1
|
Reseland JE, Heyward CA, Samara A. Revisiting ameloblastin; addressing the EMT-ECM axis above and beyond oral biology. Front Cell Dev Biol 2023; 11:1251540. [PMID: 38020879 PMCID: PMC10679718 DOI: 10.3389/fcell.2023.1251540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Ameloblastin (AMBN) is best characterized for its role in dental enamel formation, regulating cell differentiation and mineralization, and cell matrix adhesion. However, AMBN has also been detected in mesenchymal stem cells in addition to bone, blood, and adipose tissue. Using immunofluorescence in a pilot scheme, we identified that AMBN is expressed in different parts of the gastrointestinal (GI) tract. AMBN mRNA and protein detection in several tissues along the length of the GI tract suggests a role for AMBN in the structure and tissue integrity of the extracellular matrix (ECM). Intracellular AMBN expression in subsets of cells indicates a potential alternative role in signaling processes. Of note, our previous functional AMBN promoter analyses had shown that it contains epithelial-mesenchymal transition (EMT) regulatory elements. ΑΜΒΝ is herein presented as a paradigm shift of the possible associations and the spatiotemporal regulation of the ECM regulating the EMT and vice versa, using the example of AMBN expression beyond oral biology.
Collapse
Affiliation(s)
- Janne E. Reseland
- Center for Functional Tissue Reconstruction (FUTURE), University of Oslo, Oslo, Norway
- Department of Biomaterials and Oral Research Laboratory, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Catherine A. Heyward
- Department of Biomaterials and Oral Research Laboratory, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Athina Samara
- Center for Functional Tissue Reconstruction (FUTURE), University of Oslo, Oslo, Norway
- Department of Biomaterials and Oral Research Laboratory, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Mou Y, Yuan C, Sun Q, Yan C, Zhao X, Wang J, Wang Q, Shan S, Li C. MIKC-type MADS-box transcription factor gene family in peanut: Genome-wide characterization and expression analysis under abiotic stress. FRONTIERS IN PLANT SCIENCE 2022; 13:980933. [PMID: 36340369 PMCID: PMC9631947 DOI: 10.3389/fpls.2022.980933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Peanut (Arachis hypogaea) is one of the most important economic crops around the world, especially since it provides vegetable oil and high-quality protein for humans. Proteins encoded by MADS-box transcription factors are widely involved in regulating plant growth and development as well as responses to abiotic stresses. However, the MIKC-type MADS-box TFs in peanut remains currently unclear. Hence, in this study, 166 MIKC-type MADS-box genes were identified in both cultivated and wild-type peanut genomes, which were divided into 12 subfamilies. We found a variety of development-, hormone-, and stress-related cis-acting elements in the promoter region of peanut MIKC-type MADS-box genes. The chromosomal distribution of peanut MADS-box genes was not random, and gene duplication contributed to the expansion of the MADS-box gene family. The interaction network of the peanut AhMADS proteins was established. Expression pattern analysis showed that AhMADS genes were specifically expressed in tissues and under abiotic stresses. It was further confirmed via the qRT-PCR technique that five selected AhMADS genes could be induced by abiotic and hormone treatments and presented different expressive profiles under various stresses. Taken together, these findings provide valuable information for the exploration of candidate genes in molecular breeding and further study of AhMADS gene functions.
Collapse
|
3
|
Hoffmann W. Self-Renewal and Cancers of the Gastric Epithelium: An Update and the Role of the Lectin TFF1 as an Antral Tumor Suppressor. Int J Mol Sci 2022; 23:ijms23105377. [PMID: 35628183 PMCID: PMC9141172 DOI: 10.3390/ijms23105377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
In 2020, gastric cancer was the fourth leading cause of cancer deaths globally. About 90% of gastric cancers are sporadic and the vast majority are correlated with Helicobacter pylori infection; whereas familial clustering is observed in about 10% of cases. Gastric cancer is now considered to be a disease originating from dysregulated self-renewal of the gastric glands in the setting of an inflammatory environment. The human stomach contains two types of gastric units, which show bi-directional self-renewal from a complex variety of stem cells. This review focuses on recent progress concerning the characterization of the different stem cell populations and the mainly mesenchymal signals triggering their stepwise differentiation as well as the genesis of pre-cancerous lesions and carcinogenesis. Furthermore, a model is presented (Lectin-triggered Receptor Blocking Hypothesis) explaining the role of the lectin TFF1 as an antral tumor suppressor possibly regulating Lgr5+ antral stem cells in a paracrine or maybe autocrine fashion, with neighboring antral gland cells having a role as niche cells.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
4
|
Shibahara Y, Espin-Garcia O, Conner J, Weiss J, Derouet M, Allen J, Allison F, Kalimuthu S, Yeung JC, Darling GE. Intestinal Stem Cell Marker ASCL2 is a Novel Prognostic Predictor in Esophageal Adenocarcinoma. Cureus 2022; 14:e21021. [PMID: 35154991 PMCID: PMC8818334 DOI: 10.7759/cureus.21021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Intestinal stem cell markers play a significant role in esophageal adenocarcinoma carcinogenesis via Barrett’s esophagus; however, its utility as a prognostic biomarker has not been established. Methods We analyzed the immunohistochemical expression of intestinal stem cell markers, ASCL2 and LGR5, using whole slides (35 cases) and tissue microarray (TMA; 64 cases). On TMA slides, adjacent normal squamous epithelium, metaplastic glandular epithelium (Barrett's esophagus), and dysplastic glandular epithelium were inserted when applicable. Two pathologists semi-quantitatively scored stained slides independently, and the results were correlated with clinicopathologic factors and outcomes. Results In whole slides, 51% and 57% expressed high ASCL2 and high LGR5; in TMA, 69% and 88% expressed high ASCL2 and high LGR5, respectively. In TMA, high ASCL2 and low LGR5 expression significantly correlated to a higher number of involved lymph nodes (p=0.027 and p=0.0039), and LGR5 expression significantly correlated to the pathological stage (p=0.0032). Kaplan-Meier analysis showed a negative impact of high ASCL2 expression on overall survival (OS; WS p=0.0168, TMA p=0.0276) as well as progression-free survival (PFS; WS p=0.000638, TMA p=0.0466) but not LGR5. Multivariate Cox regression analysis revealed that ASCL2 expression is an independent prognostic factor for esophageal adenocarcinoma (OS; WS p=0.25, TMA p=0.011. PFS; WS p=0.012, TMA p=0.038). Analysis of the TCGA dataset showed that ASCL2 mRNA levels were correlated to nodal status but not overall survival. Conclusion High expression of the intestinal stem cell marker ASCL2 may predict unfavorable outcomes in surgically resected esophageal adenocarcinoma.
Collapse
|
5
|
Lee KE, Kwon M, Kim YS, Kim Y, Chung MG, Heo SC, Kim Y. β-carotene regulates cancer stemness in colon cancer in vivo and in vitro. Nutr Res Pract 2022; 16:161-172. [PMID: 35392530 PMCID: PMC8971823 DOI: 10.4162/nrp.2022.16.2.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/18/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Kyung Eun Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Minseo Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yoo Sun Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yerin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Min Gi Chung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Seung Chul Heo
- Department of Surgery, Seoul National University-Seoul Metropolitan Government (SNU-SMG) Boramae Medical Center, Seoul 07061, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
6
|
Wang K, Dong S, Higazy D, Jin L, Zou Q, Chen H, Inayat A, Hu S, Cui M. Inflammatory Environment Promotes the Adhesion of Tumor Cells to Brain Microvascular Endothelial Cells. Front Oncol 2021; 11:691771. [PMID: 34222020 PMCID: PMC8244540 DOI: 10.3389/fonc.2021.691771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/31/2021] [Indexed: 01/28/2023] Open
Abstract
Cancer patients usually suffer from unfavorable prognosis, particularly with the occurrence of brain metastasis of lung cancer. The key incident of brain metastasis initiation is crossing of blood-brain barrier (BBB) by cancer cells. Although preventing brain metastasis is a principal goal of cancer therapy, the cellular mechanisms and molecular regulators controlling the transmigration of cancer cells into the brain are still not clearly illustrated. We analyzed the mRNA expression profiles of metastatic brain tissues and TNF-α treated cancer cells to understand the changes in adhesion molecule expression during the tumor phase. To imitate the tumor microenvironment, an in vitro model was developed and the low or high metastatic potential lung tumor cells (A549 or H358) were cultured with the human brain microvascular endothelial cells (hBMECs) under TNF-α treatment. The analysis of online database indicated an altered expression for adhesion molecules and enrichment of their associated signaling pathways. TNF-α treatment activated hBMECs via up-regulating several adhesion molecules, including ICAM1, CD112, CD47, and JAM-C. Meanwhile, TNF-α induced an increased expression of adhesion molecule ligands such as ALCAM and CD6 in both A549 and H358. Moreover, the expression of adhesion molecules and the ligands were also increased both in A549- or H358-hBMECs mixed culture system, which promoted tumor cells adhesion to endothelial cells. These results suggested that the enhanced interaction between tumor cells and brain microvascular endothelium might facilitate the incidence of metastatic brain tumors and further offer a better comprehension of brain metastasis prevention and treatment.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Doaa Higazy
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China.,Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Lijing Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Qingcui Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Haowei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Aakif Inayat
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Cancer Center, Wuhan, China.,The Office of Hubei Provincial Cancer Prevention, Wuhan, China.,The Cancer Quality Control Center of Hubei Province, Wuhan, China.,College of Health Science, Huazhong Agricultural University, Wuhan, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
7
|
Helderman NC, Bajwa-Ten Broeke SW, Morreau H, Suerink M, Terlouw D, van der Werf-' T Lam AS, van Wezel T, Nielsen M. The diverse molecular profiles of lynch syndrome-associated colorectal cancers are (highly) dependent on underlying germline mismatch repair mutations. Crit Rev Oncol Hematol 2021; 163:103338. [PMID: 34044097 DOI: 10.1016/j.critrevonc.2021.103338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Lynch syndrome (LS) is a hereditary cancer syndrome that accounts for 3% of all new colorectal cancer (CRC) cases. Patients carry a germline pathogenic variant in one of the mismatch repair (MMR) genes (MLH1, MSH2, MSH6 or PMS2), which encode proteins involved in a post-replicative proofreading and editing mechanism. The clinical presentation of LS is highly heterogeneous, showing high variability in age at onset and penetrance of cancer, which may be partly attributable to the molecular profiles of carcinomas. This review discusses the frequency of alterations in the WNT/B-CATENIN, RAF/MEK/ERK and PI3K/PTEN/AKT pathways identified in all four LS subgroups and how these changes may relate to the 'three pathway model' of carcinogenesis, in which LS CRCs develop from MMR-proficient adenomas, MMR-deficient adenomas or directly from MMR-deficient crypts. Understanding the specific differences in carcinogenesis for each LS subgroup will aid in the further optimization of guidelines for diagnosis, surveillance and treatment.
Collapse
Affiliation(s)
- Noah C Helderman
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Hans Morreau
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Diantha Terlouw
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
8
|
Chen X, Ren L, Liu X, Sun X, Dong C, Jiang Y, Qin Y, Qu H, Jiao J, Wang S, Bai Y, Yang B. Ranolazine protects against diabetic cardiomyopathy by activating the NOTCH1/NRG1 pathway. Life Sci 2020; 261:118306. [DOI: 10.1016/j.lfs.2020.118306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
|
9
|
Ouahoud S, Hardwick JC, Hawinkels LJ. Extracellular BMP Antagonists, Multifaceted Orchestrators in the Tumor and Its Microenvironment. Int J Mol Sci 2020; 21:ijms21113888. [PMID: 32486027 PMCID: PMC7313454 DOI: 10.3390/ijms21113888] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023] Open
Abstract
The bone morphogenetic proteins (BMPs), a subgroup of the transforming growth factor-β (TGF-β) superfamily, are involved in multiple biological processes such as embryonic development and maintenance of adult tissue homeostasis. The importance of a functional BMP pathway is underlined by various diseases, including cancer, which can arise as a consequence of dysregulated BMP signaling. Mutations in crucial elements of this signaling pathway, such as receptors, have been reported to disrupt BMP signaling. Next to that, aberrant expression of BMP antagonists could also contribute to abrogated signaling. In this review we set out to highlight how BMP antagonists affect not only the cancer cells, but also the other cells present in the microenvironment to influence cancer progression.
Collapse
|
10
|
Biology and Therapeutic Targets of Colorectal Serrated Adenocarcinoma; Clues for a Histologically Based Treatment against an Aggressive Tumor. Int J Mol Sci 2020; 21:ijms21061991. [PMID: 32183342 PMCID: PMC7139914 DOI: 10.3390/ijms21061991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Serrated adenocarcinoma (SAC) is a tumor recognized by the WHO as a histological subtype accounting for around 9% of colorectal carcinomas. Compared to conventional carcinomas, SACs are characterized by a worse prognosis, weak development of the immune response, an active invasive front and a frequent resistance to targeted therapy due to a high occurrence of KRAS or BRAF mutation. Nonetheless, several high-throughput studies have recently been carried out unveiling the biology of this cancer and identifying potential molecular targets, favoring a future histologically based treatment. This review revises the current evidence, aiming to propose potential molecular targets and specific treatments for this aggressive tumor.
Collapse
|
11
|
MUC13 promotes the development of colitis-associated colorectal tumors via β-catenin activity. Oncogene 2019; 38:7294-7310. [PMID: 31427737 DOI: 10.1038/s41388-019-0951-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/26/2019] [Accepted: 05/12/2019] [Indexed: 12/13/2022]
Abstract
Many adenocarcinomas, including colorectal cancer (CRC), overexpress the MUC13 cell surface mucin, but the functional significance and mechanisms are unknown. Here, we report the roles of MUC13 in colonic tumorigenesis and tumor progression. High-MUC13 expression is associated with poor survival in two independent patient cohorts. In a comprehensive series of in vivo experiments, we identified a critical role for MUC13 in the development of this malignancy, by promoting survival and proliferation of tumor-initiating cells and driving an immunosuppressive environment that protects tumors from checkpoint inhibitor immunotherapy. In Muc13-deficient mice, fewer tumors are generated after exposure to carcinogens and inflammation, they have markedly reduced β-catenin signaling, have more tumor-infiltrating CD103+ dendritic cells and CD8+ T lymphocytes, fewer myeloid-derived suppressor cells, and are rendered sensitive to checkpoint inhibitor immunotherapy (anti-PD-L1). Mechanistically, we show that MUC13 protects β-catenin from degradation, by interacting with GSK-3β, which increases β-catenin nuclear translocation and promotes its signaling, thereby driving cancer initiation, progression, invasion, and immune suppression. Therefore, MUC13 is a potential marker of poor prognosis in colorectal cancer, and inhibiting MUC13 may be useful in the treatment of colitis-associated cancer and sensitizing tumors to immunotherapy.
Collapse
|
12
|
Ye P, Chiang YJ, Qi Z, Li Y, Wang S, Liu Y, Li X, Chen YG. Tankyrases maintain homeostasis of intestinal epithelium by preventing cell death. PLoS Genet 2018; 14:e1007697. [PMID: 30260955 PMCID: PMC6177203 DOI: 10.1371/journal.pgen.1007697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/09/2018] [Accepted: 09/16/2018] [Indexed: 12/25/2022] Open
Abstract
Lgr5+ intestinal stem cells are crucial for fast homeostatic renewal of intestinal epithelium and Wnt/β-catenin signaling plays an essential role in this process by sustaining stem cell self-renewal. The poly(ADP-ribose) polymerases tankyrases (TNKSs) mediate protein poly-ADP-ribosylation and are involved in multiple cellular processes such as Wnt signaling regulation, mitotic progression and telomere maintenance. However, little is known about the physiological function of TNKSs in epithelium homeostasis regulation. Here, using Villin-creERT2;Tnks1-/-;Tnks2fl/fl (DKO) mice, we observed that loss of TNKSs causes a rapid decrease of Lgr5+ intestinal stem cells and magnified apoptosis in small intestinal crypts, leading to intestine degeneration and increased mouse mortality. Consistently, deletion of Tnks or blockage of TNKS activity with the inhibitor XAV939 significantly inhibits the growth of intestinal organoids. We further showed that the Wnt signaling agonist CHIR99021 sustains the growth of DKO organoids, and XAV939 does not cause growth retardation of Apc-/- organoids. Consistent with the promoting function of TNKSs in Wnt signaling, Wnt/β-catenin signaling is significantly decreased with stabilized Axin in DKO crypts. Together, our findings unravel the essential role of TNKSs-mediated protein parsylation in small intestinal homeostasis by modulating Wnt/β-catenin signaling. Although tankyrases have been indicated to play important roles in telomere maintenance, mitosis and Wnt signaling regulation, little is known about their physiological function in intestinal epithelium. Using Villin-creERT2;Tnks1-/-;Tnks2fl/fl mice, which harbored conventional Tnks1 deletion and inducible intestinal epithelium-specific Tnks2 knockout, we show that tankyrases regulate adult intestinal Lgr5+ stem cells and epithelium homeostasis by preventing cell death and promoting cell proliferation.
Collapse
Affiliation(s)
- Pan Ye
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Y. Jeffrey Chiang
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhen Qi
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yehua Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xintong Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
13
|
Prévostel C, Rammah-Bouazza C, Trauchessec H, Canterel-Thouennon L, Busson M, Ychou M, Blache P. SOX9 is an atypical intestinal tumor suppressor controlling the oncogenic Wnt/ß-catenin signaling. Oncotarget 2018; 7:82228-82243. [PMID: 27429045 PMCID: PMC5347687 DOI: 10.18632/oncotarget.10573] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/26/2016] [Indexed: 01/10/2023] Open
Abstract
SOX9 inactivation is frequent in colorectal cancer (CRC) due to SOX9 gene mutations and/or to ectopic expression of MiniSOX9, a dominant negative inhibitor of SOX9. In the present study, we report a heterozygous L142P inactivating mutation of SOX9 in the DLD-1 CRC cell line and we demonstrate that the conditional expression of a wild type SOX9 in this cell line inhibits cell growth, clonal capacity and colonosphere formation while decreasing both the activity of the oncogenic Wnt/ß-catenin signaling pathway and the expression of the c-myc oncogene. This activity does not require SOX9 transcriptional function but, rather, involves an interaction of SOX9 with nuclear ß-catenin. Furthermore, we report that SOX9 inhibits tumor development when conditionally expressed in CRC cells injected either subcutaneous or intraperitoneous in BALB/c mice as an abdominal metastasis model. These observations argue in favor of a tumor suppressor activity for SOX9. As an siRNA targeting SOX9 paradoxically also inhibits DLD-1 and HCT116 CRC cell growth, we conclude that there is a critical level of endogenous active SOX9 needed to maintain CRC cell growth.
Collapse
Affiliation(s)
- Corinne Prévostel
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - Cyrine Rammah-Bouazza
- Université de Montpellier, UMR 5237, Centre de Recherche de Biochimie Macromoléculaire, CNRS, Montpellier, France
| | - Hélène Trauchessec
- Université de Montpellier, UMR 5237, Centre de Recherche de Biochimie Macromoléculaire, CNRS, Montpellier, France
| | - Lucile Canterel-Thouennon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - Muriel Busson
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| | - Marc Ychou
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France.,Centre Hospitalier Régional Universitaire (CHU) de Montpellier, Montpellier, France.,Institut Régional du Cancer de Montpellier (ICM)-Val d'Aurelle, Montpellier, France
| | - Philippe Blache
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM, U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
14
|
Lee SK, Hwang JH, Choi KY. Interaction of the Wnt/β-catenin and RAS-ERK pathways involving co-stabilization of both β-catenin and RAS plays important roles in the colorectal tumorigenesis. Adv Biol Regul 2018; 68:46-54. [PMID: 29449169 DOI: 10.1016/j.jbior.2018.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Cancer development is usually driven by multiple genetic and molecular alterations rather than by a single defect. In the human colorectal cancer (CRC), series of mutations of genes are involved in the different stages of tumorigenesis. For example, adenomatous polyposis coli (APC) and KRAS mutations have been known to play roles in the initiation and progression of the tumorigenesis, respectively. However, many studies indicate that mutations of these two genes, which play roles in the Wnt/β-catenin and RAS-extra-cellular signal regulated kinase (ERK) pathways, respectively, cooperatively interact in the tumorigenesis in several different cancer types including CRC. Both Apc and Kras mutations critically increase number and growth rate of tumors although single mutation of these genes does not significantly enhance the small intestinal tumorigenesis of mice. Both APC and KRAS mutations even result in the liver metastasis with inductions of the cancer stem cells (CSCs) markers in a mice xenograft model. In this review, we are going to describe the history for interaction between the Wnt/β-catenin and RAS/ERK pathways especially related with CRC, and provide the mechanical basis for the cross-talk between the two pathways. The highlight of the crosstalk involving the stability regulation of RAS protein via the Wnt/β-catenin signaling which is directly related with the cellular proliferation and transformation will be discussed. Activation status of GSK3β, a key enzyme involving both β-catenin and RAS degradations, is regulated by the status of the Wnt/β-catenin signaling dependent upon extracellular stimuli or intracellular abnormalities of the signaling components. The levels of both β-catenin and RAS proteins are co-regulated by the Wnt/β-catenin signaling, and these proteins are overexpressed with a positive correlation in the tumor tissues of CRC patients. These results indicate that the elevation of both β-catenin and RAS proteins is pathologically significant in CRC. In this review, we also will discuss further involvement of the increments of both β-catenin and RAS especially mutant KRAS in the activation of CSCs and metastasis. Overall, the increments of β-catenin and RAS especially mutant KRAS by APC loss play important roles in the cooperative tumorigenesis of CRC.
Collapse
Affiliation(s)
- Sang-Kyu Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jeong-Ha Hwang
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
15
|
Sun J, Liu X, Gao H, Zhang L, Ji Q, Wang Z, Zhou L, Wang Y, Sui H, Fan Z, Li Q. Overexpression of colorectal cancer oncogene CHRDL2 predicts a poor prognosis. Oncotarget 2017; 8:11489-11506. [PMID: 28009989 PMCID: PMC5355280 DOI: 10.18632/oncotarget.14039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) both promote and suppress tumorigenesis, and multiple BMP antagonists reportedly contribute to cancer progression. In this study, we demonstrated that the BMP antagonist Chordin-like 2 (CHRDL2) is upregulated in colorectal cancer (CRC) tissues, and that CHRDL2 levels correlate with clinical features of CRC patients, including tumor size, TNM staging, and tumor differentiation. In addition, survival rate and Cox proportional hazards model analyses showed that high CHRDL2 levels correlate with a poor prognosis in CRC. Moreover, CHRDL2 promoted CRC cell proliferation in vitro and in vivo, perhaps through up-regulation of Cyclin D1 and down-regulation of P21. Co-immunoprecipitation assays showed that CHRDL2 bound to BMPs, which inhibited p-Smad1/5, thereby promoting CRC cell proliferation and inhibiting apoptosis. These results suggest CHRDL2 could serve as a biomarker of poor prognosis in CRC, and provide evidence that CHRDL2 acts as an oncogene in human CRC, making it a novel potential therapeutic target.
Collapse
Affiliation(s)
- Jian Sun
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xuan Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Gao
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Long Zhang
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziyuan Wang
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Cancer Institute of Traditional Chinese Medicine & Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhongze Fan
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
16
|
Khan I, Ansari IA, Singh P, Dass JFP, Khan F. Identification and characterization of functional single nucleotide polymorphisms (SNPs) in Axin 1 gene: a molecular dynamics approach. Cell Biochem Biophys 2017; 76:173-185. [PMID: 28770488 DOI: 10.1007/s12013-017-0818-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 07/19/2017] [Indexed: 12/28/2022]
Abstract
Wnt signaling pathway has been reported to play crucial role in intestinal crypt formation and deregulation of this pathway is responsible for colorectal cancer initiation and progression. Axin 1, a scaffold protein, play pivotal role in the regulation of Wnt/β-catenin signaling pathway and has been found to be mutated in several cancers; primarily in colon cancer. Considering its crucial role, a structural and functional analysis of missense mutations in Axin 1 gene was performed in this study. Initially, one hundred non-synonymous single nucleotide polymorphisms in the coding regions of Axin 1 gene were selected for in silico analysis. Six variants (G820S, G856S, E830K, L811V, L847V, and R767C) were predicted to be deleterious by combinatorial prediction. Further investigation of structural attributes confirmed two highly deleterious single nucleotide polymorphisms (G820S and G856S). Molecular dynamics simulation demonstrated variation in different structural attributes between native and two highly deleterious Axin 1 mutant models. Finally, docking analysis showed variation in binding affinity of mutant Axin 1 proteins with two destruction complex members, GSK3β and adenomatous polyposis. The results collectively showed the deleterious effect of the above predicted single nucleotide polymorphisms on the Axin 1 protein structure and could prove to be an adjunct in the disease genotype-phenotype correlation studies.
Collapse
Affiliation(s)
- Imran Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Irfan A Ansari
- Department of Biosciences, Integral University, Lucknow, India.
| | - Pratichi Singh
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - J Febin Prabhu Dass
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Fahad Khan
- Department of Biosciences, Integral University, Lucknow, India
| |
Collapse
|
17
|
Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development. PLoS Pathog 2017; 13:e1006440. [PMID: 28704539 PMCID: PMC5509344 DOI: 10.1371/journal.ppat.1006440] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/31/2017] [Indexed: 02/07/2023] Open
Abstract
Streptococcus gallolyticus subsp. gallolyticus (Sg) has long been known to have a strong association with colorectal cancer (CRC). This knowledge has important clinical implications, and yet little is known about the role of Sg in the development of CRC. Here we demonstrate that Sg promotes human colon cancer cell proliferation in a manner that depends on cell context, bacterial growth phase and direct contact between bacteria and colon cancer cells. In addition, we observed increased level of β-catenin, c-Myc and PCNA in colon cancer cells following incubation with Sg. Knockdown or inhibition of β-catenin abolished the effect of Sg. Furthermore, mice administered with Sg had significantly more tumors, higher tumor burden and dysplasia grade, and increased cell proliferation and β-catenin staining in colonic crypts compared to mice receiving control bacteria. Finally, we showed that Sg is present in the majority of CRC patients and is preferentially associated with tumor compared to normal tissues obtained from CRC patients. These results taken together establish for the first time a tumor-promoting role of Sg that involves specific bacterial and host factors and have important clinical implications.
Collapse
|
18
|
Antonello ZA, Reiff T, Dominguez M. Mesenchymal to epithelial transition during tissue homeostasis and regeneration: Patching up the Drosophila midgut epithelium. Fly (Austin) 2016; 9:132-7. [PMID: 26760955 PMCID: PMC4862424 DOI: 10.1080/19336934.2016.1140709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem cells are responsible for preserving morphology and function of adult tissues. Stem cells divide to self-renew and to generate progenitor cells to sustain cell demand from the tissue throughout the organism's life. Unlike stem cells, the progenitor cells have limited proliferation potential but have the capacity to terminally differentiate and thereby to substitute older or damaged mature cells. Recent findings indicate that adult stem cells can adapt their division kinetics dynamically to match changes in tissue demand during homeostasis and regeneration. However, cell turnover not only requires stem cell division but also needs timed differentiation of the progenitor cells, which has been much less explored. In this Extra View article, we discuss the ability of progenitor cells to actively postpone terminal differentiation in the absence of a local demand and how tissue demand activates terminal differentiation via a conserved mesenchymal-epithelial transition program revealed in our recent EMBO J paper and other published and unpublished data. The extent of the significance of these results is discussed for models of tissue dynamics during both homeostasis and regeneration.
Collapse
Affiliation(s)
- Zeus A Antonello
- a Instituto de Neurociencias; Consejo Superior de Investigaciones Científicas (CSIC); and Universidad Miguel Hernández (UMH) ; Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante , Spain
| | - Tobias Reiff
- a Instituto de Neurociencias; Consejo Superior de Investigaciones Científicas (CSIC); and Universidad Miguel Hernández (UMH) ; Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante , Spain
| | - Maria Dominguez
- a Instituto de Neurociencias; Consejo Superior de Investigaciones Científicas (CSIC); and Universidad Miguel Hernández (UMH) ; Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante , Spain
| |
Collapse
|
19
|
Bradley CA, Dunne PD, Bingham V, McQuaid S, Khawaja H, Craig S, James J, Moore WL, McArt DG, Lawler M, Dasgupta S, Johnston PG, Van Schaeybroeck S. Transcriptional upregulation of c-MET is associated with invasion and tumor budding in colorectal cancer. Oncotarget 2016; 7:78932-78945. [PMID: 27793046 PMCID: PMC5346688 DOI: 10.18632/oncotarget.12933] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
c-MET and its ligand HGF are frequently overexpressed in colorectal cancer (CRC) and increased c-MET levels are found in CRC liver metastases. This study investigated the role of the HGF/c-MET axis in regulating migration/invasion in CRC, using pre-clinical models and clinical samples. Pre-clinically, we found marked upregulation of c-MET at both protein and mRNA levels in several invasive CRC cells. Down-regulation of c-MET using RNAi suppressed migration/invasion of parental and invasive CRC cells. Stimulation of CRC cells with rh-HGF or co-culture with HGF-expressing colonic myofibroblasts, resulted in significant increases in their migratory/invasive capacity. Importantly, HGF-induced c-MET activation promoted rapid downregulation of c-MET protein levels, while the MET transcript remained unaltered. Using RNA in situ hybridization (RNA ISH), we further showed that MET mRNA, but not protein levels, were significantly upregulated in tumor budding foci at the invasive front of a cohort of stage III CRC tumors (p < 0.001). Taken together, we show for the first time that transcriptional upregulation of MET is a key molecular event associated with CRC invasion and tumor budding. This data also indicates that RNA ISH, but not immunohistochemistry, provides a robust methodology to assess MET levels as a potential driving force of CRC tumor invasion and metastasis.
Collapse
Affiliation(s)
- Conor A. Bradley
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Philip D. Dunne
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Victoria Bingham
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Stephen McQuaid
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
- Tissue Pathology, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, UK
| | - Hajrah Khawaja
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Stephanie Craig
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Jackie James
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
- Tissue Pathology, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, UK
| | - Wendy L. Moore
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Darragh G. McArt
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Mark Lawler
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Sonali Dasgupta
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Patrick G. Johnston
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Sandra Van Schaeybroeck
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| |
Collapse
|
20
|
Zhang Y, Wen YL, Ma JW, Ye JC, Wang X, Huang JX, Meng CY, Xu XZ, Wang SX, Zhong XY. Tetrandrine inhibits glioma stem-like cells by repressing β-catenin expression. Int J Oncol 2016; 50:101-110. [DOI: 10.3892/ijo.2016.3780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/07/2016] [Indexed: 11/05/2022] Open
|
21
|
Neumann JHL. Prognostische Biomarker für das metastasierte kolorektale Karzinom. DER PATHOLOGE 2016; 37:180-185. [DOI: 10.1007/s00292-016-0204-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Malkomes P, Lunger I, Luetticke A, Oppermann E, Haetscher N, Serve H, Holzer K, Bechstein WO, Rieger MA. Selective AKT Inhibition by MK-2206 Represses Colorectal Cancer-Initiating Stem Cells. Ann Surg Oncol 2016; 23:2849-57. [PMID: 27059026 PMCID: PMC4972858 DOI: 10.1245/s10434-016-5218-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Indexed: 01/08/2023]
Abstract
Background Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide. Growing evidence indicates that tumor-initiating cells (TICs) are responsible for tumor growth and progression. Conventional chemotherapeutics do not sufficiently eliminate TICs, leading to tumor relapse. We aimed to gain insight into TIC biology by comparing the transcriptome of primary TIC cultures and their normal stem cell counterparts to uncover expression differences. Methods
We established colonosphere cultures derived from the resection of paired specimens of primary tumor and normal mucosa in patients with CRC. These colonospheres, enriched for TICs, were used for differential transcriptome analyses to detect new targets for a TIC-directed therapy. Effects of target inhibition on CRC cells were studied in vitro and in vivo. Results Pathway analysis of the regulated genes showed enrichment of genes central to PI3K/AKT and Wnt-signaling. We identified CD133 as a marker for a more aggressive CRC subpopulation enriched with TICs in SW480 CRC cells in an in vivo cancer model. Treatment of CRC cells with the selective AKT inhibitor MK-2206 caused a decrease in cell proliferation, particularly in the TIC fraction, resulting in a significant reduction of the stemness capacity to form colonospheres in vitro and to initiate tumor formation in vivo. Consequently, MK-2206 treatment of mice with established xenograft tumors exhibited a significant deceleration of tumor progression. Primary patient-derived tumorsphere growth was significantly inhibited by MK-2206. Conclusion This study reveals that AKT signaling is critical for TIC proliferation and can be efficiently targeted by MK-2206 representing a preclinical therapeutic strategy to repress colorectal TICs. Electronic supplementary material The online version of this article (doi:10.1245/s10434-016-5218-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrizia Malkomes
- Department of General Surgery, Goethe University Hospital Frankfurt, Frankfurt, Germany.
| | - Ilaria Lunger
- Department of General Surgery, Goethe University Hospital Frankfurt, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy Frankfurt and Department of Medicine, Hematology/Oncology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Alexander Luetticke
- Department of General Surgery, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Elsie Oppermann
- Department of General Surgery, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Nadine Haetscher
- LOEWE Center for Cell and Gene Therapy Frankfurt and Department of Medicine, Hematology/Oncology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Hubert Serve
- LOEWE Center for Cell and Gene Therapy Frankfurt and Department of Medicine, Hematology/Oncology, Goethe University Hospital Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Holzer
- Department of General Surgery, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Wolf Otto Bechstein
- Department of General Surgery, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy Frankfurt and Department of Medicine, Hematology/Oncology, Goethe University Hospital Frankfurt, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
23
|
Ouyang H, Yang HS, Yu T, Shan TD, Li JY, Huang CZ, Zhong W, Xia ZS, Chen QK. MEK/ERK pathway activation by insulin receptor isoform alteration is associated with the abnormal proliferation and differentiation of intestinal epithelial cells in diabetic mice. Mol Cell Biochem 2016; 413:165-78. [PMID: 26724951 DOI: 10.1007/s11010-015-2650-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022]
Abstract
In previous studies, we have reported the abnormal proliferation and differentiation of intestinal epithelial cells (IECs) in diabetes mellitus (DM) mice. The insulin receptor (IR) and its downstream mitogen-activated protein kinase kinase (MAPKK also known as MEK)/extracellular-regulated protein kinase (ERK) pathway is a classic pathway associated with cell proliferation and differentiation. The purpose of the present study is to investigate the role of the MEK/ERK pathway in abnormal proliferation and differentiation of IECs in DM mice. DM mouse models were induced by intraperitoneal injection of streptozotocin. The expression levels of the IR and its isoforms in IECs of DM mice and in IEC-6 cells were investigated. To ensure that the downstream pathways were monitored, QPCR and Western blotting were performed to detect the expression levels of MEK1/2, ERK1/2, PI3K, and Akt. Moreover, siRNA for IR-A and U0126, a specific inhibitor of MEK, were used to further investigate the relationship between the IR/MEK/ERK pathway and abnormal proliferation and differentiation of IECs in DM mice. In DM mice, excessive proliferation, disturbed differentiation, and a high ratio of IR-A/IR-B were detected in IECs. The expression levels of MEK1, MEK2, and ERK1/2 and their phosphorylated proteins in DM mice were significantly higher than those in the control group (P < 0.05), which could be offset by using siRNA for IR-A. The abnormal proliferation and differentiation of IECs in DM mice were normalized after the in vivo administration of U0126. The abnormal proliferation and differentiation of IECs in DM mice are associated with high IR-A/IR-B ratio and increased IR/MEK/ERK pathway activity.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hong-Sheng Yang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Tao Yu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Ti-Dong Shan
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jie-Yao Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Can-Ze Huang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Wa Zhong
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Zhong-Sheng Xia
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Qi-Kui Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|
24
|
Shan TD, Ouyang H, Yu T, Li JY, Huang CZ, Yang HS, Zhong W, Xia ZS, Chen QK. miRNA-30e regulates abnormal differentiation of small intestinal epithelial cells in diabetic mice by downregulating Dll4 expression. Cell Prolif 2016; 49:102-14. [PMID: 26786283 DOI: 10.1111/cpr.12230] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Depression of the Notch/Hes1 pathway has been reported to play a role in abnormal differentiation of intestinal epithelial cells (IECs) in diabetes mellitus (DM). However, the mechanism by which this pathway influences IEC differentiation has remained unclear. In this study, we have investigated the role of microRNAs (miRNAs) in regulating the Notch/Hes1 pathway in IECs of DM mice. MATERIALS AND METHODS Integrated comparative miRNA microarray technology was used to determine the expression profile of miRNAs in IECs of DM mice. After bioinformatic analysis, an miRNA with altered expression levels, miRNA-30e, was identified as a candidate for regulating the Notch pathway in DM. A luciferase reporter assay confirmed that miRNA-30e targeted 3'-UTR of the Notch gene. The role of miRNA-30e in regulating Notch signalling was then explored by up- and downregulating its expression in vitro and in vivo. RESULTS Abnormal differentiation of IECs in DM mice was associated with reduced activity of the Dll4/NICD/Hes1 signal pathway. Based on bioinformatic analyses, increased expression of miRNA-30e was identified as a potential candidate for regulating Notch signalling. miRNA-30e targeted the 3'-UTR of Dll4 and downregulated Dll4 expression in primary IECs and IEC-6 cells. Exogenous miRNA-30e reduced activity of the Dll4/NICD/Hes1 pathway, and induced abnormal differentiation of IECs in normal mice. Conversely, treatment with miRNA-30e antagonist upregu-lated activity of the Dll4/NICD/Hes1 pathway in vivo, and normalized IEC differentiation in DM mice. CONCLUSIONS Increased levels of miRNA-30e downregulated activity of the Dll4/NICD/Hes1 signalling pathway by targeting the 3'-UTR of Dll4, which contributed to abnormal differentiation in small intestinal epithelia of DM mice.
Collapse
Affiliation(s)
- Ti-Dong Shan
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hui Ouyang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Tao Yu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jie-Yao Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Can-Ze Huang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hong-Sheng Yang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wa Zhong
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | | | - Qi-Kui Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
25
|
Fanale D, Barraco N, Listì A, Bazan V, Russo A. Non-coding RNAs Functioning in Colorectal Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 937:93-108. [PMID: 27573896 DOI: 10.1007/978-3-319-42059-2_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, the hypothesis of the presence of tumor-initiating cancer stem cells (CSCs) has received a considerable support. This model suggested the existence of CSCs which, thanks to their self-renewal properties, are able to drive the expansion and the maintenance of malignant cell populations with invasive and metastatic potential in cancer. Increasing evidence showed the ability of such cells to acquire self-renewal, multipotency, angiogenic potential, immune evasion, symmetrical and asymmetrical divisions which, along with the presence of several DNA repair mechanisms, further enhance their oncogenic potential making them highly resistant to common anticancer treatments. The main signaling pathways involved in the homeostasis of colorectal (CRC) stem cells are the Wnt, Notch, Sonic Hedgehog, and Bone Morfogenic Protein (BMP) pathways, which are mostly responsible for all the features that have been widely referred to stem cells. The same pathways have been identified in colorectal cancer stem cells (CRCSCs), conferring a more aggressive phenotype compared to non-stem CRC cells. Recently, several evidences suggested that non-coding RNAs (ncRNAs) may play a crucial role in the regulation of different biological mechanisms in CRC, by modulating the expression of critical stem cell transcription factors that have been found active in CSCs. In this chapter, we will discuss the involvement of ncRNAs, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in stemness acquisition and maintenance by CRCSCs, through the regulation of pathways modulating the CSC phenotype and growth, carcinogenesis, differentiation, and epithelial to mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Angela Listì
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy.
| |
Collapse
|
26
|
Synchronized Targeting of Notch and ERBB Signaling Suppresses Melanoma Tumor Growth through Inhibition of Notch1 and ERBB3. J Invest Dermatol 2015; 136:464-472. [PMID: 26967479 PMCID: PMC4789778 DOI: 10.1016/j.jid.2015.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/28/2015] [Accepted: 10/10/2015] [Indexed: 01/06/2023]
Abstract
Despite significant advances in melanoma therapy, melanoma remains the deadliest form of skin cancer, with a 5-year survival rate of only 15%. Thus, novel treatments are required to address this disease. Notch and ERBB are evolutionarily conserved signaling cascades required for the maintenance of melanocyte precursors. We show that active Notch1 (Notch1(NIC)) and active (phosphorylated) ERBB3 and ERBB2 correlate significantly and are similarly expressed in both mutated and wild-type BRAF melanomas, suggesting these receptors are co-reactivated in melanoma to promote survival. Whereas blocking either pathway triggers modest effects, combining a ?-secretase inhibitor to block Notch activation and a tyrosine kinase inhibitor to inhibit ERBB3/2 elicits synergistic effects, reducing cell viability by 90% and hampering melanoma tumor growth. Specific inhibition of Notch1 and ERBB3 mimics these results, suggesting these are the critical factors triggering melanoma tumor expansion. Notch and ERBB inhibition blunts AKT and NF?B signaling. Constitutive expression of NF?B partially rescues cell death. Blockade of both Notch and ERBB signaling inhibits the slow cycling JARID1B-positive cell population, which is critical for long-term maintenance of melanoma growth. We propose that blocking these pathways is an effective approach to treatment of melanoma patients regardless of whether they carry mutated or wild-type BRAF.
Collapse
|
27
|
Qiu H, Tang X, Ma J, Shaverdashvili K, Zhang K, Bedogni B. Notch1 Autoactivation via Transcriptional Regulation of Furin, Which Sustains Notch1 Signaling by Processing Notch1-Activating Proteases ADAM10 and Membrane Type 1 Matrix Metalloproteinase. Mol Cell Biol 2015; 35:3622-32. [PMID: 26283728 PMCID: PMC4589600 DOI: 10.1128/mcb.00116-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/27/2015] [Accepted: 08/02/2015] [Indexed: 01/06/2023] Open
Abstract
Notch1 is an evolutionarily conserved transmembrane receptor involved in melanoma growth. Notch1 is first cleaved by furin in the Golgi apparatus to produce the biologically active heterodimer. Following ligand binding, Notch1 is cleaved at the cell membrane by proteases such as ADAM10 and -17 and membrane type 1 matrix metalloproteinase (MT1-MMP), the latter of which we recently identified as a novel protease involved in Notch1 processing. The final cleavage is γ-secretase dependent and releases the active Notch intracellular domain (NIC). We now demonstrate that Notch1 directly regulates furin expression. Aside from activating Notch1, furin cleaves and activates several proteases, including MT1-MMP, ADAM10, and ADAM17. By chromatin immunoprecipitation and a reporter assay, we demonstrate that Notch1 binds at position -1236 of the furin promoter and drives furin expression. The Notch1-dependent enhancement of furin expression increases the activities of MT1-MMP and ADAM10 but not that of ADAM17, as demonstrated by short hairpin RNA (shRNA) knockdown of furin, and promotes the cleavage of Notch1 itself. These data highlight a novel positive-feedback loop whereby Notch1-dependent furin expression can induce Notch1 signaling by increasing Notch1 processing and by potentiating the activity of the proteases responsible for Notch1 activation. This leads to Notch1 signal amplification, which can promote melanoma tumor growth and progression, as demonstrated by the inhibition of cell migration and invasion upon furin inhibition downstream of Notch1. Disruption of such feedback signaling might represent an avenue for the treatment of melanoma.
Collapse
Affiliation(s)
- Hong Qiu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Xiaoying Tang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jun Ma
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Khvaramze Shaverdashvili
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Keman Zhang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
28
|
Masamune A, Shimosegawa T. Pancreatic stellate cells: A dynamic player of the intercellular communication in pancreatic cancer. Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1:S98-103. [PMID: 26189983 DOI: 10.1016/j.clinre.2015.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/10/2015] [Indexed: 02/04/2023]
Abstract
There is accumulating evidence that activated pancreatic stellate cells (PSCs) play a pivotal role in the development of pancreatic fibrosis within the pancreatic cancer tissue. Not only do they produce extracellular matrix components, PSCs dynamically interact with other cell types to constitute the cancer-conditioned microenvironment. There exist bidirectional interactions between PSCs and pancreatic cancer cells. Pancreatic cancer cells promote the proliferation, migration, extracellular matrix production and degradation, and angiogenetic responses in PSCs. In turn, PSCs promote the proliferation and migration, and inhibit the apoptosis of pancreatic cancer cells. PSCs also induce epithelial-mesenchymal transition and stem cell like phenotypes in pancreatic cancer cells, resulting in resistance to conventional therapies, distant metastasis, and recurrence. PSCs interact with endothelial cells, neural cells and β-cells, leading to angiogenesis, neurogenesis and β-cell dysfunction and apoptosis. PSCs cause impaired immune responses and help pancreatic cancer cells escape from host immune-surveillance. PSCs induce the differentiation of myeloid-derived suppressor cells, induce the apoptosis of T cells, inhibit the infiltration of T cells, and induce the activation of mast cells. Overall, these interactions appear to promote the progression of pancreatic cancer, and anti-stroma therapies targeting PSCs are under intense investigation. Further elucidation of these interactions could lead to the identification of novel therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
29
|
Venugopal A, Subramaniam D, Balmaceda J, Roy B, Dixon DA, Umar S, Weir SJ, Anant S. RNA binding protein RBM3 increases β-catenin signaling to increase stem cell characteristics in colorectal cancer cells. Mol Carcinog 2015; 55:1503-1516. [PMID: 26331352 DOI: 10.1002/mc.22404] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer deaths in the United States. It arises from loss of intestinal epithelial homeostasis and hyperproliferation of the crypt epithelium. In order to further understand the pathogenesis of CRC it is important to further understand the factors regulating intestinal epithelial proliferation and more specifically, regulation of the intestinal epithelial stem cell compartment. Here, we investigated the role of the RNA binding protein RBM3 in stem cell homeostasis in colorectal cancers. Using a doxycycline (Dox) inducible RBM3 overexpressing cell lines HCT 116 and DLD-1, we measured changes in side population (SP) cells that have high xenobiotic efflux capacity and increased capacity for self-renewal. In both cell lines, RBM3 induction showed significant increases in the percentage of side population cells. Additionally, we observed increases in spheroid formation and in cells expressing DCLK1, LGR5 and CD44Hi . As the Wnt/β-catenin signaling pathway is important for both physiologic and cancer stem cells, we next investigated the effects of RBM3 overexpression on β-catenin activity. RBM3 overexpression increased levels of nuclear β-catenin as well as TCF/LEF transcriptional activity. In addition, there was inactivation of GSK3β leading to decreased β-catenin phosphorylation. Pharmacologic inhibition of GSK3β using (2'Z,3'E)-6-Bromoindirubin-3'-oxime (BIO) also recapitulates the RBM3 induced β-catenin activity. In conclusion, we see that RNA binding protein RBM3 induces stemness in colorectal cancer cells through a mechanism involving suppression of GSK3β activity thereby enhancing β-catenin signaling. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anand Venugopal
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Julia Balmaceda
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Badal Roy
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Dan A Dixon
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Shahid Umar
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Scott J Weir
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
30
|
Epigenetic modifications in cutaneous malignant melanoma: EZH2, H3K4me2, and H3K27me3 immunohistochemical expression is enhanced at the invasion front of the tumor. Am J Dermatopathol 2015; 37:138-44. [PMID: 25614949 DOI: 10.1097/dad.0b013e31828a2d54] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer stem cells and the misregulation of epigenetic modifications have been identified to possess a determinative role in carcinogenesis. The purpose of this study was to investigate the expression profile of EZH2 and H3K4me2 and H3K27me3, which constitute stem cell-like "bivalent" domains, in cutaneous malignant melanoma. A comparative analysis of their immunohistochemical expression between the invasion front (IF) and the inner tumor mass was also evaluated. Immunohistochemical methodology was performed on sections of 89 melanoma lesions from 79 patients. The 3 markers studied were identified in the cell nuclei of melanoma cells, nevus cells, and normal epidermal keratinocytes. A specific distribution pattern of H3K4me2 and H3K27me3 was found, as stronger levels were localized at the IF of the tumor (P = 0.034 and P < 0.01, respectively). In general, H3K4me2 and H3K27me3 levels were lower in metastatic with respect to primary melanoma cases (P = 0.0065 and P = 0.027, respectively). Advanced melanoma demonstrated significantly lower H3K4 immunohistochemical expression than did cases of lowest Clark level (I) (P = 0.038) or low Breslow depth (≤1 mm; P < 0.001). Furthermore, EZH2 expression in melanoma cells was higher compared with that in nevus cells (P = 0.02). A positive correlation between EZH2-H3K27me3 (P = 0.03) and H3K4me2-H3K27me3 (P < 0.01) in melanoma cells was also found. Our results suggest the possibility that combined immunohistochemical expression of EZH2, H3K4me2, and H3K27me3 might identify cancer cells with potential stem cell properties, particularly at the IF of this malignancy. This hypothesis should be further investigated, as many of the epigenetic changes are reversible via pharmacologic manipulations and new therapies, overpassing the resistance of advanced melanoma, may be developed.
Collapse
|
31
|
Kang DW, Choi CY, Cho YH, Tian H, Di Paolo G, Choi KY, Min DS. Targeting phospholipase D1 attenuates intestinal tumorigenesis by controlling β-catenin signaling in cancer-initiating cells. ACTA ACUST UNITED AC 2015; 212:1219-37. [PMID: 26122663 PMCID: PMC4516794 DOI: 10.1084/jem.20141254] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 05/11/2015] [Indexed: 12/20/2022]
Abstract
Kang et al. show that genetic or pharmacological inactivation of the enzyme phospholipase D1 (PLD1) disrupts colitis-associated intestinal tumorigenesis by suppressing the self-renewal capacity of colon cancer stem cells. Expression of the Wnt target gene phospholipase D1 (PLD1) is up-regulated in various carcinomas, including colorectal cancer (CRC). However, the mechanistic significance of its elevated expression in intestinal tumorigenesis remains unknown. In this study, we show that genetic and pharmacological targeting of PLD1 disrupts spontaneous and colitis-associated intestinal tumorigenesis in ApcMin/+ and azoxymethane/dextran sodium sulfate mice models. Intestinal epithelial cell–specific PLD1 overexpression in ApcMin/+ mice accelerated tumorigenesis with increased proliferation and nuclear β-catenin levels compared with ApcMin/+ mice. Moreover, PLD1 inactivation suppressed the self-renewal capacity of colon cancer–initiating cells (CC-ICs) by decreasing expression of β-catenin via E2F1-induced microRNA (miR)-4496 up-regulation. Ultimately, low expression of PLD1 coupled with a low level of CC-IC markers was predictive of a good prognosis in CRC patients, suggesting in vivo relevance. Collectively, our data reveal that PLD1 has a crucial role in intestinal tumorigenesis via its modulation of the E2F1–miR-4496–β-catenin signaling pathway. Modulation of PLD1 expression and activity represents a promising therapeutic strategy for the treatment of intestinal tumorigenesis.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Republic of Korea Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Chi Yeol Choi
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Republic of Korea
| | - Yong-Hee Cho
- Department of Biotechnology, College of Life Science and Biotechnology, and Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Republic of Korea
| | - Huasong Tian
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, and Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Republic of Korea Department of Biotechnology, College of Life Science and Biotechnology, and Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Republic of Korea
| | - Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Republic of Korea Department of Biotechnology, College of Life Science and Biotechnology, and Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
32
|
Neumann J, Löhrs L, Albertsmeier M, Reu S, Guba M, Werner J, Kirchner T, Angele M. Cancer Stem Cell Markers Are Associated With Distant Hematogenous Liver Metastases But Not With Peritoneal Carcinomatosis in Colorectal Cancer. Cancer Invest 2015; 33:354-60. [PMID: 26068177 DOI: 10.3109/07357907.2015.1047507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although peritoneal carcinomatosis (PC) displays advanced stage in colorectal cancer (CRC), most patients present without distant metastases. To analyze the expression of cancer stem cell markers immunohistochemistry for CD133, CD44 and β-catenin was applied to CRC with exclusive PC, exclusive hepatic metastasis and CRC with combined spread. Expression of cancer stem cell markers correlated with hematogeneous metastases to the liver and was absent in patients with exclusive PC. Thus, expression of cancer stem cell markers correlates with different patterns of metastatic spread in CRC. These data indicate that CRC with exclusive PC lack stem cell features needed for distant dissemination.
Collapse
Affiliation(s)
- Jens Neumann
- a Institute of Pathology , Ludwig-Maximilians-Universität München , Munich , Germany
| | - Lisa Löhrs
- b Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery , Medical Center of the University of Munich , Munich , Germany
| | - Markus Albertsmeier
- b Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery , Medical Center of the University of Munich , Munich , Germany
| | - Simone Reu
- a Institute of Pathology , Ludwig-Maximilians-Universität München , Munich , Germany
| | - Markus Guba
- b Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery , Medical Center of the University of Munich , Munich , Germany
| | - Jens Werner
- b Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery , Medical Center of the University of Munich , Munich , Germany
| | - Thomas Kirchner
- a Institute of Pathology , Ludwig-Maximilians-Universität München , Munich , Germany.,c German Cancer Consortium (DKTK) , Heidelberg , Germany.,d German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Martin Angele
- b Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery , Medical Center of the University of Munich , Munich , Germany
| |
Collapse
|
33
|
Michl M, Heinemann V, Jung A, Engel J, Kirchner T, Neumann J. Expression of cancer stem cell markers in metastatic colorectal cancer correlates with liver metastasis, but not with metastasis to the central nervous system. Pathol Res Pract 2015; 211:601-9. [PMID: 26092596 DOI: 10.1016/j.prp.2015.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/29/2015] [Accepted: 05/21/2015] [Indexed: 01/05/2023]
Abstract
INTRODUCTION In colorectal cancer (CRC), metastatic spread is supposed to be mainly driven by tumor cells with stem cell features. Only about 1% of all CRC patients develop metastasis to the central nervous system (CNS). The present study intended to analyze the correlation between the expression of cancer stem cell markers and patterns of liver or CNS metastases. MATERIAL AND METHODS Immunohistochemistry for β-catenin, CD133, CD44 and the mismatch-repair markers hMLH1 and hMSH2 was applied to primary specimen of two CRC cohorts with CNS (n=29) and exclusive liver metastasis (n=36). Furthermore, mutation analysis for KRAS exon 2 and BRAF exon 15 was performed. RESULTS The expression of nuclear β-catenin, CD44 and CD133 was associated with the development of liver metastasis, but not of CNS metastasis. CD133 expression was absent in CRC with solitary CNS metastasis. Combination of cancer stem cell markers revealed high discriminatory power for the prediction of different patterns of distant spread. KRAS mutation was more frequently detected in patients with CNS metastasis, but the mutational status of KRAS and BRAF failed to show correlation with clinico-pathological data or the results of immunohistochemistry. CONCLUSIONS This study demonstrates that deregulation of Wnt/β-catenin-signaling and high-grade expression of cancer stem cell markers correlate with metastasis to the liver, but not to the CNS. These data implicate that in CRC other mechanisms than deregulation of Wnt/β-catenin-signaling and acquisition of cancer stemness are required for formation of CNS metastasis.
Collapse
Affiliation(s)
- Marlies Michl
- Department of Medical Oncology, Klinikum Grosshadern and Comprehensive Cancer Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Volker Heinemann
- Department of Medical Oncology, Klinikum Grosshadern and Comprehensive Cancer Center, Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andreas Jung
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jutta Engel
- Munich Cancer Registry (MCR), Klinikum Grosshadern, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Medical Informatics, Biometry and Epidemiology (IBE), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Kirchner
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
34
|
Yue S, Mu W, Erb U, Zöller M. The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget 2015; 6:2366-84. [PMID: 25544774 PMCID: PMC4385857 DOI: 10.18632/oncotarget.2958] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/09/2014] [Indexed: 01/01/2023] Open
Abstract
Tspan8 and CD151 are metastasis-promoting tetraspanins and a knockdown (kd) of Tspan8 or CD151 and most pronounced of both tetraspanins affects the metastatic potential of the rat pancreatic adenocarcinoma line ASML. Approaching to elaborate the underlying mechanism, we compared ASMLwt, -CD151kd and/or Tspan8kd clones. We focused on tumor exosomes, as exosomes play a major role in tumor progression and tetraspanins are suggested to be engaged in exosome targeting. ASML-CD151/Tspan8kd cells poorly metastasize, but regain metastatic capacity, when rats are pretreated with ASMLwt, but not ASML-CD151kd and/or -Tspan8kd exosomes. Both exosomal CD151 and Tspan8 contribute to host matrix remodelling due to exosomal tetraspanin-integrin and tetraspanin-protease associations. ASMLwt exosomes also support stroma cell activation with upregulation of cytokines, cytokine receptors and proteases and promote inflammatory cytokine expression in hematopoietic cells. Finally, CD151-/Tspan8-competent exosomes support EMT gene expression in poorly-metastatic ASML-CD151/Tspan8kd cells. These effects are not seen or are weakened using ASML-CD151kd or -Tspan8kd exosomes, which is at least partly due to reduced binding/uptake of CD151- and/or Tspan8-deficient exosomes. Thus, CD151- and Tspan8-competent tumor exosomes support matrix degradation, reprogram stroma and hematopoietic cells and drive non-metastatic ASML-CD151/Tspan8kd cells towards a motile phenotype.
Collapse
Affiliation(s)
- Shijing Yue
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Wei Mu
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Ulrike Erb
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| |
Collapse
|
35
|
Hefei W, Yu R, Haiqing W, Xiao W, Jingyuan W, Dongjun L. Morphological characteristics and identification of islet-like cells derived from rat adipose-derived stem cells cocultured with pancreas adult stem cells. Cell Biol Int 2015; 39:253-63. [PMID: 25262665 DOI: 10.1002/cbin.10387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 07/31/2014] [Indexed: 12/14/2022]
Abstract
Diabetes is a significant public health problem that can be treated with insulin therapy; however, therapies designed to cure diabetes are limited. The goal of the current study was to assess the potential for curative treatment of diabetes using adipose-derived stem cells (ADSCs). To achieve this goal, the differentiation of rat ADSCs into pancreatic islet-like cells induced by coculture with pancreatic adult stem cells (PASCs) was characterized. Differentiation of ADSCs into islet-like cells induced by coculturing was determined morphologically, as well as by the assessment of islet cell markers using dithizone staining, immunohistochemistry, RT-PCR, qPCR, and western blotting. The results showed that ADSCs formed islet-like round cell masses after coculture with PASCs. These differentiated cells were shown to be positive for islet cell markers, including dithizone incorporation; PDX1, CK19 and Nestin by immunohistochemistry, and insulin, PDX1 and glucagon expression by RT-PCR. Differentiated ADSCs induced by coculturing also expressed insulin at the mRNA and protein level, with the level of insulin mRNA expression in cocultured ADSCs being 0.05 times greater than that of PASCs (P < 0.05). Taken together, our results demonstrate that ADSCs can be induced to differentiate into islet-like cells by coculture with PASCs; thus these cells can be used for transplantation, providing a theoretical foundation for the treatment of diabetes using this approach.
Collapse
Affiliation(s)
- Wang Hefei
- National Research Center for Animal Transgenic Bio-technology, Inner Mongolia University, 24 Zhao Jun Road, Hohhot, 010070, China
| | | | | | | | | | | |
Collapse
|
36
|
Pulkoski-Gross A, Zheng XE, Kim D, Cathcart J, Cao J. Epithelial to Mesenchymal Transition (EMT) and Intestinal Tumorigenesis. INTESTINAL TUMORIGENESIS 2015:309-364. [DOI: 10.1007/978-3-319-19986-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Abstract
Although often viewed as a single disease, colorectal cancer more accurately represents a family of diseases with different precursor lesions. Conventional (tubular, tubulovillous and villous) adenomas are the most common neoplastic lesions occurring in the large intestine. They have adenomatous polyposis coli (APC) mutations and arise from dysplastic aberrant crypt foci, initially as polyclonal lesions. In sporadic tumours, neoplastic progression follows the traditional pathway (chromosomal instability pathway), resulting in CpG island methylator phenotype (CIMP)-negative, microsatellite-stable (MSS), BRAF and KRAS wild-type cancers. Germline mutations in the APC gene lead to familial adenomatous polyposis. Conventional adenomas are also the precursors of Lynch syndrome-associated microsatellite-instable (MSI-high) cancers. Sessile serrated adenoma/polyp (SSA/P) is the principal precursor lesion of the serrated pathway, in which BRAF mutation can lead to colorectal cancer with MSI-high CIMP-high or MSS CIMP-high phenotype. SSA/Ps have been associated with synchronous and metachronous invasive adenocarcinomas as well as so-called interval carcinomas. Serrated polyposis is rare but most likely underdiagnosed. Affected individuals bear an increased but unspecified risk for the development of colorectal cancer; close endoscopic surveillance is warranted. Traditional serrated adenomas (TSAs) are much less common than the other serrated lesions. Cancers originating from TSAs may show KRAS mutation with a CIMP-high MSS phenotype.
Collapse
Affiliation(s)
- Cord Langner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
38
|
Progenitor/stem cells in renal regeneration and mass lesions. Int Urol Nephrol 2014; 46:2227-36. [DOI: 10.1007/s11255-014-0821-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/12/2014] [Indexed: 12/22/2022]
|
39
|
Min XH, Yu T, Qing Q, Yuan YH, Zhong W, Chen GC, Zhao LN, Deng N, Zhang LF, Chen QK. Abnormal differentiation of intestinal epithelium and intestinal barrier dysfunction in diabetic mice associated with depressed Notch/NICD transduction in Notch/Hes1 signal pathway. Cell Biol Int 2014; 38:1194-204. [PMID: 24890925 DOI: 10.1002/cbin.10323] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 04/25/2014] [Indexed: 01/02/2023]
Abstract
Proliferative change and intestinal barrier dysfunction in intestinal mucosa of diabetes have been described, but the differentiation characteristics of intestinal epithelial cells (IECs) and the mechanisms in the IECs development remain unclear. To explore the intestinal epithelial constitution patterns and barrier function, the diabetic mouse model was induced by streptozotocin. Tight junctions between IECs were significantly damaged and the serum level of D-lactate was raised in diabetic mice (P < 0.05). The expression of Zo1 and Ocln in the small intestine of diabetic mice were lower, while the markers for absorptive cell (SI) and Paneth cell (Lyz1) were significantly higher than in control mice (P < 0.05). The expression of Msi1, Notch1, and Dll1 in small intestine gradually increased throughout the course of hyperglycemia in diabetic mice (P < 0.05). However, the expression of NICD, RBP-jκ, Math1, and Hes1 had a reverse trend compared with Msi1 and Notch1. Intestinal absorptive cells and Paneth cells had a high proliferation rate in diabetic mice. However, the intestinal barrier dysfunction associated with the decreased expressions of Zo1 and Ocln was detected throughout hyperglycemia. In conclusion, downregulation of Notch/Hes1 signal pathway caused by depressed Notch/NICD transduction is associated with the abnormal differentiation of IECs and intestinal barrier dysfunction in diabetic mice.
Collapse
Affiliation(s)
- Xiao-Hui Min
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Piscaglia AC. Intestinal stem cells and celiac disease. World J Stem Cells 2014; 6:213-229. [PMID: 24772248 PMCID: PMC3999779 DOI: 10.4252/wjsc.v6.i2.213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/07/2014] [Accepted: 03/12/2014] [Indexed: 02/06/2023] Open
Abstract
Stem cells (SCs) are the key to tissue genesis and regeneration. Given their central role in homeostasis, dysfunctions of the SC compartment play a pivotal role in the development of cancers, degenerative disorders, chronic inflammatory pathologies and organ failure. The gastrointestinal tract is constantly exposed to harsh mechanical and chemical conditions and most of the epithelial cells are replaced every 3 to 5 d. According to the so-called Unitarian hypothesis, this renewal is driven by a common intestinal stem cell (ISC) residing within the crypt base at the origin of the crypt-to-villus hierarchical migratory pattern. Celiac disease (CD) can be defined as a chronic immune-mediated disease that is triggered and maintained by dietary proteins (gluten) in genetically predisposed individuals. Many advances have been achieved over the last years in understanding of the pathogenic interactions among genetic, immunological and environmental factors in CD, with a particular emphasis on intestinal barrier and gut microbiota. Conversely, little is known about ISC modulation and deregulation in active celiac disease and upon a gluten-free diet. Nonetheless, bone marrow-derived SC transplantation has become an option for celiac patients with complicated or refractory disease. This manuscript summarizes the “state of the art” regarding CD and ISCs, their niche and potential role in the development and treatment of the disease.
Collapse
|
41
|
Hamada S, Masamune A, Shimosegawa T. Inflammation and pancreatic cancer: disease promoter and new therapeutic target. J Gastroenterol 2014; 49:605-17. [PMID: 24292163 DOI: 10.1007/s00535-013-0915-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 11/13/2013] [Indexed: 02/04/2023]
Abstract
Chronic inflammation has a certain impact on the carcinogenesis of the digestive organs. The characteristic tissue structure of pancreatic cancer, desmoplasia, results from inflammatory processes induced by cancer cells and stromal cells. Concerning the progression of pancreatic cancer, recent research has clarified the pivotal role of tumor-stromal interaction, which promotes the development of an invasive phenotype of cancer and provides survival advantages against chemotherapeutic agents or immune surveillance. Tumor stromal cells such as pancreatic stellate cells and immune cells establish a microenvironment that protects cancer cells through complex interactions. The microenvironment of pancreatic cancer acts as a niche for pancreatic cancer stem cells from which therapy-resistance and disease recurrence develop. Inhibition of the stromal functions or restoration of the immune reaction against cancer cells has therapeutic benefits that enhance the efficacy of conventional therapies. Some of the recent advances in this field are now under evaluation in clinical settings, but many problems must be overcome to establish a radical therapy for pancreatic cancer. This review summarizes current knowledge about the tumor-promoting stromal functions, immune system modulation and therapeutic strategies targeting tumor-stromal interactions in pancreatic cancer.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi Aobaku, Sendai, Miyagi, 980-8574, Japan,
| | | | | |
Collapse
|
42
|
Moon BS, Jeong WJ, Park J, Kim TI, Min DS, Choi KY. Role of oncogenic K-Ras in cancer stem cell activation by aberrant Wnt/β-catenin signaling. J Natl Cancer Inst 2014; 106:djt373. [PMID: 24491301 DOI: 10.1093/jnci/djt373] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adenomatous polyposis coli (APC) loss-of-function mutations and K-Ras gain-of-function mutations are common abnormalities that occur during the initiation and intermediate adenoma stages of colorectal tumorigenesis, respectively. However, little is known about the role these mutations play in cancer stem cells (CSCs) associated with colorectal cancer (CRC) tumorigenesis. METHODS We analyzed tissue from CRC patients (n = 49) to determine whether K-Ras mutations contributed to CSC activation during colorectal tumorigenesis. DLD-1-K-Ras-WT and DLD-1-K-Ras-MT cells were cultured and evaluated for their ability to differentiate, form spheroids in vitro, and form tumors in vivo. Interaction between APC and K-Ras mutations in colorectal tumorigenesis was evaluated using APC (Min/+)/K-Ras (LA2) mice and DLD-1-K-Ras-WT and DLD-1-K-Ras-MT cell xenografts. (n = 4) Group differences were determined by Student t test. All statistical tests were two-sided. RESULTS The sphere-forming capability of DLD-1-K-Ras-MT cells was statistically significantly higher than that of DLD-1-K-Ras-WT cells (DLD-1-K-Ras-MT mean = 86.661 pixel, 95% confidence interval [CI] = 81.701 to 91.621 pixel; DLD-1-K-Ras-WT mean = 42.367 pixel, 95% CI = 36.467 to 48.267 pixel; P = .003). Moreover, both the size and weight of tumors from DLD-1-K-Ras-MT xenografts were markedly increased compared with tumors from DLD-1-K-Ras-WT cells. Expression of the CSC markers CD44, CD133, and CD166 was induced in intestinal tumors from APC (Min/+)/K-Ras (LA2)mice, but not K-Ras (LA2) mice, indicating that APC mutation is required for CSC activation by oncogenic K-Ras mutation. CONCLUSIONS K-Ras mutation activates CSCs, contributing to colorectal tumorigenesis and metastasis in CRC cells harboring APC mutations. Initial activation of β-catenin by APC loss and further enhancement through K-Ras mutation induces CD44, CD133, and CD166 expression.
Collapse
Affiliation(s)
- Byoung-San Moon
- Affiliations of authors: Department of Biotechnology (B-SM, W-JJ, JP, K-YC), Translational Research Center for Protein Function Control (B-SM, W-JJ, JP, DSM, K-YC), and Department of Internal Medicine and Institute of Gastroenterology, College of Medicine (TIK), Yonsei University, Seoul, Korea; Department of Molecular Biology, College of Natural Science, Pusan National University, Pusan, Korea (DSM)
| | | | | | | | | | | |
Collapse
|
43
|
Metformin: a potential therapeutic agent for recurrent colon cancer. PLoS One 2014; 9:e84369. [PMID: 24465408 PMCID: PMC3896365 DOI: 10.1371/journal.pone.0084369] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/22/2013] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence suggests that metformin, a biguanide class of anti-diabetic drugs, possesses anti-cancer properties. However, most of the studies to evaluate therapeutic efficacy of metformin have been on primary cancer. No information is available whether metformin could be effectively used for recurrent cancer, specifically colorectal cancer (CRC) that affects up to 50% of patients treated by conventional chemotherapies. Although the reasons for recurrence are not fully understood, it is thought to be due to re-emergence of chemotherapy-resistant cancer stem/stem-like cells (CSCs/CSLCs). Therefore, development of non-toxic treatment strategies targeting CSCs would be of significant therapeutic benefit. In the current investigation, we have examined the effectiveness of metformin, in combination with 5-fluorouracil and oxaliplatin (FuOx), the mainstay of colon cancer therapeutics, on survival of chemo-resistant colon cancer cells that are highly enriched in CSCs/CSLCs. Our data show that metformin acts synergistically with FuOx to (a) induce cell death in chemo resistant (CR) HT-29 and HCT-116 colon cancer cells, (b) inhibit colonospheres formation and (c) enhance colonospheres disintegration. In vitro cell culture studies have further demonstrated that the combinatorial treatment inhibits migration of CR colon cancer cells. These changes were associated with increased miRNA 145 and reduction in miRNA 21. Wnt/β-catenin signaling pathway was also down-regulated indicating its pivotal role in regulating the growth of CR colon cancer cells. Data from SCID mice xenograft model of CR HCT-116 and CR HT-29 cells show that the combination of metformin and FuOX is highly effective in inhibiting the growth of colon tumors as evidenced by ∼ 50% inhibition in growth following 5 weeks of combination treatment, when compared with the vehicle treated controls. Our current data suggest that metformin together with conventional chemotherapy could be an effective treatment regimen for recurring colorectal cancer (CRC).
Collapse
|
44
|
Zheng ZX, Sun Y, Bu ZD, Zhang LH, Li ZY, Wu AW, Wu XJ, Wang XH, Cheng XJ, Xing XF, Du H, Ji JF. Intestinal stem cell marker LGR5 expression during gastric carcinogenesis. World J Gastroenterol 2013; 19:8714-8721. [PMID: 24379591 PMCID: PMC3870519 DOI: 10.3748/wjg.v19.i46.8714] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/25/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the differential expression of leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) in gastric cancer tissues and its significance related to tumor growth and spread.
METHODS: Formalin-fixed biopsy specimens of intestinal metaplasia (n = 90), dysplasia (n = 53), gastric adenocarcinoma (n = 180), metastases in lymph nodes and the liver (n = 15), and lesion-adjacent normal gastric mucosa (controls; n = 145) were obtained for analysis from the Peking University Cancer Hospital’s Department of Pathology and Gastrointestinal Surgery tissue archives (January 2003 to December 2011). The biopsied patients’ demographic and clinicopathologic data were retrieved from the hospital’s medical records database. Each specimen was subjected to histopathological typing to classify the tumor node metastasis (TNM) stage and to immunohistochemistry staining to detect the expression of the cancer stem cell marker LGR5. The intergroup differences in LGR5 expression were assessed by Spearman’s rank correlation analysis, and the relationship between LGR5 expression level and the patients’ clinicopathological characteristics was evaluated by the χ2 test or Fisher’s exact test.
RESULTS: Significantly more gastric cancer tissues showed LGR5+ staining than normal control tissues (all P < 0.01), with immunoreactivity detected in 72.2% (65/90) and 50.9% (27/53) of intestinal metaplasia and dysplasia specimens, respectively, 52.8% (95/180) of gastric adenocarcinoma specimens, and 73.3%% (11/15) of metastasis specimens, but 26.9% (39/145) of lesion-adjacent normal gastric mucosa specimens. Comparison of the intensity of LGR5+ staining showed an increasing trend that generally followed increasing dedifferentiation and tumor spread (normal tissue < dysplasia, < gastric adenocarcinoma < metastasis; all P < 0.001), with the exception of expression level detected in intestinal metaplasia which was higher than that in normal gastric tissues (P < 0.001). Moreover, gastric cancer-associated enhanced expression of LGR5 was found to be significantly associated with age, tumor differentiation, Lauren type and TNM stage (I + II vs III + IV) (all P < 0.05), but not with sex, tumor site, location, size, histology, lymphovascular invasion, depth of invasion, lymph node metastasis or distant metastasis. Patients with LGR5+ gastric cancer specimens and without signs of metastasis from the original biopsy experienced more frequent rates of recurrence or metastasis during follow-up than patients with LGR5- specimens (P < 0.05).
CONCLUSION: Enhanced LGR5 is related to progressive dedifferentiation and metastasis of gastric cancer, indicating the potential of this receptor as an early diagnostic and prognostic biomarker.
Collapse
|
45
|
Wang F, Cheng J, Liu D, Sun H, Zhao J, Wang J, Chen J, Su Y, Zou Z. P53-participated cellular and molecular responses to irradiation are cell differentiation-determined in murine intestinal epithelium. Arch Biochem Biophys 2013; 542:21-7. [PMID: 24315958 DOI: 10.1016/j.abb.2013.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/18/2013] [Accepted: 11/30/2013] [Indexed: 12/26/2022]
Abstract
AIM Cells respond differently to DNA damaging agents, which may related to cell context and differentiation status. The aim of present study was to observe the cellular and molecular responses of cells in different differentiation status to ionizing irradiation (IR). METHODS Crypt-villus unit of murine small intestine was adopted as a cell differentiation model. DNA damage responses (DDRs) of crypt and villus were observed 1-24 h after 12 Gy IR using gene expression microarray analysis, immunohistochemical staining, Western blotting and Electrophoretic Mobility Shift Assay. RESULTS Microarray analysis revealed that most differentially expressed genes were related to p53 signaling pathway in crypt 4h after IR and in both crypt and villus 24h after IR. In crypt stem cells/progenitor cells, H2AX was phosphorylated and dephosphorylated quickly, Ki67 attenuated, cell apoptosis enhanced, phosphorylated P53 increased and translocated into nuclear with the ability to bind p53-specific sequence. In upper crypt (transit amplifying cells) and crypt-villus junction, cells kept survive and proliferate as indicated by retained Ki67 expression, suppressed p53 activation, and rare apoptosis. CONCLUSIONS DDRs varied with cell differentiation status and cell function in small intestinal epithelium. P53 signaling pathway could be an important regulatory mechanism of DDRs.
Collapse
Affiliation(s)
- Fengchao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Department of Radiation Medicine, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jin Cheng
- Department of Chemical Defense, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Dengquan Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Department of Radiation Medicine, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Huiqin Sun
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Department of Radiation Medicine, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jiqing Zhao
- Department of Chemical Defense, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Department of Radiation Medicine, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Junjie Chen
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Room Number Y3.6006, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Department of Radiation Medicine, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China.
| | - Zhongmin Zou
- Department of Chemical Defense, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China.
| |
Collapse
|
46
|
Torino F, Bonmassar E, Bonmassar L, De Vecchis L, Barnabei A, Zuppi C, Capoluongo E, Aquino A. Circulating tumor cells in colorectal cancer patients. Cancer Treat Rev 2013; 39:759-72. [PMID: 23375250 DOI: 10.1016/j.ctrv.2012.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/11/2022]
|
47
|
Hamada S, Masamune A, Shimosegawa T. Alteration of pancreatic cancer cell functions by tumor-stromal cell interaction. Front Physiol 2013; 4:318. [PMID: 24198790 PMCID: PMC3814547 DOI: 10.3389/fphys.2013.00318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/14/2013] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer shows a characteristic tissue structure called desmoplasia, which consists of dense fibrotic stroma surrounding cancer cells. Interactions between pancreatic cancer cells and stromal cells promote invasive growth of cancer cells and establish a specific microenvironment such as hypoxia which further aggravates the malignant behavior of cancer cells. Pancreatic stellate cells (PSCs) play a pivotal role in the development of fibrosis within the pancreatic cancer tissue, and also affect cancer cell function. PSCs induce epithelial-mesenchymal transition and cancer stem cell (CSC)-related phenotypes in pancreatic cancer cells by activating multiple signaling pathways. In addition, pancreatic cancer cells and PSCs recruit myeloid-derived suppressor cells which attenuate the immune reaction against pancreatic cancer cells. As a result, pancreatic cancer cells become refractory against conventional therapies. The formation of the CSC-niche by stromal cells facilitates postoperative recurrence, re-growth of therapy-resistant tumors and distant metastasis. Conventional therapies targeting cancer cells alone have failed to conquer pancreatic cancer, but targeting the stromal cells and immune cells in animal experiments has provided evidence of improved therapeutic responses. A combination of novel strategies altering stromal cell functions could contribute to improving the pancreatic cancer prognosis.
Collapse
Affiliation(s)
- Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine Sendai, Japan
| | | | | |
Collapse
|
48
|
Hasson RM, Briggs A, Carothers AM, Davids JS, Wang J, Javid SH, Cho NL, Bertagnolli MM. Estrogen receptor α or β loss in the colon of Min/+ mice promotes crypt expansion and impairs TGFβ and HNF3β signaling. Carcinogenesis 2013; 35:96-102. [PMID: 24104551 DOI: 10.1093/carcin/bgt323] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adenomatous polyposis coli (APC)-regulated Wnt and transforming growth factor-β (TGFβ) signaling cooperate in the intestine to maintain normal enterocyte functions. Human clinical trials showed that estrogen [17β-estradiol (E2)], the ligand of nuclear receptors estrogen receptor α (ERα) and ERβ, inhibited colorectal cancer (CRC) in women. Consistent with this finding, we reported that E2, ERα and ERβ suppressed intestinal tumorigenesis in the C57BL/6J-Min/+ (Min/+) mouse, a CRC model. Here, we extended our results with further comparisons of colon and small intestine from intact female Apc (+/+) (WT), Min/+ and ER-deficient Min/+ mice. In the colon of ER-deficient Min/+ mice, ER loss reduced TGFβ signaling in crypt base cells as evidenced by minimal expression of the effectors Smad 2, 3 and 4 in these strains. We also found reduced expression of Indian hedgehog (Ihh), bone morphogenetic protein 4 and hepatocyte nuclear factor 3β or FoxA2, factors needed for paracrine signaling between enterocytes and mesenchyme. In proximal colon, ER loss produced a >10-fold increased incidence of crypt fission, a marker for wound healing and tumor promotion. These data, combined with our previous work detailing the specific roles of E2, ERα and ERβ in the colon, suggest that ER activity helps to maintain the intestinal stem cell (ISC) microenvironment by modulating epithelial-stromal crosstalk in ways that regulate cytokine, Wnt and Ihh availability in the extracellular matrix (ECM).
Collapse
Affiliation(s)
- Rian M Hasson
- Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Cancer-initiating cells derived from human rectal adenocarcinoma tissues carry mesenchymal phenotypes and resist drug therapies. Cell Death Dis 2013; 4:e828. [PMID: 24091671 PMCID: PMC3824647 DOI: 10.1038/cddis.2013.337] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 07/21/2013] [Accepted: 08/12/2013] [Indexed: 02/05/2023]
Abstract
Accumulating evidence indicates that cancer-initiating cells (CICs) are responsible for cancer initiation, relapse, and metastasis. Colorectal carcinoma (CRC) is typically classified into proximal colon, distal colon, and rectal cancer. The gradual changes in CRC molecular features within the bowel may have considerable implications in colon and rectal CICs. Unfortunately, limited information is available on CICs derived from rectal cancer, although colon CICs have been described. Here we identified rectal CICs (R-CICs) that possess differentiation potential in tumors derived from patients with rectal adenocarcinoma. The R-CICs carried both CD44 and CD54 surface markers, while R-CICs and their immediate progenies carried potential epithelial–mesenchymal transition characteristics. These R-CICs generated tumors similar to their tumor of origin when injected into immunodeficient mice, differentiated into rectal epithelial cells in vitro, and were capable of self-renewal both in vitro and in vivo. More importantly, subpopulations of R-CICs resisted both 5-fluorouracil/calcium folinate/oxaliplatin (FolFox) and cetuximab treatment, which are the most common therapeutic regimens used for patients with advanced or metastatic rectal cancer. Thus, the identification, expansion, and properties of R-CICs provide an ideal cellular model to further investigate tumor progression and determine therapeutic resistance in these patients.
Collapse
|
50
|
Jin G, Westphalen CB, Hayakawa Y, Worthley DL, Asfaha S, Yang X, Chen X, Si Y, Wang H, Tailor Y, Friedman RA, Wang TC. Progastrin stimulates colonic cell proliferation via CCK2R- and β-arrestin-dependent suppression of BMP2. Gastroenterology 2013; 145:820-30.e10. [PMID: 23891976 PMCID: PMC3829714 DOI: 10.1053/j.gastro.2013.07.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Progastrin stimulates colonic mucosal proliferation and carcinogenesis through the cholecystokinin 2 receptor (CCK2R)-partly by increasing the number of colonic progenitor cells. However, little is known about the mechanisms by which progastrin stimulates colonic cell proliferation. We investigated the role of bone morphogenetic proteins (BMPs) in progastrin induction of colonic cell proliferation via CCK2R. METHODS We performed microarray analysis to compare changes in gene expression in the colonic mucosa of mice that express a human progastrin transgene, gastrin knockout mice, and C57BL/6 mice (controls); the effects of progastrin were also determined on in vitro colonic crypt cultures from cholecystokinin 2 receptor knockout and wild-type mice. Human colorectal and gastric cancer cells that expressed CCK2R were incubated with progastrin or Bmp2; levels of β-arrestin 1 and 2 were knocked down using small interfering RNAs. Cells were analyzed for progastrin binding, proliferation, changes in gene expression, and symmetric cell division. RESULTS The BMP pathway was down-regulated in the colons of human progastrin mice compared with controls. Progastrin suppressed transcription of Bmp2 through a pathway that required CCK2R and was mediated by β-arrestin 1 and 2. In mouse colonic epithelial cells, down-regulation of Bmp2 led to decreased phosphorylation of Smads1/5/8 and suppression of inhibitor of DNA binding 4. In human gastric and colorectal cancer cell lines, CCK2R was necessary and sufficient for progastrin binding and induction of proliferation; these effects were blocked when cells were incubated with recombinant Bmp2. Incubation with progastrin increased the number of CD44(+), bromodeoxyuridine+, and NUMB(+) cells, indicating an increase in symmetric divisions of putative cancer stem cells. CONCLUSIONS Progastrin stimulates proliferation in colons of mice and cultured human cells via CCK2R- and β-arrestin 1 and 2-dependent suppression of Bmp2 signaling. This process promotes symmetric cell division.
Collapse
Affiliation(s)
- Guangchun Jin
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - C. Benedikt Westphalen
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yoku Hayakawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Daniel L. Worthley
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Samuel Asfaha
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Xiangdong Yang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Xiaowei Chen
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yiling Si
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Hongshan Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yagnesh Tailor
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|