1
|
Sun L, Li H, Zhang H, Guo Y, Wang C, Chen S. Proteomics and phosphoproteomics analysis of acute pancreatitis alleviated by forsythoside B. J Proteomics 2025; 315:105414. [PMID: 40015372 DOI: 10.1016/j.jprot.2025.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/19/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Acute pancreatitis (AP) is a common acute abdominal condition in clinical practice, associated with high morbidity and mortality rates. Forsythia constitutes a component of traditional Chinese medicinal decoctions used for clinical AP treatment; however, the efficacy of its active monomer in treating AP has yet to be completely substantiated. Here, we engineered an AP cell and mouse model by administering a combination of caerulein and LPS. In vitro experiments utilizing AR42J cells demonstrated that forsythoside B (FST·B) was the most effective monomer in mitigating cellular inflammation. Subsequently, a comprehensive evaluation of FST·B concentrations and efficacy was performed in animal models. Next Mass spectrometry analysis of pancreatic from AP mice treated with 50 mg/kg FST·B was conducted to elucidate its primary regulatory molecular signaling and key targets. FST·B effectively mitigated pathological damage in mice with acute pancreatitis, leading to a reduction in the expression of inflammatory cytokines in both pancreatic tissue and serum. Proteomics and phosphoproteomic profiles revealed that FST·B significantly enhanced the level of oxidative phosphorylation and spliceosome pathway in the AP mice. This research provides initial evidence of the regulatory molecular signals and targets of FST·B in AP, laying a potential foundation for its clinical use in treating AP. SIGNIFICANCE: Acute pancreatitis (AP) is a common acute abdominal condition in clinical practice, associated with high morbidity and mortality rates, and the global incidence of AP has increased by approximately 25 % over the past 15 years. Despite the complexity of AP's causes and the high susceptibility of proteins to degradation during lesions, systems biology studies, such as proteomics, have been limited in investigating the molecular mechanisms involved in its pharmacological treatment. Forsythoside B, a phenylethanol glycoside isolated from the air-dried fruit of forsythia, is a traditional oriental anti-inflammatory drug commonly used in clinical practice. We demonstrated in the AP mouse model that forsythoside B can alleviate pancreatic inflammatory damage in vivo. To elucidate the molecular mechanisms underlying the anti-inflammatory effect of forsythoside B, a comprehensive proteomic and phosphoproteomic analysis was conducted on AP mice models prior to and subsequent to forsythoside B intervention. Finally, 1640 significantly differentially expressed proteins, 1448 significantly differentially expressed phosphoproteins corresponding to 2496 significantly differentially expressed phosphosites were identified. Functional analysis revealed that forsythoside B significantly enhanced the level of oxidative phosphorylation in the AP mice in proteomic profiles, and the spliceosome pathway at the phosphorylation level was significantly affected by forsythoside B. This research provides initial evidence of the regulatory molecular signals and targets of forsythoside B in AP, laying a potential foundation for its clinical use in treating AP.
Collapse
Affiliation(s)
- Linxiao Sun
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang 325000, China
| | - Hongmei Li
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Haiyan Zhang
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Yinchu Guo
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Cheng Wang
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China.
| | - Shichao Chen
- Department of General Surgery, the People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
| |
Collapse
|
2
|
Lin T, Chen Z, Dong B, Pan H, Wang H, Zheng X, Chen K, Lai Y, Zhang C, Dong Y, Xu Z, Lin M, Xi X, Xia S, Wang Y, Wang W, Li X, Sun C, Hu Y, Xu F, Zheng J, Jin F, Zhang H, Zheng J. A novel synonymous variant in the NF1 gene disrupting splicing contributes to neurofibromatosis pathogenesis. Front Genet 2025; 16:1572487. [PMID: 40417234 PMCID: PMC12098384 DOI: 10.3389/fgene.2025.1572487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/01/2025] [Indexed: 05/27/2025] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is a common autosomal dominant genetic disorder characterized by café-au-lait macules, neurofibromas, and other manifestations. It is caused by variations in the NF1 gene located on chromosome 17q11.2. The gene's complexity and extensive variations often lead to misdiagnoses by conventional detection methods, which adverses to effective diagnosis and treatment strategies. Case presentation A 26-year-old Chinese woman was admitted to our hospital with multiple café-au-lait spots and cutaneous nodules. She had a family history of NF1, with her mother also showing similar dermatological symptoms. Whole exome sequencing (WES) identified a synonymous variation, NM_001042492.3: c.987A>G (p.K329K), in the NF1 gene. Although synonymous variations are typically considered non-pathogenic, RNA sequencing (RNA-seq) and minigene analysis revealed that this variation caused the partial loss of exon 9, leading to aberrant splicing. These findings were validated through Sanger sequencing, confirming the genetic alteration and its impact on mRNA splicing. Conclusion The case highlights the critical role of synonymous variations in the NF1 gene that significantly impact splicing and protein function. These findings expand our understanding of NF1's genetic diversity and underscore the importance of comprehensive genetic and RNA analyses to achieve accurate diagnosis and in-depth insight into the molecular underpinnings of NF1.
Collapse
Affiliation(s)
- Tao Lin
- Department of Gynecology and Obstetrics, Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Zheyan Chen
- Department of Plastic and Aesthetic Surgery, Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Biwen Dong
- Department of Reproductive Genetics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Haojie Pan
- Department of Reproductive Genetics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Hai Wang
- Department of Reproductive Genetics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Xianjue Zheng
- Department of Reproductive Genetics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Kaixin Chen
- Department of Reproductive Genetics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Yanan Lai
- Department of Reproductive Genetics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Chenhui Zhang
- Department of Reproductive Genetics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Ye Dong
- Department of Reproductive Genetics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Zitong Xu
- Department of Reproductive Genetics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Menmen Lin
- Department of Reproductive Genetics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Xiujie Xi
- Department of Reproductive Genetics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Shuqi Xia
- Department of Reproductive Genetics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Yimin Wang
- Department of Reproductive Genetics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Wenhan Wang
- Wenzhou City Key Laboratory of Gynecology and Obstetrics, Wenzhou, Zhejiang, China
| | - Xiaoqing Li
- Wenzhou City Key Laboratory of Gynecology and Obstetrics, Wenzhou, Zhejiang, China
| | - Congcong Sun
- Wenzhou City Key Laboratory of Gynecology and Obstetrics, Wenzhou, Zhejiang, China
| | - Yanjun Hu
- Department of Gynecology and Obstetrics, Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Fang Xu
- Department of Gynecology and Obstetrics, Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Jianqiong Zheng
- Department of Gynecology and Obstetrics, Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
| | - Fan Jin
- Department of Reproductive Genetics, Women’s Hospital, Zhejiang University School of Medicine, Hanzhou, China
| | - Hongping Zhang
- Department of Gynecology and Obstetrics, Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
- Wenzhou City Key Laboratory of Gynecology and Obstetrics, Wenzhou, Zhejiang, China
| | - Jiayong Zheng
- Department of Reproductive Genetics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital/Wenzhou Maternal and Child Healthcare Hospital, Wenzhou, China
- Wenzhou City Key Laboratory of Gynecology and Obstetrics, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Sullivan PJ, Quinn JMW, Ajuyah P, Pinese M, Davis RL, Cowley MJ. Data-driven insights to inform splice-altering variant assessment. Am J Hum Genet 2025; 112:764-778. [PMID: 40056912 DOI: 10.1016/j.ajhg.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 04/06/2025] Open
Abstract
Disease-causing genetic variants often disrupt mRNA splicing, an intricate process that is incompletely understood. Thus, accurate inference of which genetic variants will affect splicing and what their functional consequences will be is challenging, particularly for variants outside of the essential splice sites. Here, we describe a set of data-driven heuristics that inform the interpretation of human splice-altering variants (SAVs) based on the analysis of annotated exons, experimentally validated SAVs, and the currently understood principles of splicing biology. We defined requisite splicing criteria by examining around 202,000 canonical protein-coding exons and 19,000 experimentally validated splicing branchpoints. This analysis defined the sequence, spacing, and motif strength required for splicing, with 95.9% of the exons examined meeting these criteria. By considering over 12,000 experimentally validated variants from the SpliceVarDB, we defined a set of heuristics that inform the evaluation of putative SAVs. To ensure the applicability of each heuristic, only those supported by at least 10 experimentally validated variants were considered. This allowed us to establish a measure of spliceogenicity: the proportion of variants at a location (or motif site) that affected splicing in a given context. This study makes considerable advances toward bridging the gap between computational predictions and the biological process of splicing, offering an evidence-based approach to identifying SAVs and evaluating their impact. Our splicing heuristics enhance the current framework for genetic variant evaluation with a robust, detailed, and comprehensible analysis by adding valuable context over traditional binary prediction tools.
Collapse
Affiliation(s)
- Patricia J Sullivan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia; University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Julian M W Quinn
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Pamela Ajuyah
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Pinese
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ryan L Davis
- Neurogenetics Research Group, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St. Leonards, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Caparali EB, De Gregorio V, Barua M. Genotype-Based Molecular Mechanisms in Alport Syndrome. J Am Soc Nephrol 2025:00001751-990000000-00551. [PMID: 39899372 DOI: 10.1681/asn.0000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Alport syndrome is an inherited disorder characterized by kidney disease, sensorineural hearing loss, and ocular abnormalities. Alport syndrome is caused by pathogenic variants in COL4A3 , COL4A4 , or COL4A5 , which encode the α 3, α 4, and α 5 chains of type 4 collagen that forms a heterotrimer expressed in the glomerular basement membrane. Knowledge of its genetic basis has informed the development of different models in dogs, mice, and rats that reflect its autosomal and X-linked inheritance patterns as well as different mutation types, including protein-truncating and missense variants. A key difference between these two types is the synthesis of α 3 α 4 α 5(IV), which is not made in autosomal Alport syndrome (two pathogenic variants in trans or biallelic) or male patients with X-linked Alport syndrome due to protein-truncating variants. By contrast, α 3 α 4 α 5(IV) is synthesized in Alport syndrome because of missense variants. For missense variants, in vitro studies suggest that these cause impaired type 4 collagen trafficking and endoplasmic reticulum stress. For protein-truncating variants, knockout models suggest that persistence of an immature α 1 α 1 α 2(IV) network is associated with biomechanical strain, which activates endothelin-A receptors leading to mesangial filopodia formation. Moreover, studies suggest that activation of collagen receptors, integrins and discoidin domain receptor 1, play a role in disease propagation. In this review, we provide an overview of how these genotype-phenotype mechanisms are key for a precision medicine-based approach in the future.
Collapse
Affiliation(s)
- Emine Bilge Caparali
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | | | - Moumita Barua
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Miguel Berenguel L, Gianelli C, Matas Pérez E, del Rosal T, Méndez Echevarría A, Robles Marhuenda Á, Feito Rodríguez M, Caballero Molina MT, Magallares García L, Sánchez Garrido B, Hita Díaz S, Allende Martínez L, Nozal Aranda P, Cámara Hijón C, López Granados E, Rodríguez Pena R, Bravo García-Morato M. Molecular assessment of splicing variants in a cohort of patients with inborn errors of immunity: methodological approach and interpretation remarks. Front Immunol 2025; 15:1499415. [PMID: 39944559 PMCID: PMC11814461 DOI: 10.3389/fimmu.2024.1499415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/27/2024] [Indexed: 05/09/2025] Open
Abstract
Background Splicing is the molecular mechanism to produce mature messenger RNA (mRNA) before its translation into protein. It is estimated that 50% of disease-causing mutations disrupt splicing, mostly of them affecting canonical positions. However, variants occurring in coding regions or deep-intronic variants can also affect splicing. In these cases, interpretation of the results may be challenging and molecular validation is required. Methods The study includes 23 patients with splicing variants out of a cohort of 187 patients diagnosed with inborn errors of immunity (IEI). Clinical features and immunophenotypes are shown. Reverse transcription-polymerase chain reaction (RT-PCR) is the molecular assay employed for pathogenicity validation. Results We detected 23 patients of 20 pedigrees with splicing variants in IEI genes, which constitutes the 12.3% of our cohort. In total, 21 splicing variants were analyzed, 10 of which had previously been reported in the literature and 11 novel ones. Among the 23 patients, 16 showed variants at canonical splice sites. Molecular validation was required only in the cases of genes of uncertain significance (GUS), high homology pseudogenes or incompatible clinical phenotype. Seven patients showed variants outside canonical positions. All of them needed molecular validation, with the exception of two patients, whose variants had previously been well characterized in the medical literature. Conclusion This study shows the proportion of splicing variants in a cohort of IEI patients, providing their clinical phenotypic characteristics and the methodology used to validate the splicing defects. Based on the results, an algorithm is proposed to clarify when a splicing variant should be validated by complementary methodology and when, by contrast, it can be directly considered disease causing.
Collapse
Affiliation(s)
| | - Carla Gianelli
- Department of Immunology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute of Biomedical Research, Madrid, Spain
| | | | - Teresa del Rosal
- Department of Pediatric Infectious Diseases, La Paz University Hospital, Madrid, Spain
| | - Ana Méndez Echevarría
- Department of Pediatric Infectious Diseases, La Paz University Hospital, Madrid, Spain
| | | | | | - Maria Teresa Caballero Molina
- Department of Allergy, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
| | | | | | | | - Luis Allende Martínez
- Immunology Department, 12 de Octubre University Hospital, Madrid, Spain
- Research Institute Hospital 12 Octubre (I+12), Madrid, Spain
| | - Pilar Nozal Aranda
- Department of Immunology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
- Complement Alterations in Human Pathology Group, La Paz Institute of Biomedical Research, Madrid, Spain
| | - Carmen Cámara Hijón
- Department of Immunology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute of Biomedical Research, Madrid, Spain
| | - Eduardo López Granados
- Department of Immunology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute of Biomedical Research, Madrid, Spain
| | - Rebeca Rodríguez Pena
- Department of Immunology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute of Biomedical Research, Madrid, Spain
| | - María Bravo García-Morato
- Department of Immunology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute of Biomedical Research, Madrid, Spain
| |
Collapse
|
6
|
Sharma Y, Vo K, Shila S, Paul A, Dahiya V, Fields PE, Rumi MAK. mRNA Transcript Variants Expressed in Mammalian Cells. Int J Mol Sci 2025; 26:1052. [PMID: 39940824 PMCID: PMC11817330 DOI: 10.3390/ijms26031052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Gene expression or gene regulation studies often assume one gene expresses one mRNA. However, contrary to the conventional idea, a single gene in mammalian cells can express multiple transcript variants translated into several different proteins. The transcript variants are generated through transcription from alternative start sites and alternative post-transcriptional processing of the precursor mRNA (pre-mRNA). In addition, gene mutations and RNA editing further enhance the diversity of the transcript variants. The transcript variants can encode proteins with various domains, expanding the functional repertoire of a single gene. Some transcript variants may not encode proteins but function as non-coding RNAs and regulate gene expression. The expression level of the transcript variants may vary between cell types or within the same cells under different biological conditions. Transcript variants are characteristic of cell differentiation in a particular tissue, and the variants may play a key role in normal development and aging. Studies also reported that some transcript variants may have roles in disease pathogenesis. The biological significances urge studying the complexity of gene expression at the transcript level. This article updates the molecular basis of transcript variants in mammalian cells, including the formation mechanisms and potential roles in host biology. Gaining insight into the transcript variants will not only identify novel mechanisms of gene regulation but also unravel the role of the variants in health and disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.S.); (K.V.); (S.S.); (A.P.); (V.D.); (P.E.F.)
| |
Collapse
|
7
|
Sharma Y, Lo R, Tomilin VN, Ha K, Deremo H, Pareek AV, Dong W, Liao X, Lebedeva S, Charu V, Kambham N, Mutig K, Pochynyuk O, Bhalla V. ClC-Kb pore mutation disrupts glycosylation and triggers distal tubular remodeling. JCI Insight 2024; 9:e175998. [PMID: 39405114 PMCID: PMC11601903 DOI: 10.1172/jci.insight.175998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
Mutations in the CLCNKB gene (1p36), encoding the basolateral chloride channel ClC-Kb, cause type 3 Bartter syndrome. We identified a family with a mixed Bartter/Gitelman phenotype and early-onset kidney failure and by employing a candidate gene approach, identified what we believe is a novel homozygous mutation (CLCNKB c.499G>T [p.Gly167Cys]) in exon 6 of CLCNKB in the index patient. We then validated these results with Sanger and whole-exome sequencing. Compared with wild-type ClC-Kb, the Gly167Cys mutant conducted less current and exhibited impaired complex N-linked glycosylation in vitro. We demonstrated that loss of Gly-167, rather than gain of a mutant Cys, impairs complex glycosylation, but that surface expression remains intact. Moreover, Asn-364 was necessary for channel function and complex glycosylation. Morphologic evaluation of human kidney biopsies revealed typical basolateral localization of mutant Gly167Cys ClC-Kb in cortical distal tubular epithelia. However, we detected attenuated expression of distal sodium transport proteins, changes in abundance of distal tubule segments, and hypokalemia-associated intracellular condensates from the index patient compared with control nephrectomy specimens. The present data establish what we believe are novel regulatory mechanisms of ClC-Kb activity and demonstrate nephron remodeling in humans, caused by mutant ClC-Kb, with implications for renal electrolyte handling, blood pressure control, and kidney disease.
Collapse
Affiliation(s)
- Yogita Sharma
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Robin Lo
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Viktor N. Tomilin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kotdaji Ha
- Department of Physiology, UCSF, San Francisco, California, USA
| | - Holly Deremo
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Aishwarya V. Pareek
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Wuxing Dong
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Xiaohui Liao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Svetlana Lebedeva
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vivek Charu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Neeraja Kambham
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kerim Mutig
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
Belchikov N, Hsu J, Li XJ, Jarroux J, Hu W, Joglekar A, Tilgner HU. Understanding isoform expression by pairing long-read sequencing with single-cell and spatial transcriptomics. Genome Res 2024; 34:1735-1746. [PMID: 39567235 DOI: 10.1101/gr.279640.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
RNA isoform diversity, produced via alternative splicing, and alternative usage of transcription start and poly(A) sites, results in varied transcripts being derived from the same gene. Distinct isoforms can play important biological roles, including by changing the sequences or expression levels of protein products. The first single-cell approaches to RNA sequencing-and later, spatial approaches-which are now widely used for the identification of differentially expressed genes, rely on short reads and offer the ability to transcriptomically compare different cell types but are limited in their ability to measure differential isoform expression. More recently, long-read sequencing methods have been combined with single-cell and spatial technologies in order to characterize isoform expression. In this review, we provide an overview of the emergence of single-cell and spatial long-read sequencing and discuss the challenges associated with the implementation of these technologies and interpretation of these data. We discuss the opportunities they offer for understanding the relationships between the distinct variable elements of transcript molecules and highlight some of the ways in which they have been used to characterize isoforms' roles in development and pathology. Single-nucleus long-read sequencing, a special case of the single-cell approach, is also discussed. We attempt to cover both the limitations of these technologies and their significant potential for expanding our still-limited understanding of the biological roles of RNA isoforms.
Collapse
Affiliation(s)
- Natan Belchikov
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Medicine, New York, New York 10065, USA
| | - Justine Hsu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Xiang Jennie Li
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
- Computational Biology Master's Program, Weill Cornell Medicine, New York, New York 10065, USA
| | - Julien Jarroux
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Anoushka Joglekar
- New York Genome Center, New York, New York 10013, USA
- Department of Biomedical Informatics, Columbia University, New York, New York 10032, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA;
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
9
|
Aldharee H, Hamdan HZ. Segregation of the COL6A2 Variant (c.1817-3C>G) in a Consanguineous Saudi Family with Bethlem Myopathy. Genes (Basel) 2024; 15:1405. [PMID: 39596604 PMCID: PMC11593470 DOI: 10.3390/genes15111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Introduction: Bethlem myopathy is a rare genetic disease caused by a variant mapped to 21q22, which harbors the collagen type VI alpha 2 chain (COL6A2) and collagen type VI alpha 1 chain (COL6A1) genes, and 2q37, which harbors the collagen type VI alpha 3 chain (COL6A3) gene. Disease onset can occur at any age, and the symptoms are related to those of muscular dystrophy. Since Bethlem myopathy is a rare disease, no previous studies have been conducted in Arab countries, including Saudi Arabia. Its variable presentation of nonspecific muscular contractions and severity represents a diagnostic dilemma. Case presentation: Here, we report a Saudi pediatric patient, who is 9 years old (proband), brought to the pediatric clinic of King Saud's Hospital by his mother. The boy presented with difficulty standing, walking, and running with his classmates and unaffected siblings. He has a younger sibling, aged 6 years old, who reported having a limping gait and difficulty bending his right knee. Laboratory results for the proband were unremarkable except for a slight increase in creatine kinase (CK). Whole-exome sequencing (WES) was performed for five family members, including the proband and his symptomatic brother, their mother and two asymptomatic siblings. A very rare 3' splice site acceptor intronic variant, NM_001849.4: c.1817-3C>G, located three nucleotides before exon 25, was identified in COL6A2. Bioinformatics tools (SpliceAI, dbscSNV, FATHMM-MKL, and MaxEntScan) predicted this variant as pathogenic. The proband and his 6-year-old sibling presented a homozygous genotype for the variant, whereas the mother and one asymptomatic sibling were heterozygous, and the other sibling carried homozygous wild-type alleles. Conclusions: This is the first study to report a case of Bethlem myopathy confirmed by WES in Saudi Arabia and all Arab nations. The identified variant is rare, and its segregation pattern suggests autosomal recessive inheritance. The segregation pattern and bioinformatics tool results may qualify this variant to be annotated as pathogenic, addressing the reported uncertainty of its classification. Our findings contribute to linking and filling the knowledge gap of diagnosing and managing patients with collagen VI-related myopathies, providing greater clinical and genetic understanding to the existing knowledge.
Collapse
Affiliation(s)
- Hitham Aldharee
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia;
| | | |
Collapse
|
10
|
Segers A, Gilis J, Van Heetvelde M, Risso D, De Baere E, Clement L. saseR: Juggling offsets unlocks RNA-seq tools for fast and Scalable differential usage, Aberrant Splicing and Expression Retrieval. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547014. [PMID: 39464066 PMCID: PMC11507730 DOI: 10.1101/2023.06.29.547014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
RNA-seq data analysis relies on many different tools, each tailored to specific applications and coming with unique assumptions and restrictions. Indeed, tools for differential transcript usage, or diagnosing patients with rare diseases through splicing and expression outliers, either lack in performance, discard information, or do not scale to massive data compendia. Here, we show that replacing the normalisation offsets unlocks bulk RNA-seq workflows for scalable differential usage, aberrant splicing and expression analyses. Our method, saseR, is much faster than state-of-the-art methods, dramatically outperforms these to detect aberrant splicing, and provides a single workflow for various short- and long-read RNA-seq applications.
Collapse
Affiliation(s)
- Alexandre Segers
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Jeroen Gilis
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Flemish Institute for Biotechnology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Mattias Van Heetvelde
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Davide Risso
- Department of Statistical Sciences, Universiy of Padova, Padova, Italy
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lieven Clement
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Sullivan PJ, Quinn JMW, Wu W, Pinese M, Cowley MJ. SpliceVarDB: A comprehensive database of experimentally validated human splicing variants. Am J Hum Genet 2024; 111:2164-2175. [PMID: 39226898 PMCID: PMC11480807 DOI: 10.1016/j.ajhg.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Variants that alter gene splicing are estimated to comprise up to a third of all disease-causing variants, yet they are hard to predict from DNA sequencing data alone. To overcome this, many groups are incorporating RNA-based analyses, which are resource intensive, particularly for diagnostic laboratories. There are thousands of functionally validated variants that induce mis-splicing; however, this information is not consolidated, and they are under-represented in ClinVar, which presents a barrier to variant interpretation and can result in duplication of validation efforts. To address this issue, we developed SpliceVarDB, an online database consolidating over 50,000 variants assayed for their effects on splicing in over 8,000 human genes. We evaluated over 500 published data sources and established a spliceogenicity scale to standardize, harmonize, and consolidate variant validation data generated by a range of experimental protocols. According to the strength of their supporting evidence, variants were classified as "splice-altering" (∼25%), "not splice-altering" (∼25%), and "low-frequency splice-altering" (∼50%), which correspond to weak or indeterminate evidence of spliceogenicity. Importantly, 55% of the splice-altering variants in SpliceVarDB are outside the canonical splice sites (5.6% are deep intronic). These variants can support the variant curation diagnostic pathway and can be used to provide the high-quality data necessary to develop more accurate in silico splicing predictors. The variants are accessible through an online platform, SpliceVarDB, with additional features for visualization, variant information, in silico predictions, and validation metrics. SpliceVarDB is a very large collection of splice-altering variants and is available at https://splicevardb.org.
Collapse
Affiliation(s)
- Patricia J Sullivan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia; UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Julian M W Quinn
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Weilin Wu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Mark Pinese
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Zhao Y, Long Y, Shi T, Ma X, Lian C, Wang H, Xu H, Yu L, Zhao X. Validating the splicing effect of rare variants in the SLC26A4 gene using minigene assay. BMC Med Genomics 2024; 17:233. [PMID: 39334476 PMCID: PMC11430457 DOI: 10.1186/s12920-024-02007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The SLC26A4 gene is the second most common cause of hereditary hearing loss in human. The aim of this study was to utilize the minigene assay in order to identify pathogenic variants of SLC26A4 associated with enlarged vestibular aqueduct (EVA) and hearing loss (HL) in two patients. METHODS The patients were subjected to multiplex PCR amplification and next-generation sequencing of common deafness genes (including GJB2, SLC26A4, and MT-RNR1), then bioinformatics analysis was performed on the sequencing data to identify candidate pathogenic variants. Minigene experiments were conducted to determine the potential impact of the variants on splicing. RESULTS Genetic testing revealed that the first patient carried compound heterozygous variants c.[1149 + 1G > A]; [919-2 A > G] in the SLC26A4 gene, while the second patient carried compound heterozygous variants c.[2089 + 3 A > T]; [919-2 A > G] in the same gene. Minigene experiments demonstrated that both c.1149 + 1G > A and c.2089 + 3 A > T affected mRNA splicing. According to the ACMG guidelines and the recommendations of the ClinGen Hearing Loss Expert Panel for ACMG variant interpretation, these variants were classified as "likely pathogenic". CONCLUSIONS This study identified the molecular etiology of hearing loss in two patients with EVA and elucidated the impact of rare variants on splicing, thus contributing to the mutational spectrum of pathogenic variants in the SLC26A4 gene.
Collapse
Affiliation(s)
- Yixin Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Yan Long
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Tao Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Xin Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Chengyu Lian
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou, 450052, China
| | - Hanjun Wang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou, 450052, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou, 450052, China
| | - Lisheng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China.
| | - Xiaotao Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
13
|
Fasano C, Lepore Signorile M, De Marco K, Forte G, Disciglio V, Sanese P, Grossi V, Simone C. In Silico Deciphering of the Potential Impact of Variants of Uncertain Significance in Hereditary Colorectal Cancer Syndromes. Cells 2024; 13:1314. [PMID: 39195204 PMCID: PMC11352798 DOI: 10.3390/cells13161314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) ranks third in terms of cancer incidence worldwide and is responsible for 8% of all deaths globally. Approximately 10% of CRC cases are caused by inherited pathogenic mutations in driver genes involved in pathways that are crucial for CRC tumorigenesis and progression. These hereditary mutations significantly increase the risk of initial benign polyps or adenomas developing into cancer. In recent years, the rapid and accurate sequencing of CRC-specific multigene panels by next-generation sequencing (NGS) technologies has enabled the identification of several recurrent pathogenic variants with established functional consequences. In parallel, rare genetic variants that are not characterized and are, therefore, called variants of uncertain significance (VUSs) have also been detected. The classification of VUSs is a challenging task because each amino acid has specific biochemical properties and uniquely contributes to the structural stability and functional activity of proteins. In this scenario, the ability to computationally predict the effect of a VUS is crucial. In particular, in silico prediction methods can provide useful insights to assess the potential impact of a VUS and support additional clinical evaluation. This approach can further benefit from recent advances in artificial intelligence-based technologies. In this review, we describe the main in silico prediction tools that can be used to evaluate the structural and functional impact of VUSs and provide examples of their application in the analysis of gene variants involved in hereditary CRC syndromes.
Collapse
Affiliation(s)
- Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (K.D.M.); (G.F.); (V.D.); (P.S.); (V.G.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
14
|
Oh RY, AlMail A, Cheerie D, Guirguis G, Hou H, Yuki KE, Haque B, Thiruvahindrapuram B, Marshall CR, Mendoza-Londono R, Shlien A, Kyriakopoulou LG, Walker S, Dowling JJ, Wilson MD, Costain G. A systematic assessment of the impact of rare canonical splice site variants on splicing using functional and in silico methods. HGG ADVANCES 2024; 5:100299. [PMID: 38659227 PMCID: PMC11144818 DOI: 10.1016/j.xhgg.2024.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Canonical splice site variants (CSSVs) are often presumed to cause loss-of-function (LoF) and are assigned very strong evidence of pathogenicity (according to American College of Medical Genetics/Association for Molecular Pathology criterion PVS1). The exact nature and predictability of splicing effects of unselected rare CSSVs in blood-expressed genes are poorly understood. We identified 168 rare CSSVs in blood-expressed genes in 112 individuals using genome sequencing, and studied their impact on splicing using RNA sequencing (RNA-seq). There was no evidence of a frameshift, nor of reduced expression consistent with nonsense-mediated decay, for 25.6% of CSSVs: 17.9% had wildtype splicing only and normal junction depths, 3.6% resulted in cryptic splice site usage and in-frame insertions or deletions, 3.6% resulted in full exon skipping (in frame), and 0.6% resulted in full intron inclusion (in frame). Blind to these RNA-seq data, we attempted to predict the precise impact of CSSVs by applying in silico tools and the ClinGen Sequence Variant Interpretation Working Group 2018 guidelines for applying PVS1 criterion. The predicted impact on splicing using (1) SpliceAI, (2) MaxEntScan, and (3) AutoPVS1, an automatic classification tool for PVS1 interpretation of null variants that utilizes Ensembl Variant Effect Predictor and MaxEntScan, was concordant with RNA-seq analyses for 65%, 63%, and 61% of CSSVs, respectively. In summary, approximately one in four rare CSSVs did not show evidence for LoF based on analysis of RNA-seq data. Predictions from in silico methods were often discordant with findings from RNA-seq. More caution may be warranted in applying PVS1-level evidence to CSSVs in the absence of functional data.
Collapse
Affiliation(s)
- Rachel Y Oh
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ali AlMail
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - David Cheerie
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - George Guirguis
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Huayun Hou
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Kyoko E Yuki
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Division of Genome Diagnostics, Hospital for Sick Children, Toronto, ON, Canada
| | - Bushra Haque
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Christian R Marshall
- Division of Genome Diagnostics, Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Division of Genome Diagnostics, Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Lianna G Kyriakopoulou
- Division of Genome Diagnostics, Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Susan Walker
- The Centre for Applied Genomics, SickKids Research Institute, Toronto, ON, Canada
| | - James J Dowling
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada; Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Wilson
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Ooi E, Xiang R, Chamberlain AJ, Goddard ME. Archetypal clustering reveals physiological mechanisms linking milk yield and fertility in dairy cattle. J Dairy Sci 2024; 107:4726-4742. [PMID: 38369117 DOI: 10.3168/jds.2023-23699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Fertility in dairy cattle has declined as an unintended consequence of single-trait selection for high milk yield. The unfavorable genetic correlation between milk yield and fertility is now well documented; however, the underlying physiological mechanisms are still uncertain. To understand the relationship between these traits, we developed a method that clusters variants with similar patterns of effects and, after the integration of gene expression data, identifies the genes through which they are likely to act. Biological processes that are enriched in the genes of each cluster were then identified. We identified several clusters with unique patterns of effects. One of the clusters included variants associated with increased milk yield and decreased fertility, where the "archetypal" variant (i.e., the one with the largest effect) was associated with the GC gene, whereas others were associated with TRIM32, LRRK2, and U6-associated snRNA. These genes have been linked to transcription and alternative splicing, suggesting that these processes are likely contributors to the unfavorable relationship between the 2 traits. Another cluster, with archetypal variant near DGAT1 and including variants associated with CDH2, BTRC, SFRP2, ZFHX3, and SLITRK5, appeared to affect milk yield but have little effect on fertility. These genes have been linked to insulin, adipose tissue, and energy metabolism. A third cluster with archetypal variant near ZNF613 and including variants associated with ROBO1, EFNA5, PALLD, GPC6, and PTPRT were associated with fertility but not milk yield. These genes have been linked to GnRH neuronal migration, embryonic development, or ovarian function. The use of archetypal clustering to group variants with similar patterns of effects may assist in identifying the biological processes underlying correlated traits. The method is hypothesis generating and requires experimental confirmation. However, we have uncovered several novel mechanisms potentially affecting milk production and fertility such as GnRH neuronal migration. We anticipate our method to be a starting point for experimental research into novel pathways, which have been previously unexplored within the context of dairy production.
Collapse
Affiliation(s)
- E Ooi
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia.
| | - R Xiang
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | - A J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - M E Goddard
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| |
Collapse
|
16
|
Wang J, Wen S, Chen M, Xie J, Lou X, Zhao H, Chen Y, Zhao M, Shi G. Regulation of endocrine cell alternative splicing revealed by single-cell RNA sequencing in type 2 diabetes pathogenesis. Commun Biol 2024; 7:778. [PMID: 38937540 PMCID: PMC11211498 DOI: 10.1038/s42003-024-06475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
The prevalent RNA alternative splicing (AS) contributes to molecular diversity, which has been demonstrated in cellular function regulation and disease pathogenesis. However, the contribution of AS in pancreatic islets during diabetes progression remains unclear. Here, we reanalyze the full-length single-cell RNA sequencing data from the deposited database to investigate AS regulation across human pancreatic endocrine cell types in non-diabetic (ND) and type 2 diabetic (T2D) individuals. Our analysis demonstrates the significant association between transcriptomic AS profiles and cell-type-specificity, which could be applied to distinguish the clustering of major endocrine cell types. Moreover, AS profiles are enabled to clearly define the mature subset of β-cells in healthy controls, which is completely lost in T2D. Further analysis reveals that RNA-binding proteins (RBPs), heterogeneous nuclear ribonucleoproteins (hnRNPs) and FXR1 family proteins are predicted to induce the functional impairment of β-cells through regulating AS profiles. Finally, trajectory analysis of endocrine cells suggests the β-cell identity shift through dedifferentiation and transdifferentiation of β-cells during the progression of T2D. Together, our study provides a mechanism for regulating β-cell functions and suggests the significant contribution of AS program during diabetes pathogenesis.
Collapse
Affiliation(s)
- Jin Wang
- Department of Endocrinology & Metabolism, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shiyi Wen
- Department of Endocrinology & Metabolism, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minqi Chen
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Jiayi Xie
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Xinhua Lou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haihan Zhao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanming Chen
- Department of Endocrinology & Metabolism, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| | - Guojun Shi
- Department of Endocrinology & Metabolism, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Jagaraj CJ, Shadfar S, Kashani SA, Saravanabavan S, Farzana F, Atkin JD. Molecular hallmarks of ageing in amyotrophic lateral sclerosis. Cell Mol Life Sci 2024; 81:111. [PMID: 38430277 PMCID: PMC10908642 DOI: 10.1007/s00018-024-05164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, severely debilitating and rapidly progressing disorder affecting motor neurons in the brain, brainstem, and spinal cord. Unfortunately, there are few effective treatments, thus there remains a critical need to find novel interventions that can mitigate against its effects. Whilst the aetiology of ALS remains unclear, ageing is the major risk factor. Ageing is a slowly progressive process marked by functional decline of an organism over its lifespan. However, it remains unclear how ageing promotes the risk of ALS. At the molecular and cellular level there are specific hallmarks characteristic of normal ageing. These hallmarks are highly inter-related and overlap significantly with each other. Moreover, whilst ageing is a normal process, there are striking similarities at the molecular level between these factors and neurodegeneration in ALS. Nine ageing hallmarks were originally proposed: genomic instability, loss of telomeres, senescence, epigenetic modifications, dysregulated nutrient sensing, loss of proteostasis, mitochondrial dysfunction, stem cell exhaustion, and altered inter-cellular communication. However, these were recently (2023) expanded to include dysregulation of autophagy, inflammation and dysbiosis. Hence, given the latest updates to these hallmarks, and their close association to disease processes in ALS, a new examination of their relationship to pathophysiology is warranted. In this review, we describe possible mechanisms by which normal ageing impacts on neurodegenerative mechanisms implicated in ALS, and new therapeutic interventions that may arise from this.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sina Shadfar
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sara Assar Kashani
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sayanthooran Saravanabavan
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Fabiha Farzana
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
18
|
Lv Y, Li J, Yu S, Zhang Y, Hu H, Sun K, Jia D, Han Y, Tu J, Huang Y, Liu X, Zhang X, Gao P, Chen X, Shaw Williams MT, Tang Z, Shu X, Liu M, Ren X. The splicing factor Prpf31 is required for hematopoietic stem and progenitor cell expansion during zebrafish embryogenesis. J Biol Chem 2024; 300:105772. [PMID: 38382674 PMCID: PMC10959673 DOI: 10.1016/j.jbc.2024.105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Pre-mRNA splicing is a precise regulated process and is crucial for system development and homeostasis maintenance. Mutations in spliceosomal components have been found in various hematopoietic malignancies (HMs) and have been considered as oncogenic derivers of HMs. However, the role of spliceosomal components in normal and malignant hematopoiesis remains largely unknown. Pre-mRNA processing factor 31 (PRPF31) is a constitutive spliceosomal component, which mutations are associated with autosomal dominant retinitis pigmentosa. PRPF31 was found to be mutated in several HMs, but the function of PRPF31 in normal hematopoiesis has not been explored. In our previous study, we generated a prpf31 knockout (KO) zebrafish line and reported that Prpf31 regulates the survival and differentiation of retinal progenitor cells by modulating the alternative splicing of genes involved in mitosis and DNA repair. In this study, by using the prpf31 KO zebrafish line, we discovered that prpf31 KO zebrafish exhibited severe defects in hematopoietic stem and progenitor cell (HSPC) expansion and its sequentially differentiated lineages. Immunofluorescence results showed that Prpf31-deficient HSPCs underwent malformed mitosis and M phase arrest during HSPC expansion. Transcriptome analysis and experimental validations revealed that Prpf31 deficiency extensively perturbed the alternative splicing of mitosis-related genes. Collectively, our findings elucidate a previously undescribed role for Prpf31 in HSPC expansion, through regulating the alternative splicing of mitosis-related genes.
Collapse
Affiliation(s)
- Yuexia Lv
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Department of Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yangjun Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hualei Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xianghan Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mark Thomas Shaw Williams
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Puri S, Maachi H, Nair G, Russ HA, Chen R, Pulimeno P, Cutts Z, Ntranos V, Hebrok M. Sox9 regulates alternative splicing and pancreatic beta cell function. Nat Commun 2024; 15:588. [PMID: 38238288 PMCID: PMC10796970 DOI: 10.1038/s41467-023-44384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Despite significant research, mechanisms underlying the failure of islet beta cells that result in type 2 diabetes (T2D) are still under investigation. Here, we report that Sox9, a transcriptional regulator of pancreas development, also functions in mature beta cells. Our results show that Sox9-depleted rodent beta cells have defective insulin secretion, and aging animals develop glucose intolerance, mimicking the progressive degeneration observed in T2D. Using genome editing in human stem cells, we show that beta cells lacking SOX9 have stunted first-phase insulin secretion. In human and rodent cells, loss of Sox9 disrupts alternative splicing and triggers accumulation of non-functional isoforms of genes with key roles in beta cell function. Sox9 depletion reduces expression of protein-coding splice variants of the serine-rich splicing factor arginine SRSF5, a major splicing enhancer that regulates alternative splicing. Our data highlight the role of SOX9 as a regulator of alternative splicing in mature beta cell function.
Collapse
Affiliation(s)
- Sapna Puri
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA
- Minutia Inc., Oakland, CA, USA
| | - Hasna Maachi
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA
- Center for Organoid Systems, Klinikum Rechts der Isar (MRI) and Technical University Munich, 85748, Garching, Germany
- Institute for Diabetes Organoid Technology, Helmholtz Munich, Helmholtz Diabetes Center, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Munich Institute of Biomedical Engineering (MIBE), Technical University Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Gopika Nair
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA
- Eli Lilly, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Richard Chen
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Pamela Pulimeno
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Zachary Cutts
- Graduate Program in Bioinformatics, University of California, San Francisco, CA, USA
| | - Vasilis Ntranos
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA, USA.
- Center for Organoid Systems, Klinikum Rechts der Isar (MRI) and Technical University Munich, 85748, Garching, Germany.
- Institute for Diabetes Organoid Technology, Helmholtz Munich, Helmholtz Diabetes Center, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Munich Institute of Biomedical Engineering (MIBE), Technical University Munich, Munich, Germany.
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|
20
|
Uzuner D, İlgün A, Düz E, Bozkurt FB, Çakır T. Multilayer Analysis of RNA Sequencing Data in Alzheimer's Disease to Unravel Molecular Mysteries. ADVANCES IN NEUROBIOLOGY 2024; 41:219-246. [PMID: 39589716 DOI: 10.1007/978-3-031-69188-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Alzheimer's disease (AD) is a complex disease, and numerous cellular events may be involved in etiology. RNAseq-based transcriptome data hold multilayer information content, which could be crucial in unraveling molecular mysteries of AD. It enables quantification of gene expression levels, identification of genomic variants, and elucidation of splicing anomalies such as exon skipping and intron retention. Additional integration of this information into protein-protein interaction networks and genome-scale metabolic models from the literature has potential to decipher functional modules and affected mechanisms for complex scenarios such as AD. In this chapter, we review the application areas of the multilayer content of RNAseq and associated integrative approaches available, with a special focus on AD.
Collapse
Affiliation(s)
- Dilara Uzuner
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Atılay İlgün
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Elif Düz
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Fatma Betül Bozkurt
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
21
|
Wu K, Sun Q, Liu D, Lu J, Wen D, Zang X, Gao L. Alternative Splicing Landscape of Head and Neck Squamous Cell Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241272051. [PMID: 39113534 PMCID: PMC11307358 DOI: 10.1177/15330338241272051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Head and neck malignancies are a significant global health concern, with head and neck squamous cell carcinoma (HNSCC) being the sixth most common cancer worldwide accounting for > 90% of cases. In recent years, there has been growing recognition of the potential role of alternative splicing (AS) in the etiology of cancer. Increasing evidence suggests that AS is associated with various aspects of cancer progression, including tumor occurrence, invasion, metastasis, and drug resistance. Additionally, AS is involved in shaping the tumor microenvironment, which plays a crucial role in tumor development and response to therapy. AS can influence the expression of factors involved in angiogenesis, immune response, and extracellular matrix remodeling, all of which contribute to the formation of a supportive microenvironment for tumor growth. Exploring the mechanism of AS events in HNSCC could provide insights into the development and progression of this cancer, as well as its interaction with the tumor microenvironment. Understanding how AS contributes to the molecular changes in HNSCC cells and influences the tumor microenvironment could lead to the identification of new therapeutic targets. Targeted chemotherapy and immunotherapy strategies tailored to the specific AS patterns in HNSCC could potentially improve treatment outcomes and reduce side effects. This review explores the concept, types, processes, and technological advancements of AS, focusing on its role in the initiation, progression, treatment, and prognosis of HNSCC.
Collapse
Affiliation(s)
- Kehan Wu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Qianhui Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Dongxu Liu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Jiayi Lu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Deyu Wen
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiyan Zang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Li Gao
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| |
Collapse
|
22
|
Rabaya S, Nairat S, Bader K, Herzallah MM, Darwish HM. Iron metabolism in autism spectrum disorder; inference through single nucleotide polymorphisms in key iron metabolism genes. J Neurol Sci 2023; 453:120817. [PMID: 37813049 DOI: 10.1016/j.jns.2023.120817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental problems with various genetic and environmental components. The ASD diagnosis is based on symptom expression without reliance on any biomarkers. The genetic contributions in ASD remain elusive. Various studies have linked ASD with iron. Since iron plays a crucial role in brain development, neurotransmitter synthesis, neuronal myelination and mitochondrial function, we hypothesized that iron dysregulation in the brain could play a role and contribute to the pathogenesis of ASD. In this study, we investigated single nucleotide polymorphisms in ASD in various iron metabolism genes, including the Transferrin Receptor (TFRC) gene (rs11915082), the Solute Carrier Family 11 Member 2 (SLC11A2) gene (rs1048230 and rs224589), the Solute Carrier Family 40 Member 1 (SLC40A1) gene (rs1439816), and hepcidin antimicrobial peptide (HAMP) gene (rs10421768). We recruited 48 patients with ASD and 88 matched non-ASD controls. Our results revealed a significant difference between ASD and controls in the G allele of the TFRC gene rs11915082, and in the C allele of the SLC40A1 gene rs1439816. In silico analysis demonstrated potential positive role of the indicated genetic variations in ASD development and pathogenesis. These results suggest that specific genetic variations in iron metabolism genes may represent part of early genetic markers for early diagnosis of ASD. A significant effect of SNPs, groups (ASD/control) as well as interaction between SNPs and groups was revealed. Follow-up post hoc tests showed a significant difference between the ASD and control groups in rs11915082 (TFRC gene) and rs1439816 (SLC40A1 gene). Backward conditional logistic regression using both the genotype and allele data showed similar ability in detecting ASD using allel model (Nagelkerke R2 = 0.350 p = 0.967; Variables: rs1439816, rs11915082) compared to genotype model (Nagelkerke R2 = 0.347, p = 0.430; Variables: rs1439816 G, rs1439816 C, rs10421768 A). ROC curve showed 54% sensitivity in detecting ASD compared to 47% for the genotype model. Both models differentiated controls with high accuracy; the allele model had a specificity of 91% compared to 92% for the genotype model. In conclusion, our findings suggest that specific genetic variations in iron metabolism may represent early biomarkers for a diagnosis of ASD. Further research is needed to correlate these markers with specific blood iron indicators and their contribution to brain development and behavior.
Collapse
Affiliation(s)
- Sabha Rabaya
- Department of Health Sciences, Molecular Genetics and Genetic Toxicology Program, Arab American University, Ramallah,Palestine
| | - Sameera Nairat
- Palestinian Neuroscience Initiative, Al-Quds University, Abu Dis, Jerusalem, Palestine
| | - Khaldoun Bader
- Faculty of Public Health, Al-Quds University, Abu Dis, Jerusalem, Palestine
| | - Mohammad M Herzallah
- Palestinian Neuroscience Initiative, Al-Quds University, Abu Dis, Jerusalem, Palestine; Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.
| | - Hisham M Darwish
- Department of Health Sciences, Molecular Genetics and Genetic Toxicology Program, Arab American University, Ramallah,Palestine; Department of Medical Laboratory Sciences, Faculty ofAllied Medical Sciences, Arab American University, Jenin, Palestine.
| |
Collapse
|
23
|
Nagaya S, Togashi T, Akiyama M, Imai Y, Matsumoto H, Moriya H, Meguro-Horike M, Yasuda I, Kikuchi Y, Kuwajima Y, Horike SI, Watanabe A, Morishita E. Protein S deficiency caused by cryptic splicing due to the novel intron variant c.346+5G>C in PROS1. Thromb Res 2023; 229:26-30. [PMID: 37390525 DOI: 10.1016/j.thromres.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Affiliation(s)
- Satomi Nagaya
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Tomoki Togashi
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Masaharu Akiyama
- Department of Pediatrics, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo 105-8471, Japan
| | - Yuta Imai
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Haruto Matsumoto
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Haruka Moriya
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Makiko Meguro-Horike
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Ibuki Yasuda
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Yuika Kikuchi
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Yamato Kuwajima
- Department of Clinical Laboratory Science, School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Shin-Ichi Horike
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Atsushi Watanabe
- Division of Clinical Genetics, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Eriko Morishita
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan; Department of Hematology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
24
|
Lu YT, Rejiepu B, Zhang D, Cai DC, Yang KQ, Tian T, Zhou XL, Fan P. Childhood-Onset Refractory Hypertension Results from Neurofibromatosis Type 1 Caused by a Splicing NF1 Mutation. Kidney Blood Press Res 2023; 48:568-577. [PMID: 37562365 PMCID: PMC10614435 DOI: 10.1159/000533144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF-1) is caused by mutations in the NF1 gene that encodes neurofibromin, a negative regulator of RAS proto-oncogene. Approximately one-third of the reported pathogenic mutations in NF1 are splicing mutations, but most consequences are unclear. The objective of this study was to identify the pathogenicity of splicing mutation in a Chinese family with NF-1 and determine the effects of the pre-mRNA splicing mutation by in vitro functional analysis. METHODS Next-generation sequencing was used to screen candidate mutations. We performed a minigene splicing assay to determine the effect of the splicing mutation on NF1 expression, and three-dimensional structure models of neurofibromin were generated using SWISS-MODEL and PROCHECK methods, respectively. RESULTS A pathogenic splicing mutation c.479+1G>C in NF1 was found in the proband characterized by childhood-onset refractory hypertension. In vitro analysis demonstrated that c.479+1G>C mutation caused the skipping of exon 4, leading to a glutamine-to-valine substitution at position 97 in neurofibromin and an open reading frame shift terminating at codon 108. Protein modeling showed that several major domains were missing in the truncated neurofibromin protein. CONCLUSION The splicing mutation c.479+1G>C identified in a Chinese patient with NF-1 and childhood-onset refractory hypertension caused the skipping of exon 4 and a truncated protein. Our findings offer new evidence for the molecular diagnosis of NF-1.
Collapse
Affiliation(s)
- Yi-Ting Lu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Buweimairemu Rejiepu
- Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Di Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong-Cheng Cai
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Tian
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Fan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Snyman M, Xu S. The effects of mutations on gene expression and alternative splicing. Proc Biol Sci 2023; 290:20230565. [PMID: 37403507 PMCID: PMC10320348 DOI: 10.1098/rspb.2023.0565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Understanding the relationship between mutations and their genomic and phenotypic consequences has been a longstanding goal of evolutionary biology. However, few studies have investigated the impact of mutations on gene expression and alternative splicing on the genome-wide scale. In this study, we aim to bridge this knowledge gap by utilizing whole-genome sequencing data and RNA sequencing data from 16 obligately parthenogenetic Daphnia mutant lines to investigate the effects of ethyl methanesulfonate-induced mutations on gene expression and alternative splicing. Using rigorous analyses of mutations, expression changes and alternative splicing, we show that trans-effects are the major contributor to the variance in gene expression and alternative splicing between the wild-type and mutant lines, whereas cis mutations only affected a limited number of genes and do not always alter gene expression. Moreover, we show that there is a significant association between differentially expressed genes and exonic mutations, indicating that exonic mutations are an important driver of altered gene expression.
Collapse
Affiliation(s)
- Marelize Snyman
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sen Xu
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
26
|
Aberrant splicing caused by exonic single nucleotide variants positioned 2nd or 3rd to the last nucleotide in the COL4A5 gene. Clin Exp Nephrol 2023; 27:218-226. [PMID: 36371577 PMCID: PMC9950164 DOI: 10.1007/s10157-022-02294-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND OBJECTIVES The evident genotype-phenotype correlation shown by the X-linked Alport syndrome warrants the assessment of the impact of identified gene variants on aberrant splicing. We previously reported that single nucleotide variants (SNVs) in the last nucleotide of exons in COL4A5 cause aberrant splicing. It is known that the nucleotides located 2nd and 3rd to the last nucleotides of exons can also play an essential role in the first step of the splicing process. In this study, we aimed to investigate whether SNVs positioned 2nd or 3rd to the last nucleotide of exons in COL4A5 resulted in aberrant splicing. METHODS We selected eight candidate variants: six from the Human Gene Variant Database Professional and two from our cohort. We performed an in-vitro splicing assay and reverse transcription-polymerase chain reaction (RT-PCR) for messenger RNA obtained from patients, if available. RESULTS The candidate variants were initially classified into the following groups: three nonsense, two missense, and three synonymous variants. Splicing assays and RT-PCR for messenger RNA revealed that six of the eight variants caused aberrant splicing. Four variants, initially classified as non-truncating variants, were found to be truncating ones, which usually show relatively more severe phenotypes. CONCLUSION We revealed that exonic SNVs positioned 2nd or 3rd to the last nucleotide of exons in the COL4A5 were responsible for aberrant splicing. The results of our study suggest that attention should be paid when interpreting the pathogenicity of exonic SNVs near the 5' splice site.
Collapse
|
27
|
Barbosa P, Savisaar R, Carmo-Fonseca M, Fonseca A. Computational prediction of human deep intronic variation. Gigascience 2022; 12:giad085. [PMID: 37878682 PMCID: PMC10599398 DOI: 10.1093/gigascience/giad085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The adoption of whole-genome sequencing in genetic screens has facilitated the detection of genetic variation in the intronic regions of genes, far from annotated splice sites. However, selecting an appropriate computational tool to discriminate functionally relevant genetic variants from those with no effect is challenging, particularly for deep intronic regions where independent benchmarks are scarce. RESULTS In this study, we have provided an overview of the computational methods available and the extent to which they can be used to analyze deep intronic variation. We leveraged diverse datasets to extensively evaluate tool performance across different intronic regions, distinguishing between variants that are expected to disrupt splicing through different molecular mechanisms. Notably, we compared the performance of SpliceAI, a widely used sequence-based deep learning model, with that of more recent methods that extend its original implementation. We observed considerable differences in tool performance depending on the region considered, with variants generating cryptic splice sites being better predicted than those that potentially affect splicing regulatory elements. Finally, we devised a novel quantitative assessment of tool interpretability and found that tools providing mechanistic explanations of their predictions are often correct with respect to the ground - information, but the use of these tools results in decreased predictive power when compared to black box methods. CONCLUSIONS Our findings translate into practical recommendations for tool usage and provide a reference framework for applying prediction tools in deep intronic regions, enabling more informed decision-making by practitioners.
Collapse
Affiliation(s)
- Pedro Barbosa
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016,, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | | | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Alcides Fonseca
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016,, Lisboa, Portugal
| |
Collapse
|
28
|
Nascimento JM, Saia-Cereda VM, Zuccoli GS, Reis-de-Oliveira G, Carregari VC, Smith BJ, Rehen SK, Martins-de-Souza D. Proteomic signatures of schizophrenia-sourced iPSC-derived neural cells and brain organoids are similar to patients' postmortem brains. Cell Biosci 2022; 12:189. [PMID: 36451159 PMCID: PMC9714120 DOI: 10.1186/s13578-022-00928-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Schizophrenia is a complex and severe neuropsychiatric disorder, with a wide range of debilitating symptoms. Several aspects of its multifactorial complexity are still unknown, and some are accepted to be an early developmental deficiency with a more specifically neurodevelopmental origin. Understanding the timepoints of disturbances during neural cell differentiation processes could lead to an insight into the development of the disorder. In this context, human brain organoids and neural cells differentiated from patient-derived induced pluripotent stem cells are of great interest as a model to study the developmental origins of the disease. RESULTS Here we evaluated the differential expression of proteins of schizophrenia patient-derived neural progenitors (NPCs), early neurons, and brain organoids in comparison to healthy individuals. Using bottom-up shotgun proteomics with a label-free approach for quantitative analysis, we found multiple dysregulated proteins since NPCs, modified, and disrupted the 21DIV neuronal differentiation, and cerebral organoids. Our experimental methods have shown impairments in pathways never before found in patient-derived induced pluripotent stem cells studies, such as spliceosomes and amino acid metabolism; but also, those such as axonal guidance and synaptogenesis, in line with postmortem tissue studies of schizophrenia patients. CONCLUSION In conclusion, here we provide comprehensive, large-scale, protein-level data of different neural cell models that may uncover early events in brain development, underlying several of the mechanisms within the origins of schizophrenia.
Collapse
Affiliation(s)
- Juliana Minardi Nascimento
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil ,grid.472984.4D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ 22281-100 Brazil ,grid.411249.b0000 0001 0514 7202Department of Biosciences, Institute Science and Society, Federal University of São Paulo (UNIFESP), Santos, SP Brazil
| | - Verônica M. Saia-Cereda
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Giuliana S. Zuccoli
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Guilherme Reis-de-Oliveira
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Victor Corasolla Carregari
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Bradley J. Smith
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Stevens K. Rehen
- grid.472984.4D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ 22281-100 Brazil ,grid.8536.80000 0001 2294 473XInstitute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Daniel Martins-de-Souza
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil ,grid.472984.4D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ 22281-100 Brazil ,grid.450640.30000 0001 2189 2026Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico E Tecnológico (CNPq), São Paulo, Brazil ,grid.411087.b0000 0001 0723 2494Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP 13083-970 Brazil
| |
Collapse
|
29
|
Danilchenko VY, Zytsar MV, Maslova EA, Posukh OL. Selection of Diagnostically Significant Regions of the SLC26A4 Gene Involved in Hearing Loss. Int J Mol Sci 2022; 23:ijms232113453. [PMID: 36362242 PMCID: PMC9655724 DOI: 10.3390/ijms232113453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Screening pathogenic variants in the SLC26A4 gene is an important part of molecular genetic testing for hearing loss (HL) since they are one of the common causes of hereditary HL in many populations. However, a large size of the SLC26A4 gene (20 coding exons) predetermines the difficulties of its complete mutational analysis, especially in large samples of patients. In addition, the regional or ethno-specific prevalence of SLC26A4 pathogenic variants has not yet been fully elucidated, except variants c.919-2A>G and c.2168A>G (p.His723Arg), which have been proven to be most common in Asian populations. We explored the distribution of currently known pathogenic and likely pathogenic (PLP) variants across the SLC26A4 gene sequence presented in the Deafness Variation Database for the selection of potential diagnostically important parts of this gene. As a result of this bioinformatic analysis, we found that molecular testing ten SLC26A4 exons (4, 6, 10, 11, 13−17 and 19) with flanking intronic regions can provide a diagnostic rate of 61.9% for all PLP variants in the SLC26A4 gene. The primary sequencing of these SLC26A4 regions may be applied as an initial effective diagnostic testing in samples of patients of unknown ethnicity or as a subsequent step after the targeted testing of already-known ethno- or region-specific pathogenic SLC26A4 variants.
Collapse
Affiliation(s)
- Valeriia Yu. Danilchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina V. Zytsar
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ekaterina A. Maslova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga L. Posukh
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
30
|
Mol P, Gopalakrishnan L, Chatterjee O, Mangalaparthi KK, Kumar M, Durgad SS, Nair B, Shankar SK, Mahadevan A, Prasad TSK. Proteomic Analysis of Adult Human Hippocampal Subfields Demonstrates Regional Heterogeneity in the Protein Expression. J Proteome Res 2022; 21:2293-2310. [PMID: 36039803 DOI: 10.1021/acs.jproteome.2c00143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background: Distinct hippocampal subfields are known to get affected during aging, psychiatric disorders, and various neurological and neurodegenerative conditions. To understand the biological processes associated with each subfield, it is important to understand its heterogeneity at the molecular level. To address this lacuna, we investigated the proteomic analysis of hippocampal subfields─the cornu ammonis sectors (CA1, CA2, CA3, CA4) and dentate gyrus (DG) from healthy adult human cohorts. Findings: Microdissection of hippocampal subfields from archived formalin-fixed paraffin-embedded tissue sections followed by TMT-based multiplexed proteomic analysis resulted in the identification of 5,593 proteins. Out of these, 890 proteins were found to be differentially abundant among the subfields. Further bioinformatics analysis suggested proteins related to gene splicing, transportation, myelination, structural activity, and learning processes to be differentially abundant in DG, CA4, CA3, CA2, and CA1, respectively. A subset of proteins was selected for immunohistochemistry-based validation in an independent set of hippocampal samples. Conclusions: We believe that our findings will effectively pave the way for further analysis of the hippocampal subdivisions and provide awareness of its subfield-specific association to various neurofunctional anomalies in the future. The current mass spectrometry data is deposited and publicly made available through ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029697.
Collapse
Affiliation(s)
- Praseeda Mol
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.,Manipal Academy of Higher Education, Manipal 576104, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India.,Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Manipal Academy of Higher Education, Manipal 576104, India
| | - Shwetha S Durgad
- Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Susarla K Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | | |
Collapse
|
31
|
Yin L, Han Z, Feng M, Wang J, Xie Z, Yu W, Fu X, Shen N, Wang X, Duan A, Zhang Y, Ma J. Chimeric transcripts observed in non-canonical FGFR2 fusions with partner genes' breakpoint located in intergenic region in intrahepatic cholangiocarcinoma. Cancer Genet 2022; 266-267:39-43. [PMID: 35749865 DOI: 10.1016/j.cancergen.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a fatal bile duct cancer with dismal prognosis and limited therapeutic options. FGFR family fusion have been identified in many diseases, and FGFR2 fusion is a validated oncogenic driver in ICC. At present, a variety of fusion forms have been reported, including gene-gene, gene-intergenic, and intergenic-intergenic fusion. Here, by performing RNA- and DNA-sequencing analysis, FGFR2 fusions were found in 10.1% of ICC, including 4 gene-intergenic fusions. We confirmed that the non-canonical rearrangements can generate chimeric transcripts, and used conventional splicing mechanism to explain the event. Our study provides possible target therapy for these 4 patients and possibility analysis scheme for similar situation.
Collapse
Affiliation(s)
- Lei Yin
- 2nd Department of Biliary Truct Surgery, Eastern Hepatobiliary surgery hospital, 225#Changhai Road, Shanghai, China
| | - Zhijun Han
- Department of Bioinformatics, 3D Medicines Inc., Shanghai, China
| | - Meilin Feng
- Department of Data System, 3D Medicines Inc, Shanghai, China
| | - Jie Wang
- Department of Bioinformatics, 3D Medicines Inc., Shanghai, China
| | - Zhenghua Xie
- Department of Research and Development, 3D Medicines Inc, Shanghai, China
| | - Wenlong Yu
- 2nd Department of Biliary Truct Surgery, Eastern Hepatobiliary surgery hospital, 225#Changhai Road, Shanghai, China
| | - Xiaohui Fu
- 2nd Department of Biliary Truct Surgery, Eastern Hepatobiliary surgery hospital, 225#Changhai Road, Shanghai, China
| | - Ningjia Shen
- 2nd Department of Biliary Truct Surgery, Eastern Hepatobiliary surgery hospital, 225#Changhai Road, Shanghai, China
| | - Xiang Wang
- 2nd Department of Biliary Truct Surgery, Eastern Hepatobiliary surgery hospital, 225#Changhai Road, Shanghai, China
| | - Anqi Duan
- 2nd Department of Biliary Truct Surgery, Eastern Hepatobiliary surgery hospital, 225#Changhai Road, Shanghai, China
| | - Yongjie Zhang
- 2nd Department of Biliary Truct Surgery, Eastern Hepatobiliary surgery hospital, 225#Changhai Road, Shanghai, China.
| | - Jing Ma
- Department of Data System, 3D Medicines Inc, Shanghai, China.
| |
Collapse
|
32
|
Kwiatkowski M, Hotze M, Schumacher J, Asif AR, Pittol JMR, Brenig B, Ramljak S, Zischler H, Herlyn H. Protein speciation is likely to increase the chance of proteins to be determined in 2‐DE/MS. Electrophoresis 2022; 43:1203-1214. [DOI: 10.1002/elps.202000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 11/30/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Marcel Kwiatkowski
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck Austria
| | - Madlen Hotze
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck Austria
| | | | - Abdul R. Asif
- Department of Clinical Chemistry/UMG‐Laboratories University Medical Center Göttingen Germany
| | - Jose Miguel Ramos Pittol
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck Austria
| | - Bertram Brenig
- Department of Molecular Biology of Livestock Institute of Veterinary Medicine University of Göttingen Göttingen Germany
| | | | - Hans Zischler
- Institute of Organismic and Molecular Evolution, Anthropology University of Mainz Mainz Germany
| | - Holger Herlyn
- Institute of Organismic and Molecular Evolution, Anthropology University of Mainz Mainz Germany
| |
Collapse
|
33
|
Valenzuela‐Palomo A, Bueno‐Martínez E, Sanoguera‐Miralles L, Lorca V, Fraile‐Bethencourt E, Esteban‐Sánchez A, Gómez‐Barrero S, Carvalho S, Allen J, García‐Álvarez A, Pérez‐Segura P, Dorling L, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. Splicing predictions, minigene analyses, and ACMG-AMP clinical classification of 42 germline PALB2 splice-site variants. J Pathol 2022; 256:321-334. [PMID: 34846068 PMCID: PMC9306493 DOI: 10.1002/path.5839] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
PALB2 loss-of-function variants confer high risk of developing breast cancer. Here we present a systematic functional analysis of PALB2 splice-site variants detected in approximately 113,000 women in the large-scale sequencing project Breast Cancer After Diagnostic Gene Sequencing (BRIDGES; https://bridges-research.eu/). Eighty-two PALB2 variants at the intron-exon boundaries were analyzed with MaxEntScan. Forty-two variants were selected for the subsequent splicing functional assays. For this purpose, three splicing reporter minigenes comprising exons 1-12 were constructed. The 42 potential spliceogenic variants were introduced into the minigenes by site-directed mutagenesis and assayed in MCF-7/MDA-MB-231 cells. Splicing anomalies were observed in 35 variants, 23 of which showed no traces or minimal amounts of the expected full-length transcripts of each minigene. More than 30 different variant-induced transcripts were characterized, 23 of which were predicted to truncate the PALB2 protein. The pathogenicity of all variants was interpreted according to an in-house adaptation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) variant classification scheme. Up to 23 variants were classified as pathogenic/likely pathogenic. Remarkably, three ±1,2 variants (c.49-2A>T, c.108+2T>C, and c.211+1G>A) were classified as variants of unknown significance, as they produced significant amounts of either in-frame transcripts of unknown impact on the PALB2 protein function or the minigene full-length transcripts. In conclusion, we have significantly contributed to the ongoing effort of identifying spliceogenic variants in the clinically relevant PALB2 cancer susceptibility gene. Moreover, we suggest some approaches to classify the findings in accordance with the ACMG-AMP rationale. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alberto Valenzuela‐Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Elena Bueno‐Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Lara Sanoguera‐Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Víctor Lorca
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Eugenia Fraile‐Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
- Knight Cancer Research BuildingPortlandORUSA
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | | | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Alicia García‐Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Pedro Pérez‐Segura
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Peter Devilee
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Maaike PG Vreeswijk
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Eladio A Velasco
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| |
Collapse
|
34
|
Zhao H, Kong H, Wang B, Wu S, Chen T, Cui Y. RNA-Binding Proteins and Alternative Splicing Genes Are Coregulated in Human Retinal Endothelial Cells Treated with High Glucose. J Diabetes Res 2022; 2022:7680513. [PMID: 35308095 PMCID: PMC8926481 DOI: 10.1155/2022/7680513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
To explore the relevant RNA-binding proteins (RBPs) and alternative splicing events (ASEs) in diabetic retinopathy (DR). We devised a comprehensive work to integrate analyses of the differentially expressed genes, including differential RBPs, and variable splicing characteristics related to DR in human retinal endothelial cells induced by low glucose and high glucose in dataset GSE117238. A total of 2320 differentially expressed genes (DEGs) were identified, including 1228 upregulated genes and 1092 downregulated genes. Further analysis screened out 232 RBP genes, and 42 AS genes overlapped DEGs. We selected high expression and consistency six RBP genes (FUS, HNRNPA2B1, CANX, EIF1, CALR, and POLR2A) for coexpression analysis. Through analysis, we found eight RASGs (MDM2, GOLGA2P7, NFE2L1, KDM4A, FAM111A, CIRBP, IDH1, and MCM7) that could be regulated by RBP. The coexpression network was conducted to further elucidate the regulatory and interaction relationship between RBPs and AS. Apoptotic progress, protein phosphorylation, and NF-kappaB cascade revealed by the functional enrichment analysis of RASGs regulated by RBPs were closely related to diabetic retinopathy. Furthermore, the expression of differentially expressed RBPs was validated by qRT-PCR in mouse retinal microvascular endothelial cells and retinas from the streptozotocin mouse model. The results showed that Fus, Hnrnpa2b1, Canx, Calr, and Polr2a were remarkedly difference in high-glucose-treated retinal microvascular endothelial cells and Fus, Hnrnpa2b1, Canx, and Calr were remarkedly difference in retinas from streptozotocin-induced diabetic mice compared to control. The regulatory network between identified RBPs and RASGs suggests the presence of several signaling pathways possibly involved in the pathogenesis of DR. The verified RBPs should be further addressed by future studies investigating associations between RBPs and the downstream of AS, as they could serve as potential biomarkers and targets for DR.
Collapse
Affiliation(s)
- Hongran Zhao
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- School of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hui Kong
- School of Medicine, Shandong University, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Bozhao Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- School of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Sihui Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- School of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tianran Chen
- School of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yan Cui
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
35
|
Lagunas-Rangel FA. G protein-coupled receptors that influence lifespan of human and animal models. Biogerontology 2021; 23:1-19. [PMID: 34860303 PMCID: PMC8888397 DOI: 10.1007/s10522-021-09945-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Humanity has always sought to live longer and for this, multiple strategies have been tried with varying results. In this sense, G protein-coupled receptors (GPCRs) may be a good option to try to prolong our life while maintaining good health since they have a substantial participation in a wide variety of processes of human pathophysiology and are one of the main therapeutic targets. In this way, we present the analysis of a series of GPCRs whose activity has been shown to affect the lifespan of animal and human models, and in which we put a special interest in describing the molecular mechanisms involved. Our compilation of data revealed that the mechanisms most involved in the role of GPCRs in lifespan are those that mimic dietary restriction, those related to insulin signaling and the AMPK and TOR pathways, and those that alter oxidative homeostasis and severe and/or chronic inflammation. We also discuss the possibility of using agonist or antagonist drugs, depending on the beneficial or harmful effects of each GPCR, in order to prolong people's lifespan and healthspan.
Collapse
|
36
|
Kremsdorf D, Lekbaby B, Bablon P, Sotty J, Augustin J, Schnuriger A, Pol J, Soussan P. Alternative splicing of viral transcripts: the dark side of HBV. Gut 2021; 70:2373-2382. [PMID: 34535538 DOI: 10.1136/gutjnl-2021-324554] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
Regulation of alternative splicing is one of the most efficient mechanisms to enlarge the proteomic diversity in eukaryotic organisms. Many viruses hijack the splicing machinery following infection to accomplish their replication cycle. Regarding the HBV, numerous reports have described alternative splicing events of the long viral transcript (pregenomic RNA), which also acts as a template for viral genome replication. Alternative splicing of HBV pregenomic RNAs allows the synthesis of at least 20 spliced variants. In addition, almost all these spliced forms give rise to defective particles, detected in the blood of infected patients. HBV-spliced RNAs have long been unconsidered, probably due to their uneasy detection in comparison to unspliced forms as well as for their dispensable role during viral replication. However, recent data highlighted the relevance of these HBV-spliced variants through (1) the trans-regulation of the alternative splicing of viral transcripts along the course of liver disease; (2) the ability to generate defective particle formation, putative biomarker of the liver disease progression; (3) modulation of viral replication; and (4) their intrinsic propensity to encode for novel viral proteins involved in liver pathogenesis and immune response. Altogether, tricky regulation of HBV alternative splicing may contribute to modulate multiple viral and cellular processes all along the course of HBV-related liver disease.
Collapse
Affiliation(s)
- Dina Kremsdorf
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Bouchra Lekbaby
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Pierre Bablon
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Jules Sotty
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Jérémy Augustin
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Aurélie Schnuriger
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France.,Assistance Publique - Hôpitaux de Paris, Département de Virologie, GHU Paris-Est, Paris, France
| | - Jonathan Pol
- Institut National de la Santé et de la Recherche Médicale U1138, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics ann Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Patrick Soussan
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France .,Assistance Publique - Hôpitaux de Paris, Département de Virologie, GHU Paris-Est, Paris, France
| |
Collapse
|
37
|
Hunt SE, Moore B, Amode RM, Armean IM, Lemos D, Mushtaq A, Parton A, Schuilenburg H, Szpak M, Thormann A, Perry E, Trevanion SJ, Flicek P, Yates AD, Cunningham F. Annotating and prioritizing genomic variants using the Ensembl Variant Effect Predictor-A tutorial. Hum Mutat 2021; 43:986-997. [PMID: 34816521 PMCID: PMC7613081 DOI: 10.1002/humu.24298] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/02/2021] [Accepted: 11/14/2021] [Indexed: 11/05/2022]
Abstract
The Ensembl Variant Effect Predictor (VEP) is a freely available, open-source tool for the annotation and filtering of genomic variants. It predicts variant molecular consequences using the Ensembl/GENCODE or RefSeq gene sets. It also reports phenotype associations from databases such as ClinVar, allele frequencies from studies including gnomAD, and predictions of deleteriousness from tools such as Sorting Intolerant From Tolerant and Combined Annotation Dependent Depletion. Ensembl VEP includes filtering options to customize variant prioritization. It is well supported and updated roughly quarterly to incorporate the latest gene, variant, and phenotype association information. Ensembl VEP analysis can be performed using a highly configurable, extensible command-line tool, a Representational State Transfer application programming interface, and a user-friendly web interface. These access methods are designed to suit different levels of bioinformatics experience and meet different needs in terms of data size, visualization, and flexibility. In this tutorial, we will describe performing variant annotation using the Ensembl VEP web tool, which enables sophisticated analysis through a simple interface.
Collapse
Affiliation(s)
- Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin Moore
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ridwan M Amode
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Irina M Armean
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Diana Lemos
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Aleena Mushtaq
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Andrew Parton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Helen Schuilenburg
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Michał Szpak
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Anja Thormann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emily Perry
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Stephen J Trevanion
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Andrew D Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
38
|
Wong J, Martelly W, Sharma S. A Reporter Based Cellular Assay for Monitoring Splicing Efficiency. J Vis Exp 2021. [PMID: 34605821 DOI: 10.3791/63014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
During gene expression, the vital step of pre-mRNA splicing involves accurate recognition of splice sites and efficient assembly of spliceosomal complexes to join exons and remove introns prior to cytoplasmic export of the mature mRNA. Splicing efficiency can be altered by the presence of mutations at splice sites, the influence of trans-acting splicing factors, or the activity of therapeutics. Here, we describe the protocol for a cellular assay that can be applied for monitoring the splicing efficiency of any given exon. The assay uses an adaptable plasmid encoded 3-exon/2-intron minigene reporter, which can be expressed in mammalian cells by transient transfection. Post-transfection, total cellular RNA is isolated, and the efficiency of exon splicing in the reporter mRNA is determined by either primer extension or semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). We describe how the impact of disease associated 5' splice-site mutations can be determined by introducing them in the reporter; and how the suppression of these mutations can be achieved by co-transfection with U1 small nuclear RNA (snRNA) construct carrying compensatory mutations in its 5' region that basepairs with the 5'-splice sites at exon-intron junctions in pre-mRNAs. Thus, the reporter can be used for the design of therapeutic U1 particles to improve recognition of mutant 5' splice-sites. Insertion of cis-acting regulatory sites, such as splicing enhancer or silencer sequences, into the reporter can also be used to examine the role of U1 snRNP in regulation mediated by a specific alternative splicing factor. Finally, reporter expressing cells can be incubated with small molecules to determine the effect of potential therapeutics on constitutive pre-mRNA splicing or on exons carrying mutant 5' splice sites. Overall, the reporter assay can be applied to monitor splicing efficiency in a variety of conditions to study fundamental splicing mechanisms and splicing-associated diseases.
Collapse
Affiliation(s)
- Jason Wong
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona
| | - William Martelly
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona;
| |
Collapse
|
39
|
Alonso-Pérez J, González-Quereda L, Bruno C, Panicucci C, Alavi A, Nafissi S, Nilipour Y, Zanoteli E, de Augusto Isihi LM, Melegh B, Hadzsiev K, Muelas N, Vílchez JJ, Dourado ME, Kadem N, Kutluk G, Umair M, Younus M, Pegorano E, Bello L, Crawford TO, Suárez-Calvet X, Töpf A, Guglieri M, Marini-Bettolo C, Gallano P, Straub V, Díaz-Manera J. Clinical and genetic spectrum of a large cohort of patients with δ-sarcoglycan muscular dystrophy. Brain 2021; 145:596-606. [PMID: 34515763 PMCID: PMC9014751 DOI: 10.1093/brain/awab301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict diseasés severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 pediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty seven percent of the patients had consanguineous parents. Ninety one percent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in 5 patients (21.7%) and 4 patients (17.4%) required non-invasive ventilation. Sixty percent of patients were wheelchair-bound since early teens (median age of 12.0 years old). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.
Collapse
Affiliation(s)
- Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain
| | - Lidia González-Quereda
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCSS Istituto Giannina Gaslini, Genova, 16147, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCSS Istituto Giannina Gaslini, Genova, 16147, Italy
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 13871, Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular research center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, 14117, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, 14117, Iran
| | - Edmar Zanoteli
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403, Brazil
| | - Lucas Michielon de Augusto Isihi
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403, Brazil
| | - Béla Melegh
- Department of Medical Genetics, and Szentagothai Research Center, University of Pecs, School of Medicine, Pecs, 07522, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, and Szentagothai Research Center, University of Pecs, School of Medicine, Pecs, 07522, Hungary
| | - Nuria Muelas
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.,Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Valencia, 46026, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Juan J Vílchez
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Mario Emilio Dourado
- Department of Integrative Medicine, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59012-300 Natal, RN, Brazil
| | - Naz Kadem
- University of Health Sciences, Antalya Research and Training Hospital, Department of Paediatric Neurology, Antalya, 07100, Turkey
| | - Gultekin Kutluk
- University of Health Sciences, Antalya Research and Training Hospital, Department of Paediatric Neurology, Antalya, 07100, Turkey
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, 14611, Saudi Arabia.,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing 100871, China
| | - Elena Pegorano
- Department of Neuroscience, University of Padova, Padova, 35112, Italy
| | - Luca Bello
- Department of Neuroscience, University of Padova, Padova, 35112, Italy
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Michela Guglieri
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Pia Gallano
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.,The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
40
|
Riolo G, Cantara S, Ricci C. What's Wrong in a Jump? Prediction and Validation of Splice Site Variants. Methods Protoc 2021; 4:62. [PMID: 34564308 PMCID: PMC8482176 DOI: 10.3390/mps4030062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing (AS) is a crucial process to enhance gene expression driving organism development. Interestingly, more than 95% of human genes undergo AS, producing multiple protein isoforms from the same transcript. Any alteration (e.g., nucleotide substitutions, insertions, and deletions) involving consensus splicing regulatory sequences in a specific gene may result in the production of aberrant and not properly working proteins. In this review, we introduce the key steps of splicing mechanism and describe all different types of genomic variants affecting this process (splicing variants in acceptor/donor sites or branch point or polypyrimidine tract, exonic, and deep intronic changes). Then, we provide an updated approach to improve splice variants detection. First, we review the main computational tools, including the recent Machine Learning-based algorithms, for the prediction of splice site variants, in order to characterize how a genomic variant interferes with splicing process. Next, we report the experimental methods to validate the predictive analyses are defined, distinguishing between methods testing RNA (transcriptomics analysis) or proteins (proteomics experiments). For both prediction and validation steps, benefits and weaknesses of each tool/procedure are accurately reported, as well as suggestions on which approaches are more suitable in diagnostic rather than in clinical research.
Collapse
Affiliation(s)
| | | | - Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (G.R.); (S.C.)
| |
Collapse
|
41
|
Zea DJ, Laskina S, Baudin A, Richard H, Laine E. Assessing conservation of alternative splicing with evolutionary splicing graphs. Genome Res 2021; 31:1462-1473. [PMID: 34266979 PMCID: PMC8327911 DOI: 10.1101/gr.274696.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/11/2021] [Indexed: 12/29/2022]
Abstract
Understanding how protein function has evolved and diversified is of great importance for human genetics and medicine. Here, we tackle the problem of describing the whole transcript variability observed in several species by generalizing the definition of splicing graph. We provide a practical solution to construct parsimonious evolutionary splicing graphs where each node is a minimal transcript building block defined across species. We show a clear link between the functional relevance, tissue regulation, and conservation of alternative transcripts on a set of 50 genes. By scaling up to the whole human protein-coding genome, we identify a few thousand genes where alternative splicing modulates the number and composition of pseudorepeats. We have implemented our approach in ThorAxe, an efficient, versatile, robust, and freely available computational tool.
Collapse
Affiliation(s)
- Diego Javier Zea
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Sofya Laskina
- Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany
| | - Alexis Baudin
- Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
| | - Hugues Richard
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
- Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany
| | - Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| |
Collapse
|
42
|
Neitz M, Neitz J. Intermixing the OPN1LW and OPN1MW Genes Disrupts the Exonic Splicing Code Causing an Array of Vision Disorders. Genes (Basel) 2021; 12:genes12081180. [PMID: 34440353 PMCID: PMC8391646 DOI: 10.3390/genes12081180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Light absorption by photopigment molecules expressed in the photoreceptors in the retina is the first step in seeing. Two types of photoreceptors in the human retina are responsible for image formation: rods, and cones. Except at very low light levels when rods are active, all vision is based on cones. Cones mediate high acuity vision and color vision. Furthermore, they are critically important in the visual feedback mechanism that regulates refractive development of the eye during childhood. The human retina contains a mosaic of three cone types, short-wavelength (S), long-wavelength (L), and middle-wavelength (M) sensitive; however, the vast majority (~94%) are L and M cones. The OPN1LW and OPN1MW genes, located on the X-chromosome at Xq28, encode the protein component of the light-sensitive photopigments expressed in the L and M cones. Diverse haplotypes of exon 3 of the OPN1LW and OPN1MW genes arose thru unequal recombination mechanisms that have intermixed the genes. A subset of the haplotypes causes exon 3- skipping during pre-messenger RNA splicing and are associated with vision disorders. Here, we review the mechanism by which splicing defects in these genes cause vision disorders.
Collapse
|
43
|
Ham KA, Keegan NP, McIntosh CS, Aung-Htut MT, Zaw K, Greer K, Fletcher S, Wilton SD. Induction of cryptic pre-mRNA splice-switching by antisense oligonucleotides. Sci Rep 2021; 11:15137. [PMID: 34302060 PMCID: PMC8302632 DOI: 10.1038/s41598-021-94639-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/14/2021] [Indexed: 11/09/2022] Open
Abstract
Antisense oligomers (AOs) are increasingly being used to modulate RNA splicing in live cells, both for research and for the development of therapeutics. While the most common intended effect of these AOs is to induce skipping of whole exons, rare examples are emerging of AOs that induce skipping of only part of an exon, through activation of an internal cryptic splice site. In this report, we examined seven AO-induced cryptic splice sites in six genes. Five of these cryptic splice sites were discovered through our own experiments, and two originated from other published reports. We modelled the predicted effects of AO binding on the secondary structure of each of the RNA targets, and how these alterations would in turn affect the accessibility of the RNA to splice factors. We observed that a common predicted effect of AO binding was disruption of the exon definition signal within the exon's excluded segment.
Collapse
Affiliation(s)
- Kristin A Ham
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, 6009, Australia
| | - Niall P Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, 6009, Australia
| | - Craig S McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, 6009, Australia
| | - May T Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, 6009, Australia
| | - Khine Zaw
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, 6009, Australia.,Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kane Greer
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, 6009, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, 6009, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia. .,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
44
|
Li D, McIntosh CS, Mastaglia FL, Wilton SD, Aung-Htut MT. Neurodegenerative diseases: a hotbed for splicing defects and the potential therapies. Transl Neurodegener 2021; 10:16. [PMID: 34016162 PMCID: PMC8136212 DOI: 10.1186/s40035-021-00240-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a fundamental step in eukaryotic gene expression that systematically removes non-coding regions (introns) and ligates coding regions (exons) into a continuous message (mature mRNA). This process is highly regulated and can be highly flexible through a process known as alternative splicing, which allows for several transcripts to arise from a single gene, thereby greatly increasing genetic plasticity and the diversity of proteome. Alternative splicing is particularly prevalent in neuronal cells, where the splicing patterns are continuously changing to maintain cellular homeostasis and promote neurogenesis, migration and synaptic function. The continuous changes in splicing patterns and a high demand on many cis- and trans-splicing factors contribute to the susceptibility of neuronal tissues to splicing defects. The resultant neurodegenerative diseases are a large group of disorders defined by a gradual loss of neurons and a progressive impairment in neuronal function. Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer's disease, Parkinson's disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Craig Stewart McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Frank Louis Mastaglia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Steve Donald Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
45
|
Gilis J, Vitting-Seerup K, Van den Berge K, Clement L. satuRn: Scalable analysis of differential transcript usage for bulk and single-cell RNA-sequencing applications. F1000Res 2021; 10:374. [PMID: 36762203 PMCID: PMC9892655 DOI: 10.12688/f1000research.51749.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing produces multiple functional transcripts from a single gene. Dysregulation of splicing is known to be associated with disease and as a hallmark of cancer. Existing tools for differential transcript usage (DTU) analysis either lack in performance, cannot account for complex experimental designs or do not scale to massive single-cell transcriptome sequencing (scRNA-seq) datasets. We introduce satuRn, a fast and flexible quasi-binomial generalized linear modelling framework that is on par with the best performing DTU methods from the bulk RNA-seq realm, while providing good false discovery rate control, addressing complex experimental designs, and scaling to scRNA-seq applications.
Collapse
Affiliation(s)
- Jeroen Gilis
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Data Mining and Modeling for Biomedicine, VIB Flemish Institute for Biotechnology, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
| | - Kristoffer Vitting-Seerup
- Department of Biology, Kobenhavns Universitet, Copenhagen, 2200, Denmark
- Biotech Research and Innovation Centre (BRIC), Kobenhavns Universitet, Copenhagen, 2200, Denmark
- Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
- Department of Health Technology, Danish Technical University, Kongens Lyngby, 2800, Denmark
| | - Koen Van den Berge
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
- Department of Statistics, University of California, Berkeley, Berkeley, California, USA
| | - Lieven Clement
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
46
|
Gilis J, Vitting-Seerup K, Van den Berge K, Clement L. satuRn: Scalable analysis of differential transcript usage for bulk and single-cell RNA-sequencing applications. F1000Res 2021; 10:374. [PMID: 36762203 PMCID: PMC9892655 DOI: 10.12688/f1000research.51749.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 10/04/2023] Open
Abstract
Alternative splicing produces multiple functional transcripts from a single gene. Dysregulation of splicing is known to be associated with disease and as a hallmark of cancer. Existing tools for differential transcript usage (DTU) analysis either lack in performance, cannot account for complex experimental designs or do not scale to massive scRNA-seq data. We introduce satuRn, a fast and flexible quasi-binomial generalized linear modelling framework that is on par with the best performing DTU methods from the bulk RNA-seq realm, while providing good false discovery rate control, addressing complex experimental designs and scaling to scRNA-seq applications.
Collapse
Affiliation(s)
- Jeroen Gilis
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Data Mining and Modeling for Biomedicine, VIB Flemish Institute for Biotechnology, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
| | - Kristoffer Vitting-Seerup
- Department of Biology, Kobenhavns Universitet, Copenhagen, 2200, Denmark
- Biotech Research and Innovation Centre (BRIC), Kobenhavns Universitet, Copenhagen, 2200, Denmark
- Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
- Department of Health Technology, Danish Technical University, Kongens Lyngby, 2800, Denmark
| | - Koen Van den Berge
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
- Department of Statistics, University of California, Berkeley, Berkeley, California, USA
| | - Lieven Clement
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
47
|
Rehman SU, Schallschmidt T, Rasche A, Knebel B, Stermann T, Altenhofen D, Herwig R, Schürmann A, Chadt A, Al-Hasani H. Alternative exon splicing and differential expression in pancreatic islets reveals candidate genes and pathways implicated in early diabetes development. Mamm Genome 2021; 32:153-172. [PMID: 33880624 PMCID: PMC8128753 DOI: 10.1007/s00335-021-09869-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/03/2021] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes (T2D) has a strong genetic component. Most of the gene variants driving the pathogenesis of T2D seem to target pancreatic β-cell function. To identify novel gene variants acting at early stage of the disease, we analyzed whole transcriptome data to identify differential expression (DE) and alternative exon splicing (AS) transcripts in pancreatic islets collected from two metabolically diverse mouse strains at 6 weeks of age after three weeks of high-fat-diet intervention. Our analysis revealed 1218 DE and 436 AS genes in islets from NZO/Hl vs C3HeB/FeJ. Whereas some of the revealed genes present well-established markers for β-cell failure, such as Cd36 or Aldh1a3, we identified numerous DE/AS genes that have not been described in context with β-cell function before. The gene Lgals2, previously associated with human T2D development, was DE as well as AS and localizes in a quantitative trait locus (QTL) for blood glucose on Chr.15 that we reported recently in our N2(NZOxC3H) population. In addition, pathway enrichment analysis of DE and AS genes showed an overlap of only half of the revealed pathways, indicating that DE and AS in large parts influence different pathways in T2D development. PPARG and adipogenesis pathways, two well-established metabolic pathways, were overrepresented for both DE and AS genes, probably as an adaptive mechanism to cope for increased cellular stress. Our results provide guidance for the identification of novel T2D candidate genes and demonstrate the presence of numerous AS transcripts possibly involved in islet function and maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Sayeed Ur Rehman
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Tanja Schallschmidt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Axel Rasche
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Torben Stermann
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Institute of Human Nutrition, Potsdam, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
48
|
Ma L, Prada AM, Schmidt M, Morrow EM. Generation of pathogenic TPP1 mutations in human stem cells as a model for neuronal ceroid lipofuscinosis type 2 disease. Stem Cell Res 2021; 53:102323. [PMID: 33845243 PMCID: PMC9173593 DOI: 10.1016/j.scr.2021.102323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 01/22/2023] Open
Abstract
Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is an autosomal recessive neurodegenerative disorder generally with onset at 2 to 4 years of age and characterized by seizures, loss of vision, progressive motor and mental decline, and premature death. CLN2 disease is caused by loss-of-function mutations in the tripeptidyl peptidase 1 (TPP1) gene leading to deficiency in TPP1 enzyme activity. Approximately 60% of patients have one of two pathogenic variants (c.509–1G > C or c.622C > T [p.(Arg208*)]). In order to generate a human stem cell model of CLN2 disease, we used CRISPR/Cas9-mediated knock-in technology to introduce these mutations in a homozygous state into H9 human embryonic stem cells. Heterozygous lines of the c.622C > T (p.(Arg208*)) mutation were also generated, which included a heterozygous mutant with a wild-type allele and different compound heterozygous coding mutants resulting from indels on one allele. We describe the methodology that led to the generation of the lines and provide data on the initial validation and characterization of these CLN2 disease models. Notably, both mutant lines (c.509–1G > C and c.622C > T [p.(Arg208*)]) in the homozygous state were shown to have reduced or absent protein, respectively, and deficiency of TPP1 enzyme activity. These models, which we have made available for wide-spread sharing, will be useful for future studies of molecular and cellular mechanisms underlying CLN2 disease and for therapeutic development.
Collapse
Affiliation(s)
- Li Ma
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA; Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island 02912, USA
| | - Adriana M Prada
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA; Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island 02912, USA
| | - Michael Schmidt
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA; Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island 02912, USA; Hassenfeld Child Health Innovation Institute, Brown University, Providence, Rhode Island 02912, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA; Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island 02912, USA; Hassenfeld Child Health Innovation Institute, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
49
|
Cale JM, Greer K, Fletcher S, Wilton SD. Proof-of-Concept: Antisense Oligonucleotide Mediated Skipping of Fibrillin-1 Exon 52. Int J Mol Sci 2021; 22:ijms22073479. [PMID: 33801742 PMCID: PMC8037683 DOI: 10.3390/ijms22073479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Marfan syndrome is one of the most common dominantly inherited connective tissue disorders, affecting 2–3 in 10,000 individuals, and is caused by one of over 2800 unique FBN1 mutations. Mutations in FBN1 result in reduced fibrillin-1 expression, or the production of two different fibrillin-1 monomers unable to interact to form functional microfibrils. Here, we describe in vitro evaluation of antisense oligonucleotides designed to mediate exclusion of FBN1 exon 52 during pre-mRNA splicing to restore monomer homology. Antisense oligonucleotide sequences were screened in healthy control fibroblasts. The most effective sequence was synthesised as a phosphorodiamidate morpholino oligomer, a chemistry shown to be safe and effective clinically. We show that exon 52 can be excluded in up to 100% of FBN1 transcripts in healthy control fibroblasts transfected with PMO52. Immunofluorescent staining revealed the loss of fibrillin 1 fibres with ~50% skipping and the subsequent re-appearance of fibres with >80% skipping. However, the effect of exon skipping on the function of the induced fibrillin-1 isoform remains to be explored. Therefore, these findings demonstrate proof-of-concept that exclusion of an exon from FBN1 pre-mRNA can result in internally truncated but identical monomers capable of forming fibres and lay a foundation for further investigation to determine the effect of exon skipping on fibrillin-1 function.
Collapse
Affiliation(s)
- Jessica M. Cale
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
| | - Kane Greer
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- PYC Therapeutics, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-9360-2305
| |
Collapse
|
50
|
Kumar B, Pandey M, Pottoo FH, Fayaz F, Sharma A, Sahoo PK. Liposomes: Novel Drug Delivery Approach for Targeting Parkinson's Disease. Curr Pharm Des 2021; 26:4721-4737. [PMID: 32003666 DOI: 10.2174/1381612826666200128145124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022]
Abstract
Parkinson's disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson's disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson's disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson's disease.
Collapse
Affiliation(s)
- Bhumika Kumar
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Dammam 31441, Saudi Arabia
| | - Faizana Fayaz
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - Anjali Sharma
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| | - P K Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, Delhi, 110017, India
| |
Collapse
|