance. Our study provides a novel perspective on CF epithelial gene expression in the context of other lung disorders and conditions, and highlights the contribution of differentiation/EMT and injury to gene signatures of respiratory disease.
Collapse
Affiliation(s)
- Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | - Hugo M Botelho
- University of Lisboa, Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | - Lisete Sousa
- University of Lisboa, Faculty of Sciences, DEIO and CEAUL, Portugal
| | - Andre O Falcao
- University of Lisboa, Faculty of Sciences, Department of Informatics, Portugal
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| |
Collapse
|
35
|
Peters-Hall JR, Brown KJ, Pillai DK, Tomney A, Garvin LM, Wu X, Rose MC. Quantitative proteomics reveals an altered cystic fibrosis in vitro bronchial epithelial secretome. Am J Respir Cell Mol Biol 2015; 53:22-32. [PMID: 25692303 PMCID: PMC4566109 DOI: 10.1165/rcmb.2014-0256rc] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/05/2015] [Indexed: 12/25/2022] Open
Abstract
Alterations in epithelial secretions and mucociliary clearance contribute to chronic bacterial infection in cystic fibrosis (CF) lung disease, but whether CF lungs are unchanged in the absence of infection remains controversial. A proteomic comparison of airway secretions from subjects with CF and control subjects shows alterations in key biological processes, including immune response and proteolytic activity, but it is unclear if these are due to mutant CF transmembrane conductance regulator (CFTR) and/or chronic infection. We hypothesized that the CF lung apical secretome is altered under constitutive conditions in the absence of inflammatory cells and pathogens. To test this, we performed quantitative proteomics of in vitro apical secretions from air-liquid interface cultures of three life-extended CF (ΔF508/ΔF508) and three non-CF human bronchial epithelial cells after labeling of CF cells by stable isotope labeling with amino acids in cell culture. Mass spectrometry analysis identified and quantitated 666 proteins across samples, of which 70 exhibited differential enrichment or depletion in CF secretions (±1.5-fold change; P < 0.05). The key molecular functions were innate immunity (24%), cytoskeleton/extracellular matrix organization (24%), and protease/antiprotease activity (17%). Oxidative proteins and classical complement pathway proteins that are altered in CF secretions in vivo were not altered in vitro. Specific differentially increased proteins-MUC5AC and MUC5B mucins, fibronectin, and matrix metalloproteinase-9-were validated by antibody-based assays. Overall, the in vitro CF secretome data are indicative of a constitutive airway epithelium with altered innate immunity, suggesting that downstream consequences of mutant CFTR set the stage for chronic inflammation and infection in CF airways.
Collapse
Affiliation(s)
| | - Kristy J. Brown
- Departments of Integrative Systems Biology and
- Pediatrics, George Washington University School of Medicine, Washington, DC; and
- Research Center for Genetic Medicine and
| | - Dinesh K. Pillai
- Departments of Integrative Systems Biology and
- Pediatrics, George Washington University School of Medicine, Washington, DC; and
- Research Center for Genetic Medicine and
- Division of Pulmonary and Sleep Medicine, Children's National, Washington, DC
| | | | - Lindsay M. Garvin
- Departments of Integrative Systems Biology and
- Research Center for Genetic Medicine and
| | - Xiaofang Wu
- Departments of Integrative Systems Biology and
- Pediatrics, George Washington University School of Medicine, Washington, DC; and
- Research Center for Genetic Medicine and
| | - Mary C. Rose
- Departments of Integrative Systems Biology and
- Pediatrics, George Washington University School of Medicine, Washington, DC; and
- Research Center for Genetic Medicine and
| |
Collapse
|
36
|
Jackler RK, Santa Maria PL, Varsak YK, Nguyen A, Blevins NH. A new theory on the pathogenesis of acquired cholesteatoma: Mucosal traction. Laryngoscope 2015; 125 Suppl 4:S1-S14. [PMID: 26013635 DOI: 10.1002/lary.25261] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/20/2015] [Indexed: 01/16/2023]
Abstract
OBJECTIVES/HYPOTHESIS Although the migration of its squamous outer surface of the tympanic membrane has been well characterized, there is a paucity of data available concerning the migratory behavior of its medial mucosal surface. Existing theories of primary acquired cholesteatoma pathogenesis do not adequately explain the observed characteristics of the disease. We propose a new hypothesis, based upon a conjecture that mucosal membrane interactions are the driving force in cholesteatoma. STUDY DESIGN A retrospective chart review and a prospective observational cohort study in rats. METHODS After developing the new theory, it was tested through both clinical and experimental observations. To evaluate whether impairment of middle ear mucociliary migration would influence cholesteatoma formation, a retrospective chart review evaluating cholesteatoma occurrence in a sizable population of patients with either primary ciliary dyskinesia (PCD) or cystic fibrosis (CF) was performed. To study mucosal migration on the medial aspect of the tympanic membrane, ink tattoos were monitored over time in a rat model. RESULTS No cholesteatomas were identified in either PCD patients (470) or in CF patients (1,910). In the rat model, mucosa of the posterior pars tensa migrated toward the posterior superior quadrant, whereas the mucosa of the anterior pars tensa migrated radially toward the annulus. CONCLUSION Mucosal coupling with traction generated by interaction of migrating opposing surfaces provides the first comprehensive theory that explains the observed characteristics of primary acquired cholesteatoma. The somewhat counterintuitive hypothesis that cholesteatoma is fundamentally a mucosal disease has numerous therapeutic implications.
Collapse
Affiliation(s)
- Robert K Jackler
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Peter L Santa Maria
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Yasin K Varsak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Anh Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, U.S.A
| | - Nikolas H Blevins
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| |
Collapse
|
37
|
Garratt LW, Sutanto EN, Ling KM, Looi K, Iosifidis T, Martinovich KM, Shaw NC, Kicic-Starcevich E, Knight DA, Ranganathan S, Stick SM, Kicic A. Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis. Eur Respir J 2015; 46:384-94. [PMID: 25929954 DOI: 10.1183/09031936.00212114] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/04/2015] [Indexed: 12/14/2022]
Abstract
Neutrophil elastase is the most significant predictor of bronchiectasis in early-life cystic fibrosis; however, the causal link between neutrophil elastase and airway damage is not well understood. Matrix metalloproteinases (MMPs) play a crucial role in extracellular matrix modelling and are activated by neutrophil elastase. The aim of this study was to assess if MMP activation positively correlates with neutrophil elastase activity, disease severity and bronchiectasis in young children with cystic fibrosis.Total MMP-1, MMP-2, MMP-7, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-1 levels were measured in bronchoalveolar lavage fluid collected from young children with cystic fibrosis during annual clinical assessment. Active/pro-enzyme ratio of MMP-9 was determined by gelatin zymography. Annual chest computed tomography imaging was scored for bronchiectasis.A higher MMP-9/TIMP-1 ratio was associated with free neutrophil elastase activity. In contrast, MMP-2/TIMP-2 ratio decreased and MMP-1 and MMP-7 were not detected in the majority of samples. Ratio of active/pro-enzyme MMP-9 was also higher in the presence of free neutrophil elastase activity, but not infection. Across the study cohort, both MMP-9/TIMP-1 and active MMP-9 were associated with progression of bronchiectasis.Both MMP-9/TIMP-1 and active MMP-9 increased with free neutrophil elastase and were associated with bronchiectasis, further demonstrating that free neutrophil elastase activity should be considered an important precursor to cystic fibrosis structural disease.
Collapse
Affiliation(s)
- Luke W Garratt
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Erika N Sutanto
- Telethon Kids Institute, University of Western Australia, Perth, Australia Dept of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Australia
| | - Kak-Ming Ling
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Kevin Looi
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Thomas Iosifidis
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | | | - Nicole C Shaw
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Elizabeth Kicic-Starcevich
- Telethon Kids Institute, University of Western Australia, Perth, Australia Dept of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, Newcastle, Australia Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Sarath Ranganathan
- Dept of Respiratory Medicine, Royal Children's Hospital, Melbourne, Australia Murdoch Childrens Research Institute, Melbourne, Australia Dept of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia Telethon Kids Institute, University of Western Australia, Perth, Australia Dept of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Australia Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia Telethon Kids Institute, University of Western Australia, Perth, Australia Dept of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Australia Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | | |
Collapse
|
38
|
Bastos HP, Sousa L, Clarke LA, Couto FM. GRYFUN: a web application for GO term annotation visualization and analysis in protein sets. PLoS One 2015; 10:e0119631. [PMID: 25794277 PMCID: PMC4368792 DOI: 10.1371/journal.pone.0119631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 01/31/2015] [Indexed: 11/29/2022] Open
Abstract
Functional context for biological sequence is provided in the form of annotations. However, within a group of similar sequences there can be annotation heterogeneity in terms of coverage and specificity. This in turn can introduce issues regarding the interpretation of actual functional similarity and overall functional coherence of such a group. One way to mitigate such issues is through the use of visualization and statistical techniques. Therefore, in order to help interpret this annotation heterogeneity we created a web application that generates Gene Ontology annotation graphs for protein sets and their associated statistics from simple frequencies to enrichment values and Information Content based metrics. The publicly accessible website http://xldb.di.fc.ul.pt/gryfun/ currently accepts lists of UniProt accession numbers in order to create user-defined protein sets for subsequent annotation visualization and statistical assessment. GRYFUN is a freely available web application that allows GO annotation visualization of protein sets and which can be used for annotation coherence and cohesiveness analysis and annotation extension assessments within under-annotated protein sets.
Collapse
Affiliation(s)
- Hugo P. Bastos
- LaSIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| | - Lisete Sousa
- Departamento de Estatística e Investigação Operacional e Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luka A. Clarke
- BioFIG - Centre for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco M. Couto
- LaSIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
39
|
Higgins G, Ringholz F, Buchanan P, McNally P, Urbach V. Physiological impact of abnormal lipoxin A₄ production on cystic fibrosis airway epithelium and therapeutic potential. BIOMED RESEARCH INTERNATIONAL 2015; 2015:781087. [PMID: 25866809 PMCID: PMC4383482 DOI: 10.1155/2015/781087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/15/2022]
Abstract
Lipoxin A4 has been described as a major signal for the resolution of inflammation and is abnormally produced in the lungs of patients with cystic fibrosis (CF). In CF, the loss of chloride transport caused by the mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel gene results in dehydration, mucus plugging, and reduction of the airway surface liquid layer (ASL) height which favour chronic lung infection and neutrophil based inflammation leading to progressive lung destruction and early death of people with CF. This review highlights the unique ability of LXA4 to restore airway surface hydration, to stimulate airway epithelial repair, and to antagonise the proinflammatory program of the CF airway, circumventing some of the most difficult aspects of CF pathophysiology. The report points out novel aspects of the cellular mechanism involved in the physiological response to LXA4, including release of ATP from airway epithelial cell via pannexin channel and subsequent activation of and P2Y11 purinoreceptor. Therefore, inadequate endogenous LXA4 biosynthesis reported in CF exacerbates the ion transport abnormality and defective mucociliary clearance, in addition to impairing the resolution of inflammation, thus amplifying the vicious circle of airway dehydration, chronic infection, and inflammation.
Collapse
Affiliation(s)
- Gerard Higgins
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
- Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Fiona Ringholz
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
- Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Paul Buchanan
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
| | - Paul McNally
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
| | - Valérie Urbach
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
- Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
- Institut National de la Santé et de la Recherche Médicale, U845, Faculté de Médecine Paris Descartes, Site Necker, 156 rue Vaugirard, 75015 Paris, France
| |
Collapse
|
40
|
Adam D, Roux-Delrieu J, Luczka E, Bonnomet A, Lesage J, Mérol JC, Polette M, Abély M, Coraux C. Cystic fibrosis airway epithelium remodelling: involvement of inflammation. J Pathol 2014; 235:408-19. [DOI: 10.1002/path.4471] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/02/2014] [Accepted: 10/21/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Damien Adam
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Jacqueline Roux-Delrieu
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Emilie Luczka
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Arnaud Bonnomet
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Julien Lesage
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | | | - Myriam Polette
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
- Laboratory of Histology; University Hospital Centre; Reims France
| | - Michel Abély
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
- Pediatric Unit A, American Memorial Hospital; University Hospital Centre; Reims France
| | - Christelle Coraux
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| |
Collapse
|
41
|
Higgins G, Buchanan P, Perriere M, Al-Alawi M, Costello RW, Verriere V, McNally P, Harvey BJ, Urbach V. Activation of P2RY11 and ATP release by lipoxin A4 restores the airway surface liquid layer and epithelial repair in cystic fibrosis. Am J Respir Cell Mol Biol 2014; 51:178-90. [PMID: 24588705 DOI: 10.1165/rcmb.2012-0424oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In cystic fibrosis (CF), the airway surface liquid (ASL) height is reduced as a result of impaired ion transport, which favors bacterial colonization and inflammation of the airway and leads to progressive lung destruction. Lipoxin (LX)A4, which promotes resolution of inflammation, is inadequately produced in the airways of patients with CF. We previously demonstrated that LXA4 stimulates an ASL height increase and epithelial repair. Here we report the molecular mechanisms involved in these processes. We found that LXA4 (1 nM) induced an apical ATP release from non-CF (NuLi-1) and CF (CuFi-1) airway epithelial cell lines and CF primary cultures. The ATP release induced by LXA4 was completely inhibited by antagonists of the ALX/FPR2 receptor and Pannexin-1 channels. LXA4 induced an increase in intracellular cAMP and calcium, which were abolished by the selective inhibition of the P2RY11 purinoreceptor. Pannexin-1 and ATP hydrolysis inhibition and P2RY11 purinoreceptor knockdown all abolished the increase of ASL height induced by LXA4. Inhibition of the A2b adenosine receptor did not affect the ASL height increase induced by LXA4, whereas the PKA inhibitor partially inhibited this response. The stimulation of NuLi-1 and CuFi-1 cell proliferation, migration, and wound repair by LXA4 was inhibited by the antagonists of Pannexin-1 channel and P2RY11 purinoreceptor. Taken together, our results provide evidence for a novel role of LXA4 in stimulating apical ATP secretion via Pannexin-1 channels and P2RY11 purinoreceptors activation leading to an ASL height increase and epithelial repair.
Collapse
|
42
|
Ruan YC, Wang Y, Da Silva N, Kim B, Diao RY, Hill E, Brown D, Chan HC, Breton S. CFTR interacts with ZO-1 to regulate tight junction assembly and epithelial differentiation through the ZONAB pathway. J Cell Sci 2014; 127:4396-408. [PMID: 25107366 DOI: 10.1242/jcs.148098] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mutations in CFTR lead to dysfunction of tubular organs, which is currently attributed to impairment of its conductive properties. We now show that CFTR regulates tight junction assembly and epithelial cell differentiation through modulation of the ZO-1-ZONAB pathway. CFTR colocalizes with ZO-1 at the tight junctions of trachea and epididymis, and is expressed before ZO-1 in Wolffian ducts. CFTR interacts with ZO-1 through the CTFR PDZ-binding domain. In a three-dimensional (3D) epithelial cell culture model, CFTR regulates tight junction assembly and is required for tubulogenesis. CFTR inhibition or knockdown reduces ZO-1 expression and induces the translocation of the transcription factor ZONAB (also known as YBX3) from tight junctions to the nucleus, followed by upregulation of the transcription of CCND1 and downregulation of ErbB2 transcription. The epididymal tubules of cftr(-/-) and cftr(ΔF508) mice have reduced ZO-1 levels, increased ZONAB nuclear expression, and decreased epithelial cell differentiation, illustrated by the reduced expression of apical AQP9 and V-ATPase. This study provides a new paradigm for the etiology of diseases associated with CFTR mutations, including cystic fibrosis.
Collapse
Affiliation(s)
- Ye Chun Ruan
- Center for Systems Biology, Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Wang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Nicolas Da Silva
- Center for Systems Biology, Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bongki Kim
- Center for Systems Biology, Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rui Ying Diao
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Eric Hill
- Center for Systems Biology, Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dennis Brown
- Center for Systems Biology, Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sylvie Breton
- Center for Systems Biology, Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
43
|
Cx26 regulates proliferation of repairing basal airway epithelial cells. Int J Biochem Cell Biol 2014; 52:152-60. [DOI: 10.1016/j.biocel.2014.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/10/2023]
|
44
|
Abstract
Cystic fibrosis (CF) is the most frequent inherited disease in Caucasian populations and is due to a defect in the expression or activity of a chloride channel encoded by the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Mutations in this gene affect organs with exocrine functions and the main cause of morbidity and mortality for CF patients is the lung pathology in which the defect in CFTR decreases chloride secretion, lowering the airway surface liquid height and increasing mucus viscosity. The compromised ASL dynamics leads to a favorable environment for bacterial proliferation and sustained inflammation resulting in epithelial lung tissue injury, fibrosis and remodeling. In CF, there exist a difference in lung pathology between men and women that is termed the "CF gender gap". Recent studies have shown the prominent role of the most potent form of estrogen, 17β-estradiol in exacerbating lung function in CF females and here, we review the role of this hormone in the CF gender dichotomy.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI-ERC, Beaumont Hospital, Dublin 9, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI-ERC, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
45
|
Itokazu Y, Pagano RE, Schroeder AS, O'Grady SM, Limper AH, Marks DL. Reduced GM1 ganglioside in CFTR-deficient human airway cells results in decreased β1-integrin signaling and delayed wound repair. Am J Physiol Cell Physiol 2014; 306:C819-30. [PMID: 24500283 DOI: 10.1152/ajpcell.00168.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function reduces chloride secretion and increases sodium uptake, but it is not clear why CFTR mutation also results in progressive lung inflammation and infection. We previously demonstrated that CFTR-silenced airway cells migrate more slowly during wound repair than CFTR-expressing controls. In addition, CFTR-deficient cells and mouse models have been reported to have altered sphingolipid levels. Here, we investigated the hypothesis that reduced migration in CFTR-deficient airway epithelial cells results from altered sphingolipid composition. We used cell lines derived from a human airway epithelial cell line (Calu-3) stably transfected with CFTR short hairpin RNA (CFTR-silenced) or nontargeting short hairpin RNA (controls). Cell migration was measured by electric cell substrate impedance sensing (ECIS). Lipid analyses, addition of exogenous glycosphingolipids, and immunoblotting were performed. We found that levels of the glycosphingolipid, GM1 ganglioside, were ~60% lower in CFTR-silenced cells than in controls. CFTR-silenced cells exhibited reduced levels of activated β1-integrin, phosphorylated tyrosine 576 of focal adhesion kinase (pFAK), and phosphorylation of Crk-associated substrate (pCAS). Addition of GM1 (but not GM3) ganglioside to CFTR-silenced cells restored activated β1-integrin, pFAK, and pCAS to near control levels and partially restored (~40%) cell migration. Our results suggest that decreased GM1 in CFTR-silenced cells depresses β1-integrin signaling, which contributes to the delayed wound repair observed in these cells. These findings have implications for the pathology of cystic fibrosis, where altered sphingolipid levels in airway epithelial cells could result in a diminished capacity for wound repair after injury.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | | | | | | | | | | |
Collapse
|
46
|
Adam D, Perotin JM, Lebargy F, Birembaut P, Deslée G, Coraux C. [Regeneration of airway epithelium]. Rev Mal Respir 2013; 31:300-11. [PMID: 24750950 DOI: 10.1016/j.rmr.2013.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Epithelial regeneration is a complex process. It can lead to the remodeling of the airway epithelium as in asthma, COPD or cystic fibrosis. BACKGROUND The development of in vivo and in vitro models has allowed the analysis of remodeling mechanisms and showed the role of components of extracellular matrix, proteases, cytokines and growth factors. Airway epithelial progenitors and stems cells have been studied in these models. However, their identification remains difficult. CONCLUSION Identification and characterization of airway epithelial progenitor/stem-cells, and a better knowledge of the regeneration process may allow the development of new therapeutic strategies for airway epithelial reconstitution.
Collapse
Affiliation(s)
- D Adam
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France
| | - J-M Perotin
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France; Service des maladies respiratoires, CHU de Reims, 45, rue Cognacq-Jay, 51100 Reims, France
| | - F Lebargy
- Service des maladies respiratoires, CHU de Reims, 45, rue Cognacq-Jay, 51100 Reims, France
| | - P Birembaut
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France; Laboratoire d'histologie Pol Bouin, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France
| | - G Deslée
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France; Service des maladies respiratoires, CHU de Reims, 45, rue Cognacq-Jay, 51100 Reims, France.
| | - C Coraux
- Inserm UMRS 903, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims, France
| |
Collapse
|
47
|
Urbach V, Higgins G, Buchanan P, Ringholz F. The role of Lipoxin A4 in Cystic Fibrosis Lung Disease. Comput Struct Biotechnol J 2013; 6:e201303018. [PMID: 24688726 PMCID: PMC3962119 DOI: 10.5936/csbj.201303018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 11/22/2022] Open
Abstract
In Cystic Fibrosis (CF), mutations of the CFTR gene result in defective Cl(-) secretion and Na(+) hyperabsorption by epithelia which leads to airway lumen dehydration and mucus plugging and favours chronic bacterial colonization, persistent inflammation and progressive lung destruction. Beyond this general description, the pathogenesis of CF lung disease remains obscure due to an incomplete understanding of normal innate airway defense. This mini-review aims to highlight the role of the pro-resolution lipid mediator, Lipoxin A4, which is inadequately produced in CF, on several aspects of innate immunity that are altered in CF airway disease.
Collapse
Affiliation(s)
- Valérie Urbach
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
- Institut National de la Santé et de la Recherche Médicale, U845, Faculté de Médecine Paris Descartes - Site Necker - 156 rue Vaugirard 75015, Paris, France
| | - Gerard Higgins
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
| | - Paul Buchanan
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
| | - Fiona Ringholz
- National Children's Research Centre, Crumlin, Dublin 12, Ireland
| |
Collapse
|
48
|
Ruffin M, Voland M, Marie S, Bonora M, Blanchard E, Blouquit-Laye S, Naline E, Puyo P, Le Rouzic P, Guillot L, Corvol H, Clement A, Tabary O. Anoctamin 1 dysregulation alters bronchial epithelial repair in cystic fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2340-51. [PMID: 24080196 DOI: 10.1016/j.bbadis.2013.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/30/2013] [Accepted: 09/19/2013] [Indexed: 01/08/2023]
Abstract
Cystic fibrosis (CF) airway epithelium is constantly subjected to injury events due to chronic infection and inflammation. Moreover, abnormalities in CF airway epithelium repair have been described and contribute to the lung function decline seen in CF patients. In the last past years, it has been proposed that anoctamin 1 (ANO1), a Ca(2+)-activated Cl(-) channel, might offset the CFTR deficiency but this protein has not been characterized in CF airways. Interestingly, recent evidence indicates a role for ANO1 in cell proliferation and tumor growth. Our aims were to study non-CF and CF bronchial epithelial repair and to determine whether ANO1 is involved in airway epithelial repair. Here, we showed, with human bronchial epithelial cell lines and primary cells, that both cell proliferation and migration during epithelial repair are delayed in CF compared to non-CF cells. We then demonstrated that ANO1 Cl(-) channel activity was significantly decreased in CF versus non-CF cells. To explain this decreased Cl(-) channel activity in CF context, we compared ANO1 expression in non-CF vs. CF bronchial epithelial cell lines and primary cells, in lung explants from wild-type vs. F508del mice and non-CF vs. CF patients. In all these models, ANO1 expression was markedly lower in CF compared to non-CF. Finally, we established that ANO1 inhibition or overexpression was associated respectively with decreases and increases in cell proliferation and migration. In summary, our study demonstrates involvement of ANO1 decreased activity and expression in abnormal CF airway epithelial repair and suggests that ANO1 correction may improve this process.
Collapse
Affiliation(s)
- Manon Ruffin
- Inserm, U938, 34 Rue Crozatier, 75012 Paris, France; UPMC, University of Paris 06, 4 Place Jussieu, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gilpin SE, Lung K, de Couto GT, Cypel M, Sato M, Singer LG, Keshavjee S, Waddell TK. Bone marrow-derived progenitor cells in end-stage lung disease patients. BMC Pulm Med 2013; 13:48. [PMID: 23915095 PMCID: PMC3750607 DOI: 10.1186/1471-2466-13-48] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/25/2013] [Indexed: 11/12/2022] Open
Abstract
Background Chronic lung diseases are marked by progressive inflammation, tissue damage and remodelling. Bone marrow-derived progenitor cells may contribute to these processes. The objectives of this study were to (1) to quantify CD45+Collagen-1+ fibrocytes and a novel epithelial-like population of bone marrow-derived cells, which express Clara Cell Secretory Protein, in patients at the time of lung transplant and (2) to evaluate mediators that may act to recruit these cells during injury. Methods Using an observational design, progenitor cells were quantified by flow cytometry from both bone marrow (BM) and peripheral blood (PB). Migration was tested using in vitro transwell assays. Multiplex bead-based assays were used to quantify plasma cytokines. Results An increase in CD45+Collagen-1+ fibrocytes was found in pulmonary fibrosis and bronchiolitis obliterans patients. Cystic fibrosis patients had an increase in CCSP+ cells in both the BM and PB. The proportion of CCSP+ cells in the BM and PB was correlated. CCSP+ cells express the chemokine receptors CCR2, CCR4, CXCR3, and CXCR4, and significantly migrated in vitro toward Stromal Derived Factor-1 (SDF-1) and Stem Cell Growth Factor-β (SCGF-β). Plasma cytokine levels differed between disease groups, with a significant correlation between SCGF-β and CCSP+ cells and between Monocyte Chemotactic Protein-1 and fibrocytes. Conclusions Different bone marrow-derived cells are found in various lung diseases. Increased fibrocytes were associated with fibrotic lung diseases. An increase in the novel CCSP+ epithelial-like progenitors in cystic fibrosis patients was found. These differences may be mediated by alterations in plasma cytokines responsible for cell recruitment.
Collapse
Affiliation(s)
- Sarah E Gilpin
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, North Wing, 9N - 949, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Buchanan PJ, McNally P, Harvey BJ, Urbach V. Lipoxin A₄-mediated KATP potassium channel activation results in cystic fibrosis airway epithelial repair. Am J Physiol Lung Cell Mol Physiol 2013; 305:L193-201. [PMID: 23686859 DOI: 10.1152/ajplung.00058.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The main cause of morbidity and mortality in cystic fibrosis (CF) is progressive lung destruction as a result of persistent bacterial infection and inflammation, coupled with reduced capacity for epithelial repair. Levels of the anti-inflammatory mediator lipoxin A₄ (LXA₄) have been reported to be reduced in bronchoalveolar lavages of patients with CF. We investigated the ability of LXA₄ to trigger epithelial repair through the initiation of proliferation and migration in non-CF (NuLi-1) and CF (CuFi-1) airway epithelia. Spontaneous repair and cell migration were significantly slower in CF epithelial cultures (CuFi-1) compared with controls (NuLi-1). LXA₄ triggered an increase in migration, proliferation, and wound repair of non-CF and CF airway epithelia. These responses to LXA₄ were completely abolished by the ALX/FPR2 receptor antagonist, Boc2 and ALX/FPR2 siRNA. The KATP channel opener pinacidil mimicked the LXA₄ effect on migration, proliferation, and epithelial repair, whereas the KATP channel inhibitor, glibenclamide, blocked the responses to LXA₄. LXA₄ did not affect potassium channel expression but significantly upregulated glibenclamide-sensitive (KATP) currents through the basolateral membrane of NuLi-1 and CuFi-1 cells. MAP kinase (ERK1/2) inhibitor, PD98059, also inhibited the LXA₄-induced proliferation of NuLi-1 and CuFi-1 cells. Finally, both LXA₄ and pinacidil stimulated ERK-MAP kinase phosphorylation, whereas the effect of LXA₄ on ERK phosphorylation was inhibited by glibenclamide. Taken together, our results provided evidence for a role of LXA₄ in triggering epithelial repair through stimulation of the ALX/FPR2 receptor, KATP potassium channel activation, and ERK phosphorylation. This work suggests exogenous delivery of LXA₄, restoring levels in patients with CF, perhaps as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Paul J Buchanan
- National Children's Research Center, Our Lady's Children Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|