1
|
Zhang Y, Dutta M. The multifunctional proline-rich domain of p53 tumor suppressor. Biochim Biophys Acta Rev Cancer 2025; 1880:189326. [PMID: 40258446 DOI: 10.1016/j.bbcan.2025.189326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
The p53 tumor suppressor is a multi-domain protein. The proline-rich domain (PRD) resides next to the transactivation domains at the N-terminus and before the DNA binding domain. The PRD has been studied extensively for nearly three decades and has been shown to be a key component for the tumor suppressor functions of p53. However, study findings have not been analyzed systematically. Herein, we undertake a comprehensive review of the studies which examined the roles of the PRD in the biological functions, stability, and protein-protein interactions of p53. While p53 is one of the most frequently mutated cellular proteins in human cancer, mutation in its PRD is uncommon, which will be discussed. The importance of the PRD in regulation of mutant p53 has also been investigated and will be reviewed as well. In addition, one of the amino acids in the PRD in human p53 is polymorphic. Information about the polymorphism and its impact on p53 function and association with disease outcomes will also be reviewed. Collectively, studies to date demonstrate that the PRD is a multifunctional domain critical for a variety of p53 functions as well as p53 stability, and that the PRD polymorphism is a potential biomarker of cancer risk and cancer outcome. Its involvement in regulation of both wild-type and mutant p53 offers opportunities for potential development of novel cancer therapeutic strategies.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA 23298, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, United States.
| | - Madhuri Dutta
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA 23298, United States
| |
Collapse
|
2
|
Kulkarni S, Seneviratne N, Tosun Ç, Madhusudan S. PARP inhibitors in ovarian cancer: Mechanisms of resistance and implications to therapy. DNA Repair (Amst) 2025; 149:103830. [PMID: 40203475 DOI: 10.1016/j.dnarep.2025.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Advanced epithelial ovarian cancer of the high-grade serous subtype (HGSOC) remains a significant clinical challenge due to the development of resistance to current platinum-based chemotherapies. PARP1/2 inhibitors (PARPi) exploit the well-characterised homologous recombination repair deficiency (HRD) in HGSOC and offer an effective targeted approach to treatment. Several clinical trials demonstrated that PARPi (olaparib, rucaparib, niraparib) significantly improved progression-free survival (PFS) in HGSOC in the recurrent maintenance setting. However, 40-70 % of patients develop Resistance to PARPi presenting an ongoing challenge in the clinic. Therefore, there is an unmet need for novel targeted therapies and biomarkers to identify intrinsic or acquired resistance to PARPi in ovarian cancer. Understanding the mechanisms of resistance to PARPi is crucial for identifying molecular vulnerabilities, developing effective biomarkers for patient stratification and guiding treatment decisions. Here, we summarise the current landscape of mechanisms associated with PARPi resistance such as restored homologous recombination repair functionality, replication fork stability and alterations to PARP1 and PARP2 and the DNA damage response. We highlight the role of circulating tumour DNA (ctDNA) in identifying acquired resistance biomarkers and its potential in guiding 'real-time' treatment decisions. Moreover, we explore other innovative treatment strategies aimed at overcoming specific resistance mechanisms, including the inhibition of ATR, WEE1 and POLQ. We also examine the role of PARPi rechallenge in patients with acquired resistance.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Medical Sciences Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | - Çağla Tosun
- Naaz-Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Srinivasan Madhusudan
- Naaz-Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK.
| |
Collapse
|
3
|
Davies LT, Ganesen R, Toubia J, Hong S, Kumar KC S, Oehler MK, Ricciardelli C, Szili EJ, Robinson N, Pitman MR. Plasma-activated media selectively induces apoptotic death via an orchestrated oxidative stress pathway in high-grade serous ovarian cancer cells. Mol Oncol 2025; 19:1170-1187. [PMID: 39626867 PMCID: PMC11977661 DOI: 10.1002/1878-0261.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 11/07/2024] [Indexed: 04/09/2025] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common and aggressive type of ovarian cancer. Due to a lack of an early detection test and overt symptoms, many patients are diagnosed at a late stage where metastasis makes treatment very challenging. Furthermore, the current standard treatment for HGSOC patients, consisting of debulking surgery and platinum-taxane chemotherapy, reduces quality of life due to debilitating side-effects. Sadly, 80-90% of patients diagnosed with advanced stage ovarian cancer will die due to treatment resistance. As such, novel therapeutic strategies for HGSOC that are both more effective and less toxic are urgently required. Here we describe the assessment of cold atmospheric pressure (CAP) gas discharge technology as a novel treatment strategy in pre-clinical models of HGSOC. Plasma-activated media (PAM) was generated using cell growth media. HGSOC cell lines, patient ascites cells and primary tissue explants were tested for their response to PAM via analysis of cell viability, cell death and oxidative stress assays. Our data show that PAM treatment can be more effective than standard carboplatin chemotherapy at selectively targeting ovarian cancer cells in primary patient samples. Further, we also observed PAM to induce apoptosis in HGSOC cancer cell lines via induction of oxidative stress and mitochondrial-mediated apoptosis. These findings suggest that PAM is a viable therapeutic strategy to test in in vivo models of ovarian cancer, with a view to develop an intraperitoneal PAM-based therapy for HGSOC patients. Our studies validate the ability of PAM to selectively target tumour tissue and ascites cells. This work supports the development of PAM towards in vivo validation and translation into clinical practice.
Collapse
Affiliation(s)
- Lorena T. Davies
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
| | - Raja Ganesen
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
| | - John Toubia
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
| | - Sung‐Ha Hong
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Sushil Kumar KC
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Martin K. Oehler
- Reproductive Cancer Research Group; Discipline of Obstetrics and Gynaecology, Adelaide Medical SchoolThe University of AdelaideAustralia
- Robinson Research InstituteAdelaideAustralia
- Department of Gynaecological OncologyRoyal Adelaide HospitalAustralia
| | - Carmela Ricciardelli
- Reproductive Cancer Research Group; Discipline of Obstetrics and Gynaecology, Adelaide Medical SchoolThe University of AdelaideAustralia
- Robinson Research InstituteAdelaideAustralia
| | - Endre J. Szili
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Nirmal Robinson
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
- Adelaide Medical SchoolThe University of AdelaideAustralia
| | - Melissa R. Pitman
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
- Robinson Research InstituteAdelaideAustralia
- School of Biological SciencesThe University of AdelaideAustralia
| |
Collapse
|
4
|
Santoro A, Angelico G, Travaglino A, Inzani F, Spadola S, Pettinato A, Mazzucchelli M, Bragantini E, Maccio L, Zannoni GF. The multiple facets of ovarian high grade serous carcinoma: A review on morphological, immunohistochemical and molecular features. Crit Rev Oncol Hematol 2025; 208:104603. [PMID: 39732305 DOI: 10.1016/j.critrevonc.2024.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most aggressive subtype of epithelial ovarian cancer and a leading cause of mortality among gynecologic malignancies. This review aims to comprehensively analyze the morphological, immunohistochemical, and molecular features of HGSOC, highlighting its pathogenesis and identifying biomarkers with diagnostic, prognostic, and therapeutic significance. Special emphasis is placed on the role of tumor microenvironment (TME) and genomic instability in shaping the tumor's behavior and therapeutic vulnerabilities. Key advancements, such as the identification of TP53 and BRCA mutations, the classification of homologous recombination repair (HRR) deficiencies, and the clinical implications of biomarkers like folate receptor alpha (FRα) and PD-L1 are discussed. These findings reveal actionable insights into targeted therapies, including immune checkpoint inhibitors and PARP inhibitors, which hold promise for improving outcomes in HGSOC. This synthesis of knowledge aims to bridge gaps in understanding HGSOC's multifaceted biology, enhance clinical decision-making, and foster the development of precision therapies.
Collapse
MESH Headings
- Humans
- Female
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/therapy
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/diagnosis
- Cystadenocarcinoma, Serous/therapy
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Tumor Microenvironment
- Neoplasm Grading
- Immunohistochemistry
- Prognosis
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/metabolism
- Mutation
Collapse
Affiliation(s)
- Angela Santoro
- Pathology Institute, Catholic University of Sacred Heart, Rome 00168, Italy; Pathology Unit, Department of Woman and Child's Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, Enna 94100, Italy
| | - Antonio Travaglino
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Frediano Inzani
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, Pavia 27100, Italy
| | - Saveria Spadola
- Department of Medicine and Surgery, Kore University of Enna, Enna 94100, Italy
| | - Angela Pettinato
- Department of Pathological Anatomy, A.O.E. Cannizzaro, Via Messina, 829, Catania 95126, Italy
| | - Manuel Mazzucchelli
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Emma Bragantini
- Unit of Surgical Pathology, Santa Chiara Hospital, APSS, Trento, Italy
| | - Livia Maccio
- Unit of Surgical Pathology, Santa Chiara Hospital, APSS, Trento, Italy
| | - Gian Franco Zannoni
- Pathology Institute, Catholic University of Sacred Heart, Rome 00168, Italy; Pathology Unit, Department of Woman and Child's Health and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy.
| |
Collapse
|
5
|
Marzan M, Nowshin Oishee N, Olatunji AO, Hasib Shourav A, Noor RE, Astalos AJ, Leahy JW, Acevedo-Duncan M. Proteasome Inhibitor MG-132 and PKC-ι-Specific Inhibitor ICA-1S Degrade Mutant p53 and Induce Apoptosis in Ovarian Cancer Cell Lines. Int J Mol Sci 2025; 26:3035. [PMID: 40243672 PMCID: PMC11988680 DOI: 10.3390/ijms26073035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer, with a 5-year survival rate of approximately 50%. Mutation in the p53 gene and overexpression of the atypical protein kinase C iota (PKC-ι) are two phenomena widely manifested in ovarian cancer. This study investigated the role of PKC-ι-specific inhibitor ICA-1S and proteasome inhibitor MG-132 in ovarian cancer cell lines. To discern the result, cell proliferation assays, cytotoxicity assays, Western blotting, immunofluorescence, flow cytometry, small interfering RNA, and co-immunoprecipitation techniques were applied. ICA-1S and MG-132 were found to inhibit the proliferation of ovarian cancer cell lines significantly. ICA-1S reduced the level of oncogenic PKC-ι as expected. In addition, ICA-1S and MG-132 both were able to decrease the level of mutated p53 in the ES-2 cell line through separate pathways. On the contrary, MG-132 increased the level of wild-type p53 in the HEY-T30 cell line by inhibiting proteasomal degradation. MG-132 also induced apoptosis and autophagy in the ovarian cancer cell lines. We concluded that ICA-1S alone or in combination with MG-132 could be a potential treatment for mutated p53-containing and PKC-ι-overexpressing ovarian cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mildred Acevedo-Duncan
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, CHE 205, Tampa, FL 33620, USA; (M.M.); (N.N.O.); (A.O.O.); (A.H.S.); (R.E.N.); (A.J.A.); (J.W.L.)
| |
Collapse
|
6
|
Molefi T, Mabonga L, Hull R, Mwazha A, Sebitloane M, Dlamini Z. The Histomorphology to Molecular Transition: Exploring the Genomic Landscape of Poorly Differentiated Epithelial Endometrial Cancers. Cells 2025; 14:382. [PMID: 40072110 PMCID: PMC11898822 DOI: 10.3390/cells14050382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
The peremptory need to circumvent challenges associated with poorly differentiated epithelial endometrial cancers (PDEECs), also known as Type II endometrial cancers (ECs), has prompted therapeutic interrogation of the prototypically intractable and most prevalent gynecological malignancy. PDEECs account for most endometrial cancer-related mortalities due to their aggressive nature, late-stage detection, and poor response to standard therapies. PDEECs are characterized by heterogeneous histopathological features and distinct molecular profiles, and they pose significant clinical challenges due to their propensity for rapid progression. Regardless of the complexities around PDEECs, they are still being administered inefficiently in the same manner as clinically indolent and readily curable type-I ECs. Currently, there are no targeted therapies for the treatment of PDEECs. The realization of the need for new treatment options has transformed our understanding of PDEECs by enabling more precise classification based on genomic profiling. The transition from a histopathological to a molecular classification has provided critical insights into the underlying genetic and epigenetic alterations in these malignancies. This review explores the genomic landscape of PDEECs, with a focus on identifying key molecular subtypes and associated genetic mutations that are prevalent in aggressive variants. Here, we discuss how molecular classification correlates with clinical outcomes and can refine diagnostic accuracy, predict patient prognosis, and inform therapeutic strategies. Deciphering the molecular underpinnings of PDEECs has led to advances in precision oncology and protracted therapeutic remissions for patients with these untamable malignancies.
Collapse
Affiliation(s)
- Thulo Molefi
- Discipline of Obstetrics and Gynaecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4002, South Africa;
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP) Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa
- Department of Medical Oncology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lloyd Mabonga
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP) Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP) Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa
| | - Absalom Mwazha
- Department of Anatomical Pathology, National Health Laboratory Services, Durban 4058, South Africa
| | - Motshedisi Sebitloane
- Discipline of Obstetrics and Gynaecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4002, South Africa;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP) Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa
| |
Collapse
|
7
|
Madeddu C, Lai E, Neri M, Sanna E, Gramignano G, Nemolato S, Scartozzi M, Giglio S, Macciò A. Association Between TP53 Mutations and Platinum Resistance in a Cohort of High-Grade Serous Ovarian Cancer Patients: Novel Implications for Personalized Therapeutics. Int J Mol Sci 2025; 26:2232. [PMID: 40076854 PMCID: PMC11901047 DOI: 10.3390/ijms26052232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The integrity of p53 machinery is crucial for platinum activity, while p53 mutation is frequent in high-grade serous ovarian cancer (HGS-OC). This study aimed to evaluate the link between p53 mutations, platinum sensitivity (PS), and the platinum-free interval (PFI) in patients with HGS-OC. We prospectively analyzed 159 consecutive women with ovarian cancer who underwent surgery. The somatic mutational status of BRCA, HRD, and TP53 (according to structural, hotspot, and functional classification) was evaluated. Among enrolled patients, 82.4% of cases were TP53-mutated (MT), and 27.8% were BRCA-MT. The distribution of TP53 mutation categories did not differ significantly between the BRCA-MT and wild-type (WT) cases. In the entire population, the proportion of PS patients was significantly lower in TP53-MT compared to TP53-WT (p = 0.0208), in nonsense/frameshift/splicing compared to missense (p = 0.0319), and in loss-of-function (LOF) compared to GOF (p = 0.0048) MT cases. For the BRCA-MT patients, structural and functional TP53 mutations were not significantly different between the PS and PR patients. Conversely, for the BRCA WT patients, the distribution of structural and functional TP53 mutations significantly differed between PS and PR patients. In a multivariate regression analysis, LOF mutations were found to be independent negative predictors of PS (HR: 0.1717; 95% CI: 0.0661-0.4461; p-value: 0.0003). Kaplan-Meier curves showed a significantly lower PFI in cases with LOF mutations in the overall population (log-rank p = 0.0020) and in BRCA-WT patients (log-rank p = 0.0140). Via multivariate COX testing, it was found that LOF mutations were independently associated with a decreased PFI (p = 0.0036). In conclusion, our data show that HGS-OC harboring p53 LOF mutations is the poorest prognostic subgroup regarding PS and the PFI. Further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Clelia Madeddu
- Medical Oncology Unit, Department of Medical Sciences and Public Health, University Hospital Cagliari, University of Cagliari, 09100 Cagliari, Italy; (E.L.); (M.S.)
| | - Eleonora Lai
- Medical Oncology Unit, Department of Medical Sciences and Public Health, University Hospital Cagliari, University of Cagliari, 09100 Cagliari, Italy; (E.L.); (M.S.)
| | - Manuela Neri
- Gynecologic Oncology Unit, ARNAS G. Brotzu, Department of Surgical Sciences, University of Cagliari, 09100 Cagliari, Italy; (M.N.); (E.S.)
| | - Elisabetta Sanna
- Gynecologic Oncology Unit, ARNAS G. Brotzu, Department of Surgical Sciences, University of Cagliari, 09100 Cagliari, Italy; (M.N.); (E.S.)
| | - Giulia Gramignano
- Medical Oncology Unit, San Gavino Hospital, 09037 San Gavino, Italy;
| | - Sonia Nemolato
- Department of Pathology, ARNAS G. Brotzu, 09100 Cagliari, Italy;
| | - Mario Scartozzi
- Medical Oncology Unit, Department of Medical Sciences and Public Health, University Hospital Cagliari, University of Cagliari, 09100 Cagliari, Italy; (E.L.); (M.S.)
| | - Sabrina Giglio
- Medical Genetics Unit, Department of Medical Sciences and Public Health, R. Binaghi Hospital, University of Cagliari, ASL 8, 09100 Cagliari, Italy;
| | - Antonio Macciò
- Gynecologic Oncology Unit, ARNAS G. Brotzu, Department of Surgical Sciences, University of Cagliari, 09100 Cagliari, Italy; (M.N.); (E.S.)
| |
Collapse
|
8
|
Chakraborty R, Dutta A, Mukhopadhyay R. TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds. Clin Transl Oncol 2025:10.1007/s12094-024-03841-6. [PMID: 39797946 DOI: 10.1007/s12094-024-03841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression. Missense mutations, null mutations, transversions, transitions, and point mutations occurring in the TP53 gene can cause an increase in metastatic activity. This review discusses mutations occurring in exon regions of TP53, polymorphisms in MDM2 and their interaction with large ribosomal subunit protein (RPL) leading to cancer development. We also highlight the potential of small molecules e.g. p53 activators like XI-011, Tenovin-1, and Nutlin-3a for the treatment of breast and ovarian cancers. The therapeutic efficacy of natural compounds in amelioration of these two types of cancers is also discussed.
Collapse
Affiliation(s)
- Rituraj Chakraborty
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Anupam Dutta
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Rupak Mukhopadhyay
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
9
|
Weigert M, Li Y, Zhu L, Eckart H, Bajwa P, Krishnan R, Ackroyd S, Lastra R, Bilecz A, Basu A, Lengyel E, Chen M. A cell atlas of the human fallopian tube throughout the menstrual cycle and menopause. Nat Commun 2025; 16:372. [PMID: 39753552 PMCID: PMC11698969 DOI: 10.1038/s41467-024-55440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
The fallopian tube undergoes extensive molecular changes during the menstrual cycle and menopause. We use single-cell RNA and ATAC sequencing to construct a comprehensive cell atlas of healthy human fallopian tubes during the menstrual cycle and menopause. Our scRNA-seq comparison of 85,107 pre- and 46,111 post-menopausal fallopian tube cells reveals substantial shifts in cell type frequencies, gene expression, transcription factor activity, and cell-to-cell communications during menopause and menstrual cycle. Menstrual cycle dependent hormonal changes regulate distinct molecular states in fallopian tube secretory epithelial cells. Postmenopausal fallopian tubes show high chromatin accessibility in transcription factors associated with aging such as Jun, Fos, and BACH1/2, while hormone receptors were generally downregulated, a small proportion of secretory epithelial cells had high expression of ESR2, IGF1R, and LEPR. While a pre-menopausal secretory epithelial gene cluster is enriched in the immunoreactive molecular subtype, a subset of genes expressed in post-menopausal secretory epithelial cells show enrichment in the mesenchymal molecular type of high-grade serous ovarian cancer.
Collapse
Affiliation(s)
- Melanie Weigert
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, USA
| | - Yan Li
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Lisha Zhu
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Heather Eckart
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Preety Bajwa
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Rahul Krishnan
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, USA
| | - Sarah Ackroyd
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, USA
| | - Ricardo Lastra
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Agnes Bilecz
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Anindita Basu
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA.
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, USA.
| | - Mengjie Chen
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Moffitt LR, Karimnia N, Wilson AL, Stephens AN, Ho GY, Bilandzic M. Challenges in Implementing Comprehensive Precision Medicine Screening for Ovarian Cancer. Curr Oncol 2024; 31:8023-8038. [PMID: 39727715 PMCID: PMC11674382 DOI: 10.3390/curroncol31120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Precision medicine has revolutionised targeted cancer treatments; however, its implementation in ovarian cancer remains challenging. Diverse tumour biology and extensive heterogeneity in ovarian cancer can limit the translatability of genetic profiling and contribute to a lack of biomarkers of treatment response. This review addresses the barriers in precision medicine for ovarian cancer, including obtaining adequate and representative tissue samples for analysis, developing functional and standardised screening methods, and navigating data infrastructure and management. Ethical concerns related to patient consent, data privacy and health equity are also explored. We highlight the socio-economic complexities for precision medicine and propose strategies to overcome these challenges with an emphasis on accessibility and education amongst patients and health professionals and the development of regulatory frameworks to support clinical integration. Interdisciplinary collaboration is essential to drive progress in precision medicine to improve disease management and ovarian cancer patient outcomes.
Collapse
Affiliation(s)
- Laura R. Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Nazanin Karimnia
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Amy L. Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Gwo-Yaw Ho
- School of Clinical Sciences, Monash University, Clayton 3168, Australia;
- Department of Oncology, Monash Health, Bentleigh 3165, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| |
Collapse
|
11
|
Wang H, Han X, Niu S, Cheng H, Ren J, Duan Y. DFASGCNS: A prognostic model for ovarian cancer prediction based on dual fusion channels and stacked graph convolution. PLoS One 2024; 19:e0315924. [PMID: 39680618 DOI: 10.1371/journal.pone.0315924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Ovarian cancer is a malignant tumor with different clinicopathological and molecular characteristics. Due to its nonspecific early symptoms, the majority of patients are diagnosed with local or extensive metastasis, severely affecting treatment and prognosis. The occurrence of ovarian cancer is influenced by multiple complex mechanisms including genomics, transcriptomics, and proteomics. Integrating multiple types of omics data aids in predicting the survival rate of ovarian cancer patients. However, existing methods only fuse multi-omics data at the feature level, neglecting the shared and complementary neighborhood information among samples of multi-omics data, and failing to consider the potential interactions between different omics data at the molecular level. In this paper, we propose a prognostic model for ovarian cancer prediction named Dual Fusion Channels and Stacked Graph Convolutional Neural Network (DFASGCNS). The DFASGCNS utilizes dual fusion channels to learn feature representations of different omics data and the associations between samples. Stacked graph convolutional network is used to comprehensively learn the deep and intricate correlation networks present in multi-omics data, enhancing the model's ability to represent multi-omics data. An attention mechanism is introduced to allocate different weights to important features of different omics data, optimizing the feature representation of multi-omics data. Experimental results demonstrate that compared to existing methods, the DFASGCNS model exhibits significant advantages in ovarian cancer prognosis prediction and survival analysis. Kaplan-Meier curve analysis results indicate significant differences in the survival subgroups predicted by the DFASGCNS model, contributing to a deeper understanding of the pathogenesis of ovarian cancer and providing more reliable auxiliary diagnostic information for the prognosis assessment of ovarian cancer patients.
Collapse
Affiliation(s)
- Huiqing Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Xiao Han
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Shuaijun Niu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Hao Cheng
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Jianxue Ren
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Yimeng Duan
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
12
|
Zhang B, Guo B, Kong H, Yang L, Yan H, Liu J, Zhou Y, An R, Wang F. Decoding the Ferroptosis-Related Gene Signatures and Immune Infiltration Patterns in Ovarian Cancer: Bioinformatic Prediction Integrated with Experimental Validation. J Inflamm Res 2024; 17:10333-10346. [PMID: 39654865 PMCID: PMC11626233 DOI: 10.2147/jir.s498740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Background Ovarian cancer is a type of gynecological cancer with extremely high fatality rate. Ferroptosis, an iron-dependent regulated cell death, inhibits the immune infiltration of tumor cells. Therefore, it is worthwhile to explore the effects of ferroptosis-related gene signatures and immune infiltration patterns on the clinical prognosis of ovarian cancer. Methods In this study, we used the mRNA expression matrix and related medical information of those who suffer from ovarian cancer in the TCGA database. After that, we established a ferroptosis-related gene signature based on LASSO Cox regression model, and employed several specific enrichment analyses to explore the bioinformatics functions of differentially expressed genes (DEGs). Additionally, we analyzed the link between ferroptosis and immune cells by single-sample gene set enrichment analysis (ssGSEA) to create a heatmap of gene-immune cell correlation. We then examined the expression of immune checkpoints and verified the gene expression in ovarian cancer tissues by qPCR assays. Finally, we induced ferroptosis in ovarian cancer cells using drugs and analyzed their migration, invasion and gene expression. Results According to LASSO Cox regression analysis, 9 prognostic DEGs were in association with overall survival (OS), which was utilized to construct a 9-gene signature for patients. Patients were divided into two groups, in which high-risk group's OS was markedly shorter than that of low-risk group (Log-rank p<0.001). KEGG enrichment analysis showed that these DEGs were linked to human cytomegalovirus (HCMV) infection. The ssGSEA analysis revealed significant differences in immune cell type and expression between ALOX12 and GLRX5 groups (p<0.05). Heatmap showed high correlation of prognostic genes with various immune cells. qPCR assay confirmed the 9 gene expression signature in ovarian cancer tissues. The ovarian cancer cell invasion and migration were significantly inhibited after induction of ferroptosis. Conclusion We decoded the ferroptosis-related gene signatures and immune infiltration patterns that can be used to predict the prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
- Beilei Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Bin Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Hancun Kong
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, People’s Republic of China
| | - Linwei Yang
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, People’s Republic of China
| | - Hui Yan
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, People’s Republic of China
| | - Jierui Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, People’s Republic of China
| | - Yichen Zhou
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, People’s Republic of China
| | - Ruifang An
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Fu Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, People’s Republic of China
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
- School of Pharmacy, Shaanxi University of International Trade & Commerce, Xianyang, Shaanxi, 712046, People’s Republic of China
| |
Collapse
|
13
|
Paswan MK, Tudu HMM, Gupta SK, Banerjee S, Tirkey D. Histopathological spectrum of ovarian tumors in Jharkhand, India: A retrospective study. J Family Med Prim Care 2024; 13:5861-5867. [PMID: 39790752 PMCID: PMC11709009 DOI: 10.4103/jfmpc.jfmpc_1086_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 01/12/2025] Open
Abstract
Background Ovarian tumors are the most prevalent neoplasms worldwide, affecting women of all ages. According to Globocan's 2022 projections, by 2050, the number of women diagnosed with ovarian cancer worldwide will increase by over 55% to 503,448. The number of women dying from ovarian cancer is projected to increase to 350,956 each year, an increase of almost 70% from 2022. Aims and Objectives The aim of this study was to analyze the various histopathological spectra of ovarian tumors according to the latest 2020 WHO classification and to assess the age distribution, frequency of incidence, and laterality of different subtypes of ovarian tumors. Materials and Methods This retrospective study included 190 cases of histopathologically proven ovarian tumors reported by the pathology department from March 2020 to March 2024 at the Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India. Results A total of 190 cases were studied, 154 (81.1%) were benign, 8 (4.2%) were borderline, and 28 (14.7%) cases were malignant. Surface epithelial tumors (SETs) were the most common (n = 139, 73.2%), followed by germ cell tumors (GCTs) (n = 38, 20%). Serous cystadenomas (n = 63, 33%) were the most common benign tumors, whereas the most common malignant tumors were serous carcinomas ( n=11, 5.7% ). Most ovarian tumors (n = 45, 23.68%) occurred in the 31-40-year-old age group. Conclusion The present study showed various histopathological patterns of ovarian tumors. This study indicated a slight increase in the prevalence of malignant ovarian tumors in the middle-aged group and and a relative increase in the percentage of SETs over GCTs in recent years in our tertiary care center in Jharkhand, India. With limited resources in our institute, histopathological examination remains the mainstay for the early diagnosis of these tumors and their timlely and appropriate management.Categories: Pathology.
Collapse
Affiliation(s)
- Manoj K. Paswan
- Histopathology, Department of Pathology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Helen M. M. Tudu
- Histopathology, Department of Pathology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Smita Kumari Gupta
- Histopathology, Department of Pathology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Saurav Banerjee
- Histopathology, Department of Pathology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Deepali Tirkey
- Histopathology, Department of Pathology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| |
Collapse
|
14
|
Morgan RD, Wang X, Barnes BM, Spurgeon L, Carrot A, Netto D, Hasan J, Mitchell C, Salih Z, Desai S, Shaw J, Winter-Roach B, Schlecht H, Burghel GJ, Clamp AR, Edmondson RJ, You B, Evans DGR, Jayson GC, Taylor SS. Germline BRCA1/2 status and chemotherapy response score in high-grade serous ovarian cancer. Br J Cancer 2024; 131:1919-1927. [PMID: 39550490 PMCID: PMC11628596 DOI: 10.1038/s41416-024-02874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) can be treated with platinum-based neoadjuvant chemotherapy (NACT) and delayed primary surgery (DPS). Histopathological response to NACT can be assessed using Böhm's chemotherapy response score (CRS). We investigated whether germline BRCA1/2 (gBRCA1/2) genotype associated with omental CRS phenotype. METHODS A retrospective study of patients with newly diagnosed FIGO stage IIIC/IV HGSOC prescribed NACT and tested for gBRCA1/2 pathogenic variants (PVs) between September 2017 and December 2022 at The Christie Hospital. The Cox proportional hazards model evaluated the association between survival and key clinical factors. The chi-square test assessed the association between CRS3 (no/minimal residual tumour) and gBRCA1/2 status. RESULTS Of 586 eligible patients, 393 underwent DPS and had a CRS reported. Independent prognostic factors by multivariable analysis were gBRCA1/2 status (PV versus wild type [WT]), CRS (3 versus 1 + 2), surgical outcome (complete versus optimal/suboptimal) and first-line poly (ADP-ribose) polymerase-1/2 inhibitor maintenance therapy (yes versus no) (all P < 0.05). There was a non-significant trend for tumours with a gBRCA2 PV having CRS3 versus WT (odds ratio [OR] = 2.13, 95% confidence intervals [CI] 0.95-4.91; P = 0.0647). By contrast, tumours with a gBRCA1 PV were significantly less likely to have CRS3 than WT (OR = 0.35, 95%CI 0.14-0.91; P = 0.0291). CONCLUSIONS Germline BRCA1/2 genotype was not clearly associated with superior omental CRS. Further research is required to understand how HGSOC biology defines CRS.
Collapse
Affiliation(s)
- Robert D Morgan
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom.
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
- Manchester Academic Health Science Centre (MAHSC), Manchester, United Kingdom.
| | - Xin Wang
- Clinical Outcome and Data Unit, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Bethany M Barnes
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre (MAHSC), Manchester, United Kingdom
| | - Laura Spurgeon
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Aurore Carrot
- Centre pour l'lnnovation en Cancérologie de Lyon (CICLY), EA 3738, Université Claude Bernard University Lyon 1, Univ Lyon 1, Oullins-Pierre-Bénite, France
| | - Daniel Netto
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Jurjees Hasan
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Claire Mitchell
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Zena Salih
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Sudha Desai
- Department of Histopathology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Joseph Shaw
- Department of Histopathology, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Brett Winter-Roach
- Department of Gynaecological Surgery, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Helene Schlecht
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - George J Burghel
- Manchester Academic Health Science Centre (MAHSC), Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew R Clamp
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre (MAHSC), Manchester, United Kingdom
| | - Richard J Edmondson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre (MAHSC), Manchester, United Kingdom
- Department of Gynaecological Surgery, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Benoit You
- Centre pour l'lnnovation en Cancérologie de Lyon (CICLY), EA 3738, Université Claude Bernard University Lyon 1, Univ Lyon 1, Oullins-Pierre-Bénite, France
- Service d'oncologie médicale, Institut de Cancérologie des Hospices Civils de Lyon (IC-HCL), CITOHL, EPSILYON, Centre Hospitalier Lyon-Sud, Oullins-Pierre-Bénite, France
| | - D Gareth R Evans
- Manchester Academic Health Science Centre (MAHSC), Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Gordon C Jayson
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre (MAHSC), Manchester, United Kingdom
| | - Stephen S Taylor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre (MAHSC), Manchester, United Kingdom
| |
Collapse
|
15
|
Kubota Y, Kimura S. Current Understanding of the Role of Autophagy in the Treatment of Myeloid Leukemia. Int J Mol Sci 2024; 25:12219. [PMID: 39596291 PMCID: PMC11594995 DOI: 10.3390/ijms252212219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The most important issues in acute myeloid leukemia are preventing relapse and treating relapse. Although the remission rate has improved to approximately 80%, the 5-year survival rate is only around 30%. The main reasons for this are the high relapse rate and the limited treatment options. In chronic myeloid leukemia patients, when a deep molecular response is achieved for a certain period of time through tyrosine kinase inhibitor treatment, about half of them will reach treatment-free remission, but relapse is still a problem. Therefore, potential therapeutic targets for myeloid leukemias are eagerly awaited. Autophagy suppresses the development of cancer by maintaining cellular homeostasis; however, it also promotes cancer progression by helping cancer cells survive under various metabolic stresses. In addition, autophagy is promoted or suppressed in cancer cells by various genetic mutations. Therefore, the development of therapies that target autophagy is also being actively researched in the field of leukemia. In this review, studies of the role of autophagy in hematopoiesis, leukemogenesis, and myeloid leukemias are presented, and the impact of autophagy regulation on leukemia treatment and the clinical trials of autophagy-related drugs to date is discussed.
Collapse
MESH Headings
- Humans
- Autophagy
- Animals
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/therapy
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Hematopoiesis
Collapse
Affiliation(s)
- Yasushi Kubota
- Department of Clinical Laboratory Medicine, Saga-Ken Medical Centre Koseikan, Saga 840-8571, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
| |
Collapse
|
16
|
Wei L, Li Y, Chen J, Wang Y, Wu J, Yang H, Zhang Y. Alternative splicing in ovarian cancer. Cell Commun Signal 2024; 22:507. [PMID: 39425166 PMCID: PMC11488268 DOI: 10.1186/s12964-024-01880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
Ovarian cancer is the second leading cause of gynecologic cancer death worldwide, with only 20% of cases detected early due to its elusive nature, limiting successful treatment. Most deaths occur from the disease progressing to advanced stages. Despite advances in chemo- and immunotherapy, the 5-year survival remains below 50% due to high recurrence and chemoresistance. Therefore, leveraging new research perspectives to understand molecular signatures and identify novel therapeutic targets is crucial for improving the clinical outcomes of ovarian cancer. Alternative splicing, a fundamental mechanism of post-transcriptional gene regulation, significantly contributes to heightened genomic complexity and protein diversity. Increased awareness has emerged about the multifaceted roles of alternative splicing in ovarian cancer, including cell proliferation, metastasis, apoptosis, immune evasion, and chemoresistance. We begin with an overview of altered splicing machinery, highlighting increased expression of spliceosome components and associated splicing factors like BUD31, SF3B4, and CTNNBL1, and their relationships to ovarian cancer. Next, we summarize the impact of specific variants of CD44, ECM1, and KAI1 on tumorigenesis and drug resistance through diverse mechanisms. Recent genomic and bioinformatics advances have enhanced our understanding. By incorporating data from The Cancer Genome Atlas RNA-seq, along with clinical information, a series of prognostic models have been developed, which provided deeper insights into how the splicing influences prognosis, overall survival, the immune microenvironment, and drug sensitivity and resistance in ovarian cancer patients. Notably, novel splicing events, such as PIGV|1299|AP and FLT3LG|50,941|AP, have been identified in multiple prognostic models and are associated with poorer and improved prognosis, respectively. These novel splicing variants warrant further functional characterization to unlock the underlying molecular mechanisms. Additionally, experimental evidence has underscored the potential therapeutic utility of targeting alternative splicing events, exemplified by the observation that knockdown of splicing factor BUD31 or antisense oligonucleotide-induced BCL2L12 exon skipping promotes apoptosis of ovarian cancer cells. In clinical settings, bevacizumab, a humanized monoclonal antibody that specifically targets the VEGF-A isoform, has demonstrated beneficial effects in the treatment of patients with advanced epithelial ovarian cancer. In conclusion, this review constitutes the first comprehensive and detailed exposition of the intricate interplay between alternative splicing and ovarian cancer, underscoring the significance of alternative splicing events as pivotal determinants in cancer biology and as promising avenues for future diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Liwei Wei
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Yisheng Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Jiawang Chen
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325101, China
| | - Yuanmei Wang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huanming Yang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
| | - Yi Zhang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
17
|
Frederick MI, Nassef MZ, Borrelli MJ, Kuang S, Buensuceso A, More T, Cordes T, O'Donoghue P, Shepherd TG, Hiller K, Heinemann IU. Metabolic adaptation in epithelial ovarian cancer metastasis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167312. [PMID: 38901649 DOI: 10.1016/j.bbadis.2024.167312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Epithelial ovarian cancer (EOC) is highly lethal due to its unique metastatic characteristics. EOC spheroids enter a non-proliferative state, with hypoxic cores and reduced oncogenic signaling, all of which contribute to tumour dormancy during metastasis. We investigated the metabolomic states of EOC cells progressing through the three steps to metastasis. Metabolomes of adherent, spheroid, and re-adherent cells were validated by isotopic metabolic flux analysis and mitochondrial functional assays to identify metabolic pathways that were previously unknown to promote EOC metastasis. Although spheroids were thought to exist in a dormant state, metabolomic analysis revealed an unexpected upregulation of energy production pathways in spheroids, accompanied by increased abundance of tricarboxylic acid (TCA) cycle and electron transport chain proteins. Tracing of 13C-labelled glucose and glutamine showed increased pyruvate carboxylation and decreased glutamine anaplerosis in spheroids. Increased reductive carboxylation suggests spheroids adjust redox homeostasis by shuttling cytosolic NADPH into mitochondria via isocitrate dehydrogenase. Indeed, we observed spheroids have increased respiratory capacity and mitochondrial ATP production. Relative to adherent cells, spheroids reduced serine consumption and metabolism, processes which were reversed upon spheroid re-adherence. The data reveal a distinct metabolism in EOC spheroids that enhances energy production by the mitochondria while maintaining a dormant state with respect to growth and proliferation. The findings advance our understanding of EOC metastasis and identify the TCA cycle and mitochondrional activity as novel targets to disrupt EOC metastasis, providing new approaches to treat advanced disease.
Collapse
Affiliation(s)
- Mallory I Frederick
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Mohamed Z Nassef
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Matthew J Borrelli
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Siyun Kuang
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Adrian Buensuceso
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Tushar More
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Thekla Cordes
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Patrick O'Donoghue
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; Department of Chemistry, Western University, London, ON N6A 5C1, Canada
| | - Trevor G Shepherd
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; Department of Obstetrics & Gynaecology, Western University, London, ON N6A 5C1, Canada; London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
| |
Collapse
|
18
|
Croft W, Pounds R, Jeevan D, Singh K, Balega J, Sundar S, Williams A, Ganesan R, Kehoe S, Ott S, Zuo J, Yap J, Moss P. The chromatin landscape of high-grade serous ovarian cancer metastasis identifies regulatory drivers in post-chemotherapy residual tumour cells. Commun Biol 2024; 7:1211. [PMID: 39341888 PMCID: PMC11438996 DOI: 10.1038/s42003-024-06909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Disease recurrence following chemotherapy is a major clinical challenge in ovarian cancer (OC), but little is known regarding how the tumour epigenome regulates transcriptional programs underpinning chemoresistance. We determine the single cell chromatin accessibility landscape of omental OC metastasis from treatment-naïve and neoadjuvant chemotherapy-treated patients and define the chromatin accessibility profiles of epithelial, fibroblast, myeloid and lymphoid cells. Epithelial tumour cells display open chromatin regions enriched with motifs for the oncogenic transcription factors MEIS and PBX. Post chemotherapy microenvironments show profound tumour heterogeneity and selection for cells with accessible chromatin enriched for TP53, TP63, TWIST1 and resistance-pathway-activating transcription factor binding motifs. An OC chemoresistant tumour subpopulation known to be present prior to treatment, and characterised by stress-associated gene expression, is enriched post chemotherapy. Nuclear receptors RORa, NR2F6 and HNF4G are uncovered as candidate transcriptional drivers of these cells whilst closure of binding sites for E2F2 and E2F4 indicate post-treated tumour having low proliferative capacity. Delineation of the gene regulatory landscape of ovarian cancer cells surviving chemotherapy treatment therefore reveals potential core transcriptional regulators of chemoresistance, suggesting novel therapeutic targets for improving clinical outcome.
Collapse
Affiliation(s)
- W Croft
- Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.
| | - R Pounds
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - D Jeevan
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - K Singh
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - J Balega
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - S Sundar
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - A Williams
- Histopathology Department, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - R Ganesan
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Histopathology Department, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - S Kehoe
- Department of Gynaecological Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - S Ott
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - J Zuo
- Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - J Yap
- Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, UK
| | - P Moss
- Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK.
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, UK.
| |
Collapse
|
19
|
Kader T, Lin JR, Hug C, Coy S, Chen YA, de Bruijn I, Shih N, Jung E, Pelletier RJ, Leon ML, Mingo G, Omran DK, Lee JS, Yapp C, Satravada BA, Kundra R, Xu Y, Chan S, Tefft JB, Muhlich J, Kim S, Gysler SM, Agudo J, Heath JR, Schultz N, Drescher C, Sorger PK, Drapkin R, Santagata S. Multimodal Spatial Profiling Reveals Immune Suppression and Microenvironment Remodeling in Fallopian Tube Precursors to High-Grade Serous Ovarian Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615007. [PMID: 39386723 PMCID: PMC11463462 DOI: 10.1101/2024.09.25.615007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
High-Grade Serous Ovarian Cancer (HGSOC) originates from fallopian tube (FT) precursors. However, the molecular changes that occur as precancerous lesions progress to HGSOC are not well understood. To address this, we integrated high-plex imaging and spatial transcriptomics to analyze human tissue samples at different stages of HGSOC development, including p53 signatures, serous tubal intraepithelial carcinomas (STIC), and invasive HGSOC. Our findings reveal immune modulating mechanisms within precursor epithelium, characterized by chromosomal instability, persistent interferon (IFN) signaling, and dysregulated innate and adaptive immunity. FT precursors display elevated expression of MHC-class I, including HLA-E, and IFN-stimulated genes, typically linked to later-stage tumorigenesis. These molecular alterations coincide with progressive shifts in the tumor microenvironment, transitioning from immune surveillance in early STICs to immune suppression in advanced STICs and cancer. These insights identify potential biomarkers and therapeutic targets for HGSOC interception and clarify the molecular transitions from precancer to cancer.
Collapse
Affiliation(s)
- Tanjina Kader
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shannon Coy
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu-An Chen
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Ino de Bruijn
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Natalie Shih
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Euihye Jung
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Mariana Lopez Leon
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gabriel Mingo
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dalia Khaled Omran
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jong Suk Lee
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | | | - Ritika Kundra
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Yilin Xu
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sabrina Chan
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Juliann B Tefft
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jeremy Muhlich
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah Kim
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stefan M Gysler
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nikolaus Schultz
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Charles Drescher
- Swedish Cancer Institute Gynecologic Oncology and Pelvic Surgery, Seattle, WA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Kutz O, Drukewitz S, Krüger A, Aust D, William D, Oster S, Schröck E, Baretton G, Link T, Wimberger P, Kuhlmann JD. Exploring evolutionary trajectories in ovarian cancer patients by longitudinal analysis of ctDNA. Clin Chem Lab Med 2024; 62:2070-2081. [PMID: 38577791 DOI: 10.1515/cclm-2023-1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES We analysed whether temporal heterogeneity of ctDNA encodes evolutionary patterns in ovarian cancer. METHODS Targeted sequencing of 275 cancer-associated genes was performed in a primary tumor biopsy and in ctDNA of six longitudinal plasma samples from 15 patients, using the Illumina platform. RESULTS While there was low overall concordance between the mutational spectrum of the primary tumor biopsies vs. ctDNA, TP53 variants were the most commonly shared somatic alterations. Up to three variant clusters were detected in each tumor biopsy, likely representing predominant clones of the primary tumor, most of them harbouring a TP53 variant. By tracing these clusters in ctDNA, we propose that liquid biopsy may allow to assess the contribution of ancestral clones of the tumor to relapsed abdominal masses, revealing two evolutionary patterns. In pattern#1, clusters detected in the primary tumor biopsy were likely relapse seeding clones, as they contributed a major share to ctDNA at relapse. In pattern#2, similar clusters were present in tumors and ctDNA; however, they were entirely cleared from liquid biopsy after chemotherapy and were undetectable at relapse. ctDNA private variants were present among both patterns, with some of them mirroring subclonal expansions after chemotherapy. CONCLUSIONS We demonstrate that tracing the temporal heterogeneity of ctDNA, even below exome scale resolution, deciphers evolutionary trajectories in ovarian cancer. Furthermore, we describe two evolutionary patterns that may help to identify relapse seeding clones for targeted therapy.
Collapse
Affiliation(s)
- Oliver Kutz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Institute for Clinical Genetics, 9169 University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- ERN GENTURIS, 9169 Hereditary Cancer Syndrome Center , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- 9169 Max Planck Institute of Molecular Cell Biology and Genetics , Dresden, Germany
| | - Stephan Drukewitz
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 Technische Universitat Dresden , Dresden, Sachsen, Germany
| | - Alexander Krüger
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 Technische Universitat Dresden , Dresden, Sachsen, Germany
| | - Daniela Aust
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- Institute for Pathology, 9169 University Hospital Carl Gustav Carus at the TU Dresden , Dresden, Germany
- 9169 Tumor- and Normal Tissue Bank of the NCT/UCC Dresden , Dresden, Germany
| | - Doreen William
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Institute for Clinical Genetics, 9169 University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- ERN GENTURIS, 9169 Hereditary Cancer Syndrome Center , Dresden, Germany
- 9169 National Center for Tumor Diseases Dresden (NCT/UCC) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- 9169 Max Planck Institute of Molecular Cell Biology and Genetics , Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 National Center for Tumor Diseases Dresden (NCT/UCC) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden , Dresden, Germany
| | - Sandra Oster
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 National Center for Tumor Diseases Dresden (NCT/UCC) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden , Dresden, Germany
| | - Evelin Schröck
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Institute for Clinical Genetics, 9169 University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- ERN GENTURIS, 9169 Hereditary Cancer Syndrome Center , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- 9169 Max Planck Institute of Molecular Cell Biology and Genetics , Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 Technische Universitat Dresden , Dresden, Sachsen, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden , Dresden, Germany
| | - Gustavo Baretton
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- Institute for Pathology, 9169 University Hospital Carl Gustav Carus at the TU Dresden , Dresden, Germany
- 9169 Tumor- and Normal Tissue Bank of the NCT/UCC Dresden , Dresden, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
| |
Collapse
|
21
|
Sartini S, Omholt L, Moatamed NA, Soragni A. Mutant p53 Misfolding and Aggregation Precedes Transformation into High-Grade Serous Ovarian Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.612958. [PMID: 39345467 PMCID: PMC11430093 DOI: 10.1101/2024.09.17.612958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
High Grade Serous Ovarian Cancer (HG-SOC), the most prevalent and aggressive gynecological malignancy, is marked by ubiquitous loss of functional p53, largely due to point mutations that arise very early in carcinogenesis. These mutations often lead to p53 protein misfolding and subsequent aggregation, yet the alterations in intracellular p53 dynamics throughout ovarian cancer progression remain poorly understood. HG-SOC originates from the fallopian tube epithelium, with a well-documented stepwise progression beginning with early pre-malignant p53 signatures. These signatures represent largely normal cells that express and accumulate mutant p53, which then transform into benign serous tubal intraepithelial lesions (STIL), progress into late pre-malignant serous tubal intraepithelial carcinoma (STIC), and ultimately lead to HGSOC. Here, we show that the transition from folded, soluble to aggregated mutant p53 occurs during the malignant transformation of benign precursor lesions into HGSOC. We analyzed fallopian tube tissue collected from ten salpingo-oophorectomy cases and determined the proportion of cells carrying soluble versus mis-folded/mutant p53 through conformation-sensitive staining and quantification. Misfolded p53 protein, prone to aggregation, is present in STICs and HG-SOCs, but notably absent from preneoplastic lesions and surrounding healthy tissue. Overall, our results indicate that aggregation of mutant p53 is a structural defect that distinguishes preneoplastic early lesions from late premalignant and malignant ones, offering a potential treatment window for targeting p53 aggregation and halting ovarian cancer progression.
Collapse
|
22
|
Kumar V, Tomar AK, Thapliyal A, Yadav S. Proteomics and Bioinformatics Investigations Link Overexpression of FGF8 and Associated Hub Genes to the Progression of Ovarian Cancer and Poor Prognosis. Biochem Res Int 2024; 2024:4288753. [PMID: 39309198 PMCID: PMC11415250 DOI: 10.1155/2024/4288753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/06/2024] [Accepted: 08/10/2024] [Indexed: 09/25/2024] Open
Abstract
Ovarian cancer's asymptomatic nature, high recurrence rate, and resistance to platinum-based chemotherapy highlight the need to find and characterize new diagnostic and therapeutic targets. While prior studies have linked aberrant expression of fibroblast growth factor 8 (FGF8) to various cancer types, its precise role has remained elusive. Recently, we observed that FGF8 silencing reduces the cancer-promoting properties of ovarian cancer cells, and thus, this study aimed to understand how FGF8 regulates the development of ovarian cancer. LC-MS/MS-based quantitative proteomics analysis identified 418 DEPs, and most of them were downregulated in FGF8-silenced ovarian cancer cells. Many of these DEPs are associated with cancer progression and unfavorable prognosis. To decipher the biological significance of DEPs, bioinformatics analyses encompassing gene ontology, pathway analysis, protein-protein interaction networks, and expression analysis of hub genes were carried out. Hub genes identified in the FGF8 protein network were upregulated in ovarian cancer compared to controls and were linked to poor prognosis. Subsequently, the expression of hub genes was correlated with patient survival and regulation of the tumor microenvironment. Conclusively, FGF8 and associated hub genes help in the progression of ovarian cancer, and their overexpression may lead to higher immune infiltration, poor prognosis, and poor survival.
Collapse
Affiliation(s)
- Vikrant Kumar
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| | - Anil Kumar Tomar
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| | - Ayushi Thapliyal
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| | - Savita Yadav
- Department of BiophysicsAll India Institute of Medical Sciences, New Delhi 11029, India
| |
Collapse
|
23
|
Golara A, Kozłowski M, Cymbaluk-Płoska A. The Role of Circulating Tumor DNA in Ovarian Cancer. Cancers (Basel) 2024; 16:3117. [PMID: 39335089 PMCID: PMC11430586 DOI: 10.3390/cancers16183117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Ovarian cancer is the deadliest of all gynecological diseases because its diagnosis and treatment still pose many problems. Surgical excision, hormone therapy, radiation, chemotherapy, or targeted therapy for eradicating the main tumor and halting the spread of metastases are among the treatment options available to individuals with ovarian cancer, depending on the disease's stage. Tumor DNA that circulates in a patient's bodily fluids has been studied recently as a possible novel biomarker for a number of cancers, as well as a means of quantifying tumor size and evaluating the efficacy of cancer therapy. The most significant alterations that we could find in the ctDNA of ovarian cancer patients-such as chromosomal instability, somatic mutations, and methylation-are discussed in this review. Additionally, we talk about the utility of ctDNA in diagnosis, prognosis, and therapy response prediction for these patients.
Collapse
Affiliation(s)
- Anna Golara
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Mateusz Kozłowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | | |
Collapse
|
24
|
Cheng Z, Ennis DP, Lu B, Mirza HB, Sokota C, Kaur B, Singh N, Le Saux O, Russo G, Giannone G, Tookman LA, Krell J, Barnes C, McDermott J, McNeish IA. The genomic trajectory of ovarian high-grade serous carcinoma can be observed in STIC lesions. J Pathol 2024; 264:42-54. [PMID: 38956451 DOI: 10.1002/path.6322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024]
Abstract
Ovarian high-grade serous carcinoma (HGSC) originates in the fallopian tube, with secretory cells carrying a TP53 mutation, known as p53 signatures, identified as potential precursors. p53 signatures evolve into serous tubal intraepithelial carcinoma (STIC) lesions, which in turn progress into invasive HGSC, which readily spreads to the ovary and disseminates around the peritoneal cavity. We recently investigated the genomic landscape of early- and late-stage HGSC and found higher ploidy in late-stage (median 3.1) than early-stage (median 2.0) samples. Here, to explore whether the high ploidy and possible whole-genome duplication (WGD) observed in late-stage disease were determined early in the evolution of HGSC, we analysed archival formalin-fixed paraffin-embedded (FFPE) samples from five HGSC patients. p53 signatures and STIC lesions were laser-capture microdissected and sequenced using shallow whole-genome sequencing (sWGS), while invasive ovarian/fallopian tube and metastatic carcinoma samples underwent macrodissection and were profiled using both sWGS and targeted next-generation sequencing. Results showed highly similar patterns of global copy number change between STIC lesions and invasive carcinoma samples within each patient. Ploidy changes were evident in STIC lesions, but not p53 signatures, and there was a strong correlation between ploidy in STIC lesions and invasive ovarian/fallopian tube and metastatic samples in each patient. The reconstruction of sample phylogeny for each patient from relative copy number indicated that high ploidy, when present, occurred early in the evolution of HGSC, which was further validated by copy number signatures in ovarian and metastatic tumours. These findings suggest that aberrant ploidy, suggestive of WGD, arises early in HGSC and is detected in STIC lesions, implying that the trajectory of HGSC may be determined at the earliest stages of tumour development. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zhao Cheng
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Darren P Ennis
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Bingxin Lu
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Hasan B Mirza
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Chishimba Sokota
- Department of Cellular Pathology, Imperial College Healthcare NHS Trust, London, UK
| | - Baljeet Kaur
- Department of Cellular Pathology, Imperial College Healthcare NHS Trust, London, UK
| | - Naveena Singh
- Department of Pathology, Barts Healthcare NHS Trust, London, UK
| | - Olivia Le Saux
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Giorgia Russo
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Gaia Giannone
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Laura A Tookman
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jonathan Krell
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Chris Barnes
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Jackie McDermott
- Department of Cellular Pathology, Imperial College Healthcare NHS Trust, London, UK
| | - Iain A McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
25
|
Kanno K, Nakayama K, Razia S, Islam SH, Farzana ZU, Sonia SB, Sasamori H, Yamashita H, Ishibashi T, Ishikawa M, Imamura K, Ishikawa N, Kyo S. Molecular Analysis of High-Grade Serous Ovarian Carcinoma Exhibiting Low-Grade Serous Carcinoma and Serous Borderline Tumor. Curr Issues Mol Biol 2024; 46:9376-9385. [PMID: 39329907 PMCID: PMC11430742 DOI: 10.3390/cimb46090555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Ovarian cancer is classified as type 1 or 2, representing low- and high-grade serous carcinoma (LGSC and HGSC), respectively. LGSC arises from serous borderline tumor (SBT) in a stepwise manner, while HGSC develops from serous tubal intraepithelial carcinoma (STIC). Rarely, HGSC develops from SBT and LGSC. Herein, we describe the case of a patient with HGSC who presented with SBT and LGSC, and in whom we analyzed the molecular mechanisms of carcinogenesis. We performed primary debulking surgery, resulting in a suboptimal simple total hysterectomy and bilateral salpingo-oophorectomy due to strong adhesions. The diagnosis was stage IIIC HGSC, pT3bcN0cM0, but the tumor contained SBT and LGSC lesions. After surgery, TC (Paclitaxel + Carbopratin) + bevacizumab therapy was administered as adjuvant chemotherapy followed by bevacizumab as maintenance therapy. The tumor was chemo-resistant and caused ileus, and bevacizumab therapy was conducted only twice. Next-Generation Sequencing revealed KRAS (p.G12V) and NF2 (p.W184*) mutations in all lesions. Interestingly, the TP53 mutation was not detected in every lesion, and immunohistochemistry showed those lesions with wild-type p53. MDM2 was amplified in the HGSC lesions. DNA methylation analysis did not show differentially methylated regions. This case suggests that SBT and LGSC may transform into HGSC via p53 dysfunction due to MDM2 amplification.
Collapse
Affiliation(s)
- Kosuke Kanno
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Nagoya City University East Medical Center, Nagoya 464-8547, Japan
| | - Sultana Razia
- Department of Legal Medicine, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Sohel Hasibul Islam
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Zahan Umme Farzana
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Shahataj Begum Sonia
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Hiroki Sasamori
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Hitomi Yamashita
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Nagoya City University East Medical Center, Nagoya 464-8547, Japan
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Kayo Imamura
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Noriyoshi Ishikawa
- Department of Pathology, Shonan Fujisawa Tokushukai Hospital, Fujisawa 251-0041, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| |
Collapse
|
26
|
Williams MJ, Vázquez-García I, Tam G, Wu M, Varice N, Havasov E, Shi H, Satas G, Lees HJ, Lee JJK, Myers MA, Zatzman M, Rusk N, Ali E, Shah RH, Berger MF, Mohibullah N, Lakhman Y, Chi DS, Abu-Rustum NR, Aghajanian C, McPherson A, Zamarin D, Loomis B, Weigelt B, Friedman CF, Shah SP. Tracking clonal evolution of drug resistance in ovarian cancer patients by exploiting structural variants in cfDNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609031. [PMID: 39229105 PMCID: PMC11370573 DOI: 10.1101/2024.08.21.609031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Drug resistance is the major cause of therapeutic failure in high-grade serous ovarian cancer (HGSOC). Yet, the mechanisms by which tumors evolve to drug resistant states remains largely unknown. To address this, we aimed to exploit clone-specific genomic structural variations by combining scaled single-cell whole genome sequencing with longitudinally collected cell-free DNA (cfDNA), enabling clonal tracking before, during and after treatment. We developed a cfDNA hybrid capture, deep sequencing approach based on leveraging clone-specific structural variants as endogenous barcodes, with orders of magnitude lower error rates than single nucleotide variants in ctDNA (circulating tumor DNA) detection, demonstrated on 19 patients at baseline. We then applied this to monitor and model clonal evolution over several years in ten HGSOC patients treated with systemic therapy from diagnosis through recurrence. We found drug resistance to be polyclonal in most cases, but frequently dominated by a single high-fitness and expanding clone, reducing clonal diversity in the relapsed disease state in most patients. Drug-resistant clones frequently displayed notable genomic features, including high-level amplifications of oncogenes such as CCNE1, RAB25, NOTCH3, and ERBB2. Using a population genetics Wright-Fisher model, we found evolutionary trajectories of these features were consistent with drug-induced positive selection. In select cases, these alterations impacted selection of secondary lines of therapy with positive patient outcomes. For cases with matched single-cell RNA sequencing data, pre-existing and genomically encoded phenotypic states such as upregulation of EMT and VEGF were linked to drug resistance. Together, our findings indicate that drug resistant states in HGSOC pre-exist at diagnosis and lead to dramatic clonal expansions that alter clonal composition at the time of relapse. We suggest that combining tumor single cell sequencing with cfDNA enables clonal tracking in patients and harbors potential for evolution-informed adaptive treatment decisions.
Collapse
Affiliation(s)
- Marc J. Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ignacio Vázquez-García
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, 10027, USA
| | - Grittney Tam
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle Wu
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Varice
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eliyahu Havasov
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hongyu Shi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gryte Satas
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah J. Lees
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jake June-Koo Lee
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew A. Myers
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew Zatzman
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole Rusk
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily Ali
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronak H Shah
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F. Berger
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neeman Mohibullah
- Integrated Genomics Operation, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yulia Lakhman
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dennis S. Chi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nadeem R. Abu-Rustum
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Department of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Brian Loomis
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Claire F. Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sohrab P. Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
27
|
Saner FA, Takahashi K, Budden T, Pandey A, Ariyaratne D, Zwimpfer TA, Meagher NS, Fereday S, Twomey L, Pishas KI, Hoang T, Bolithon A, Traficante N, Alsop K, Christie EL, Kang EY, Nelson GS, Ghatage P, Lee CH, Riggan MJ, Alsop J, Beckmann MW, Boros J, Brand AH, Brooks-Wilson A, Carney ME, Coulson P, Courtney-Brooks M, Cushing-Haugen KL, Cybulski C, El-Bahrawy MA, Elishaev E, Erber R, Gayther SA, Gentry-Maharaj A, Gilks CB, Harnett PR, Harris HR, Hartmann A, Hein A, Hendley J, Hernandez BY, Jakubowska A, Jimenez-Linan M, Jones ME, Kaufmann SH, Kennedy CJ, Kluz T, Koziak JM, Kristjansdottir B, Le ND, Lener M, Lester J, Lubiński J, Mateoiu C, Orsulic S, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Soong TR, Steed H, Sukumvanich P, Talhouk A, Taylor SE, Vierkant RA, Wang C, Widschwendter M, Wilkens LR, Winham SJ, Anglesio MS, Berchuck A, Brenton JD, Campbell I, Cook LS, Doherty JA, Fasching PA, Fortner RT, Goodman MT, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Menon U, Modugno F, Pharoah PD, Schildkraut JM, Sundfeldt K, Swerdlow AJ, Goode EL, DeFazio A, Köbel M, Ramus SJ, Bowtell DD, Garsed DW. Concurrent RB1 Loss and BRCA Deficiency Predicts Enhanced Immunologic Response and Long-term Survival in Tubo-ovarian High-grade Serous Carcinoma. Clin Cancer Res 2024; 30:3481-3498. [PMID: 38837893 PMCID: PMC11325151 DOI: 10.1158/1078-0432.ccr-23-3552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE The purpose of this study was to evaluate RB1 expression and survival across ovarian carcinoma histotypes and how co-occurrence of BRCA1 or BRCA2 (BRCA) alterations and RB1 loss influences survival in tubo-ovarian high-grade serous carcinoma (HGSC). EXPERIMENTAL DESIGN RB1 protein expression was classified by immunohistochemistry in ovarian carcinomas of 7,436 patients from the Ovarian Tumor Tissue Analysis consortium. We examined RB1 expression and germline BRCA status in a subset of 1,134 HGSC, and related genotype to overall survival (OS), tumor-infiltrating CD8+ lymphocytes, and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cells with and without BRCA1 alterations to model co-loss with treatment response. We performed whole-genome and transcriptome data analyses on 126 patients with primary HGSC to characterize tumors with concurrent BRCA deficiency and RB1 loss. RESULTS RB1 loss was associated with longer OS in HGSC but with poorer prognosis in endometrioid ovarian carcinoma. Patients with HGSC harboring both RB1 loss and pathogenic germline BRCA variants had superior OS compared with patients with either alteration alone, and their median OS was three times longer than those without pathogenic BRCA variants and retained RB1 expression (9.3 vs. 3.1 years). Enhanced sensitivity to cisplatin and paclitaxel was seen in BRCA1-altered cells with RB1 knockout. Combined RB1 loss and BRCA deficiency correlated with transcriptional markers of enhanced IFN response, cell-cycle deregulation, and reduced epithelial-mesenchymal transition. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. CONCLUSIONS Co-occurrence of RB1 loss and BRCA deficiency was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Collapse
Affiliation(s)
- Flurina A.M. Saner
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland.
| | - Kazuaki Takahashi
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Timothy Budden
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom.
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | | | - Nicola S. Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Adelyn Bolithon
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | | | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Gregg S. Nelson
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Prafull Ghatage
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.
| | - Marjorie J. Riggan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - Jennifer Alsop
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | | | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii.
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - Mona A. El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, United Kingdom.
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom.
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Paul R. Harnett
- The University of Sydney, Sydney, Australia.
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia.
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
- Department of Epidemiology, University of Washington, Seattle, Washington.
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | | | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Scott H. Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland.
| | | | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Marcin Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Jenny Lester
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | | | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Minouk J. Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Mitul Shah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic Oncology, Westmead Hospital, Sydney, Australia.
| | - Mark E. Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida.
| | - Yurii B. Shvetsov
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada.
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Canada.
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Aline Talhouk
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota.
| | - Chen Wang
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | | | - Lynne R. Wilkens
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - Stacey J. Winham
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Michael S. Anglesio
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Linda S. Cook
- Department of Epidemiology, School of Public Health, University of Colorado, Aurora, Colorado.
- Community Health Sciences, University of Calgary, Calgary, Canada.
| | - Jennifer A. Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, Canada.
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental Control, Columbia, South Carolina.
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania.
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania.
| | - Paul D.P. Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, California.
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.
| | - Karin Sundfeldt
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom.
| | - Ellen L. Goode
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
28
|
Byrne A, Le D, Sereti K, Menon H, Vaidya S, Patel N, Lund J, Xavier-Magalhães A, Shi M, Liang Y, Sterne-Weiler T, Modrusan Z, Stephenson W. Single-cell long-read targeted sequencing reveals transcriptional variation in ovarian cancer. Nat Commun 2024; 15:6916. [PMID: 39134520 PMCID: PMC11319652 DOI: 10.1038/s41467-024-51252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Single-cell RNA sequencing predominantly employs short-read sequencing to characterize cell types, states and dynamics; however, it is inadequate for comprehensive characterization of RNA isoforms. Long-read sequencing technologies enable single-cell RNA isoform detection but are hampered by lower throughput and unintended sequencing of artifacts. Here we develop Single-cell Targeted Isoform Long-Read Sequencing (scTaILoR-seq), a hybridization capture method which targets over a thousand genes of interest, improving the median number of on-target transcripts per cell by 29-fold. We use scTaILoR-seq to identify and quantify RNA isoforms from ovarian cancer cell lines and primary tumors, yielding 10,796 single-cell transcriptomes. Using long-read variant calling we reveal associations of expressed single nucleotide variants (SNVs) with alternative transcript structures. Phasing of SNVs across transcripts enables the measurement of allelic imbalance within distinct cell populations. Overall, scTaILoR-seq is a long-read targeted RNA sequencing method and analytical framework for exploring transcriptional variation at single-cell resolution.
Collapse
Affiliation(s)
- Ashley Byrne
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Daniel Le
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Kostianna Sereti
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Hari Menon
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Samir Vaidya
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Neha Patel
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Jessica Lund
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Ana Xavier-Magalhães
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Minyi Shi
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Yuxin Liang
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Timothy Sterne-Weiler
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
- Department of Oncology Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA.
| | - William Stephenson
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
29
|
Yoon JY, Sharma A, Ligon AH, Ramesh RG, Soong TR, Xian W, Chapel DB, Crum CP. Genomic Catastrophe (Chromothripsis and Polyploidy) Correlates With Tumor Distribution in Extrauterine High-grade Serous Carcinoma. Am J Surg Pathol 2024; 48:1017-1023. [PMID: 38639044 PMCID: PMC11254554 DOI: 10.1097/pas.0000000000002229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Most extrauterine high-grade serous carcinomas (HGSCs) are thought to develop first in the distal fallopian tube. Most models of HGSC assume origin from relatively stable, noninvasive serous tubal intraepithelial carcinomas. However, widespread tumor involvement in the absence of a serous tubal intraepithelial carcinoma could occur after catastrophic genomic events (CGEs; such as chromothripsis or polyploidy). Twenty-six HGSCs assigned to fallopian tube (n = 9, group 1) and/or ovary (n = 9, group 2), and primary peritoneal (n = 8, group 3) were assessed by microarray (Oncoscan). CGEs were identified in 15/26 (57.7%); chromothripsis-like pattern in 13/26 (50.0%) and polyploidy in 6/26 (23.1%). CGE was seen in 4/9 (44.4%), 9/9 (100%), and 2/8 (25%) cases in groups 1. 2, and 3, respectively. Overall, CGEs were seen in 9/9 (100%) cases with grossly evident ovarian parenchymal involvement versus 6/17 (35.3%) without ( P = 0.0024). Ovarian size (measured on the long axis) correlated with CGE positivity ( P = 0.016). CGEs are significantly more common in HGSCs with ovarian parenchymal involvement compared with those limited to the fallopian tube and/or extraovarian tissues. These associations suggest geographically different tumor growth patterns and support the subdivision of HGSCs according to not only the stage but also tumor distribution. They have implications for clinical and pathologic presentation, trajectory of tumor evolution, and in the case of primary peritoneal HGSCs, potentially unique precursors to tumor transitions that could inform or influence cancer prevention efforts.
Collapse
Affiliation(s)
- Ju Yoon Yoon
- Unity Health Toronto, Department of Pathology, Toronto, Canada
| | - Aarti Sharma
- Brigham and Women’s Hospital, Division of Women’s and Perinatal pathology, Department of Pathology, Boston, USA
| | - Azra H. Ligon
- Brigham and Women’s Hospital, Department of Pathology, Division of Clinical Cytogenetics, Boston, USA
| | - Rebecca G. Ramesh
- Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, USA
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Wa Xian
- University of Houston, Department of Biology and Biochemistry, Stem Cell Center, Houston TX
| | - David B. Chapel
- University of Michigan Health, Department of Pathology, Ann Arbor Michigan
| | - Christopher P. Crum
- Brigham and Women’s Hospital, Division of Women’s and Perinatal pathology, Department of Pathology, Boston, USA
| |
Collapse
|
30
|
Qian L, Zhu J, Xue Z, Zhou Y, Xiang N, Xu H, Sun R, Gong W, Cai X, Sun L, Ge W, Liu Y, Su Y, Lin W, Zhan Y, Wang J, Song S, Yi X, Ni M, Zhu Y, Hua Y, Zheng Z, Guo T. Proteomic landscape of epithelial ovarian cancer. Nat Commun 2024; 15:6462. [PMID: 39085232 PMCID: PMC11291745 DOI: 10.1038/s41467-024-50786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is a deadly disease with limited diagnostic biomarkers and therapeutic targets. Here we conduct a comprehensive proteomic profiling of ovarian tissue and plasma samples from 813 patients with different histotypes and therapeutic regimens, covering the expression of 10,715 proteins. We identify eight proteins associated with tumor malignancy in the tissue specimens, which are further validated as potential circulating biomarkers in plasma. Targeted proteomics assays are developed for 12 tissue proteins and 7 blood proteins, and machine learning models are constructed to predict one-year recurrence, which are validated in an independent cohort. These findings contribute to the understanding of EOC pathogenesis and provide potential biomarkers for early detection and monitoring of the disease. Additionally, by integrating mutation analysis with proteomic data, we identify multiple proteins related to DNA damage in recurrent resistant tumors, shedding light on the molecular mechanisms underlying treatment resistance. This study provides a multi-histotype proteomic landscape of EOC, advancing our knowledge for improved diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Liujia Qian
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jianqing Zhu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhangzhi Xue
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Xiang
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Rui Sun
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Wangang Gong
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xue Cai
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Lu Sun
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Yufeng Liu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Ying Su
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wangmin Lin
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Yuecheng Zhan
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Junjian Wang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Shuang Song
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xiao Yi
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Maowei Ni
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yi Zhu
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China.
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China.
| | - Zhiguo Zheng
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Tiannan Guo
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China.
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Kulkarni S, Gajjar K, Madhusudan S. Poly (ADP-ribose) polymerase inhibitor therapy and mechanisms of resistance in epithelial ovarian cancer. Front Oncol 2024; 14:1414112. [PMID: 39135999 PMCID: PMC11317305 DOI: 10.3389/fonc.2024.1414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Advanced epithelial ovarian cancer is the commonest cause of gynaecological cancer deaths. First-line treatment for advanced disease includes a combination of platinum-taxane chemotherapy (post-operatively or peri-operatively) and maximal debulking surgery whenever feasible. Initial response rate to chemotherapy is high (up to 80%) but most patients will develop recurrence (approximately 70-90%) and succumb to the disease. Recently, poly-ADP-ribose polymerase (PARP) inhibition (by drugs such as Olaparib, Niraparib or Rucaparib) directed synthetic lethality approach in BRCA germline mutant or platinum sensitive disease has generated real hope for patients. PARP inhibitor (PARPi) maintenance therapy can prolong survival but therapeutic response is not sustained due to intrinsic or acquired secondary resistance to PARPi therapy. Reversion of BRCA1/2 mutation can lead to clinical PARPi resistance in BRCA-germline mutated ovarian cancer. However, in the more common platinum sensitive sporadic HGSOC, the clinical mechanisms of development of PARPi resistance remains to be defined. Here we provide a comprehensive review of the current status of PARPi and the mechanisms of resistance to therapy.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham NHS Trust, West Bromwich, United Kingdom
| | - Ketankumar Gajjar
- Department of Gynaecological Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
32
|
Park JH, Seo AN, Kim M. Diagnostic Usefulness of p53 Immunostaining in Gastric Cancer and Dysplasia: A Real-world Clinical Experience. In Vivo 2024; 38:1865-1874. [PMID: 38936896 PMCID: PMC11215596 DOI: 10.21873/invivo.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM Gastric cancer and its precancerous lesions represent a significant public health concern. A subset of gastric cancers exhibits mutations in the TP53 gene, often accompanying distinctive morphologic alterations. This study aimed to assess the diagnostic efficacy of p53 immunostaining in real-world clinical settings. PATIENTS AND METHODS A retrospective analysis was conducted on 50 cases of gastric tumors and tumor-like lesions, wherein p53 immunostaining played a pivotal diagnostic role. The staining pattern of p53 was examined in conjunction with clinicopathologic parameters. RESULTS Mutant p53 staining pattern demonstrated a significant association with high-grade nuclear atypia (p<0.001), high-grade dysplasia, and tubular adenocarcinoma (p<0.001), as well as microsatellite instability status (p=0.034). Furthermore, the diagnostic utility of p53 immunostaining was evident in scenarios where: 1) biopsy specimens contained few tumor cells, 2) pathologic evaluation of resection margins was limited by cauterization artifacts, and 3) distinction between low-grade and high-grade gastric dysplasia was challenging. CONCLUSION P53 immunostaining can be helpful for the diagnosis of gastric tumor and tumor-like lesions, and accurate pathologic margin evaluation, particularly in lesions demonstrating intestinal-type differentiation and some degree of nuclear atypia.
Collapse
Affiliation(s)
- Ji Hyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Moonsik Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
33
|
Holý P, Hlaváč V, Šeborová K, Šůsová S, Tesařová T, Rob L, Hruda M, Bouda J, Bartáková A, Mrhalová M, Kopečková K, Al Obeed Allah M, Špaček J, Sedláková I, Souček P, Václavíková R. Targeted DNA sequencing of high-grade serous ovarian carcinoma reveals association of TP53 mutations with platinum resistance when combined with gene expression. Int J Cancer 2024; 155:104-116. [PMID: 38447012 DOI: 10.1002/ijc.34908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
High-grade serous ovarian carcinoma (HGSC) is the most common subtype of ovarian cancer and is among the most fatal gynecological malignancies worldwide, due to late diagnosis at advanced stages and frequent therapy resistance. In 47 HGSC patients, we assessed somatic and germline genetic variability of a custom panel of 144 known or suspected HGSC-related genes by high-coverage targeted DNA sequencing to identify the genetic determinants associated with resistance to platinum-based therapy. In the germline, the most mutated genes were DNAH14 (17%), RAD51B (17%), CFTR (13%), BRCA1 (11%), and RAD51 (11%). Somatically, the most mutated gene was TP53 (98%), followed by CSMD1/2/3 (19/19/36%), and CFTR (23%). Results were compared with those from whole exome sequencing of a similar set of 35 HGSC patients. Somatic variants in TP53 were also validated using GENIE data of 1287 HGSC samples. Our approach showed increased prevalence of high impact somatic and germline mutations, especially those affecting splice sites of TP53, compared to validation datasets. Furthermore, nonsense TP53 somatic mutations were negatively associated with patient survival. Elevated TP53 transcript levels were associated with platinum resistance and presence of TP53 missense mutations, while decreased TP53 levels were found in tumors carrying mutations with predicted high impact, which was confirmed in The Cancer Genome Atlas data (n = 260). Targeted DNA sequencing of TP53 combined with transcript quantification may contribute to the concept of precision oncology of HGSC. Future studies should explore targeting the p53 pathway based on specific mutation types and co-analyze the expression and mutational profiles of other key cancer genes.
Collapse
Affiliation(s)
- Petr Holý
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Viktor Hlaváč
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Karolína Šeborová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Simona Šůsová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tereza Tesařová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Lukáš Rob
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Martin Hruda
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jiří Bouda
- Department of Gynecology and Obstetrics, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alena Bartáková
- Department of Gynecology and Obstetrics, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Marcela Mrhalová
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Kopečková
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Mohammad Al Obeed Allah
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jiří Špaček
- University Hospital Hradec Králové, Hradec Kralove, Czech Republic
| | - Iva Sedláková
- University Hospital Hradec Králové, Hradec Kralove, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
34
|
Centeno D, Farsinejad S, Kochetkova E, Volpari T, Gladych-Macioszek A, Klupczynska-Gabryszak A, Polotaye T, Greenberg M, Kung D, Hyde E, Alshehri S, Pavlovic T, Sullivan W, Plewa S, Vakifahmetoglu-Norberg H, Monsma FJ, Muller PAJ, Matysiak J, Zaborowski MP, DiFeo A, Norberg E, Martin LA, Iwanicki M. Modeling of Intracellular Taurine Levels Associated with Ovarian Cancer Reveals Activation of p53, ERK, mTOR and DNA-Damage-Sensing-Dependent Cell Protection. Nutrients 2024; 16:1816. [PMID: 38931171 PMCID: PMC11206249 DOI: 10.3390/nu16121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Taurine, a non-proteogenic amino acid and commonly used nutritional supplement, can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We found that OC ascites-derived cells contained significantly more intracellular taurine than cell culture-modeled OC. In culture, elevation of intracellular taurine concentration to OC ascites-cell-associated levels suppressed proliferation of various OC cell lines and patient-derived organoids, reduced glycolysis, and induced cell protection from cisplatin. Taurine cell protection was associated with decreased DNA damage in response to cisplatin. A combination of RNA sequencing, reverse-phase protein arrays, live-cell microscopy, flow cytometry, and biochemical validation experiments provided evidence for taurine-mediated induction of mutant or wild-type p53 binding to DNA, activation of p53 effectors involved in negative regulation of the cell cycle (p21), and glycolysis (TIGAR). Paradoxically, taurine's suppression of cell proliferation was associated with activation of pro-mitogenic signal transduction including ERK, mTOR, and increased mRNA expression of major DNA damage-sensing molecules such as DNAPK, ATM and ATR. While inhibition of ERK or p53 did not interfere with taurine's ability to protect cells from cisplatin, suppression of mTOR with Torin2, a clinically relevant inhibitor that also targets DNAPK and ATM/ATR, broke taurine's cell protection. Our studies implicate that elevation of intracellular taurine could suppress cell growth and metabolism, and activate cell protective mechanisms involving mTOR and DNA damage-sensing signal transducti.
Collapse
Affiliation(s)
- Daniel Centeno
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - Sadaf Farsinejad
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - Elena Kochetkova
- Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden; (E.K.); (H.V.-N.); (E.N.)
| | - Tatiana Volpari
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA; (T.V.); (W.S.); (F.J.M.J.)
| | | | - Agnieszka Klupczynska-Gabryszak
- Department of Inorganic and Analytical Chemistry, Poznań University of Medical Sciences, 61-701 Poznań, Poland; (A.K.-G.); (S.P.); (J.M.)
| | - Teagan Polotaye
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - Michael Greenberg
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - Douglas Kung
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - Emily Hyde
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - Sarah Alshehri
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - Tonja Pavlovic
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| | - William Sullivan
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA; (T.V.); (W.S.); (F.J.M.J.)
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznań University of Medical Sciences, 61-701 Poznań, Poland; (A.K.-G.); (S.P.); (J.M.)
| | - Helin Vakifahmetoglu-Norberg
- Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden; (E.K.); (H.V.-N.); (E.N.)
| | - Frederick J. Monsma
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA; (T.V.); (W.S.); (F.J.M.J.)
| | | | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznań University of Medical Sciences, 61-701 Poznań, Poland; (A.K.-G.); (S.P.); (J.M.)
| | | | - Analisa DiFeo
- Departments of Obstetrics and Gynecology and Pathology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Erik Norberg
- Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden; (E.K.); (H.V.-N.); (E.N.)
| | - Laura A. Martin
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA; (T.V.); (W.S.); (F.J.M.J.)
| | - Marcin Iwanicki
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (D.C.); (S.F.); (T.P.); (M.G.); (D.K.); (E.H.); (S.A.); (T.P.)
| |
Collapse
|
35
|
Kallio HM, Savolainen K, Virtanen T, Ryyppö L, Selin H, Martikainen P, Staff S, Kivinummi K, Sipola J, Vuorinen J, Nikkola J, Nykter M, Auranen A, Annala M. Sensitive circulating tumor DNA-based residual disease detection in epithelial ovarian cancer. Life Sci Alliance 2024; 7:e202402658. [PMID: 38580393 PMCID: PMC10997860 DOI: 10.26508/lsa.202402658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the leading causes of cancer-related death in women worldwide, and is characterized by a high rate of recurrence after surgery and chemotherapy. We sought to implement a circulating tumor DNA (ctDNA)-based blood test for more accurate post-operative surveillance of this disease. We analyzed 264 plasma samples collected between June 2016 and September 2021 from 63 EOC patients using tumor-guided plasma cell-free DNA analysis to detect residual disease after treatment. Assay specificity was verified using cross-patient analysis of 1,195 control samples. ctDNA was detected in 51 of 55 (93%) samples at diagnosis, and 18 of 18 (100%) samples at progression. Positive ctDNA in the last on-treatment sample was associated with rapid progression (median 1.02 versus 3.38 yr, HR = 5.63, P < 0.001) and reduced overall survival (median 2.31 versus NR yr, HR = 8.22, P < 0.001) in patients with high-grade serous cancer. In the case of 12 patients, ctDNA assays detected progression earlier than standard surveillance, with a median lead time of 5.9 mo. To approach the physical limits of ctDNA detection, five patients were analyzed using ultra-sensitive assays interrogating 479-1,856 tumor mutations, capable of tracking ctDNA fractions down to 0.0004%. Our results demonstrate that ctDNA assays achieve high sensitivity and specificity in detecting post-operative residual disease in EOC.
Collapse
Affiliation(s)
- Heini Ml Kallio
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Kalle Savolainen
- Department of Obstetrics and Gynecology, Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Tuomo Virtanen
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Lauri Ryyppö
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Hanna Selin
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Päivi Martikainen
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Synnöve Staff
- Department of Obstetrics and Gynecology, Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Kati Kivinummi
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Joonatan Sipola
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Juuso Vuorinen
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Jussi Nikkola
- Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Annika Auranen
- Department of Obstetrics and Gynecology, Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Matti Annala
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| |
Collapse
|
36
|
Bhavsar D, Raguraman R, Kim D, Ren X, Munshi A, Moore K, Sikavitsas V, Ramesh R. Exosomes in diagnostic and therapeutic applications of ovarian cancer. J Ovarian Res 2024; 17:113. [PMID: 38796525 PMCID: PMC11127348 DOI: 10.1186/s13048-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/16/2024] [Indexed: 05/28/2024] Open
Abstract
Ovarian cancer accounts for more deaths than any other female reproductive tract cancer. The major reasons for the high mortality rates include delayed diagnoses and drug resistance. Hence, improved diagnostic and therapeutic options for ovarian cancer are a pressing need. Extracellular vesicles (EVs), that include exosomes provide hope in both diagnostic and therapeutic aspects. They are natural lipid nanovesicles secreted by all cell types and carry molecules that reflect the status of the parent cell. This facilitates their potential use as biomarkers for an early diagnosis. Additionally, EVs can be loaded with exogenous cargo, and have features such as high stability and favorable pharmacokinetic properties. This makes them ideal for tumor-targeted delivery of biological moieties. The International Society of Extracellular Vesicles (ISEV) based on the Minimal Information for Studies on Extracellular Vesicles (MISEV) recommends the usage of the term "small extracellular vesicles (sEVs)" that includes exosomes for particles that are 30-200 nm in size. However, majority of the studies reported in the literature and relevant to this review have used the term "exosomes". Therefore, this review will use the term "exosomes" interchangeably with sEVs for consistency with the literature and avoid confusion to the readers. This review, initially summarizes the different isolation and detection techniques developed to study ovarian cancer-derived exosomes and the potential use of these exosomes as biomarkers for the early diagnosis of this devastating disease. It addresses the role of exosome contents in the pathogenesis of ovarian cancer, discusses strategies to limit exosome-mediated ovarian cancer progression, and provides options to use exosomes for tumor-targeted therapy in ovarian cancer. Finally, it states future research directions and recommends essential research needed to successfully transition exosomes from the laboratory to the gynecologic-oncology clinic.
Collapse
Affiliation(s)
- Dhaval Bhavsar
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Rajeswari Raguraman
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Kathleen Moore
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- Department of Chemical, Biological and Materials Engineering, Oklahoma University, Norman, OK, 73019, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA.
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
37
|
Centeno D, Farsinejad S, Kochetkova E, Volpari T, Gladych-Macioszek A, Klupczynska-Gabryszak A, Polotaye T, Greenberg M, Kung D, Hyde E, Alshehri S, Pavlovic T, Sullivan W, Plewa S, Vakifahmetoglu-Norberg H, Monsma FJ, Muller PAJ, Matysiak J, Zaborowski M, DiFeo A, Norberg E, Martin LA, Iwanicki M. Modeling of Intracellular Taurine Levels Associated with Ovarian Cancer Reveals Activation of p53, ERK, mTOR and DNA-damage-sensing-dependent Cell Protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.24.529893. [PMID: 36909636 PMCID: PMC10002676 DOI: 10.1101/2023.02.24.529893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Taurine, a non-proteogenic amino acid, and commonly used nutritional supplement can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We have found that OC ascites-derived cells contained significantly more intracellular taurine than cell cultures modeling OC. In culture, elevation of intracellular taurine concentration to OC ascites-cells-associated levels suppressed proliferation of various OC cell lines and patient-derived organoids, reduced glycolysis, and induced cell protection from cisplatin. Taurine cell protection was associated with decreased DNA damage in response to cisplatin. A combination of RNA sequencing, reverse phase protein arrays, live-cell microscopy, flow cytometry, and biochemical validation experiments provided evidence for taurine-mediated induction of mutant- or wild-type p53 binding to DNA, and activation of p53 effectors involved in negative regulation of the cell cycle (p21), and glycolysis (TIGAR). Paradoxically, taurine's suppression of cell proliferation was associated with activation of pro-mitogenic signal transduction including ERK, mTOR, and increased mRNA expression of major DNA damage sensing molecules such as DNAPK, ATM and ATR. While inhibition of ERK or p53 did not interfere with taurine's ability to protect cells from cisplatin, suppression of mTOR with Torin2, a clinically relevant inhibitor that also targets DNAPK and ATM/ATR, broke taurine's cell protection. Our studies implicate that elevation of intracellular taurine could suppress cell growth, metabolism, and activate cell protective mechanisms involving mTOR and DNA damage sensing signal transduction.
Collapse
|
38
|
Jitmana K, Griffiths JI, Fereday S, DeFazio A, Bowtell D, Adler FR. Mathematical modeling of the evolution of resistance and aggressiveness of high-grade serous ovarian cancer from patient CA-125 time series. PLoS Comput Biol 2024; 20:e1012073. [PMID: 38809938 PMCID: PMC11164342 DOI: 10.1371/journal.pcbi.1012073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 06/10/2024] [Accepted: 04/12/2024] [Indexed: 05/31/2024] Open
Abstract
A time-series analysis of serum Cancer Antigen 125 (CA-125) levels was performed in 791 patients with high-grade serous ovarian cancer (HGSOC) from the Australian Ovarian Cancer Study to evaluate the development of chemoresistance and response to therapy. To investigate chemoresistance and better predict the treatment effectiveness, we examined two traits: resistance (defined as the rate of CA-125 change when patients were treated with therapy) and aggressiveness (defined as the rate of CA-125 change when patients were not treated). We found that as the number of treatment lines increases, the data-based resistance increases (a decreased rate of CA-125 decay). We use mathematical models of two distinct cancer cell types, treatment-sensitive cells and treatment-resistant cells, to estimate the values and evolution of the two traits in individual patients. By fitting to individual patient HGSOC data, our models successfully capture the dynamics of the CA-125 level. The parameters estimated from the mathematical models show that patients with inferred low growth rates of treatment-sensitive cells and treatment-resistant cells (low model-estimated aggressiveness) and a high death rate of treatment-resistant cells (low model-estimated resistance) have longer survival time after completing their second-line of therapy. These findings show that mathematical models can characterize the degree of resistance and aggressiveness in individual patients, which improves our understanding of chemoresistance development and could predict treatment effectiveness in HGSOC patients.
Collapse
Affiliation(s)
- Kanyarat Jitmana
- Department of Mathematics, The University of Utah, Salt Lake City, Utah, The United States of America
| | - Jason I. Griffiths
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California, The United States of America
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - David Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Frederick R. Adler
- Department of Mathematics, The University of Utah, Salt Lake City, Utah, The United States of America
- School of Biological Sciences, The University of Utah, Salt Lake City, Utah, The United States of America
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah, The United States of America
| |
Collapse
|
39
|
K AR, Arumugam S, Muninathan N, Baskar K, S D, D DR. P53 Gene as a Promising Biomarker and Potential Target for the Early Diagnosis of Reproductive Cancers. Cureus 2024; 16:e60125. [PMID: 38864057 PMCID: PMC11165294 DOI: 10.7759/cureus.60125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
One of the crucial aspects of cancer research is diagnosis with specificity and accuracy. Early cancer detection mostly helps make appropriate decisions regarding treatment and metastasis. The well-studied transcription factor tumor suppressor protein p53 is essential for maintaining genetic integrity. p53 is a key tumor suppressor that recognizes the carcinogenic biological pathways and eradicates them by apoptosis. A wide range of carcinomas, especially gynecological such as ovarian, cervical, and endometrial cancers, frequently undergo TP53 gene mutations. This study evaluates the potential of the p53 gene as a biological marker for the diagnosis of reproductive system neoplasms. Immunohistochemistry of p53 is rapid, easy to accomplish, cost-effective, and preferred by pathologists as a surrogate for the analysis of TP53 mutation. Thus, this review lays a groundwork for future efforts to develop techniques using p53 for the early diagnosis of cancer.
Collapse
Affiliation(s)
- Aswathi R K
- Medical Biochemistry, Meenakshi Academy of Higher Education and Research, Chennai, IND
| | - Suresh Arumugam
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Natrajan Muninathan
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Kuppusamy Baskar
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Deepthi S
- Research and Development, Meenakshi Academy of Higher Education and Research, Chennai, IND
| | - Dinesh Roy D
- Centre for Advanced Genetic Studies, Genetika, Thiruvananthapuram, IND
| |
Collapse
|
40
|
Denisenko E, de Kock L, Tan A, Beasley AB, Beilin M, Jones ME, Hou R, Muirí DÓ, Bilic S, Mohan GRKA, Salfinger S, Fox S, Hmon KPW, Yeow Y, Kim Y, John R, Gilderman TS, Killingbeck E, Gray ES, Cohen PA, Yu Y, Forrest ARR. Spatial transcriptomics reveals discrete tumour microenvironments and autocrine loops within ovarian cancer subclones. Nat Commun 2024; 15:2860. [PMID: 38570491 PMCID: PMC10991508 DOI: 10.1038/s41467-024-47271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is genetically unstable and characterised by the presence of subclones with distinct genotypes. Intratumoural heterogeneity is linked to recurrence, chemotherapy resistance, and poor prognosis. Here, we use spatial transcriptomics to identify HGSOC subclones and study their association with infiltrating cell populations. Visium spatial transcriptomics reveals multiple tumour subclones with different copy number alterations present within individual tumour sections. These subclones differentially express various ligands and receptors and are predicted to differentially associate with different stromal and immune cell populations. In one sample, CosMx single molecule imaging reveals subclones differentially associating with immune cell populations, fibroblasts, and endothelial cells. Cell-to-cell communication analysis identifies subclone-specific signalling to stromal and immune cells and multiple subclone-specific autocrine loops. Our study highlights the high degree of subclonal heterogeneity in HGSOC and suggests that subclone-specific ligand and receptor expression patterns likely modulate how HGSOC cells interact with their local microenvironment.
Collapse
Affiliation(s)
- Elena Denisenko
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia.
| | - Leanne de Kock
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Adeline Tan
- Anatomical Pathology Department, Clinipath, Sonic Healthcare, Perth, WA, 6017, Australia
| | - Aaron B Beasley
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Maria Beilin
- Department of Gynaecological Oncology, Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, 12 Salvado Rd, Subiaco, WA, 6008, Australia
| | - Matthew E Jones
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
| | - Dáithí Ó Muirí
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
| | - Sanela Bilic
- Department of Gynaecological Oncology, Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, 12 Salvado Rd, Subiaco, WA, 6008, Australia
| | - G Raj K A Mohan
- Department of Gynaecological Oncology, Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, 12 Salvado Rd, Subiaco, WA, 6008, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA, 6160, Australia
| | | | - Simon Fox
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
| | - Khaing P W Hmon
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
| | - Yen Yeow
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia
| | | | - Rhea John
- NanoString Technologies, Seattle, WA, USA
| | | | | | - Elin S Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Paul A Cohen
- Division of Obstetrics and Gynaecology, Medical School, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- Institute for Health Research, The University of Notre Dame Australia, 32 Mouat Street Fremantle, Fremantle, WA, 6160, Australia.
| | - Yu Yu
- Division of Obstetrics and Gynaecology, Medical School, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- Curtin Medical School, Curtin University, 410 Koorliny Way, Bentley, WA, 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University B305, Bentley, WA, 6102, Australia.
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA, 6009, Australia.
| |
Collapse
|
41
|
Pampeno C, Opp S, Hurtado A, Meruelo D. Sindbis Virus Vaccine Platform: A Promising Oncolytic Virus-Mediated Approach for Ovarian Cancer Treatment. Int J Mol Sci 2024; 25:2925. [PMID: 38474178 PMCID: PMC10932354 DOI: 10.3390/ijms25052925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
This review article provides a comprehensive overview of a novel Sindbis virus vaccine platform as potential immunotherapy for ovarian cancer patients. Ovarian cancer is the most lethal of all gynecological malignancies. The majority of high-grade serous ovarian cancer (HGSOC) patients are diagnosed with advanced disease. Current treatment options are very aggressive and limited, resulting in tumor recurrences and 50-60% patient mortality within 5 years. The unique properties of armed oncolytic Sindbis virus vectors (SV) in vivo have garnered significant interest in recent years to potently target and treat ovarian cancer. We discuss the molecular biology of Sindbis virus, its mechanisms of action against ovarian cancer cells, preclinical in vivo studies, and future perspectives. The potential of Sindbis virus-based therapies for ovarian cancer treatment holds great promise and warrants further investigation. Investigations using other oncolytic viruses in preclinical studies and clinical trials are also presented.
Collapse
Affiliation(s)
- Christine Pampeno
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | | | - Alicia Hurtado
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
42
|
Ronchi S, Facchi S, Di Lauro E, Libera L, Carnevali IW, Zefiro F, Alexandrova E, Rizzo F, Sessa F, Tibiletti MG. Immunohistochemical and molecular pattern of p53 in epithelial ovarian cancers negative for germline BRCA1/2 variants. Pathol Res Pract 2024; 255:155183. [PMID: 38364651 DOI: 10.1016/j.prp.2024.155183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
Epithelial ovarian cancers (EOC) associated with germline or somatic BRCA pathogenetic variants have a significantly higher rate of TP53aberrations. The majority of TP53 mutations are detectable by immunohistochemistry and several studies demonstrated that an abnormal p53 pattern characterized high-grade EOCs. An abnormal p53 immunohistochemical staining in fallopian tube (serous tubal intraepithelial carcinoma (STIC) and "p53 signature" is considered as a precancerous lesion of high-grade EOCs and it is often found in fallopian tube tissues of BRCA germline mutated patients suggesting that STIC is an early lesion and the TP53 mutation is an early driver event of BRCA mutated high-grade EOCs. No relevant data are present in literature about the involvement of p53 abnormal pattern in EOC carcinogenesis of patients negative for germline BRCA variants. We describe TP53 mutation results in relationship to the immunohistochemical pattern of p53 expression in a series of EOCs negative for BRCA1 and BRCA2 germline mutations. In addition, we also investigated STIC presence and "p53 signature" in fallopian tube sampling of these EOCs. Our results demonstrate that TP53 alterations are frequent and early events in sporadic EOCs including also low-grade carcinomas. Also in this series, STIC is associated with an abnormal p53 pattern in fallopian tubes of high-grade EOCs. In summary, TP53 aberrations are the most frequent and early molecular events in EOC carcinogenesis independently from BRCA mutation status.
Collapse
Affiliation(s)
- Susanna Ronchi
- Unit of Pathology, Ospedale di Circolo, ASST SetteLaghi, Research Center for Familial and Hereditary Tumors, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy.
| | - Sofia Facchi
- Unit of Pathology, Ospedale di Circolo, ASST SetteLaghi, Research Center for Familial and Hereditary Tumors, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy.
| | - Eleonora Di Lauro
- Unit of Pathology, Ospedale di Circolo, ASST SetteLaghi, Research Center for Familial and Hereditary Tumors, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy.
| | - Laura Libera
- Unit of Pathology, Ospedale di Circolo, ASST SetteLaghi, Research Center for Familial and Hereditary Tumors, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy.
| | - Ileana Wanda Carnevali
- Unit of Pathology, Ospedale di Circolo, ASST SetteLaghi, Research Center for Familial and Hereditary Tumors, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy.
| | - Francesca Zefiro
- Department of Obstetric and Gynecology, ASST Settelaghi, University of Insubria, 21100 Varese, Italy.
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'ScuolaMedicaSalernitana', University of Salerno, 84081 Baronissi, Italy.
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'ScuolaMedicaSalernitana', University of Salerno, 84081 Baronissi, Italy; Genome Research Center for Health - CRGS, Campus of Medicine of the University of Salerno, 84081 Baronissi, SA, Italy.
| | - Fausto Sessa
- Unit of Pathology, Ospedale di Circolo, ASST SetteLaghi, Research Center for Familial and Hereditary Tumors, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy.
| | - Maria Grazia Tibiletti
- Unit of Pathology, Ospedale di Circolo, ASST SetteLaghi, Research Center for Familial and Hereditary Tumors, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy.
| |
Collapse
|
43
|
Giancontieri P, Turetta C, Barchiesi G, Pernazza A, Pignataro G, D’Onghia G, Santini D, Tomao F. High-grade serous carcinoma of unknown primary origin associated with STIC clinically presented as isolated inguinal lymphadenopathy: a case report. Front Oncol 2024; 13:1307573. [PMID: 38370346 PMCID: PMC10870410 DOI: 10.3389/fonc.2023.1307573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024] Open
Abstract
Serous tubal intraepithelial carcinoma (STIC) is a precancerous lesion of high-grade serous ovarian carcinoma (HGSOC). Usually, it arises from the fimbrial end of the tube, and it is associated with metastatic potential. On average, the time to progress from STIC to HGSOC is 6.5 years. Therefore, whenever a STIC lesion is found, surgical staging and prophylactic salpingectomy are recommended in order to prevent ovarian cancer. We report a rare case of a 45-year-old female patient who clinically presented an isolated right inguinal lymphadenopathy. The remaining clinical examination was normal. Therefore, an excisional biopsy of the lymph node was performed. Pathological analysis revealed a high-grade serous carcinoma, most likely of gynecological origin. Due to histological evidence, a computed tomography (CT) scan was carried out. There was no CT evidence of ovarian disease, pelvic involvement, intra-abdominal lymphadenopathies, metastatic disease, or ascites. All tumor markers were negative. The patient underwent laparoscopic hysterectomy and bilateral salpingo-oophorectomy followed by surgical staging. Surprisingly, pathological examination showed a STIC lesion in the fimbria of the left fallopian tube. We aim to report the potential capability of STIC to spread particularly through lymphatic pathways rather than peritoneal dissemination.
Collapse
Affiliation(s)
- Paola Giancontieri
- Department of Radiological, Oncological and Anatomo-Pathological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Camilla Turetta
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giacomo Barchiesi
- Department of Radiological, Oncological and Anatomo-Pathological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Angelina Pernazza
- Department of Radiological, Oncological and Anatomo-Pathological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Gemma Pignataro
- Department of Radiological, Oncological and Anatomo-Pathological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | | | - Daniele Santini
- Department of Radiological, Oncological and Anatomo-Pathological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Federica Tomao
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
44
|
Richau CS, Scherer NDM, Matta BP, de Armas EM, de Barros Moreira FC, Bergmann A, Pereira Chaves CB, Boroni M, dos Santos ACE, Moreira MAM. BRCA1, BRCA2, and TP53 germline and somatic variants and clinicopathological characteristics of Brazilian patients with epithelial ovarian cancer. Cancer Med 2024; 13:e6729. [PMID: 38308422 PMCID: PMC10905552 DOI: 10.1002/cam4.6729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Approximately 3/4 of ovarian cancers are diagnosed in advanced stages, with the high-grade epithelial ovarian carcinoma (EOC) accounting for 90% of the cases. EOC present high genomic instability and somatic loss-of-function variants in genes associated with homologous recombination mutational repair pathway (HR), such as BRCA1 and BRCA2, and in TP53. The identification of germline variants in HR genes in EOC is relevant for treatment of platinum resistant tumors and relapsed tumors with therapies based in synthetic lethality such as PARP inhibitors. Patients with somatic variants in HR genes may also benefit from these therapies. In this work was analyzed the frequency of somatic variants in BRCA1, BRCA2, and TP53 in an EOC cohort of Brazilian patients, estimating the proportion of variants in tumoral tissue and their association with progression-free survival and overall survival. METHODS The study was conducted with paired blood/tumor samples from 56 patients. Germline and tumoral sequences of BRCA1, BRCA2, and TP53 were obtained by massive parallel sequencing. The HaplotypeCaller method was used for calling germline variants, and somatic variants were called with Mutect2. RESULTS A total of 26 germline variants were found, and seven patients presented germline pathogenic or likely pathogenic variants in BRCA1 or BRCA2. The analysis of tumoral tissue identified 52 somatic variants in 41 patients, being 43 somatic variants affecting or likely affecting protein functionality. Survival analyses showed that tumor staging was associated with overall survival (OS), while the presence of somatic mutation in TP53 was not associated with OS or progression-free survival. CONCLUSION Frequency of pathogenic or likely pathogenic germline variants in BRCA1 and BRCA2 (12.5%) was lower in comparison with other studies. TP53 was the most altered gene in tumors, with 62.5% presenting likely non-functional or non-functional somatic variants, while eight 14.2% presented likely non-functional or non-functional somatic variants in BRCA1 or BRCA2.
Collapse
Affiliation(s)
| | | | - Bruna Palma Matta
- Tumoral Genetics and Virology ProgramInstituto Nacional de CâncerRio de JaneiroBrazil
- Present address:
Hospital BP ‐ A Beneficência Portuguesa de São PauloSão PauloBrazil
| | | | | | - Anke Bergmann
- Clinical EpidemiologyInstituto Nacional de CâncerRio de JaneiroBrazil
| | | | - Mariana Boroni
- Bioinformatics and Computational Biology LaboratoryInstituto Nacional de CâncerRio de JaneiroBrazil
| | | | | |
Collapse
|
45
|
Heo J, Kim YN, Shin S, Lee K, Lee JH, Lee YJ, Choi Z, Park J, Min S, Kim SW, Choi JR, Kim S, Lee ST, Lee JY. Serial Circulating Tumor DNA Analysis with a Tumor-Naïve Next-Generation Sequencing Panel Detects Minimal Residual Disease and Predicts Outcome in Ovarian Cancer. Cancer Res 2024; 84:468-478. [PMID: 38038965 DOI: 10.1158/0008-5472.can-23-1429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Circulating tumor DNA (ctDNA) may aid in personalizing ovarian cancer therapeutic options. Here, we aimed to assess the clinical utility of serial ctDNA testing using tumor-naïve, small-sized next-generation sequencing (NGS) panels. A total of 296 patients, including 201 with ovarian cancer and 95 with benign or borderline disease, were enrolled. Samples were collected at baseline (initial diagnosis or surgery) and every 3 months after that, resulting in a total of 811 blood samples. Patients received adjuvant therapy based on the current standard of care. Cell-free DNA was extracted and sequenced using an NGS panel of 9 genes: TP53, BRCA1, BRCA2, ARID1A, CCNE1, KRAS, MYC, PIK3CA, and PTEN. Pathogenic somatic mutations were identified in 69.2% (139/201) of patients with ovarian cancer at baseline but not in those with benign or borderline disease. Detection of ctDNA at baseline and/or at 6 months follow-up was predictive of progression-free survival (PFS). PFS was significantly poorer in patients with detectable pathogenic mutations at baseline that persisted at follow-up than in patients that converted from having detectable ctDNA at baseline to being undetectable at follow-up; survival did not differ between patients without pathogenic ctDNA mutations in baseline or follow-up samples and those that converted from ctDNA positive to negative. Disease recurrence was also detected earlier with ctDNA than with conventional radiologic assessment or CA125 monitoring. These findings demonstrate that serial ctDNA testing could effectively monitor patients and detect minimal residual disease, facilitating early detection of disease progression and tailoring of adjuvant therapies for ovarian cancer treatment. SIGNIFICANCE In ovarian cancer, serial circulating tumor DNA testing is a highly predictive marker of patient survival, with a significantly improved recurrence detection lead time compared with conventional monitoring tools.
Collapse
Affiliation(s)
- Jinho Heo
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo-Na Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyunglim Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hyun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Jae Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Zisun Choi
- Dxome Co., Ltd., Seongnam, Republic of Korea
| | | | - Seungki Min
- Dxome Co., Ltd., Seongnam, Republic of Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Dxome Co., Ltd., Seongnam, Republic of Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Dxome Co., Ltd., Seongnam, Republic of Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
46
|
Ryu J, Boylan KLM, Twigg CAI, Evans R, Skubitz APN, Thomas SN. Quantification of putative ovarian cancer serum protein biomarkers using a multiplexed targeted mass spectrometry assay. Clin Proteomics 2024; 21:1. [PMID: 38172678 PMCID: PMC10762856 DOI: 10.1186/s12014-023-09447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecologic malignancy in women, and high-grade serous ovarian cancer (HGSOC) is the most common subtype. Currently, no clinical test has been approved by the FDA to screen the general population for ovarian cancer. This underscores the critical need for the development of a robust methodology combined with novel technology to detect diagnostic biomarkers for HGSOC in the sera of women. Targeted mass spectrometry (MS) can be used to identify and quantify specific peptides/proteins in complex biological samples with high accuracy, sensitivity, and reproducibility. In this study, we sought to develop and conduct analytical validation of a multiplexed Tier 2 targeted MS parallel reaction monitoring (PRM) assay for the relative quantification of 23 putative ovarian cancer protein biomarkers in sera. METHODS To develop a PRM method for our target peptides in sera, we followed nationally recognized consensus guidelines for validating fit-for-purpose Tier 2 targeted MS assays. The endogenous target peptide concentrations were calculated using the calibration curves in serum for each target peptide. Receiver operating characteristic (ROC) curves were analyzed to evaluate the diagnostic performance of the biomarker candidates. RESULTS We describe an effort to develop and analytically validate a multiplexed Tier 2 targeted PRM MS assay to quantify candidate ovarian cancer protein biomarkers in sera. Among the 64 peptides corresponding to 23 proteins in our PRM assay, 24 peptides corresponding to 16 proteins passed the assay validation acceptability criteria. A total of 6 of these peptides from insulin-like growth factor-binding protein 2 (IBP2), sex hormone-binding globulin (SHBG), and TIMP metalloproteinase inhibitor 1 (TIMP1) were quantified in sera from a cohort of 69 patients with early-stage HGSOC, late-stage HGSOC, benign ovarian conditions, and healthy (non-cancer) controls. Confirming the results from previously published studies using orthogonal analytical approaches, IBP2 was identified as a diagnostic biomarker candidate based on its significantly increased abundance in the late-stage HGSOC patient sera compared to the healthy controls and patients with benign ovarian conditions. CONCLUSIONS A multiplexed targeted PRM MS assay was applied to detect candidate diagnostic biomarkers in HGSOC sera. To evaluate the clinical utility of the IBP2 PRM assay for HGSOC detection, further studies need to be performed using a larger patient cohort.
Collapse
Affiliation(s)
- Joohyun Ryu
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Kristin L M Boylan
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Carly A I Twigg
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Richard Evans
- Clinical and Translational Research Institute, University of Minnesota, Minneapolis, MN, USA
| | - Amy P N Skubitz
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Stefani N Thomas
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA.
| |
Collapse
|
47
|
Jimbo N, Ohbayashi C, Fujii T, Takeda M, Mitsui S, Tsukamoto R, Tanaka Y, Itoh T, Maniwa Y. Implication of cytoplasmic p53 expression in pulmonary neuroendocrine carcinoma using next-generation sequencing analysis. Histopathology 2024; 84:336-342. [PMID: 37814580 DOI: 10.1111/his.15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
AIMS Cytoplasmic p53 expression indicates a high frequency of TP53 abnormalities in gynaecological carcinoma. However, the implication of this expression in pulmonary neuroendocrine carcinoma (NEC) remains unclear. Thus, our study aimed to fill this research gap. METHODS AND RESULTS Immunohistochemistry (IHC) of p53 was performed on 146 cases of resected small-cell lung carcinoma and large-cell NEC, and next-generation sequencing was conducted on cases showing cytoplasmic and wild-type p53 expression. IHC revealed overexpression in 57% of the cases (n = 83), complete absence in 31% (n = 45), cytoplasmic expression in 8% (n = 12) and wild-type expression in 4% (n = 6) of the cases. TP53 mutations were identified in nine of the 13 cases with available genetic analysis. The TP53 mutation rates in cases with cytoplasmic and wild-type p53 expression were 88% (seven of eight) and 40% (two of five), respectively. All seven cases showing cytoplasmic expression with TP53 mutations harboured loss-of-function type mutations: four had mutations in the DNA-binding domain, two in the nuclear localisation domain and one in the tetramerisation domain. Clinically, cases with cytoplasmic p53 expression had a poor prognosis similar to that in cases with p53 overexpression or complete absence. CONCLUSIONS Cytoplasmic p53 expression in patients with pulmonary NEC suggests a high TP53 mutation rate, which is associated with a poor prognosis similar to that in patients with p53 overexpression or complete absence. This cytoplasmic expression should not be misidentified as a wild-type expression. This is the first report, to our knowledge, that demonstrates the implication of cytoplasmic p53 expression in pulmonary NEC.
Collapse
Affiliation(s)
- Naoe Jimbo
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Shinko Hospital, Kobe, Japan
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Tomomi Fujii
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Maiko Takeda
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Suguru Mitsui
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryuko Tsukamoto
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yugo Tanaka
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshimasa Maniwa
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
48
|
Mathur P, Bhatt S, Kumar S, Kamboj S, Kamboj R, Rana A, Kumar H, Verma R. Deciphering the Therapeutic Applications of Nanomedicine in Ovarian Cancer Therapy: An Overview. Curr Drug Deliv 2024; 21:1180-1196. [PMID: 37818568 DOI: 10.2174/0115672018253815230922070558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023]
Abstract
The majority of deadly cancers that afflict the female reproductive system occur in the ovary. Around 1,40,000 women worldwide die from ovarian cancer each year, making it the sixth most common cancer-associated deceases among females in the United States. Modern, cutting-edge treatments like chemotherapy and surgery frequently produce full remissions, but the recurrence rate is still very high. When this crippling condition is diagnosed, there are frequently few therapeutic choices available because of how quietly it manifests. Healthcare practitioners must have a fundamental grasp of the warning signs and symptoms of ovarian cancer, as well as the imaging techniques and treatment choices available, to give the patient the best care possible. The discipline of medical nanotechnology has gained a lot of momentum in recent years in resolving issues and enhancing the detection and treatment of different illnesses, including cancer. This article gives a brief summary of types, risk factors and approaches to ovarian cancer treatment. We subsequently discussed the pathophysiology of ovarian cancer with the risk factors. This review also emphasizes the various signalling pathways involved in ovarian cancer. Our comprehensive integration of recent findings in fundamental research in the nano arena reveals the strong interest in these nanomedicines in ovarian cancer treatment. However, these nanomedicines still require more research, as indicated by the comparatively small number of clinical trials ongoing. This article will provide a reference for ovarian cancer treatment.
Collapse
Affiliation(s)
- Pooja Mathur
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram-122103, India
| | - Shailendra Bhatt
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram-122103, India
| | - Suresh Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram-122103, India
| | - Sweta Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Rohit Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Arpana Rana
- Advanced Institute of Pharmacy, Delhi Mathura Road, Palwal-121105, India
| | - Harish Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, India
| |
Collapse
|
49
|
Burdett NL, Willis MO, Pandey A, Fereday S, DeFazio A, Bowtell DDL, Christie EL. Small-scale mutations are infrequent as mechanisms of resistance in post-PARP inhibitor tumour samples in high grade serous ovarian cancer. Sci Rep 2023; 13:21884. [PMID: 38072854 PMCID: PMC10711013 DOI: 10.1038/s41598-023-48153-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
While the introduction of poly-(ADP)-ribose polymerase (PARP) inhibitors in homologous recombination DNA repair (HR) deficient high grade serous ovarian, fallopian tube and primary peritoneal cancers (HGSC) has improved patient survival, resistance to PARP inhibitors frequently occurs. Preclinical and translational studies have identified multiple mechanisms of resistance; here we examined tumour samples collected from 26 women following treatment with PARP inhibitors as part of standard of care or their enrolment in clinical trials. Twenty-one had a germline or somatic BRCA1/2 mutation. We performed targeted sequencing of 63 genes involved in DNA repair processes or implicated in ovarian cancer resistance. We found that just three individuals had a small-scale mutation as a definitive resistance mechanism detected, having reversion mutations, while six had potential mechanisms of resistance detected, with alterations related to BRCA1 function and mutations in SHLD2. This study indicates that mutations in genes related to DNA repair are detected in a minority of HGSC patients as genetic mechanisms of resistance. Future research into resistance in HGSC should focus on copy number, transcriptional and epigenetic aberrations, and the contribution of the tumour microenvironment.
Collapse
Affiliation(s)
- Nikki L Burdett
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
- Box Hill Hospital, Eastern Health, Box Hill, Victoria, 3128, Australia
| | | | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW, 2145, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, 2006, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, 2145, Australia
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
50
|
Nguyen MTN, Rajavuori A, Huhtinen K, Hietanen S, Hynninen J, Oikkonen J, Hautaniemi S. Circulating tumor DNA-based copy-number profiles enable monitoring treatment effects during therapy in high-grade serous carcinoma. Biomed Pharmacother 2023; 168:115630. [PMID: 37806091 DOI: 10.1016/j.biopha.2023.115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Circulating tumor DNA (ctDNA) analysis has emerged as a promising tool for detecting and profiling longitudinal genomics changes in cancer. While copy-number alterations (CNAs) play a major role in cancers, treatment effect monitoring using copy-number profiles has received limited attention as compared to mutations. A major reason for this is the insensitivity of CNA analysis for the real-life tumor-fraction ctDNA samples. We performed copy-number analysis on 152 plasma samples obtained from 29 patients with high-grade serous ovarian cancer (HGSC) using a sequencing panel targeting over 500 genes. Twenty-one patients had temporally matched tissue and plasma sample pairs, which enabled assessing concordance with tissues sequenced with the same panel or whole-genome sequencing and to evaluate sensitivity. Our approach could detect concordant CNA profiles in most plasma samples with as low as 5% tumor content and highly amplified regions in samples with ∼1% of tumor content. Longitudinal profiles showed changes in the CNA profiles in seven out of 11 patients with high tumor-content plasma samples at relapse. These changes included focal acquired or lost copy-numbers, even though most of the genome remained stable. Two patients displayed major copy-number profile changes during therapy. Our analysis revealed ctDNA-detectable subclonal selection resulting from both surgical operations and chemotherapy. Overall, longitudinal ctDNA data showed acquired and diminished CNAs at relapse when compared to pre-treatment samples. These results highlight the importance of genomic profiling during treatment as well as underline the usability of ctDNA.
Collapse
Affiliation(s)
- Mai T N Nguyen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland
| | - Anna Rajavuori
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4, Turku 20521, Finland
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland; Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Turku 20014, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4, Turku 20521, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4, Turku 20521, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland.
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland.
| |
Collapse
|