1
|
Tian Y, Huang Q, Ren YT, Jiang X, Jiang B. Visceral adipose tissue predicts severity and prognosis of acute pancreatitis in obese patients. Hepatobiliary Pancreat Dis Int 2024; 23:458-462. [PMID: 37648552 DOI: 10.1016/j.hbpd.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Acute pancreatitis is a common systemic inflammatory disease, manifested by a spectrum of severity, ranging from mild in the majority of patients to severe acute pancreatitis. Patients with severe acute pancreatitis suffer from severe local and systemic complications and organ failure, leading to a poor prognosis. The early recognition of the severe condition is important to improve prognosis. Obesity has risen in tandem with an increase in the severity of acute pancreatitis in recent years. Studies have revealed that adipose tissue, particularly visceral adipose tissue is associated with the prognosis of acute pancreatitis. This review discussed the role of visceral adipose tissue in obese patients with acute pancreatitis and explored the possible mechanism involved.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Qing Huang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yu-Tang Ren
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xuan Jiang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Bo Jiang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
| |
Collapse
|
2
|
Xie X, Liu Y, Yang Q, Ma X, Lu Y, Hu Y, Zhang G, Ke L, Tong Z, Liu Y, Xue J, Lu G, Li W. Adipose Triglyceride Lipase-Mediated Adipocyte Lipolysis Exacerbates Acute Pancreatitis Severity in Mouse Models and Patients. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1494-1510. [PMID: 38705384 DOI: 10.1016/j.ajpath.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/03/2024] [Accepted: 03/22/2024] [Indexed: 05/07/2024]
Abstract
Dyslipolysis of adipocytes plays a critical role in various diseases. Adipose triglyceride lipase (ATGL) is a rate-limiting enzyme in adipocyte autonomous lipolysis. However, the degree of adipocyte lipolysis related to the prognoses in acute pancreatitis (AP) and the role of ATGL-mediated lipolysis in the pathogenesis of AP remain elusive. Herein, the visceral adipose tissue consumption rate in the acute stage was measured in both patients with AP and mouse models. Lipolysis levels and ATGL expression were detected in cerulein-induced AP models. CL316,243, a lipolysis stimulator, and adipose tissue-specific ATGL knockout mice were used to further investigate the role of lipolysis in AP. The ATGL-specific inhibitor, atglistatin, was used in C57Bl/6N and ob/ob AP models. This study indicated that increased visceral adipose tissue consumption rate in the acute phase was independently associated with adverse prognoses in patients with AP, which was validated in mouse AP models. Lipolysis of adipocytes was elevated in AP mice. Stimulation of lipolysis aggravated AP. Genetic blockage of ATGL specifically in adipocytes alleviated the damage to AP. The application of atglistatin effectively protected against AP in both lean and obese mice. These findings demonstrated that ATGL-mediated adipocyte lipolysis exacerbates AP and highlighted the therapeutic potential of ATGL as a drug target for AP.
Collapse
Affiliation(s)
- Xiaochun Xie
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Medical School of Southeast University, Nanjing, China; Medical School of Southeast University, Nanjing, China
| | - Yang Liu
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Medical School of Southeast University, Nanjing, China; Medical School of Southeast University, Nanjing, China
| | - Qi Yang
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaojie Ma
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yingying Lu
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Medical School of Southeast University, Nanjing, China; Medical School of Southeast University, Nanjing, China
| | - Yuepeng Hu
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guofu Zhang
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lu Ke
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuxiu Liu
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| | - Weiqin Li
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Medical School of Southeast University, Nanjing, China; Medical School of Southeast University, Nanjing, China; Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Liu Q, Gu X, Liu X, Gu Y, Zhang H, Yang J, Huang Z. Long-chain fatty acids - The turning point between 'mild' and 'severe' acute pancreatitis. Heliyon 2024; 10:e31296. [PMID: 38828311 PMCID: PMC11140623 DOI: 10.1016/j.heliyon.2024.e31296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease characterized by localized pancreatic injury and a systemic inflammatory response. Fatty acids (FAs), produced during the breakdown of triglycerides (TGs) in blood and peripancreatic fat, escalate local pancreatic inflammation to a systemic level by damaging pancreatic acinar cells (PACs) and triggering M1 macrophage polarization. This paper provides a comprehensive analysis of lipases' roles in the onset and progression of AP, as well as the effects of long-chain fatty acids (LCFAs) on the function of pancreatic acinar cells (PACs). Abnormalities in the function of PACs include Ca2+ overload, premature trypsinogen activation, protein kinase C (PKC) expression, endoplasmic reticulum (ER) stress, and mitochondrial and autophagic dysfunction. The study highlights the contribution of long-chain saturated fatty acids (LC-SFAs), especially palmitic acid (PA), to M1 macrophage polarization through the activation of the NLRP3 inflammasome and the NF-κB pathway. Furthermore, we investigated lipid lowering therapy for AP. This review establishes a theoretical foundation for pro-inflammatory mechanisms associated with FAs in AP and facilitating drug development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Xiaodie Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Zhicheng Huang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| |
Collapse
|
4
|
Wen Y, Zhuo WQ, Liang HY, Huang Z, Cheng L, Tian FZ, Wang T, Tang LJ, Luo ZL. Abdominal paracentesis drainage improves outcome of acute pancreatitis complicated with intra-abdominal hypertension in early phase. Am J Med Sci 2023; 365:48-55. [PMID: 36037989 DOI: 10.1016/j.amjms.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/23/2022] [Accepted: 08/19/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Intra-abdominal hypertension (IAH) is an important risk factor for organ dysfunction, and it occurs in the early phase of severe acute pancreatitis (SAP). We have reported a novel step-up approach and shown the benefit of performing abdominal paracentesis drainage (APD) ahead of percutaneous catheter drainage (PCD) when treating Patients with SAP with fluid collections. This study aimed to evaluate the efficacy of APD in Patients with SAP complicated with IAH in the early phase. METHODS In the present study, 206 AP patients complicated with IAH in the early phase were enrolled in hospital between June 2017 and December 2020. The patients were divided into two groups: 109 underwent APD (APD group) and 97 were managed without APD (non-APD group). We retrospectively compared the outcomes of the APD and non-APD groups for IAH treatment. The parameters including mortality, infection, organ failure, inflammatory factors, indications for further interventions, and drainage-related complications were observed. RESULTS The demographic data and severity scores of the two groups were comparable. The mortality rate was lower in the APD group (3.7%) than in the non-APD group (8.2%). Compared with the non-APD group, the intra-abdominal pressure and laboratory parameters of the APD group decreased more rapidly, and the mean number of failed organs was lower. However, there was no significant difference in incidence of infections between the two groups. CONCLUSIONS Application of APD is beneficial to AP patients. It significantly attenuated inflammation injury, avoided further interventions, and reduced multiple organ failure.
Collapse
Affiliation(s)
- Yi Wen
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu 610083, Sichuan Province, China
| | - Wen-Qing Zhuo
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610051, Sichuan Province, China
| | - Hong-Yin Liang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu 610083, Sichuan Province, China
| | - Zhu Huang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu 610083, Sichuan Province, China
| | - Long Cheng
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu 610083, Sichuan Province, China
| | - Fu-Zhou Tian
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu 610083, Sichuan Province, China
| | - Tao Wang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu 610083, Sichuan Province, China
| | - Li-Jun Tang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu 610083, Sichuan Province, China
| | - Zhu-Lin Luo
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu 610083, Sichuan Province, China.
| |
Collapse
|
5
|
Liu S, Szatmary P, Lin JW, Wang Q, Sutton R, Chen L, Liu T, Huang W, Xia Q. Circulating monocytes in acute pancreatitis. Front Immunol 2022; 13:1062849. [PMID: 36578487 PMCID: PMC9791207 DOI: 10.3389/fimmu.2022.1062849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease characterized by inflammation of the exocrine pancreas and manifesting itself through acute onset of abdominal pain. It is frequently associated with organ failure, pancreatic necrosis, and death. Mounting evidence describes monocytes - phagocytic, antigen presenting, and regulatory cells of the innate immune system - as key contributors and regulators of the inflammatory response and subsequent organ failure in acute pancreatitis. This review highlights the recent advances of dynamic change of numbers, phenotypes, and functions of circulating monocytes as well as their underling regulatory mechanisms with a special focus on the role of lipid modulation during acute pancreatitis.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jing-wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| |
Collapse
|
6
|
Liu D, Wen L, Wang Z, Hai Y, Yang D, Zhang Y, Bai M, Song B, Wang Y. The Mechanism of Lung and Intestinal Injury in Acute Pancreatitis: A Review. Front Med (Lausanne) 2022; 9:904078. [PMID: 35872761 PMCID: PMC9301017 DOI: 10.3389/fmed.2022.904078] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP), as a common cause of clinical acute abdomen, often leads to multi-organ damage. In the process of severe AP, the lungs and intestines are the most easily affected organs aside the pancreas. These organ damages occur in succession. Notably, lung and intestinal injuries are closely linked. Damage to ML, which transports immune cells, intestinal fluid, chyle, and toxic components (including toxins, trypsin, and activated cytokines to the systemic circulation in AP) may be connected to AP. This process can lead to the pathological changes of hyperosmotic edema of the lung, an increase in alveolar fluid level, destruction of the intestinal mucosal structure, and impairment of intestinal mucosal permeability. The underlying mechanisms of the correlation between lung and intestinal injuries are inflammatory response, oxidative stress, and endocrine hormone secretion disorders. The main signaling pathways of lung and intestinal injuries are TNF-α, HMGB1-mediated inflammation amplification effect of NF-κB signal pathway, Nrf2/ARE oxidative stress response signaling pathway, and IL-6-mediated JAK2/STAT3 signaling pathway. These pathways exert anti-inflammatory response and anti-oxidative stress, inhibit cell proliferation, and promote apoptosis. The interaction is consistent with the traditional Chinese medicine theory of the lung being connected with the large intestine (fei yu da chang xiang biao li in Chinese). This review sought to explore intersecting mechanisms of lung and intestinal injuries in AP to develop new treatment strategies.
Collapse
Affiliation(s)
- Dongling Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Linlin Wen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- County People’s Hospital, Pingliang, China
| | - Zhandong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yang Hai
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
| | - Dan Yang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanying Zhang
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Min Bai
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Bing Song
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Yongfeng Wang
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| |
Collapse
|
7
|
Xu T, Sheng L, Guo X, Ding Z. Free Fatty Acid Increases the Expression of NLRP3-Caspase1 in Adipose Tissue Macrophages in Obese Severe Acute Pancreatitis. Dig Dis Sci 2022; 67:2220-2231. [PMID: 34114155 DOI: 10.1007/s10620-021-07027-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Obesity is an important risk factor for severe acute pancreatitis. The necrosis of epididymal adipose tissue occurs in severe acute pancreatitis. Adipose tissue macrophages play an important role in metabolic related inflammation. Therefore, we explored the potential mechanisms between adipose tissue macrophages and obesity-related severe acute pancreatitis. METHODS Severe acute pancreatitis mice model was induced by caerulein with lipopolysaccharide. The severity of severe acute pancreatitis was evaluated according to the morphological, general, and biochemical change. We assessed the injury of epididymal white adipose tissue, pancreas, and adipose tissue macrophages in obese mice and lean mice with severe acute pancreatitis. Outcomes of caerulein-induced severe acute pancreatitis were studied in lean and obese mice with or without lipase inhibitor orlistat. RESULTS Fat necrosis and pancreatic injury increased in the SAP groups. High levels of serum free fatty acid and triglyceride were increased significantly in the SAP group. The NLRP3-caspase1 inflammasome signal pathway in adipose tissue macrophages markedly enhanced in the SAP groups compared with control group. Free fatty acid can trigger macrophages inflammation through NLRP3-caspase1. Lipase inhibited by orlistat remarkably decreased in adipose tissue necrosis, and the levels of serum lipase, amylase, and pancreatic tissue damage decreased in the orlistat group compared with the SAP group. The NLRP3-caspase1 inflammasome pathway in adipose tissue macrophages markedly decreased in the orlistat groups compared with SAP group. The levels of serum free fatty acid and triglyceride were decreased significantly in the orlistat group. CONCLUSIONS Inflammation increases in adipose tissue macrophages of obese mice with severe acute pancreatitis. Free fatty acid generated via adipocyte lipolysis worsens inflammation in adipose tissue macrophages and the outcome of severe acute pancreatitis in obese mice through the NLRP3-caspase1 inflammasome pathway.
Collapse
Affiliation(s)
- Tao Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Liping Sheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Xianwen Guo
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Zhen Ding
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
8
|
EVRİMLER Ş, ÇAKMAKÇI M, KARAİBRAHİMOĞLU A, KAYAN M. The prognostic value of fat necrosis deposits on CT imaging in acute pancreatitis. Turk J Med Sci 2021; 51:749-756. [PMID: 33350291 PMCID: PMC8203172 DOI: 10.3906/sag-1910-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/16/2020] [Indexed: 11/21/2022] Open
Abstract
Background/aim Investigate the prognostic value of the fat necrosis deposit (FND) pattern in acute pancreatitis. Materials and methods The contrast-enhanced computed tomography (CT) images of 35 necrotizing pancreatitis (NP) and 51 edematous pancreatitis (EP) cases were included in our retrospective study. Computed tomography severity index (CTSI) and Ranson scores were calculated. Images were evaluated for FND, complications (infection/ hemorrhage), walled-off necrosis (WON), and venous thrombosis (VT). We developed a new grading system called fat necrosis deposit-CTSI (FND-CTSI), which was the sum of FND and CTSI scores. The relationship between grading systems and mortality, length of hospital-intensive care unit stay, surgical and percutaneous interventions were evaluated. Results FND-CTSI scores were significantly higher in NP than EP (P < 0.001). FND-CTSI demonstrated a significant correlation with CTSI (r:0.91, P < 0.001) and Ranson score (r:0.24, P = 0.025). CTSI was significantly higher in only mass form amongst the FND groups (P < 0.001). There was a significant difference in WON, complications, and mortality between FND groups (P < 0.05). CTSI and FND-CTSI scores were both significantly associated with WON, VT, surgical intervention, mortality (P < 0.001), and the presence of complications (P = 0.013 and P = 0.007, respectively). FND-CTSI was also significantly associated with percutaneous intervention (P = 0.019), while CTSI was not (P > 0.05). According to ROC analysis, AUC values of FND-CTSI were higher than CTSI for the detection of WON, complications, mortality, and percutaneous intervention (P < 0.05). FND-CTSI showed a highly significant correlation with the length of hospital and intensive care unit stays (P < 0.001). Conclusion FND-CTSI can be used in acute pancreatitis grading and considered as a prognostic factor.
Collapse
Affiliation(s)
- Şehnaz EVRİMLER
- Department of Radiology, Faculty of Medicine, Süleyman Demirel University, IspartaTurkey
| | - Münteha ÇAKMAKÇI
- Department of Radiology, Faculty of Medicine, Süleyman Demirel University, IspartaTurkey
| | - Adnan KARAİBRAHİMOĞLU
- Department of Biostatistics, Faculty of Medicine, Süleyman Demirel University, IspartaTurkey
| | - Mustafa KAYAN
- Department of Radiology, Faculty of Medicine, Süleyman Demirel University, IspartaTurkey
| |
Collapse
|
9
|
de Sousa DER, Barbosa EDFG, Wilson TM, Machado M, Oliveira WJ, Duarte MA, Scalon MC, Câmara ACL, Lux Hoppe EG, Paludo GR, de Melo CB, de Castro MB. Eurytrema coelomaticum natural infection in small ruminants: a neglected condition. Parasitology 2021; 148:576-583. [PMID: 33314998 PMCID: PMC10950378 DOI: 10.1017/s0031182020002358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 01/03/2023]
Abstract
Pancreatic eurytrematosis (PE) is an under diagnosed and neglected parasitosis in goats and sheep in the Americas. Clinical and pathological features of PE are not well defined in small ruminants worldwide. Natural cases of PE in small ruminants were detected in the Federal District, Brazil. A survey of necropsy records, including epidemiological and clinicopathological data, in goats and sheep was conducted. Most cases of PE occurred during the rainy season in adult females, with an incidence of 12.9% in goats and 0.8% in sheep. Clinical signs varied from asymptomatic infections to anorexia, lethargy, weakness, marked weight loss and death in some goats. Overall, most cases of PE in goats and sheep were incidental necropsy findings with minor pancreatic lesions. Three goats, however, showed severe chronic pancreatitis, dilation of major pancreatic ducts with numerous trematodes present and marked abdominal fat necrosis. Morphological and molecular characterization of flukes detected Eurytrema coelomaticum. Our findings shed light on the prevalence of E. coelomaticum infections in small ruminants in the region and highlight the possibility of severe and lethal cases in goats. PE must be further investigated in small ruminant populations in relevant livestock production regions of the Americas.
Collapse
Affiliation(s)
| | | | - Tais Meziara Wilson
- Veterinary Pathology Laboratory, Campus Darcy Ribeiro, University of Brasília, Brasília, DF70636-200, Brazil
| | - Mizael Machado
- Instituto Nacional de Investigacion Agropecuaria (INIA), Estacion Experimental INIA Tacuarembó, Plataforma de Salud Animal, Ruta 5 Km 386, Tacuarembó, Uruguay
| | - Wilson Júnior Oliveira
- Department of Pathology, Animal Reproduction, and One Health Laboratory of Parasitic Diseases – LabEPar, Paulista State University, Jaboticabal, SP14884-90, Brazil
| | - Matheus Almeida Duarte
- Veterinary Clinical Pathology Laboratory, Campus Darcy Ribeiro, University of Brasília, Brasília, DF70636-200, Brazil
| | - Marcela Corrêa Scalon
- Veterinary Clinical Pathology Laboratory, Campus Darcy Ribeiro, University of Brasília, Brasília, DF70636-200, Brazil
| | - Antônio Carlos Lopes Câmara
- Large Animal Veterinary Teaching Hospital, University of Brasília (UnB), SIT PqEAT, Granja do Torto, 70297-400, Brasília, Distrito Federal, Brazil
| | - Estevam Guilherme Lux Hoppe
- Department of Pathology, Animal Reproduction, and One Health Laboratory of Parasitic Diseases – LabEPar, Paulista State University, Jaboticabal, SP14884-90, Brazil
| | - Giane Regina Paludo
- Veterinary Clinical Pathology Laboratory, Campus Darcy Ribeiro, University of Brasília, Brasília, DF70636-200, Brazil
| | - Cristiano Barros de Melo
- Postgraduate Program in Animal Sciences, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, DF70910-900, Brazil
| | - Márcio Botelho de Castro
- Veterinary Pathology Laboratory, Campus Darcy Ribeiro, University of Brasília, Brasília, DF70636-200, Brazil
| |
Collapse
|
10
|
Fat misbehaving in the abdominal cavity: a pictorial essay. Pol J Radiol 2020; 85:e32-e38. [PMID: 32180852 PMCID: PMC7064015 DOI: 10.5114/pjr.2020.93070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/13/2019] [Indexed: 11/27/2022] Open
Abstract
Intra-abdominal fat is abundantly present in both the peritoneum and retroperitoneum. Fat necrosis or inflammation are common findings in abdominal imaging. The most common pathologies that we encounter are epiploic appendagitis, omental infarction, mesenteric panniculitis, and encapsulated fat necrosis. Less common entities that can occur are pancreatic saponification, heterotopic mesenteric ossification, and pseudolipoma of the capsule of Glisson. These entities can mimic more urgent pathologies such as appendicitis, diverticulitis, or malignancies.
Collapse
|
11
|
Cortese L, Terrazzano G, Pelagalli A. Leptin and Immunological Profile in Obesity and Its Associated Diseases in Dogs. Int J Mol Sci 2019; 20:2392. [PMID: 31091785 PMCID: PMC6566566 DOI: 10.3390/ijms20102392] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022] Open
Abstract
Growing scientific evidence has unveiled increased incidences of obesity in domestic animals and its influence on a plethora of associated disorders. Leptin, an adipokine regulating body fat mass, represents a key molecule in obesity, able to modulate immune responses and foster chronic inflammatory response in peripheral tissues. High levels of cytokines and inflammatory markers suggest an association between inflammatory state and obesity in dogs, highlighting the parallelism with humans. Canine obesity is a relevant disease always accompanied with several health conditions such as inflammation, immune-dysregulation, insulin resistance, pancreatitis, orthopaedic disorders, cardiovascular disease, and neoplasia. However, leptin involvement in many disease processes in veterinary medicine is poorly understood. Moreover, hyperleptinemia as well as leptin resistance occur with cardiac dysfunction as a consequence of altered cardiac mitochondrial metabolism in obese dogs. Similarly, leptin dysregulation seems to be involved in the pancreatitis pathophysiology. This review aims to examine literature concerning leptin and immunological status in obese dogs, in particular for the aspects related to obesity-associated diseases.
Collapse
Affiliation(s)
- Laura Cortese
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy.
| | - Giuseppe Terrazzano
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
12
|
Huang HL, Tang GD, Liang ZH, Qin MB, Wang XM, Chang RJ, Qin HP. Role of Wnt/β-catenin pathway agonist SKL2001 in Caerulein-induced acute pancreatitis. Can J Physiol Pharmacol 2018; 97:15-22. [PMID: 30326193 DOI: 10.1139/cjpp-2018-0226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The goal of this study was to clarify the protective role of the Wnt/β-catenin pathway agonist SKL2001 in a rat model of Caerulein-induced acute pancreatitis. AR42J cells and rats were divided into 4 groups: control, Caerulein, SKL2001 + Caerulein, and SKL2001 + control. Cell apoptosis was examined using flow cytometry. Hematoxylin-eosin staining was performed to observe pathological changes in pancreatic and small intestinal tissues. Inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA), while genes related to the Wnt/β-catenin pathway were quantified using quantitative real-time PCR. In vitro results showed that Caerulein promoted cell necrosis, inhibited the Wnt/β-catenin pathway, and increased the level of inflammatory cytokines. However, SKL2001 reduced cell necrosis and inflammatory cytokines and activated the Wnt/β-catenin pathway. Additionally, in vivo results demonstrated the accumulation of fluid (i.e., edema), hemorrhage, inflammation and necrosis of the pancreatic acini occurred 6 h after the final Caerulein induction, with the damage reaching a maximal level 12 h after the final Caerulein induction; meanwhile, the Wnt/β-catenin pathway was evidently inhibited with an enhanced level of inflammatory cytokines. The aforementioned damage was further aggravated 12 h later. Nevertheless, the pancreatic and small intestinal tissue damages were alleviated in Caerulein-induced rats treated with SKL2001. In conclusion, activation of the Wnt/β-catenin pathway could inhibit Caerulein-induced cell apoptosis and inflammatory cytokine release, thus improving pancreatic and intestinal damage in rats with acute pancreatitis.
Collapse
Affiliation(s)
- Hua-Li Huang
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Guo-Du Tang
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Hai Liang
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Meng-Bin Qin
- b Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Xian-Mo Wang
- c Department of Clinical Laboratory, The First People's Hospital of Jingzhou City, Jingzhou, Jingzhou 434000, Hubei, China
| | - Ren-Jie Chang
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - He-Ping Qin
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
13
|
Pérez S, Finamor I, Martí-Andrés P, Pereda J, Campos A, Domingues R, Haj F, Sabater L, de-Madaria E, Sastre J. Role of obesity in the release of extracellular nucleosomes in acute pancreatitis: a clinical and experimental study. Int J Obes (Lond) 2018; 43:158-168. [PMID: 29717278 DOI: 10.1038/s41366-018-0073-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES A high body mass index increases the risk of severe pancreatitis and associated mortality. Our aims were: (1) To determine whether obesity affects the release of extracellular nucleosomes in patients with pancreatitis; (2) To determine whether pancreatic ascites confers lipotoxicity and triggers the release of extracellular nucleosomes in lean and obese rats. METHODS DNA and nucleosomes were determined in plasma from patients with mild or moderately severe acute pancreatitis either with normal or high body mass index (BMI). Lipids from pancreatic ascites from lean and obese rats were analyzed and the associated toxicity measured in vitro in RAW 264.7 macrophages. The inflammatory response, extracellular DNA and nucleosomes were determined in lean or obese rats with pancreatitis after peritoneal lavage. RESULTS Nucleosome levels in plasma from obese patients with mild pancreatitis were higher than in normal BMI patients; these levels markedly increased in obese patients with moderately severe pancreatitis vs. those with normal BMI. Ascites from obese rats exhibited high levels of palmitic, oleic, stearic, and arachidonic acids. Necrosis and histone 4 citrullination-marker of extracellular traps-increased in macrophages incubated with ascites from obese rats but not with ascites from lean rats. Peritoneal lavage abrogated the increase in DNA and nucleosomes in plasma from lean or obese rats with pancreatitis. It prevented fat necrosis and induction of HIF-related genes in lung. CONCLUSIONS Extracellular nucleosomes are intensely released in obese patients with acute pancreatitis. Pancreatitis-associated ascitic fluid triggers the release of extracellular nucleosomes in rats with severe pancreatitis.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain.,Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), 1000, Santa Maria, Brazil
| | - Pablo Martí-Andrés
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain
| | - Javier Pereda
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain
| | - Ana Campos
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosário Domingues
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fawaz Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Luis Sabater
- Department of Surgery, University of Valencia, University Clinic Hospital, Av. Blasco Ibañez 15, 46010, Valencia, Spain
| | - Enrique de-Madaria
- Department of Gastroenterology, University General Hospital of Alicante, Institute of Sanitary and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
| | - Juan Sastre
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain.
| |
Collapse
|
14
|
Completely serum-free and chemically defined adipocyte development and maintenance. Cytotherapy 2018; 20:576-588. [DOI: 10.1016/j.jcyt.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022]
|
15
|
Harada S, Nozaki Y, Matsuura W, Yamazaki Y, Tokuyama S. RETRACTED: Cerebral ischemia-induced elevation of hepatic inflammatory factors accompanied by glucose intolerance suppresses hypothalamic orexin-A-mediated vagus nerve activation. Brain Res 2017; 1661:100-110. [DOI: 10.1016/j.brainres.2017.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/06/2017] [Accepted: 02/17/2017] [Indexed: 01/04/2023]
|
16
|
Shao L, Feng B, Zhang Y, Zhou H, Ji W, Min W. The role of adipose-derived inflammatory cytokines in type 1 diabetes. Adipocyte 2016; 5:270-4. [PMID: 27617172 DOI: 10.1080/21623945.2016.1162358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022] Open
Abstract
Adipose tissue dysfunction correlates with the development of diabetes. Mice with an adipocyte-specific deletion of the SUMO-specific protease SENP1 develop symptoms of type-1 diabetes mellitus (T1DM). Peri-pancreatic adipocytes (PATs) exert both systemic and paracrine effects on pancreases function. Our recent studies report that PATs of SENP1-deficient mice have increased proinflammatory cytokine production compared with other adipose depots. Proinflammatory cytokines produced from PATs not only have direct cytotoxic effects on pancreatic islets, but also increase CCL5 expression in adjacent pancreatic islets, which induces persistent inflammation in pancreases by acquisition of Th1 and Th17 effector T cell subsets. Small ubiquitin-like modifier (SUMO) can post-translationally conjugate to cellular proteins (SUMOylation) and modulate their biological functions. Several components in SUMOylation associate with T1DM susceptibility. We find that SUMOylation of NF-κB essential molecule NEMO augments NF-κB activity, NF-κB-dependent cytokine production and pancreatic inflammation. NF-κB inhibitor should provide therapeutic approach to block PAT inflammation and ameliorate the T1DM phenotype. We further propose that adipocytes in PATs may play a primary role in establishing pancreatic immune regulation at onset of diabetes, providing new insights into the molecular pathogenesis of type 1 diabetes.
Collapse
|
17
|
Huang Z, Yu SH, Liang HY, Zhou J, Yan HT, Chen T, Cheng L, Ning L, Wang T, Luo ZL, Wang KY, Liu WH, Tang LJ. Outcome benefit of abdominal paracentesis drainage for severe acute pancreatitis patients with serum triglyceride elevation by decreasing serum lipid metabolites. Lipids Health Dis 2016; 15:110. [PMID: 27341816 PMCID: PMC4919836 DOI: 10.1186/s12944-016-0276-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Our previous reports demonstrated that abdominal paracentesis drainage (APD) exerts a beneficial effect on severe acute pancreatitis (SAP) patients. However, the underlying mechanisms for this effectiveness are not well understood. METHODS A retrospective cohort of 132 consecutive non-hypertriglyceridemia (HTG)-induced SAP patients with triglyceride (TG) elevation and pancreatitis-associated ascitic fluid (PAAF) was recruited from May 2010 to May 2015 and included in this study. The patients were divided into two groups: the APD group (n = 68) and the non-APD group (n = 64). The monitored parameters mainly included mortality, hospital stay, the incidence of further intervention, levels of serum lipid metabolites and inflammatory factors, parameters related to organ failure and infections, and severity scores. RESULTS The demographic data and severity scores were comparable between the two groups. Compared with the non-APD group, the primary outcomes (including mortality, hospital stay and the incidence of percutaneous catheter drainage) in the APD group were improved. The serum levels of lipid metabolites were significantly lower in the APD group after 2 weeks of treatment than in the non-APD group. Logistic regression analysis indicated that the decreased extent of free fatty acid (FFA)(odds ratio, 1.435; P = 0.015) was a predictor of clinical improvement after 2 weeks of treatment. CONCLUSION Treatment with APD benefits non-HTG-induced SAP patients with serum TG elevation by decreasing serum levels of FFA.
Collapse
Affiliation(s)
- Zhu Huang
- />Postgraduate Department, Third Military Medical University, Chongqing, China
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Sun-Hong Yu
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Hong-Yin Liang
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Jing Zhou
- />Postgraduate Department, Third Military Medical University, Chongqing, China
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Hong-Tao Yan
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Tao Chen
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Long Cheng
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Lin Ning
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Tao Wang
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Zhu-Lin Luo
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Kui-Ying Wang
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Wei-Hui Liu
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Li-Jun Tang
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| |
Collapse
|
18
|
Kamath MG, Pai CG, Kamath A, Kurien A. Monocyte chemoattractant protein-1, transforming growth factor-beta1, nerve growth factor, resistin and hyaluronic acid as serum markers: comparison between recurrent acute and chronic pancreatitis. Hepatobiliary Pancreat Dis Int 2016; 15:209-15. [PMID: 27020638 DOI: 10.1016/s1499-3872(15)60029-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Diagnostic parameters that can predict the presence of chronic pancreatitis (CP) in patients with recurrent pain due to pancreatitis would help to direct appropriate therapy. This study aimed to compare the serum levels of monocyte chemoattractant protein-1 (MCP-1), transforming growth factor-beta1 (TGF-beta1), nerve growth factor (NGF), resistin and hyaluronic acid (HA) in patients with recurrent acute pancreatitis (RAP) and CP to assess their ability to differentiate the two conditions. METHODS Levels of serum markers assessed by enzyme-linked immunosorbent assay (ELISA) were prospectively compared in consecutive patients with RAP, CP and in controls, and stepwise discriminant analysis was performed to identify the markers differentiating RAP from CP. RESULTS One hundred and thirteen consecutive patients (RAP=32, CP=81) and 78 healthy controls were prospectively enrolled. The mean (SD) age of the patients was 32.0 (14.0) years; 89 (78.8%) were male. All markers were significantly higher in CP patients than in the controls (P<0.001); MCP-1, NGF and HA were significantly higher in RAP patients than in the controls (P<0.001). Stepwise discriminant analysis showed significant difference (P=0.002) between RAP and CP for resistin with an accuracy of 61.9%, discriminant scores of ≤-0.479 and ≥0.189 indicating RAP and CP, respectively. The other markers had no differential value between RAP and CP. CONCLUSION Serum resistin is a promising marker to differentiate between RAP and CP and needs validation in future studies, especially in those with early CP.
Collapse
Affiliation(s)
- M Ganesh Kamath
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal University, Manipal, India.
| | | | | | | |
Collapse
|
19
|
Jaipuria J, Bhandari V, Chawla AS, Singh M. Intra-abdominal pressure: Time ripe to revise management guidelines of acute pancreatitis? World J Gastrointest Pathophysiol 2016; 7:186-98. [PMID: 26909242 PMCID: PMC4753186 DOI: 10.4291/wjgp.v7.i1.186] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/08/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To systematically review evidence on pathophysiology of intra-abdominal pressure (IAP) in acute pancreatitis (AP) with its clinical correlates. METHODS Systematic review of available evidence in English literature with relevant medical subject heading terms on PubMed, Medline and Scopus with further search from open access sources on internet as suggested by articles retrieved. RESULTS Intra-abdominal hypertension (IAH) is increasingly gaining recognition as a point of specific intervention with potential to alter disease outcome and improve mortality in AP. IAH can be expected in at least 17% of patients presenting with diagnosis of AP to a typical tertiary care hospital (prevalence increasing to 50% in those with severe disease). Abdominal compartment syndrome can be expected in at least 15% patients with severe disease. Recent guidelines on management of AP do not acknowledge utility of surveillance for IAP other than those by Japanese Society of Hepato-Biliary-Pancreatic Surgery. We further outline pathophysiologic mechanisms of IAH; understanding of which advances our knowledge and helps to coherently align common observed variations in management related conundrums (such as fluid therapy, nutrition and antibiotic prophylaxis) with potential to further individualize treatment in AP. CONCLUSION We suggest that IAP be given its due place in future practice guidelines and that recommendations be formed with help of a broader panel with inclusion of clinicians experienced in management of IAH.
Collapse
|
20
|
Amor S, Iglesias-de la Cruz MC, Ferrero E, García-Villar O, Barrios V, Fernandez N, Monge L, García-Villalón AL, Granado M. Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer. Int J Colorectal Dis 2016; 31:365-75. [PMID: 26493186 DOI: 10.1007/s00384-015-2420-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2015] [Indexed: 02/04/2023]
Abstract
PURPOSE Obesity is a risk factor for the development of human colorectal cancer (CC). The aim of this work is to report the inflammatory and angiogenic scenario in lean (BMI < 25 kg/m2) and obese (BMI > 30 kg/m2) patients with and without CC and to assess the role of peritumoral adipose tissue in CC-induced inflammation. MATERIAL AND METHODS Patients were divided in four experimental groups: obese patients with CC (OB-CC), lean patients with CC (LEAN-CC), obese patients without CC (OB), and lean patients without CC (LEAN). RESULTS Plasma levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-4, IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in OB-CC patients. Peritumoral adipose tissue (TF) explants and cultured mature adipocytes secreted higher amounts of nitrites and nitrates than did control and non-tumoral (NTF) adipose tissue both alone and in response to lipopolysaccharide (LPS). Nitrite and nitrate secretion was also increased in TF explants from OB-CC patients compared with that from LEAN-CC patients. Gene expression of adiponectin, tumor necrosis factor alpha (TNF-α), insulin-like growth factor type I (IGF-I), cyclooxygenase-2 (COX-2), and peroxisome proliferator-activated receptor γ (PPAR-γ) was increased in TF explants from CC patients. LPS increased the gene expression of IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), and COX-2 in OB and in TF explants from OB-CC patients. COX-2 and PPAR-γ inhibition further increased LPS-induced release of nitrites and nitrates in TF explants and adipocytes from OB-CC patients. CONCLUSIONS In conclusion, OB-CC patients have increased plasma levels of pro-inflammatory and angiogenic factors. TF from OB-CC patients shows an increased secretion of inflammatory markers compared with both TF from LEAN-CC and non-tumoral adipose tissue (AT) through a COX-2- and PPAR-γ-independent mechanism.
Collapse
|
21
|
Gulfo J, Ledda A, Gea-Sorlí S, Bonjoch L, Closa D, Grasa M, Esteve M. New Roles for Corticosteroid Binding Globulin and Opposite Expression Profiles in Lung and Liver. PLoS One 2016; 11:e0146497. [PMID: 26741814 PMCID: PMC4704799 DOI: 10.1371/journal.pone.0146497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/17/2015] [Indexed: 12/02/2022] Open
Abstract
Corticosteroid-binding globulin (CBG) is the specific plasma transport glycoprotein for glucocorticoids. Circulating CBG is mainly synthesized in liver but, its synthesis has been located also in other organs as placenta, kidney and adipose tissue with unknown role. Using an experimental model of acute pancreatitis in cbg-/- mice we investigated whether changes in CBG affect the progression of the disease as well as the metabolism of glucocorticoids in the lung. Lack of CBG does not modify the progression of inflammation associated to pancreatitis but resulted in the loss of gender differences in corticosterone serum levels. In the lung, CBG expression and protein level were detected, and it is noteworthy that these showed a sexual dimorphism opposite to the liver, i.e. with higher levels in males. Reduced expression of 11β-HSD2, the enzyme involved in the deactivation of corticosterone, was also observed. Our results indicate that, in addition to glucocorticoids transporter, CBG is involved in the gender differences observed in corticosteroids circulating levels and plays a role in the local regulation of corticosteroids availability in organs like lung.
Collapse
Affiliation(s)
- Jose Gulfo
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Angelo Ledda
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Sabrina Gea-Sorlí
- Department of Experimental Pathology, IIBB-CSIC-IDIBAPS, Barcelona, Spain
| | - Laia Bonjoch
- Department of Experimental Pathology, IIBB-CSIC-IDIBAPS, Barcelona, Spain
| | - Daniel Closa
- Department of Experimental Pathology, IIBB-CSIC-IDIBAPS, Barcelona, Spain
| | - Mar Grasa
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Montserrat Esteve
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
22
|
Bonjoch L, Gea-Sorlí S, Closa D. Lipids generated during acute pancreatitis increase inflammatory status of macrophages by interfering with their M2 polarization. Pancreatology 2015; 15:352-9. [PMID: 26003852 DOI: 10.1016/j.pan.2015.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Necrosis of adipose tissue is a common complication of acute pancreatitis. The areas of steatonecrosis become a source of inflammatory mediators, including chemically modified fatty acids which could influence the progression of the systemic inflammation. In an experimental model of acute pancreatitis we analyzed the effects of lipids generated by two representative areas of adipose tissue on the switch to the M1 phenotype in macrophages. METHODS Pancreatitis was induced in rats by intraductal administration of 5% taurocholate and after 6 h, lipids from retroperitoneal, mesenteric or epididymal adipose tissues were collected. Lipid uptake, phenotype polarization and the activation of PPARγ and NFκB were evaluated in macrophages treated with these lipids. RESULTS After induction of pancreatitis, lipids from visceral adipose tissue promote the switch to an increased pro-inflammatory phenotype in macrophages. This effect is not related with a higher activation of NFκB but with an interfering effect on the activation of M2 phenotype. CONCLUSIONS During acute pancreatitis, lipids generated by some areas of adipose tissue interfere on the M2 polarization of macrophages, thus resulting in a more intense pro-inflammatory M1 response.
Collapse
Affiliation(s)
- Laia Bonjoch
- Dept. Experimental Pathology, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | | | - Daniel Closa
- Dept. Experimental Pathology, IIBB-CSIC, IDIBAPS, Barcelona, Spain.
| |
Collapse
|
23
|
Pérez S, Pereda J, Sabater L, Sastre J. Pancreatic ascites hemoglobin contributes to the systemic response in acute pancreatitis. Free Radic Biol Med 2015; 81:145-55. [PMID: 25157787 DOI: 10.1016/j.freeradbiomed.2014.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/31/2014] [Accepted: 08/03/2014] [Indexed: 02/08/2023]
Abstract
Upon hemolysis extracellular hemoglobin causes oxidative stress and cytotoxicity due to its peroxidase activity. Extracellular hemoglobin may release free hemin, which increases vascular permeability, leukocyte recruitment, and adhesion molecule expression. Pancreatitis-associated ascitic fluid is reddish and may contain extracellular hemoglobin. Our aim has been to determine the role of extracellular hemoglobin in the local and systemic inflammatory response during severe acute pancreatitis in rats. To this end we studied taurocholate-induced necrotizing pancreatitis in rats. First, extracellular hemoglobin in ascites and plasma was quantified and the hemolytic action of ascitic fluid was tested. Second, we assessed whether peritoneal lavage prevented the increase in extracellular hemoglobin in plasma during pancreatitis. Third, hemoglobin was purified from rat erythrocytes and administered intraperitoneally to assess the local and systemic effects of ascitic-associated extracellular hemoglobin during acute pancreatitis. Extracellular hemoglobin and hemin levels markedly increased in ascitic fluid and plasma during necrotizing pancreatitis. Peroxidase activity was very high in ascites. The peritoneal lavage abrogated the increase in extracellular hemoglobin in plasma. The administration of extracellular hemoglobin enhanced ascites; dramatically increased abdominal fat necrosis; upregulated tumor necrosis factor-α, interleukin-1β, and interleukin-6 gene expression; and decreased expression of interleukin-10 in abdominal adipose tissue during pancreatitis. Extracellular hemoglobin enhanced the gene expression and protein levels of vascular endothelial growth factor (VEGF) and other hypoxia-inducible factor-related genes in the lung. Extracellular hemoglobin also increased myeloperoxidase activity in the lung. In conclusion, extracellular hemoglobin contributes to the inflammatory response in severe acute pancreatitis through abdominal fat necrosis and inflammation and by increasing VEGF and leukocyte infiltration into the lung.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot, Valencia, Spain
| | - Javier Pereda
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot, Valencia, Spain
| | - Luis Sabater
- Department of Surgery, University of Valencia, University Clinic Hospital, 46010 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
24
|
Zhang Y, Wang Y, Lu M, Qiao X, Sun B, Zhang W, Xue D. Modular analysis of bioinformatics demonstrates a critical role for NF-κB in macrophage activation. Inflammation 2015; 37:1240-53. [PMID: 24577727 DOI: 10.1007/s10753-014-9851-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To achieve the goal of identifying the gene groups that regulated macrophage activation, a total of 925 differentially expressed genes of activated macrophages were found at the intersection of the three series (GSE5099-1, GSE5099-2, and GSE18686) from the Gene Expression Omnibus (GEO) database, and a sub-network was constructed based on the protein-protein interaction (PPI) network. Four communities (K = 3) were identified from the sub-network using the CFinder software. Community 1 was considered as the gene group of interest base on the heat map. GO-BP and KEGG enrichment analysis with the DAVID software showed that the functions of the 14 genes in community 1 were mainly related to the NF-κB pathway. A network was constructed using the Cytoscape software. The diagram showed that STAT1, NFKBIA, NFKAIB, JUN, and RELA were the key genes in the regulation of macrophage activation. Among these genes, RELA (NF-κB P65) was an important member of the NF-κB family, while NFKBIA (IκBα) and NFKAIB (IκBβ) were the inhibitory factors of NF-κB. Small molecules capable of regulating these five genes were identified via the CMap software, and a network diagram was generated using the Cytoscape software to provide a reference for the development of new drugs that regulate macrophage activation.
Collapse
Affiliation(s)
- Yingmei Zhang
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Paek J, Kang JH, Kim HS, Lee I, Seo KW, Yang MP. Serum adipokine concentrations in dogs with acute pancreatitis. J Vet Intern Med 2014; 28:1760-9. [PMID: 25312217 PMCID: PMC4895644 DOI: 10.1111/jvim.12437] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/11/2014] [Accepted: 07/23/2014] [Indexed: 01/15/2023] Open
Abstract
Background Limited information is available about the role of adipokines in the development and progression of acute pancreatitis (AP) in dogs. Objectives To determine whether the circulating concentrations of adipokines differed between healthy dogs and dogs with AP, and whether the circulating concentrations differed between AP survivors and AP nonsurvivors. Animals Twenty‐eight healthy dogs and 25 client‐owned dogs with AP. Methods Prospective observational cohort study of 25 client‐owned dogs with newly diagnosed AP and 28 otherwise healthy dogs with similar body condition scores. The serum concentrations of leptin, adiponectin, resistin, visfatin, interleukin (IL)‐1β, IL‐6, IL‐10, IL‐18, and tumor necrosis factor (TNF)‐α were measured. Results The serum concentrations of leptin (P = .0021), resistin (P = .0010), visfatin (P < .0001), IL‐1β (P < .0001), IL‐6 (P = .0002), IL‐10 (P < .0001), and IL‐18 (P < .0001) were significantly higher in dogs with AP than healthy dogs, whereas the adiponectin concentration (P = .0011) was significantly lower. There were significant differences in the serum concentrations of leptin (P = .028) and adiponectin (P = .046) in survivors and nonsurvivors. After the disappearance of clinical signs, the concentrations of resistin (P = .037) and IL‐1β (P = .027) decreased significantly, whereas the serum concentrations of leptin (P > .999), adiponectin (P = .11), visfatin (P = .83), IL‐6 (P = .82), IL‐10 (P = .82), IL‐18 (P = .56), and TNF‐α (P = .94) did not differ significantly. Conclusion and Clinical Importance This study showed that dysregulation of adipokines might be involved in the pathogenesis of AP. In addition, leptin and adiponectin are likely to be associated with mortality rate in AP.
Collapse
Affiliation(s)
- J Paek
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Mateu A, Ramudo L, Manso M, Closa D, De Dios I. Acinar inflammatory response to lipid derivatives generated in necrotic fat during acute pancreatitis. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1879-86. [DOI: 10.1016/j.bbadis.2014.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
27
|
Kolodecik T, Shugrue C, Ashat M, Thrower EC. Risk factors for pancreatic cancer: underlying mechanisms and potential targets. Front Physiol 2014; 4:415. [PMID: 24474939 PMCID: PMC3893685 DOI: 10.3389/fphys.2013.00415] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/30/2013] [Indexed: 12/16/2022] Open
Abstract
PURPOSE OF THE REVIEW Pancreatic cancer is extremely aggressive, forming highly chemo-resistant tumors, and has one of the worst prognoses. The evolution of this cancer is multi-factorial. Repeated acute pancreatic injury and inflammation are important contributing factors in the development of pancreatic cancer. This article attempts to understand the common pathways linking pancreatitis to pancreatic cancer. RECENT FINDINGS Intracellular activation of both pancreatic enzymes and the transcription factor NF-κB are important mechanisms that induce acute pancreatitis (AP). Recurrent pancreatic injury due to genetic susceptibility, environmental factors such as smoking, alcohol intake, and conditions such as obesity lead to increases in oxidative stress, impaired autophagy and constitutive activation of inflammatory pathways. These processes can stimulate pancreatic stellate cells, thereby increasing fibrosis and encouraging chronic disease development. Activation of oncogenic Kras mutations through inflammation, coupled with altered levels of tumor suppressor proteins (p53 and p16) can ultimately lead to development of pancreatic cancer. SUMMARY Although our understanding of pancreatitis and pancreatic cancer has tremendously increased over many years, much remains to be elucidated in terms of common pathways linking these conditions.
Collapse
Affiliation(s)
- Thomas Kolodecik
- Digestive Diseases Section, Department of Internal Medicine, Yale UniversityNew Haven, CT, USA
- VA HealthcareWest Haven, CT, USA
| | - Christine Shugrue
- Digestive Diseases Section, Department of Internal Medicine, Yale UniversityNew Haven, CT, USA
- VA HealthcareWest Haven, CT, USA
| | - Munish Ashat
- Digestive Diseases Section, Department of Internal Medicine, Yale UniversityNew Haven, CT, USA
- VA HealthcareWest Haven, CT, USA
| | - Edwin C. Thrower
- Digestive Diseases Section, Department of Internal Medicine, Yale UniversityNew Haven, CT, USA
- VA HealthcareWest Haven, CT, USA
| |
Collapse
|
28
|
Abstract
There is a convincing body of evidence that oxidative stress is involved in the pathogenesis of acute pancreatitis. The effects of different radical scavengers suggested that reactive oxygen metabolites are generated at very early stage of disease and contribute to amplify the pancreatic damage. Oxidative stress is also involved in the progression of the disease from a local damage to a systemic organ failure. However, therapeutic use of antioxidants failed to clearly show a clinical benefit in different trials. Therefore, although antioxidants alone seem to be not enough for the treatment of severe acute pancreatitis, future combined therapeutic strategies should include antioxidants in its composition.
Collapse
Affiliation(s)
- Daniel Closa
- Department of Experimental Pathology, IIBB-CSIC-IDIBAPS, CIBEREHD , Barcelona , Spain
| |
Collapse
|
29
|
Proteomic analysis of apoptotic and oncotic pancreatic acinar AR42J cells treated with caerulein. Mol Cell Biochem 2013; 382:1-17. [PMID: 23884867 DOI: 10.1007/s11010-013-1603-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/23/2013] [Indexed: 01/08/2023]
Abstract
This study aims to determine the differentially expressed proteins in the pancreatic acinar cells undergoing apoptosis and oncosis stimulated with caerulein to explore different cell death process of the acinar cell. AR42J cells were treated with caerulein to induce cell model of acute pancreatitis. Cells that were undergoing apoptosis and oncosis were separated by flow cytometry. Then differentially expressed proteins in the two groups of separated cells were detected by shotgun liquid chromatography-tandem mass spectrometry. The results showed that 11 proteins were detected in both apoptosis group and oncosis group, 17 proteins were detected only in apoptosis group and 29 proteins were detected only in oncosis group. KEGG analysis showed that proteins detected only in apoptosis group were significantly enriched in 10 pathways, including ECM-receptor interaction, cell adhesion molecules, and proteins detected only in oncosis group were significantly enriched in three pathways, including endocytosis, base excision repair, and RNA degradation. These proteins we detected are helpful for us to understand the process of cell death in acute pancreatitis and may be useful for changing the death mode of pancreatic acinar cells, thus attenuating the severity of pancreatitis.
Collapse
|
30
|
Abstract
OBJECTIVE To evaluate the generation of halogenated fatty acids in the areas of fat necrosis during acute pancreatitis and to evaluate the effects of these molecules on the ensuing inflammatory process. BACKGROUND Lipid mediators derived from adipose tissue have been implicated in the progression of acute pancreatitis, although their precise role remains unknown. METHODS Acute pancreatitis was induced in rats by intraductal infusion of 3.5% sodium taurocholate. Fatty acid chlorohydrins (FA-Cl) were measured in adipose tissue, ascitic fluid, and plasma by mass spectrometry. Chlorohydrins were also instilled in the rats' peritoneal cavity, and their effects on peritoneal macrophages activation and in systemic inflammation were evaluated. Finally, they have also been measured in plasma from human patients with acute pancreatitis. RESULTS Induced acute pancreatitis results in a substantial release not only of free fatty acids but also of the chlorohydrins of both oleic and linoleic acids from adipose tissue. In plasma, only the chlorohydrin of oleic acid was detected. Administration of 250-μM lipid chlorohydrins, which is the concentration found in ascitic fluid, induces the expression of TNFα and interleukin-1β in peritoneal macrophages and increases the systemic inflammatory response in pancreatitis. Finally, increased concentrations of oleic acid chlorohydrin have been found in plasma of human patients with pancreatitis. CONCLUSIONS During acute pancreatitis, adipose tissue release FA-Cl, which exacerbate the systemic inflammatory response.
Collapse
|
31
|
Gukovsky I, Li N, Todoric J, Gukovskaya A, Karin M. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology 2013; 144:1199-209.e4. [PMID: 23622129 PMCID: PMC3786712 DOI: 10.1053/j.gastro.2013.02.007] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 02/05/2013] [Accepted: 02/13/2013] [Indexed: 12/11/2022]
Abstract
Inflammation and autophagy are cellular defense mechanisms. When these processes are deregulated (deficient or overactivated) they produce pathologic effects, such as oxidative stress, metabolic impairments, and cell death. Unresolved inflammation and disrupted regulation of autophagy are common features of pancreatitis and pancreatic cancer. Furthermore, obesity, a risk factor for pancreatitis and pancreatic cancer, promotes inflammation and inhibits or deregulates autophagy, creating an environment that facilitates the induction and progression of pancreatic diseases. However, little is known about how inflammation, autophagy, and obesity interact to promote exocrine pancreatic disorders. We review the roles of inflammation and autophagy, and their deregulation by obesity, in pancreatic diseases. We discuss the connections among disordered pathways and important areas for future research.
Collapse
Affiliation(s)
- Ilya Gukovsky
- Veterans Affairs Greater Los Angeles Healthcare System, California, USA
| | | | | | | | | |
Collapse
|
32
|
Pereda J, Pérez S, Escobar J, Arduini A, Asensi M, Serviddio G, Sabater L, Aparisi L, Sastre J. Obese rats exhibit high levels of fat necrosis and isoprostanes in taurocholate-induced acute pancreatitis. PLoS One 2012; 7:e44383. [PMID: 23028532 PMCID: PMC3445528 DOI: 10.1371/journal.pone.0044383] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 08/02/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Obesity is a prognostic factor for severity in acute pancreatitis in humans. Our aim was to assess the role of oxidative stress and abdominal fat in the increased severity of acute pancreatitis in obese rats. METHODOLOGY Taurocholate-induced acute pancreatitis was performed in lean and obese Zucker rats. Levels of reduced glutathione, oxidized glutathione, L-cysteine, cystine, and S-adenosylmethionine were measured in pancreas as well as the activities of serine/threonine protein phosphatases PP1 and PP2A and tyrosin phosphatases. Isoprostane, malondialdehyde, triglyceride, and free fatty acid levels and lipase activity were measured in plasma and ascites. Lipase activity was measured in white adipose tissue with and without necrosis and confirmed by western blotting. FINDINGS Under basal conditions obese rats exhibited lower reduced glutathione levels in pancreas and higher triglyceride and free fatty acid levels in plasma than lean rats. S-adenosyl methionine levels were markedly increased in pancreas of obese rats. Acute pancreatitis in obese rats led to glutathione oxidation and lower reduced glutathione levels in pancreas together with decreased activities of redox-sensitive phosphatases PP1, and PP2A. S-adenosyl methionine levels decreased but cystine levels increased markedly in pancreas upon pancreatitis. Acute pancreatitis triggered an increase in isoprostane levels in plasma and ascites in obese rats. Free fatty acid levels were extremely high in pancreatitis-associated ascitic fluid from obese rats and lipase was bound with great affinity to white adipose tissue, especially to areas of necrosis. CONCLUSIONS Our results show that oxidative stress occurs locally and systemically in obese rats with pancreatitis favouring inactivation of protein phosphatases in pancreas, which would promote up-regulation of pro-inflammatory cytokines, and the increase of isoprostanes which might cause powerful pulmonary and renal vasoconstriction. Future studies are needed to confirm the translational relevance of the present findings obtained in a rat model of taurocholate-induced pancreatic damage and necrosis.
Collapse
Affiliation(s)
- Javier Pereda
- Department of Physiology, School of Pharmacy, University of Valencia, Burjasot, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, School of Pharmacy, University of Valencia, Burjasot, Valencia, Spain
| | - Javier Escobar
- Department of Physiology, School of Pharmacy, University of Valencia, Burjasot, Valencia, Spain
- Division of Neonatology, University Hospital Materno-Infantil La Fe, Valencia, Spain
| | - Alessandro Arduini
- Department of Physiology, School of Pharmacy, University of Valencia, Burjasot, Valencia, Spain
| | - Miguel Asensi
- Department of Physiology, School of Pharmacy, University of Valencia, Burjasot, Valencia, Spain
| | - Gaetano Serviddio
- Department of Medical and Occupational Sciences, University of Foggia, Foggia, Italy
| | - Luis Sabater
- Department of Surgery, University of Valencia, Universitary Clinic Hospital, Valencia, Spain
| | - Luis Aparisi
- Laboratory of Pancreatic Function, Universitary Clinic Hospital, Valencia, Spain
| | - Juan Sastre
- Department of Physiology, School of Pharmacy, University of Valencia, Burjasot, Valencia, Spain
| |
Collapse
|
33
|
Thomas T, Mah L, Barreto SG. Systematic review of diet in the pathogenesis of acute pancreatitis: a tale of too much or too little? Saudi J Gastroenterol 2012; 18:310-315. [PMID: 23006458 PMCID: PMC3500019 DOI: 10.4103/1319-3767.101124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/29/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND/AIM The role of diet as the cause of acute pancreatitis (AP) has been suggested. The aim of the current review was to determine if there exists sufficient evidence linking nutrition, or the lack of it, to the pathogenesis of AP. PATIENTS AND METHODS A systematic search of the scientific literature was carried out using Embase, PubMed, MEDLINE, and the Cochrane Central Register of Controlled Trials for the years 1965 - 2011 to obtain access to studies involving dietary factors and the pathogenesis of AP. RESULTS A total of 17 studies were identified describing diet and AP. These included 12 human and 5 animal studies. 8 reports were found to link malnutrition and/or refeeding to the pathogenesis of AP. Two studies found an increased consumption of fats and proteins in patients with alcohol-related AP while 1 study noted a lesser intake of carbohydrate in patients. However, none of these differences attained statistical significance. A recent prospective case-control study found a significantly higher risk for AP amongst patients eating par-boiled rice and fresh water fish. CONCLUSIONS Evidence from literature does not appear to support the role of diet as a single bolus meal as a cause for AP. Prolonged consumption of diets rich in proteins and fats may work synergistically with gallstones / alcohol to trigger an attack of AP indicating a possible role of diet as a cofactor in the development of AP possibly by lowering the threshold needed by these other agents to lead to the attack of AP.
Collapse
Affiliation(s)
- Tudor Thomas
- Department of Surgery, Modbury Hospital, South Australia, Australia
| | - Latifa Mah
- Department of Surgery, Modbury Hospital, South Australia, Australia
| | - Savio G. Barreto
- Department of Surgery, Modbury Hospital, South Australia, Australia
| |
Collapse
|
34
|
Zhou X, Liu Z, Jang F, Xiang C, Li Y, He Y. Autocrine Sonic hedgehog attenuates inflammation in cerulein-induced acute pancreatitis in mice via upregulation of IL-10. PLoS One 2012; 7:e44121. [PMID: 22956998 PMCID: PMC3431299 DOI: 10.1371/journal.pone.0044121] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 08/01/2012] [Indexed: 12/15/2022] Open
Abstract
Hedgehog signaling plays critical roles in pancreatic oncogenesis and chronic pancreatitis, but its roles in acute pancreatitis (AP) are largely ambiguous. In this study, we provide evidence that Sonic hedgehog (Shh), but neither Desert hedgehog (Dhh) nor Indian hedgehog (Ihh), is the main protein whose expression is activated during the development of cerulein-induced acute pancreatitis in mice, and the Shh serves as an anti-inflammation factor in an autocrine manner. Blocking autocrine Shh signaling with anti-Shh neutralizing antibody aggravates the progression of acute pancreatitis. Mechanistic insight into Shh signaling activation in acute pancreatitis indicates that inflammatory stimulation activates Shh expression and secretion, and subsequently upregulates the expression and secretion of interleukin-10 (IL-10). Moreover, inhibition of Shh signaling with neutralizing antibody abolishes IL-10 production in vivo and in vitro. Molecular biological studies show that autocrine Shh signaling activates the key transcriptional factor Gli1 so that the target gene IL-10 is upregulated, leading to the protective and anti-inflammatory functions in the mouse model of acute pancreatitis. Thus, this study suggests autocrine Shh signaling functions as a protective signaling in the progression of acute pancreatitis.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of Vascular Surgery, Affiliated Hospital of Luzhou Medical College Luzhou, Sichuan, China
| | - Zhiqiang Liu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Feng Jang
- Department of Cardiology, Affiliated Hospital of Luzhou Medical College, Luzhou Sichuan, China
| | - Chuannan Xiang
- Department of General Surgery, Luzhou People's Hospital, Luzhou, Sichuan China
| | - Yuan Li
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Yanzheng He
- Department of Vascular Surgery, Affiliated Hospital of Luzhou Medical College Luzhou, Sichuan, China
- * E-mail:
| |
Collapse
|
35
|
Gea-Sorlí S, Bonjoch L, Closa D. Differences in the inflammatory response induced by acute pancreatitis in different white adipose tissue sites in the rat. PLoS One 2012; 7:e41933. [PMID: 22870264 PMCID: PMC3411589 DOI: 10.1371/journal.pone.0041933] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/28/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND There is increasing evidence of the role of adipose tissue on the systemic effects of acute pancreatitis. Patients with higher body mass index have increased risk of local and systemic complications and patients with android fat distribution and higher waist circumference are at greater risk for developing the severe form of the disease. Here we evaluated the changes on different areas of adipose tissue and its involvement on the inflammatory response in an experimental model of acute pancreatitis. METHODS Pancreatitis was induced in male Wistar rats by intraductal administration of sodium taurocholate. Orlistat was administered to inhibit lipase activity. Activation of peritoneal macrophages was evaluated by measuring IL1β and TNFα expression. Inflammation was evaluated by measuring myeloperoxidase activity in mesenteric, epididymal and retroperitoneal areas of adipose tissue. Changes in the expression of inflammatory mediator in these areas of adipose tissue were also evaluated by RT-PCR. RESULTS Pancreatitis induces the activation of peritoneal macrophages and a strong inflammatory response in mesenteric and epididymal sites of adipose tissue. By contrast, no changes were found in retroperitoneal adipose tissue. Inhibition of lipase prevented the activation of macrophages and the local inflammation in adipose tissue. CONCLUSIONS Our results confirm the involvement of adipose tissue on the progression of systemic inflammatory response during acute pancreatitis. However, there is a considerable diversity in different adipose tissue sites. These differences need to be taken into account in order to understand the progression from local pancreatic damage to systemic inflammation during acute pancreatitis.
Collapse
Affiliation(s)
- Sabrina Gea-Sorlí
- Department of Experimental Pathology, IIBB-CSIC, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Laia Bonjoch
- Department of Experimental Pathology, IIBB-CSIC, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Daniel Closa
- Department of Experimental Pathology, IIBB-CSIC, IDIBAPS and CIBEREHD, Barcelona, Spain
| |
Collapse
|
36
|
Solanki NS, Barreto SG, Saccone GTP. Acute pancreatitis due to diabetes: the role of hyperglycaemia and insulin resistance. Pancreatology 2012; 12:234-239. [PMID: 22687379 DOI: 10.1016/j.pan.2012.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/01/2012] [Accepted: 01/24/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND The co-existence of diabetes mellitus (DM) in patients with acute pancreatitis (AP) is linked to poor outcomes. Four large epidemiological studies have suggested an aetiological role for DM in AP. The exact nature of this role is poorly understood. OBJECTIVE To analyse the available clinical and experimental literature to determine if DM may play a causative role in AP. METHODS A systematic search of the scientific literature was carried out using EMBASE, PubMed/MEDLINE, and the Cochrane Central Register of Controlled Trials for the years 1965-2011 to obtain access to all publications, especially randomized controlled trials, systematic reviews, and meta-analyses exploring the mechanisms of pathogenesis of AP in patients with DM. RESULTS No clinical studies could be identified directly providing pathogenetic mechanisms of DM in the causation of AP. The available data on DM and its associated metabolic changes and therapy indicate that hyperglycaemia coupled with the factors influencing insulin resistance (tumour necrosis-α, NFκB, amylin) cause an increase in reactive oxygen species generation in acinar cells. CONCLUSIONS Complex pathogenetic connections exist between AP and factors involved in the development and therapy of DM. Insulin resistance and hyperglycaemia, hallmarks of DM, are important factors linked to the susceptibility of diabetics to AP. Given the high morbidity associated with an attack of AP in a diabetic patient, targeting these two aspects by therapy may help not only to reduce the risk of development of AP, but may also help reduce the severity of an established attack in a diabetic patient.
Collapse
Affiliation(s)
- Nicholas S Solanki
- Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
37
|
Kamaya A, Federle MP, Desser TS. Imaging manifestations of abdominal fat necrosis and its mimics. Radiographics 2012; 31:2021-34. [PMID: 22084185 DOI: 10.1148/rg.317115046] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intraabdominal fat is a metabolically active tissue that may undergo necrosis through a number of mechanisms. Fat necrosis is a common finding at abdominal cross-sectional imaging, and it may cause abdominal pain, mimic findings of acute abdomen, or be asymptomatic and accompany other pathophysiologic processes. Common processes that are present in fat necrosis include torsion of an epiploic appendage, infarction of the greater omentum, and fat necrosis related to trauma or pancreatitis. In addition, other pathologic processes that involve fat may be visualized at computed tomography, including focal lipohypertrophy, pathologic fat paucity (lipodystrophies), and malignancies such as liposarcoma, which may mimic benign causes of fat stranding. Because fat necrosis and malignant processes such as liposarcoma and peritoneal carcinomatosis may mimic one another, knowledge of a patient's clinical history and prior imaging studies is essential for accurate diagnosis.
Collapse
Affiliation(s)
- Aya Kamaya
- Department of Radiology, Stanford University Medical Center, 300 Pasteur Dr, Room H1307, Stanford, CA 94305, USA
| | | | | |
Collapse
|
38
|
Pini M, Rhodes DH, Castellanos KJ, Hall AR, Cabay RJ, Chennuri R, Grady EF, Fantuzzi G. Role of IL-6 in the resolution of pancreatitis in obese mice. J Leukoc Biol 2012; 91:957-66. [PMID: 22427681 DOI: 10.1189/jlb.1211627] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity increases severity of acute pancreatitis and risk of pancreatic cancer. Pancreatitis and obesity are associated with elevated IL-6, a cytokine involved in inflammation and tumorigenesis. We studied the role of IL-6 in the response of lean and obese mice to pancreatitis induced by IL-12 + IL-18. Lean and diet-induced obese (DIO) WT and IL-6 KO mice and ob/ob mice pretreated with anti-IL-6 antibodies were evaluated at Days 1, 7, and 15 after induction of pancreatitis. Prolonged elevation of IL-6 in serum and visceral adipose tissue was observed in DIO versus lean WT mice, whereas circulating sIL-6R declined in DIO but not lean mice with pancreatitis. The severe inflammation and lethality of DIO mice were also observed in IL-6 KO mice. However, the delayed resolution of neutrophil infiltration; sustained production of CXCL1, CXCL2, and CCL2; prolonged activation of STAT-3; and induction of MMP-7 in the pancreas, as well as heightened induction of serum amylase A of DIO mice, were blunted significantly in DIO IL-6 KO mice. In DIO mice, production of OPN and TIMP-1 was increased for a prolonged period, and this was mediated by IL-6 in the liver but not the pancreas. Results obtained in IL-6 KO mice were confirmed in ob/ob mice pretreated with anti-IL-6 antibodies. In conclusion, IL-6 does not contribute to the increased severity of pancreatitis of obese mice but participates in delayed recovery from acute inflammation and may favor development of a protumorigenic environment through prolonged activation of STAT-3, induction of MMP-7, and sustained production of chemokines.
Collapse
Affiliation(s)
- Maria Pini
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hegyi P, Rakonczay Z. The role of nitric oxide in the physiology and pathophysiology of the exocrine pancreas. Antioxid Redox Signal 2011; 15:2723-2741. [PMID: 21777142 DOI: 10.1089/ars.2011.4063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO), a ubiquitous gaseous signaling molecule, contributes to both pancreatic physiology and pathophysiology. RECENT ADVANCES The present review provides a general overview of NO synthesis, signaling, and function. Further, it specifically discusses NO metabolism and its effects in the exocrine pancreas and focuses on the role of NO in the pathogenesis of acute pancreatitis and pancreatic ischemia/reperfusion injury. CRITICAL ISSUES Unfortunately, the role of NO in pancreatic physiology and pathophysiology remains controversial in numerous areas. Many questions regarding the messenger molecule still remain unanswered. FUTURE DIRECTIONS Probably the least is known about the downstream targets of NO, which need to be identified, especially at the molecular level.
Collapse
Affiliation(s)
- Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
40
|
Wang YY, Lin SY, Chuang YH, Chen CJ, Tung KC, Sheu WHH. Adipose proinflammatory cytokine expression through sympathetic system is associated with hyperglycemia and insulin resistance in a rat ischemic stroke model. Am J Physiol Endocrinol Metab 2011; 300:E155-E163. [PMID: 20978230 DOI: 10.1152/ajpendo.00301.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Patients who experience acute ischemic stroke may develop hyperglycemia, even in the absence of diabetes, but the exact mechanisms are still unclear. Adipose tissue secretes numerous proinflammatory cytokines and is involved in the regulation of glucose metabolism. This study aimed to determine the effects of acute stroke on adipose inflammatory cytokine expression. In addition, because sympathetic activity is activated after acute stroke and catecholamines can regulate the expression of several adipocytokines, this study also evaluated whether alterations in adipose proinflammatory cytokines following acute stroke, if any, were medicated by sympathetic system. Acute ischemic brain injury was induced by ligating the right middle cerebral artery and bilateral common carotid arteries in male adult Sprague-Dawley rats. Adipose tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) mRNA and protein levels were determined by RT-PCR and enzyme-linked immunoassay, respectively. The stroke rats developed glucose intolerance on days 1 and 2 after cerebral ischemic injury. The fasting blood insulin levels and insulin resistance index measured by homeostasis model assessment were higher in the stroke rats compared with the sham group. Epididymal adipose TNF-α and MCP-1 mRNA and protein levels were elevated one- to twofold, in association with increased macrophage infiltration into the adipose tissue. When the rats were treated with a nonselective β-adrenergic receptor blocker, propranolol, before induction of cerebral ischemic injury, the acute stroke-induced increase in TNF-α and MCP-1 was blocked, and fasting blood insulin concentration and homeostasis model assessment-insulin resistance were decreased. These results suggest a potential role of adipose proinflammatory cytokines induced by the sympathetic nervous system in the pathogenesis of glucose metabolic disorder in rats with acute ischemic stroke.
Collapse
Affiliation(s)
- Ya-Yu Wang
- Division of Family Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|