1
|
Yu W, Lin X, Leng S, Hou Y, Dang Z, Xue S, Li N, Zhang F. The PRC2 complex epigenetically silences GATA4 to suppress cellular senescence and promote the progression of breast cancer. Transl Oncol 2024; 46:102014. [PMID: 38843657 PMCID: PMC11214403 DOI: 10.1016/j.tranon.2024.102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND The transcription factor GATA4 is pivotal in cancer development but is often silenced through mechanisms like DNA methylation and histone modifications. This silencing suppresses the transcriptional activity of GATA4, disrupting its normal functions and promoting cancer progression. However, the precise molecular mechanisms and implications of GATA4 silencing in tumorigenesis remain unclear. Here, we aim to elucidate the mechanisms underlying GATA4 silencing and explore its role in breast cancer progression and its potential as a therapeutic target. METHODS The GATA4-breast cancer prognosis link was explored via bioinformatics analyses, with GATA4 expression measured in breast tissues. Functional gain/loss experiments were performed to gauge GATA4's impact on breast cancer cell malignancy. GATA4-PRC2 complex interaction was analyzed using silver staining and mass spectrometry. Chromatin immunoprecipitation, coupled with high-throughput sequencing, was used to identify GATA4-regulated downstream target genes. The in vitro findings were validated in an in situ breast cancer xenograft mouse model. RESULTS GATA4 mutation and different breast cancer subtypes were correlated, suggesting its involvement in disease progression. GATA4 suppressed cell proliferation, invasion, and migration while inducing apoptosis and senescence in breast cancer cells. The GATA4-PRC2 complex interaction silenced GATA4 expression, which altered the regulation of FAS, a GATA4 downstream gene. In vivo experiments verified that GATA4 inhibits tumor growth, suggesting its regulatory function in tumorigenesis. CONCLUSIONS This comprehensive study highlights the epigenetic regulation of GATA4 and its impact on breast cancer development, highlighting the PRC2-GATA4-FAS pathway as a potential target for therapeutic interventions in breast cancers.
Collapse
Affiliation(s)
- Wenqian Yu
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Xiaona Lin
- Department of Cardiovascular Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong 250022, China
| | - Shuai Leng
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Yiming Hou
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Zhiqiao Dang
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Shishan Xue
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, No. 4, Duanxin West Road, Jinan, Shandong 250022, China; Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong 250022, China.
| | - Fengquan Zhang
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| |
Collapse
|
2
|
Pan JN, Li PC, Wang M, Li MW, Ding XW, Zhou T, Wang HN, Wang YK, Chen LB, Wang R, Ye WW, Wu WZ, Lou F, Wang XJ, Cao WM. AcornHRD: an HRD algorithm highly associated with anthracycline-based neoadjuvant chemotherapy in breast cancer in China. Eur J Med Res 2024; 29:366. [PMID: 39014466 PMCID: PMC11253386 DOI: 10.1186/s40001-024-01936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
PURPOSE Our study aimed to develop and validate a homologous recombination deficiency (HRD) scoring algorithm in the Chinese breast cancer population. METHODS AND MATERIALS Ninety-six in-house breast cancer (BC) samples and 6 HRD-positive standard cells were analyzed by whole-genome sequencing (WGS). Besides, 122 BCs from the TCGA database were down-sampled to ~ 1X WGS. We constructed an algorithm named AcornHRD for HRD score calculated based on WGS at low coverage as input data to estimate large-scale copy number alteration (LCNA) events on the genome. A clinical cohort of 50 BCs (15 cases carrying BRCA mutation) was used to assess the association between HRD status and anthracyclines-based neoadjuvant treatment outcomes. RESULTS A 100-kb window was defined as the optimal size using 41 in-house cases and the TCGA dataset. HRD score high threshold was determined as HRD score ≥ 10 using 55 in-house BCs with BRCA mutation to achieve a 95% BRCA-positive agreement rate. Furthermore, the HRD status agreement rate of AcornHRD is 100%, while the ShallowHRD is 60% in standard cells. BRCA mutation was significantly associated with a high HRD score evaluated by AcornHRD and ShallowHRD (p = 0.008 and p = 0.003, respectively) in the TCGA dataset. However, AcornHRD showed a higher positive agreement rate than did the ShallowHRD algorithm (70% vs 60%). In addition, the BRCA-positive agreement rate of AcornHRD was superior to that of ShallowHRD (87% vs 13%) in the clinical cohort. Importantly, the high HRD score assessed by AcornHRD was significantly correlated with a residual cancer burden score of 0 or 1 (RCB0/1). Besides, the HRD-positive group was more likely to respond to anthracycline-based chemotherapy than the HRD-negative group (pCR [OR = 9.5, 95% CI 1.11-81.5, p = 0.040] and RCB0/1 [OR = 10.29, 95% CI 2.02-52.36, p = 0.005]). CONCLUSION Using the AcornHRD algorithm evaluation, our analysis demonstrated the high performance of the LCNA genomic signature for HRD detection in breast cancers.
Collapse
Affiliation(s)
- Jia-Ni Pan
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, 999078, SAR, China
| | - Pu-Chun Li
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
- Wenzhou Medical University, Wenzhou, 325035, China
| | - Meng Wang
- AcornMed Biotechnology Co., Ltd., Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Ming-Wei Li
- AcornMed Biotechnology Co., Ltd., Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Xiao-Wen Ding
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Tao Zhou
- AcornMed Biotechnology Co., Ltd., Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Hui-Na Wang
- AcornMed Biotechnology Co., Ltd., Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Yun-Kai Wang
- AcornMed Biotechnology Co., Ltd., Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Li-Bin Chen
- AcornMed Biotechnology Co., Ltd., Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Rong Wang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Wei-Wu Ye
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Wei-Zhu Wu
- Lihuili Hospital of Ningbo Medical Center, Ningbo, 315040, China
| | - Feng Lou
- AcornMed Biotechnology Co., Ltd., Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China.
| | - Xiao-Jia Wang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| |
Collapse
|
3
|
Tjader NP, Beer AJ, Ramroop J, Tai MC, Ping J, Gandhi T, Dauch C, Neuhausen SL, Ziv E, Sotelo N, Ghanekar S, Meadows O, Paredes M, Gillespie JL, Aeilts AM, Hampel H, Zheng W, Jia G, Hu Q, Wei L, Liu S, Ambrosone CB, Palmer JR, Carpten JD, Yao S, Stevens P, Ho WK, Pan JW, Fadda P, Huo D, Teo SH, McElroy JP, Toland AE. Association of ESR1 Germline Variants with TP53 Somatic Variants in Breast Tumors in a Genome-wide Study. CANCER RESEARCH COMMUNICATIONS 2024; 4:1597-1608. [PMID: 38836758 PMCID: PMC11210444 DOI: 10.1158/2767-9764.crc-24-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. A genome-wide association study was conducted in 2,850 women of European ancestry with breast cancer using TP53 and PIK3CA mutation status (positive or negative) as well as specific functional categories [e.g., TP53 gain-of-function (GOF) and loss-of-function, PIK3CA activating] as phenotypes. Germline variants showing evidence of association were selected for validation analyses and tested in multiple independent datasets. Discovery association analyses found five variants associated with TP53 mutation status with P values <1 × 10-6 and 33 variants with P values <1 × 10-5. Forty-four variants were associated with PIK3CA mutation status with P values <1 × 10-5. In validation analyses, only variants at the ESR1 locus were associated with TP53 mutation status after multiple comparisons corrections. Combined analyses in European and Malaysian populations found ESR1 locus variants rs9383938 and rs9479090 associated with the presence of TP53 mutations overall (P values 2 × 10-11 and 4.6 × 10-10, respectively). rs9383938 also showed association with TP53 GOF mutations (P value 6.1 × 10-7). rs9479090 showed suggestive evidence (P value 0.02) for association with TP53 mutation status in African ancestry populations. No other variants were significantly associated with TP53 or PIK3CA mutation status. Larger studies are needed to confirm these findings and determine if additional variants contribute to ancestry-specific differences in mutation frequency. SIGNIFICANCE Emerging data show ancestry-specific differences in TP53 and PIK3CA mutation frequency in breast tumors suggesting that germline variants may influence somatic mutational processes. This study identified variants near ESR1 associated with TP53 mutation status and identified additional loci with suggestive association which may provide biological insight into observed differences.
Collapse
Affiliation(s)
- Nijole P. Tjader
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Abigail J. Beer
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Johnny Ramroop
- The City College of New York, City University of New York, New York, New York
| | - Mei-Chee Tai
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Jie Ping
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Tanish Gandhi
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, Ohio
- The Ohio State University Medical School, Columbus, Ohio
| | - Cara Dauch
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
- The Ohio State University Wexner Medical Center, Clinical Trials Office, Columbus, Ohio
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Elad Ziv
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - Nereida Sotelo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Shreya Ghanekar
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Owen Meadows
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, Ohio
| | - Monica Paredes
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, Ohio
| | | | - Amber M. Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, Ohio
| | - Heather Hampel
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Guochong Jia
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Christine B. Ambrosone
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | - John D. Carpten
- City of Hope Comprehensive Cancer Center, Duarte, California
- Department of Integrative Translational Sciences, City of Hope, Duarte, California
| | - Song Yao
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Patrick Stevens
- Bioinformatics Shared Resource, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Weang-Kee Ho
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Jia Wern Pan
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Paolo Fadda
- Genomics Shared Resource, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur, Malaysia
| | - Joseph Paul McElroy
- Department of Biomedical Informatics, The Ohio State University Center for Biostatistics, Columbus, Ohio
| | - Amanda E. Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Yang X, Shang L, Yang L, Sun L, Tuo X, Ma S, Zhao L, Li X, Yang W. A Novel Germline Mutation of BRCA1 and Integrated Analysis With Somatic Mutation in a Chinese Multi-Cancer Family. Oncologist 2024; 29:e837-e842. [PMID: 38159086 PMCID: PMC11144973 DOI: 10.1093/oncolo/oyad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/26/2023] [Indexed: 01/03/2024] Open
Abstract
The presence of mutations in the BRCA1 gene (MIM: 113705) is widely recognized as a significant genetic predisposition for ovarian cancer. This study investigated the genomic mutations in a Chinese family with a history of ovarian, breast, and rectal adenocarcinoma. A novel germline mutation (Phe1695Val) in BRCA1 was identified through whole-exome sequencing. Subsequently, we performed whole-genome sequencing to identify somatic mutations and analyze mutational signatures in individuals carrying the novel germline mutation. Our findings revealed a correlation between somatic mutational signatures and the BRCA1 germline mutation in the proband with ovarian cancer, while no such association was observed in the tumor tissue from the patient with breast cancer. Furthermore, distinct somatic driver mutations were identified, a truncated mutation in the TP53 gene in the ovarian tumor tissue, and a hotspot mutation in the PIK3CA gene in the breast cancer. According to our findings, the BRCA1 F1695V mutation is linked to ovarian cancer susceptibility in the family and causes specific somatic mutational profiles.
Collapse
Affiliation(s)
- Xiling Yang
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Li Shang
- Maternal & Child Health Center, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Shenzhen Health Development Research and Data Management Center, Shenzhen, Guangdong, People’s Republic of China
| | - Liren Yang
- Maternal & Child Health Center, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, People’s Republic of China
| | - Landi Sun
- Maternal & Child Health Center, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaoqian Tuo
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Sijia Ma
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Department of Obstetrics and Gynecology, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Le Zhao
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Xu Li
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Department of Obstetrics and Gynecology, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Wenfang Yang
- Maternal & Child Health Center, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Department of Obstetrics and Gynecology, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
5
|
Landowski M, Gogoi P, Ikeda S, Ikeda A. Roles of transmembrane protein 135 in mitochondrial and peroxisomal functions - implications for age-related retinal disease. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1355379. [PMID: 38576540 PMCID: PMC10993500 DOI: 10.3389/fopht.2024.1355379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Aging is the most significant risk factor for age-related diseases in general, which is true for age-related diseases in the eye including age-related macular degeneration (AMD). Therefore, in order to identify potential therapeutic targets for these diseases, it is crucial to understand the normal aging process and how its mis-regulation could cause age-related diseases at the molecular level. Recently, abnormal lipid metabolism has emerged as one major aspect of age-related symptoms in the retina. Animal models provide excellent means to identify and study factors that regulate lipid metabolism in relation to age-related symptoms. Central to this review is the role of transmembrane protein 135 (TMEM135) in the retina. TMEM135 was identified through the characterization of a mutant mouse strain exhibiting accelerated retinal aging and positional cloning of the responsible mutation within the gene, indicating the crucial role of TMEM135 in regulating the normal aging process in the retina. Over the past decade, the molecular functions of TMEM135 have been explored in various models and tissues, providing insights into the regulation of metabolism, particularly lipid metabolism, through its action in multiple organelles. Studies indicated that TMEM135 is a significant regulator of peroxisomes, mitochondria, and their interaction. Here, we provide an overview of the molecular functions of TMEM135 which is crucial for regulating mitochondria, peroxisomes, and lipids. The review also discusses the age-dependent phenotypes in mice with TMEM135 perturbations, emphasizing the importance of a balanced TMEM135 function for the health of the retina and other tissues including the heart, liver, and adipose tissue. Finally, we explore the potential roles of TMEM135 in human age-related retinal diseases, connecting its functions to the pathobiology of AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Purnima Gogoi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Tjader NP, Beer AJ, Ramroop J, Tai MC, Ping J, Gandhi T, Dauch C, Neuhausen SL, Ziv E, Sotelo N, Ghanekar S, Meadows O, Paredes M, Gillespie J, Aeilts A, Hampel H, Zheng W, Jia G, Hu Q, Wei L, Liu S, Ambrosone CB, Palmer JR, Carpten JD, Yao S, Stevens P, Ho WK, Pan JW, Fadda P, Huo D, Teo SH, McElroy JP, Toland AE. Association of ESR1 germline variants with TP53 somatic variants in breast tumors in a genome-wide study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299442. [PMID: 38106140 PMCID: PMC10723566 DOI: 10.1101/2023.12.06.23299442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. HER2 positive and triple negative breast cancers (TNBC) have a higher frequency of TP53 somatic mutations than other subtypes. PIK3CA mutations are more frequently observed in hormone receptor positive tumors. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. Methods A genome-wide association study was conducted using breast cancer mutation status of TP53 and PIK3CA and functional mutation categories including TP53 gain of function (GOF) and loss of function mutations and PIK3CA activating/hotspot mutations. The discovery analysis consisted of 2850 European ancestry women from three datasets. Germline variants showing evidence of association with somatic mutations were selected for validation analyses based on predicted function, allele frequency, and proximity to known cancer genes or risk loci. Candidate variants were assessed for association with mutation status in a multi-ancestry validation study, a Malaysian study, and a study of African American/Black women with TNBC. Results The discovery Germline x Mutation (GxM) association study found five variants associated with one or more TP53 phenotypes with P values <1×10-6, 33 variants associated with one or more TP53 phenotypes with P values <1×10-5, and 44 variants associated with one or more PIK3CA phenotypes with P values <1×10-5. In the multi-ancestry and Malaysian validation studies, germline ESR1 locus variant, rs9383938, was associated with the presence of TP53 mutations overall (P values 6.8×10-5 and 9.8×10-8, respectively) and TP53 GOF mutations (P value 8.4×10-6). Multiple variants showed suggestive evidence of association with PIK3CA mutation status in the validation studies, but none were significant after correction for multiple comparisons. Conclusions We found evidence that germline variants were associated with TP53 and PIK3CA mutation status in breast cancers. Variants near the estrogen receptor alpha gene, ESR1, were significantly associated with overall TP53 mutations and GOF mutations. Larger multi-ancestry studies are needed to confirm these findings and determine if these variants contribute to ancestry-specific differences in mutation frequency.
Collapse
Affiliation(s)
- Nijole P. Tjader
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Abigail J. Beer
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Johnny Ramroop
- The City College of New York, City University of New York, New York, NY, USA
| | - Mei-Chee Tai
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Jie Ping
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Tanish Gandhi
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Medical School, Columbus, OH, 43210, USA
| | - Cara Dauch
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Wexner Medical Center, Clinical Trials Office, Columbus, OH 43210, USA
| | - Susan L. Neuhausen
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - Elad Ziv
- University of California, Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA, USA
- University of California, Department of Medicine, San Francisco, San Francisco, CA, USA
- University of California San Francisco, Institute for Human Genetics, San Francisco, CA, USA
| | - Nereida Sotelo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shreya Ghanekar
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Owen Meadows
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Monica Paredes
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jessica Gillespie
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Amber Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Guochong Jia
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B. Ambrosone
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - John D. Carpten
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Integrative Translational Sciences, City of Hope, Duarte, CA
| | - Song Yao
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Patrick Stevens
- The Ohio State University Comprehensive Cancer Center, Bioinformatics Shared Resource, Columbus, OH, USA
| | - Weang-Kee Ho
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Jia Wern Pan
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Paolo Fadda
- The Ohio State University Comprehensive Cancer Center, Genomics Shared Resource, Columbus, OH, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Joseph Paul McElroy
- The Ohio State University Center for Biostatistics, Department of Biomedical Informatics, Columbus, OH, USA
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
7
|
Trąbska-Kluch B, Braun M, Orzechowska M, Paszek S, Zuchowska A, Sołek J, Kluska A, Fijuth J, Jesionek-Kupnicka D, Zawlik I. Potential Prognostic Value of GATA4 Depends on the p53 Expression in Primary Glioblastoma Patients. Genes (Basel) 2023; 14:1146. [PMID: 37372326 DOI: 10.3390/genes14061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Primary glioblastoma is characterized by an extremely poor prognosis. The promoter methylation of GATA4 leads to the loss of its expression in many cancer types. The formation of high-grade astrocytomas can be promoted by the concurrent loss of TP53 and GATA4 in normal human astrocytes. Nevertheless, the impact of GATA4 alterations with linkage to TP53 changes in gliomagenesis is poorly understood. This study aimed to evaluate GATA4 protein expression, GATA4 promoter methylation, p53 expression, TP53 promoter methylation, and mutation status in patients with primary glioblastoma and to assess the possible prognostic impact of these alterations on overall survival. MATERIALS AND METHODS Thirty-one patients with primary glioblastoma were included. GATA4 and p53 expressions were determined immunohistochemically, and GATA4 and TP53 promoter methylations were analyzed via methylation-specific PCR. TP53 mutations were investigated via Sanger sequencing. RESULTS The prognostic value of GATA4 depends on p53 expression. Patients without GATA4 protein expression were more frequently negative for TP53 mutations and had better prognoses than the GATA4 positive patients. In patients positive for GATA4 protein expression, p53 expression was associated with the worst outcome. However, in patients positive for p53 expression, the loss of GATA4 protein expression seemed to be associated with improved prognosis. GATA4 promoter methylation was not associated with a lack of GATA4 protein expression. CONCLUSIONS Our data indicate that there is a possibility that GATA4 could function as a prognostic factor in glioblastoma patients, but in connection with p53 expression. A lack of GATA4 expression is not dependent on GATA4 promoter methylation. GATA4 alone has no influence on survival time in glioblastoma patients.
Collapse
Affiliation(s)
- Berenika Trąbska-Kluch
- Department of Teleradiotherapy, Copernicus Memorial Hospital, 93-513 Lodz, Poland
- Department of Radiotherapy, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Magdalena Orzechowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 93-513 Lodz, Poland
| | - Sylwia Paszek
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Alina Zuchowska
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Julia Sołek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Adam Kluska
- Brachytherapy Department, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Jacek Fijuth
- Department of Teleradiotherapy, Copernicus Memorial Hospital, 93-513 Lodz, Poland
- Department of Radiotherapy, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | | | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
8
|
Sun R, Liu Z, Lv Y, Yang Y, Yang Y, Xiang Y, Jiang Q, Zhao C, Lv M, Zhang J, Zhang J, Ding C, Zhou D. FOCAD/miR-491-5p, downregulated by EGR1, function as tumor suppressor by inhibiting the proliferation and migration of gastric cancer cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:25-37. [PMID: 35788362 DOI: 10.1016/j.pbiomolbio.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Gastric cancer is a common malignant tumor in China; however, its carcinogenesis remains unknown. Focadhesin (FOCAD) is a tumor suppressor gene in gliomas, its expression, role, and mechanism in gastric cancer have not been defined. The aim of the present study was to explore the expression pattern of FOCAD in human normal tissues and cancer tissues and elucidate the role and regulatory mechanism of Early Growth Response 1 (EGR1) in FOCAD and its intron, miR-491-5p, in gastric cancer. Immuno histochemical staining revealed that FOCAD is widely and highly expressed in normal gastric mucosa, but is absent in gastric cancer tissue. Based on an association analysis FOCAD expression was found to be negatively associated with lymph node metastasis (P = 0.004); higher FOCAD levels were associated with longer survival in patients with gastric cancer (P = 0.001). MTT, colony, Transwell chamber, and flow cytometry assays revealed that siFOCAD promoted cell proliferation, growth, and migration, and inhibited apoptosis. Furthermore, bioinformatic analysis, Fluorescence reporter gene and chromatin immunoprecipitation analyses confirmed that EGR1 binds to the promoter and negatively regulates FOCAD and miR-491-5p at the transcriptional level. The overexpression of EGR1 was also found to promote cell proliferation, growth, and migration, and inhibit apoptosis. Overall, FOCAD is specifically overexpressed in the gastric mucosa and is significantly downregulated in gastric cancer. To our knowledge, this is the first study to demonstrate that FOCAD is a tumor suppressor, higher FOCAD levels might be a better prognostic marker of gastric cancer, and FOCAD/miR-491-5p may be negatively regulated by EGR1.
Collapse
Affiliation(s)
- Ruifang Sun
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Zhigang Liu
- Department of Thoracic Surgery, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, 309 Yanta West Road, Xi'an, Shaanxi, PR China.
| | - Yun Lv
- Pharmacy Intravenous Admixture Services, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, 309 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Yanqi Yang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Yang Yang
- School of Public Health, Shaanxi University of Chinese Medicine, 1 Century Avenue, Xianyang, Shaanxi, PR China
| | - Yu Xiang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi, PR China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Chang'an Zhao
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Moqi Lv
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Jian Zhang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Juan Zhang
- Department of Pathology, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, 309 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Caixia Ding
- Department of Pathology, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, 309 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Dangxia Zhou
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University 76 Yanta West Road, Xi'an, Shaanxi, PR China.
| |
Collapse
|
9
|
Sadri F, Hosseini SF, Aghayei A, Fereidouni M, Rezaei Z. The Tumor Suppressor Roles and Mechanisms of MiR-491 in Human Cancers. DNA Cell Biol 2022; 41:810-823. [PMID: 35914029 DOI: 10.1089/dna.2022.0274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that bind to the 3' untranslated region (3'' UTR) of target mRNAs to control gene expression post-transcriptionally. Recent indications have highlighted their important roles in a variety of pathophysiological conditions as well as human malignancies. Dysregulated miRNAs act as tumor suppressor genes or oncogenes in a variety of cancers. MiR-491 has been shown to have a major effect on tumorigenesis in multiple malignancies through binding to specific genes and signaling cascades, thereby preventing cancer progression. This review provides an overview of miR-491 expression in regulatory mechanisms and biological procedures of tumor cells, as well as the prospective possible treatment effects of various types of human cancers.
Collapse
Affiliation(s)
- Farzad Sadri
- Student Research Committee, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyede Fatemeh Hosseini
- Department of Nursing, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Atena Aghayei
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Mohammad Fereidouni
- Department of Medical Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Cellular and Molecular Research Center, Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran.,Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
10
|
Beasley HK, Rodman TA, Collins GV, Hinton A, Exil V. TMEM135 is a Novel Regulator of Mitochondrial Dynamics and Physiology with Implications for Human Health Conditions. Cells 2021; 10:cells10071750. [PMID: 34359920 PMCID: PMC8303332 DOI: 10.3390/cells10071750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Transmembrane proteins (TMEMs) are integral proteins that span biological membranes. TMEMs function as cellular membrane gates by modifying their conformation to control the influx and efflux of signals and molecules. TMEMs also reside in and interact with the membranes of various intracellular organelles. Despite much knowledge about the biological importance of TMEMs, their role in metabolic regulation is poorly understood. This review highlights the role of a single TMEM, transmembrane protein 135 (TMEM135). TMEM135 is thought to regulate the balance between mitochondrial fusion and fission and plays a role in regulating lipid droplet formation/tethering, fatty acid metabolism, and peroxisomal function. This review highlights our current understanding of the various roles of TMEM135 in cellular processes, organelle function, calcium dynamics, and metabolism.
Collapse
Affiliation(s)
- Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
| | - Taylor A. Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
| | - Greg V. Collins
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA;
- Department of Pediatrics-Cardiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
- Correspondence: (A.H.J.); (V.E.)
| | - Vernat Exil
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA;
- Department of Pediatrics-Cardiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: (A.H.J.); (V.E.)
| |
Collapse
|
11
|
Wang H, Liu H, Dai W, Luo S, Amos CI, Lee JE, Li X, Yue Y, Nan H, Wei Q. Association of genetic variants of TMEM135 and PEX5 in the peroxisome pathway with cutaneous melanoma-specific survival. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:396. [PMID: 33842617 PMCID: PMC8033299 DOI: 10.21037/atm-20-2117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Peroxisomes are ubiquitous and dynamic organelles that are involved in the metabolism of reactive oxygen species (ROS) and lipids. However, whether genetic variants in the peroxisome pathway genes are associated with survival in patients with melanoma has not been established. Therefore, our aim was to identify additional genetic variants in the peroxisome pathway that may provide new prognostic biomarkers for cutaneous melanoma (CM). Methods We assessed the associations between 8,397 common single-nucleotide polymorphisms (SNPs) in 88 peroxisome pathway genes and CM disease-specific survival (CMSS) in a two-stage analysis. For the discovery, we extracted the data from a published genome-wide association study from The University of Texas MD Anderson Cancer Center (MDACC). We then replicated the results in another dataset from the Nurse Health Study (NHS)/Health Professionals Follow-up Study (HPFS). Results Overall, 95 (11.1%) patients in the MDACC dataset and 48 (11.7%) patients in the NHS/HPFS dataset died of CM. We found 27 significant SNPs in the peroxisome pathway genes to be associated with CMSS in both datasets after multiple comparison correction using the Bayesian false-discovery probability method. In stepwise Cox proportional hazards regression analysis, with adjustment for other covariates and previously published SNPs in the MDACC dataset, we identified 2 independent SNPs (TMEM135 rs567403 C>G and PEX5 rs7969508 A>G) that predicted CMSS (P=0.003 and 0.031, respectively, in an additive genetic model). The expression quantitative trait loci analysis further revealed that the TMEM135 rs567403 GG and PEX5 rs7969508 GG genotypes were associated with increased and decreased levels of mRNA expression of their genes, respectively. Conclusions Once our findings are replicated by other investigators, these genetic variants may serve as novel biomarkers for the prediction of survival in patients with CM.
Collapse
Affiliation(s)
- Haijiao Wang
- Department of Gynecology Oncology, The First Hospital of Jilin University, Changchun, Jilin, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Wei Dai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Xin Li
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Ying Yue
- Department of Gynecology Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
12
|
Hsien Lai S, Zervoudakis G, Chou J, Gurney ME, Quesnelle KM. PDE4 subtypes in cancer. Oncogene 2020; 39:3791-3802. [PMID: 32203163 PMCID: PMC7444459 DOI: 10.1038/s41388-020-1258-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDE) break down cyclic nucleotides such as cAMP and cGMP, reducing the signaling of these important intracellular second messengers. Several unique families of phosphodiesterases exist, and certain families are clinically important modulators of vasodilation. In the current work, we have summarized the body of literature that describes an emerging role for the PDE4 subfamily of phosphodiesterases in malignancy. We have systematically investigated PDE4A, PDE4B, PDE4C, and PDE4D isoforms and found evidence associating them with several cancer types including hematologic malignancies and lung cancers, among others. In this review, we compare the evidence examining the functional role of each PDE4 subtype across malignancies, looking for common signaling themes, signaling pathways, and establishing the case for PDE4 subtypes as a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Samuel Hsien Lai
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Guston Zervoudakis
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Jesse Chou
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | | | - Kelly M Quesnelle
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA.
| |
Collapse
|
13
|
Brand F, Förster A, Christians A, Bucher M, Thomé CM, Raab MS, Westphal M, Pietsch T, von Deimling A, Reifenberger G, Claus P, Hentschel B, Weller M, Weber RG. FOCAD loss impacts microtubule assembly, G2/M progression and patient survival in astrocytic gliomas. Acta Neuropathol 2020; 139:175-192. [PMID: 31473790 DOI: 10.1007/s00401-019-02067-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 12/23/2022]
Abstract
In search of novel genes associated with glioma pathogenesis, we have previously shown frequent deletions of the KIAA1797/FOCAD gene in malignant gliomas, and a tumor suppressor function of the encoded focadhesin impacting proliferation and migration of glioma cells in vitro and in vivo. Here, we examined an association of reduced FOCAD gene copy number with overall survival of patients with astrocytic gliomas, and addressed the molecular mechanisms that govern the suppressive effect of focadhesin on glioma growth. FOCAD loss was associated with inferior outcome in patients with isocitrate dehydrogenase 1 or 2 (IDH)-mutant astrocytic gliomas of WHO grades II-IV. Multivariate analysis considering age at diagnosis as well as IDH mutation, MGMT promoter methylation, and CDKN2A/B homozygous deletion status confirmed reduced FOCAD gene copy number as a prognostic factor for overall survival. Using a yeast two-hybrid screen and pull-down assays, tubulin beta-6 and other tubulin family members were identified as novel focadhesin-interacting partners. Tubulins and focadhesin co-localized to centrosomes where focadhesin was enriched in proximity to centrioles. Focadhesin was recruited to microtubules via its interaction partner SLAIN motif family member 2 and reduced microtubule assembly rates, possibly explaining the focadhesin-dependent decrease in cell migration. During the cell cycle, focadhesin levels peaked in G2/M phase and influenced time-dependent G2/M progression potentially via polo like kinase 1 phosphorylation, providing a possible explanation for focadhesin-dependent cell growth reduction. We conclude that FOCAD loss may promote biological aggressiveness and worsen clinical outcome of diffuse astrocytic gliomas by enhancing microtubule assembly and accelerating G2/M phase progression.
Collapse
Affiliation(s)
- Frank Brand
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alisa Förster
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Anne Christians
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Martin Bucher
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Carina M Thomé
- Neurology Clinic and National Center for Tumor Diseases, Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc S Raab
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical School, Bonn, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Claus
- Department of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Ruthild G Weber
- Department of Human Genetics OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
14
|
Terradas M, Munoz-Torres PM, Belhadj S, Aiza G, Navarro M, Brunet J, Capellá G, Valle L. Contribution to colonic polyposis of recently proposed predisposing genes and assessment of the prevalence of NTHL1- and MSH3-associated polyposes. Hum Mutat 2019; 40:1910-1923. [PMID: 31243857 DOI: 10.1002/humu.23853] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022]
Abstract
Technological advances have allowed the identification of new adenomatous and serrated polyposis genes, and of several candidate genes that require additional supporting evidence of causality. Through an exhaustive literature review and mutational screening of 177 unrelated polyposis patients, we assessed the involvement of MCM9, FOCAD, POLQ, and RNF43 in the predisposition to (nonserrated) colonic polyposis, as well as the prevalence of NTHL1 and MSH3 mutations among genetically unexplained polyposis patients. Our results, together with previously reported data and mutation frequency in controls, indicate that: MCM9 and POLQ mutations are not associated with polyposis; germline RNF43 mutations, with a prevalence of 1.5-2.5% among serrated polyposis patients, do not cause nonserrated polyposis; MSH3 biallelic mutations are highly infrequent among European polyposis patients, and the prevalence of NTHL1 biallelic mutations among unexplained polyposes is ~2%. Although nonsignificant, FOCAD predicted deleterious variants are overrepresented in polyposis patients compared to controls, warranting larger studies to provide definite evidence in favor or against their causal association with polyposis predisposition.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Pau M Munoz-Torres
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Sami Belhadj
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGi, Girona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
15
|
Genetic and Genomic Advances in Breast Cancer Diagnosis and Treatment. Nurs Womens Health 2019; 23:518-525. [PMID: 31669147 DOI: 10.1016/j.nwh.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/18/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Advances in genetic testing for people at high risk for cancer and in targeted gene therapy for breast cancer are rapidly emerging, including newly developed key hormone receptor-targeted therapies and individualized molecular fusion identification and treatment options. These advances are contributing to a new era in cancer treatment modalities and care delivery. As more innovative and advanced treatment options emerge, women's health outcomes and survival rates may improve. Nursing professionals in primary care and women's health specialties must be aware of the latest options for testing, referrals, and treatment modalities.
Collapse
|
16
|
Macedo GS, Alemar B, Ashton-Prolla P. Reviewing the characteristics of BRCA and PALB2-related cancers in the precision medicine era. Genet Mol Biol 2019; 42:215-231. [PMID: 31067289 PMCID: PMC6687356 DOI: 10.1590/1678-4685-gmb-2018-0104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Germline mutations in BRCA1 and BRCA2 (BRCA) genes confer high risk of developing cancer, especially breast and ovarian tumors. Since the cloning of these tumor suppressor genes over two decades ago, a significant amount of research has been done. Most recently, monoallelic loss-of-function mutations in PALB2 have also been shown to increase the risk of breast cancer. The identification of BRCA1, BRCA2 and PALB2 as proteins involved in DNA double-strand break repair by homologous recombination and of the impact of complete loss of BRCA1 or BRCA2 within tumors have allowed the development of novel therapeutic approaches for patients with germline or somatic mutations in said genes. Despite the advances, especially in the clinical use of PARP inhibitors, key gaps remain. Now, new roles for BRCA1 and BRCA2 are emerging and old concepts, such as the classical two-hit hypothesis for tumor suppression, have been questioned, at least for some BRCA functions. Here aspects regarding cancer predisposition, cellular functions, histological and genomic findings in BRCA and PALB2-related tumors will be presented, in addition to an up-to-date review of the evolution and challenges in the development and clinical use of PARP inhibitors.
Collapse
Affiliation(s)
- Gabriel S Macedo
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Precision Medicine Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Barbara Alemar
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Patricia Ashton-Prolla
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Precision Medicine Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Popa ML, Albulescu R, Neagu M, Hinescu ME, Tanase C. Multiplex assay for multiomics advances in personalized-precision medicine. J Immunoassay Immunochem 2019; 40:3-25. [PMID: 30632882 DOI: 10.1080/15321819.2018.1562940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Building the future of precision medicine is the main focus in cancer domain. Clinical trials are moving toward an array of studies that are more adapted to precision medicine. In this domain, there is an enhanced need for biomarkers, monitoring devices, and data-analysis methods. Omics profiling using whole genome, epigenome, transcriptome, proteome, and metabolome can offer detailed information of the human body in an integrative manner. Omes profiles reflect more accurately real-time physiological status. Personalized omics analyses both disease as a whole and the main disease processes, for a better understanding of the individualized health. Through this, multi-omic approaches for health monitoring, preventative medicine, and personalized treatment can be targeted simultaneously and can lead clinicians to have a comprehensive view on the diseasome.
Collapse
Affiliation(s)
- Maria-Linda Popa
- a Biochemistry-Proteomics Department , Victor Babes National Institute of Pathology , Bucharest , Romania
- b Cellular and Molecular Biology and Histology Department , "Carol Davila" University of Medicine and Pharmacy , Bucharest , Romania
| | - Radu Albulescu
- a Biochemistry-Proteomics Department , Victor Babes National Institute of Pathology , Bucharest , Romania
- c Pharmaceutical Biotechnology Department , National Institute for Chemical-Pharmaceutical R&D , Bucharest , Romania
| | - Monica Neagu
- a Biochemistry-Proteomics Department , Victor Babes National Institute of Pathology , Bucharest , Romania
- d Faculty of Biology , University of Bucharest , Bucharest , Romania
| | - Mihail Eugen Hinescu
- a Biochemistry-Proteomics Department , Victor Babes National Institute of Pathology , Bucharest , Romania
- b Cellular and Molecular Biology and Histology Department , "Carol Davila" University of Medicine and Pharmacy , Bucharest , Romania
| | - Cristiana Tanase
- a Biochemistry-Proteomics Department , Victor Babes National Institute of Pathology , Bucharest , Romania
- e Cajal Institute , Titu Maiorescu University , Bucharest , Romania
| |
Collapse
|
18
|
Gastric cancer may share genetic predisposition with esophageal squamous cell carcinoma in Chinese populations. J Hum Genet 2018; 63:1159-1168. [DOI: 10.1038/s10038-018-0501-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/15/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
|
19
|
Menghi F, Barthel FP, Yadav V, Tang M, Ji B, Tang Z, Carter GW, Ruan Y, Scully R, Verhaak RGW, Jonkers J, Liu ET. The Tandem Duplicator Phenotype Is a Prevalent Genome-Wide Cancer Configuration Driven by Distinct Gene Mutations. Cancer Cell 2018; 34:197-210.e5. [PMID: 30017478 PMCID: PMC6481635 DOI: 10.1016/j.ccell.2018.06.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/04/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022]
Abstract
The tandem duplicator phenotype (TDP) is a genome-wide instability configuration primarily observed in breast, ovarian, and endometrial carcinomas. Here, we stratify TDP tumors by classifying their tandem duplications (TDs) into three span intervals, with modal values of 11 kb, 231 kb, and 1.7 Mb, respectively. TDPs with ∼11 kb TDs feature loss of TP53 and BRCA1. TDPs with ∼231 kb and ∼1.7 Mb TDs associate with CCNE1 pathway activation and CDK12 disruptions, respectively. We demonstrate that p53 and BRCA1 conjoint abrogation drives TDP induction by generating short-span TDP mammary tumors in genetically modified mice lacking them. Lastly, we show how TDs in TDP tumors disrupt heterogeneous combinations of tumor suppressors and chromatin topologically associating domains while duplicating oncogenes and super-enhancers.
Collapse
Affiliation(s)
- Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Vinod Yadav
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Ming Tang
- MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bo Ji
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Zhonghui Tang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | | | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Ralph Scully
- Division of Hematology Oncology, Department of Medicine, and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Jos Jonkers
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam 1066CX, the Netherlands
| | - Edison T Liu
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.
| |
Collapse
|
20
|
Yates LR, Desmedt C. Translational Genomics: Practical Applications of the Genomic Revolution in Breast Cancer. Clin Cancer Res 2018; 23:2630-2639. [PMID: 28572257 DOI: 10.1158/1078-0432.ccr-16-2548] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/06/2017] [Accepted: 04/06/2017] [Indexed: 11/16/2022]
Abstract
The genomic revolution has fundamentally changed our perception of breast cancer. It is now apparent from DNA-based massively parallel sequencing data that at the genomic level, every breast cancer is unique and shaped by the mutational processes to which it was exposed during its lifetime. More than 90 breast cancer driver genes have been identified as recurrently mutated, and many occur at low frequency across the breast cancer population. Certain cancer genes are associated with traditionally defined histologic subtypes, but genomic intertumoral heterogeneity exists even between cancers that appear the same under the microscope. Most breast cancers contain subclonal populations, many of which harbor driver alterations, and subclonal structure is typically remodeled over time, across metastasis and as a consequence of treatment interventions. Genomics is deepening our understanding of breast cancer biology, contributing to an accelerated phase of targeted drug development and providing insights into resistance mechanisms. Genomics is also providing tools necessary to deliver personalized cancer medicine, but a number of challenges must still be addressed. Clin Cancer Res; 23(11); 2630-9. ©2017 AACRSee all articles in this CCR Focus section, "Breast Cancer Research: From Base Pairs to Populations."
Collapse
Affiliation(s)
- Lucy R Yates
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom.,Department of Clinical Oncology, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Christine Desmedt
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
21
|
Personalized medicine-a modern approach for the diagnosis and management of hypertension. Clin Sci (Lond) 2017; 131:2671-2685. [PMID: 29109301 PMCID: PMC5736921 DOI: 10.1042/cs20160407] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
The main goal of treating hypertension is to reduce blood pressure to physiological levels and thereby prevent risk of cardiovascular disease and hypertension-associated target organ damage. Despite reductions in major risk factors and the availability of a plethora of effective antihypertensive drugs, the control of blood pressure to target values is still poor due to multiple factors including apparent drug resistance and lack of adherence. An explanation for this problem is related to the current reductionist and ‘trial-and-error’ approach in the management of hypertension, as we may oversimplify the complex nature of the disease and not pay enough attention to the heterogeneity of the pathophysiology and clinical presentation of the disorder. Taking into account specific risk factors, genetic phenotype, pharmacokinetic characteristics, and other particular features unique to each patient, would allow a personalized approach to managing the disease. Personalized medicine therefore represents the tailoring of medical approach and treatment to the individual characteristics of each patient and is expected to become the paradigm of future healthcare. The advancement of systems biology research and the rapid development of high-throughput technologies, as well as the characterization of different –omics, have contributed to a shift in modern biological and medical research from traditional hypothesis-driven designs toward data-driven studies and have facilitated the evolution of personalized or precision medicine for chronic diseases such as hypertension.
Collapse
|
22
|
Karsli-Ceppioglu S, Dagdemir A, Judes G, Lebert A, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. The Epigenetic Landscape of Promoter Genome-wide Analysis in Breast Cancer. Sci Rep 2017; 7:6597. [PMID: 28747748 PMCID: PMC5529370 DOI: 10.1038/s41598-017-06790-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a heterogeneous disease due to its clinico-pathological features and response to therapy. The classification of breast tumors based on their hormone receptor status and pathologic features. Post-translational histone modifications come into prominence for regulation of gene expression in cancer pathogenesis. Here, we analyzed dysregulation of H3K9ac and H3K27me3-enriched subtype-specific genes using ChIP-on-chip assay in breast cancer tumors and matched normal tissue samples. Breast cancer tumors were classified according to St Gallen Consensus 2013. Our results indicated that the promoter regions of genes modified by H3K9ac epi-mark are commonly associated with tumors with HER2-positive and TNBC subtype. H3K27me3-enriched genes were comprised of Luminal A and B1 subtypes. We constructed a network structure to elicit epigenetically regulated genes related with breast cancer progression. The central genes of the network (RUNX1, PAX3, GATA4 and DLX5) were subjected for epigenetically dysregulation in association with different breast cancer subtypes. Our study submits epigenetic mechanisms are crucial to elicit subtype-specific regulation in breast cancer and ChIP-on-chip assay provides a better understanding for breast tumorigenesis and new approaches for prevention and treatment.
Collapse
Affiliation(s)
- Seher Karsli-Ceppioglu
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, 58 rue Montalembert-BP184, 63005, Clermont-Ferrand, France.,Department of Toxicology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Aslihan Dagdemir
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, 58 rue Montalembert-BP184, 63005, Clermont-Ferrand, France
| | - Gaëlle Judes
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, 58 rue Montalembert-BP184, 63005, Clermont-Ferrand, France
| | - André Lebert
- University Blaise Pascal, Institute Pascal UMR 6602 CNRS/UBP, 63178, Aubiere, France
| | - Frédérique Penault-Llorca
- INSERM U 1240, IMOST, 58 rue Montalembert-BP184, 63005, Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, 58 rue Montalembert, 63011, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, 58 rue Montalembert-BP184, 63005, Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, 63001, Clermont-Ferrand, France. .,INSERM U 1240, IMOST, 58 rue Montalembert-BP184, 63005, Clermont-Ferrand, France.
| |
Collapse
|
23
|
Sun R, Liu Z, Tong D, Yang Y, Guo B, Wang X, Zhao L, Huang C. miR-491-5p, mediated by Foxi1, functions as a tumor suppressor by targeting Wnt3a/β-catenin signaling in the development of gastric cancer. Cell Death Dis 2017; 8:e2714. [PMID: 28358374 PMCID: PMC5386537 DOI: 10.1038/cddis.2017.134] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
Accumulated evidence has suggested that microRNAs (miRNAs) have an important role in tumor development and progression by regulating diverse signaling pathways. However, the precise role of miRNAs in gastric cancer (GC) has not been elucidated. In this study, we describe the function and regulation network of miR-491-5p in GC. miR-491-5p is frequently downregulated in GC tissues compared with adjacent non-cancerous tissues. Forced expression of miR-491-5p significantly inhibits proliferation and colony formation, and promotes apoptosis in GC cells. Through bioinformatic analysis and luciferase assays, we confirm that miR-491-5p targets Wnt3a. Silencing Wnt3a inhibits cell proliferation and induces apoptosis. Similarly, restoration of Wnt3a counteracts the effects of miR-491-5p expression. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-491-5p is regulated by Foxi1, which binds to its promoter and activates miR-491-5p expression. In conclusion, to the best of our knowledge, our findings are the first to demonstrate that Foxi1 is a key player in the transcriptional control of miR-491-5p and that miR-491-5p acts as an anti-oncogene by targeting Wnt3a/β-catenin signaling in GC. Our study reveals that Foxi1/miR-491-5p/Wnt3a/β-catenin signaling is critical in the progression of GC. Targeting the pathway described in this study may open up new prospects to restrict the progression of GC.
Collapse
Affiliation(s)
- Ruifang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Zhigang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Thoracic Surgery, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, 309 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Dongdong Tong
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Yang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Bo Guo
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Lingyu Zhao
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| | - Chen Huang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
24
|
Alothman SJ, Wang W, Goerlitz DS, Islam M, Zhong X, Kishore A, Azhar RI, Kallakury BV, Furth PA. Responsiveness of Brca1 and Trp53 Deficiency-Induced Mammary Preneoplasia to Selective Estrogen Modulators versus an Aromatase Inhibitor in Mus musculus. Cancer Prev Res (Phila) 2017; 10:244-254. [PMID: 28283467 DOI: 10.1158/1940-6207.capr-16-0268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/10/2017] [Accepted: 02/17/2017] [Indexed: 11/16/2022]
Abstract
An intervention study initiated at age 4 months compared the impact of tamoxifen (25 mg), raloxifene (22.5 mg), and letrozole (2.5 mg) administered by 60-day release subcutaneous pellet on mammary preneoplasia prevalence at age 6 months in conditional genetically engineered mouse models with different Breast cancer 1 (Brca1) gene dosages targeted to mammary epithelial cells and germline Tumor protein P53 (Trp53) haploinsufficiency (10-16/cohort). The proportion of unexposed control mice demonstrating mammary preneoplasia at age 6 months was highest in Brca1fl11/fl11/Cre/p53-/+ (54%) mice followed by Brca1WT/fl11/Cre/p53-/+ mice (30%). By age 12 months, invasive mammary cancers appeared in 80% of Brca1fl11/fl11/Cre/p53-/+ and 42% of Brca1WT/fl11/Cre/p53-/+ control unexposed mice. The spectrum of cancer histology was similar in both models without somatic mutation of the nongenetically engineered Brca1, Trp53, Brca2, or Death-associated protein kinase 3 (Dapk3) alleles. Two-month exposure to tamoxifen, raloxifene, and letrozole significantly reduced estrogen-mediated tertiary branching by 65%, 71%, and 78%, respectively, in Brca1fl11/fl11/Cre/p53-/+ mice at age 6 months. However, only letrozole significantly reduced hyperplastic alveolar nodules (HAN) prevalence (by 52%) and number (by 30%) and invasive cancer appeared despite tamoxifen exposure. In contrast, tamoxifen significantly reduced HAN number by 95% in Brca1WT/fl11/Cre/p53-/+ mice. Control mice with varying combinations of the different genetically modified alleles and MMTV-Cre transgene demonstrated that the combination of Brca1 insufficiency and Trp53 haploinsufficiency was required for appearance of preneoplasia and no individual genetic alteration confounded the response to tamoxifen. In summary, although specific antihormonal approaches showed effectiveness, with Brca1 gene dosage implicated as a possible modifying variable, more effective chemopreventive approaches for Brca1 mutation-induced cancer may require alternative and/or additional agents. Cancer Prev Res; 10(4); 244-54. ©2017 AACR.
Collapse
Affiliation(s)
- Sahar J Alothman
- Graduate School of Arts and Science, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Weisheng Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - David S Goerlitz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Md Islam
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Xiaogang Zhong
- Department of Biostatistics, Bioinformatics & Biomathematics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Archana Kishore
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Redha I Azhar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Bhaskar V Kallakury
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC.,Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Priscilla A Furth
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. .,Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC.,Department of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| |
Collapse
|
25
|
Al-Eitan LN, Jamous RI, Khasawneh RH. Candidate Gene Analysis of Breast Cancer in the Jordanian Population of Arab Descent: A Case-Control Study. Cancer Invest 2017; 35:256-270. [PMID: 28272917 DOI: 10.1080/07357907.2017.1289217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to investigate whether there are specific polymorphisms within six genes (BRCA1, BRCA2, TP53, DAPK1, MMP9 promoter, and TOX3) that are associated with breast cancer among the Jordanian population. Sequenom MassARRAY system was used to genotype 17 single nucleotide polymorphisms (SNPs) within these genes in 230 Jordanian breast cancer patients and 225 healthy individuals. Three SNPs (MMP9 (rs6065912), TOX3 (rs1420546), and DAPK1 (rs11141901) were found to be significantly associated with an increased risk of breast cancer (p < .05). This study is the first to provide evidence that genetic variation in MMP9, TOX3, and DAPK1 genes contribute to the development of breast cancer in the Jordanian population.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- a Department of Applied Biological Sciences , Jordan University of Science and Technology , Irbid , Jordan.,b Department of Biotechnology and Genetic Engineering , Jordan University of Science and Technology , Irbid , Jordan
| | - Reem I Jamous
- a Department of Applied Biological Sciences , Jordan University of Science and Technology , Irbid , Jordan.,b Department of Biotechnology and Genetic Engineering , Jordan University of Science and Technology , Irbid , Jordan
| | - Rame H Khasawneh
- c Department of Hematopathology, King Hussein Medical Center (KHMC) , Jordan Royal Medical Services (RMS) , Amman , Jordan
| |
Collapse
|
26
|
Flower KJ, Shenker NS, El-Bahrawy M, Goldgar DE, Parsons MT, Spurdle AB, Morris JR, Brown R, Flanagan JM. DNA methylation profiling to assess pathogenicity of BRCA1 unclassified variants in breast cancer. Epigenetics 2016; 10:1121-32. [PMID: 26727311 PMCID: PMC4844213 DOI: 10.1080/15592294.2015.1111504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Germline pathogenic mutations in BRCA1 increase risk of developing breast cancer. Screening for mutations in BRCA1 frequently identifies sequence variants of unknown pathogenicity and recent work has aimed to develop methods for determining pathogenicity. We previously observed that tumor DNA methylation can differentiate BRCA1-mutated from BRCA1-wild type tumors. We hypothesized that we could predict pathogenicity of variants based on DNA methylation profiles of tumors that had arisen in carriers of unclassified variants. We selected 150 FFPE breast tumor DNA samples [47 BRCA1 pathogenic mutation carriers, 65 BRCAx (BRCA1-wild type), 38 BRCA1 test variants] and analyzed a subset (n=54) using the Illumina 450K methylation platform, using the remaining samples for bisulphite pyrosequencing validation. Three validated markers (BACH2, C8orf31, and LOC654342) were combined with sequence bioinformatics in a model to predict pathogenicity of 27 variants (independent test set). Predictions were compared with standard multifactorial likelihood analysis. Prediction was consistent for c.5194-12G>A (IVS 19-12 G>A) (P>0.99); 13 variants were considered not pathogenic or likely not pathogenic using both approaches. We conclude that tumor DNA methylation data alone has potential to be used in prediction of BRCA1 variant pathogenicity but is not independent of estrogen receptor status and grade, which are used in current multifactorial models to predict pathogenicity.
Collapse
Affiliation(s)
- Kirsty J Flower
- a Epigenetics Unit; Department of Surgery and Cancer; Imperial College London ; UK
| | - Natalie S Shenker
- a Epigenetics Unit; Department of Surgery and Cancer; Imperial College London ; UK
| | - Mona El-Bahrawy
- b Department of Histopathology ; Hammersmith Hospital; Imperial College London ; UK
| | - David E Goldgar
- c Huntsman Cancer Institute; University of Utah ; Salt Lake City , UT , USA
| | - Michael T Parsons
- d QIMR Berghofer Medical Research Institute ; Brisbane , QLD , Australia
| | | | | | - Amanda B Spurdle
- d QIMR Berghofer Medical Research Institute ; Brisbane , QLD , Australia
| | - Joanna R Morris
- f Genome Stability Unit; School of Cancer Sciences; University of Birmingham ; UK
| | - Robert Brown
- a Epigenetics Unit; Department of Surgery and Cancer; Imperial College London ; UK.,g Section of Molecular Pathology; Institute for Cancer Research ; Sutton , UK
| | - James M Flanagan
- a Epigenetics Unit; Department of Surgery and Cancer; Imperial College London ; UK
| |
Collapse
|
27
|
Maguire SL, Peck B, Wai PT, Campbell J, Barker H, Gulati A, Daley F, Vyse S, Huang P, Lord CJ, Farnie G, Brennan K, Natrajan R. Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model. J Pathol 2016; 240:315-328. [PMID: 27512948 PMCID: PMC5082563 DOI: 10.1002/path.4778] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/05/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022]
Abstract
The initiation and progression of breast cancer from the transformation of the normal epithelium to ductal carcinoma in situ (DCIS) and invasive disease is a complex process involving the acquisition of genetic alterations and changes in gene expression, alongside microenvironmental and recognized histological alterations. Here, we sought to comprehensively characterise the genomic and transcriptomic features of the MCF10 isogenic model of breast cancer progression, and to functionally validate potential driver alterations in three-dimensional (3D) spheroids that may provide insights into breast cancer progression, and identify targetable alterations in conditions more similar to those encountered in vivo. We performed whole genome, exome and RNA sequencing of the MCF10 progression series to catalogue the copy number and mutational and transcriptomic landscapes associated with progression. We identified a number of predicted driver mutations (including PIK3CA and TP53) that were acquired during transformation of non-malignant MCF10A cells to their malignant counterparts that are also present in analysed primary breast cancers from The Cancer Genome Atlas (TCGA). Acquisition of genomic alterations identified MYC amplification and previously undescribed RAB3GAP1-HRAS and UBA2-PDCD2L expressed in-frame fusion genes in malignant cells. Comparison of pathway aberrations associated with progression showed that, when cells are grown as 3D spheroids, they show perturbations of cancer-relevant pathways. Functional interrogation of the dependency on predicted driver events identified alterations in HRAS, PIK3CA and TP53 that selectively decreased cell growth and were associated with progression from preinvasive to invasive disease only when cells were grown as spheroids. Our results have identified changes in the genomic repertoire in cell lines representative of the stages of breast cancer progression, and demonstrate that genetic dependencies can be uncovered when cells are grown in conditions more like those in vivo. The MCF10 progression series therefore represents a good model with which to dissect potential biomarkers and to evaluate therapeutic targets involved in the progression of breast cancer. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- Class I Phosphatidylinositol 3-Kinases
- DNA, Neoplasm/chemistry
- DNA, Neoplasm/genetics
- Disease Progression
- Exome/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genome
- High-Throughput Nucleotide Sequencing
- Humans
- Models, Biological
- Mutation
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Sequence Analysis, DNA
- Spheroids, Cellular
- Transcriptome
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Sarah L Maguire
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Barrie Peck
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Patty T Wai
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - James Campbell
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Holly Barker
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Aditi Gulati
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Frances Daley
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Simon Vyse
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Paul Huang
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Gillian Farnie
- Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Keith Brennan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
28
|
The tandem duplicator phenotype as a distinct genomic configuration in cancer. Proc Natl Acad Sci U S A 2016; 113:E2373-82. [PMID: 27071093 DOI: 10.1073/pnas.1520010113] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Next-generation sequencing studies have revealed genome-wide structural variation patterns in cancer, such as chromothripsis and chromoplexy, that do not engage a single discernable driver mutation, and whose clinical relevance is unclear. We devised a robust genomic metric able to identify cancers with a chromotype called tandem duplicator phenotype (TDP) characterized by frequent and distributed tandem duplications (TDs). Enriched only in triple-negative breast cancer (TNBC) and in ovarian, endometrial, and liver cancers, TDP tumors conjointly exhibit tumor protein p53 (TP53) mutations, disruption of breast cancer 1 (BRCA1), and increased expression of DNA replication genes pointing at rereplication in a defective checkpoint environment as a plausible causal mechanism. The resultant TDs in TDP augment global oncogene expression and disrupt tumor suppressor genes. Importantly, the TDP strongly correlates with cisplatin sensitivity in both TNBC cell lines and primary patient-derived xenografts. We conclude that the TDP is a common cancer chromotype that coordinately alters oncogene/tumor suppressor expression with potential as a marker for chemotherapeutic response.
Collapse
|
29
|
Stover DG, Wagle N. Precision medicine in breast cancer: genes, genomes, and the future of genomically driven treatments. Curr Oncol Rep 2015; 17:15. [PMID: 25708799 DOI: 10.1007/s11912-015-0438-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Remarkable progress in sequencing technology over the past 20 years has made it possible to comprehensively profile tumors and identify clinically relevant genomic alterations. In breast cancer, the most common malignancy affecting women, we are now increasingly able to use this technology to help specify the use of therapies that target key molecular and genetic dependencies. Large sequencing studies have confirmed the role of well-known cancer-related genes and have also revealed numerous other genes that are recurrently mutated in breast cancer. This growing understanding of patient-to-patient variability at the genomic level in breast cancer is advancing our ability to direct the appropriate treatment to the appropriate patient at the appropriate time--a hallmark of "precision cancer medicine." This review focuses on the technological advances that have catalyzed these developments, the landscape of mutations in breast cancer, the clinical impact of genomic profiling, and the incorporation of genomic information into clinical care and clinical trials.
Collapse
Affiliation(s)
- Daniel G Stover
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | | |
Collapse
|
30
|
Manié E, Popova T, Battistella A, Tarabeux J, Caux-Moncoutier V, Golmard L, Smith NK, Mueller CR, Mariani O, Sigal-Zafrani B, Dubois T, Vincent-Salomon A, Houdayer C, Stoppa-Lyonnet D, Stern MH. Genomic hallmarks of homologous recombination deficiency in invasive breast carcinomas. Int J Cancer 2015; 138:891-900. [DOI: 10.1002/ijc.29829] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/25/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Elodie Manié
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
| | - Tatiana Popova
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
| | - Aude Battistella
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
| | - Julien Tarabeux
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
| | | | - Lisa Golmard
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
- Département De Biologie Des Tumeurs; Institut Curie; Paris F-75248 France
| | - Nicholas K. Smith
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
| | - Christopher R. Mueller
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
- Queen's Cancer Research Institute, Queen's University, Kingston; Ontario K7L 3N6 Canada
| | - Odette Mariani
- Département De Biologie Des Tumeurs; Institut Curie; Paris F-75248 France
- Centre De Ressources Biologiques; Institut Curie; Paris F-75248 France
| | | | - Thierry Dubois
- Centre De Recherche; Institut Curie; Paris F-75248 France
- Département De Recherche Translationnelle; Institut Curie; Paris F-75248 France
| | | | - Claude Houdayer
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
- Département De Biologie Des Tumeurs; Institut Curie; Paris F-75248 France
| | - Dominique Stoppa-Lyonnet
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
- Département De Biologie Des Tumeurs; Institut Curie; Paris F-75248 France
- Sorbonne Paris Cité; University Paris-Descartes; Paris F-75270 France
| | - Marc-Henri Stern
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
| |
Collapse
|
31
|
Weren RDA, Venkatachalam R, Cazier JB, Farin HF, Kets CM, de Voer RM, Vreede L, Verwiel ETP, van Asseldonk M, Kamping EJ, Kiemeney LA, Neveling K, Aben KKH, Carvajal-Carmona L, Nagtegaal ID, Schackert HK, Clevers H, van de Wetering M, Tomlinson IP, Ligtenberg MJL, Hoogerbrugge N, Geurts van Kessel A, Kuiper RP. Germline deletions in the tumour suppressor gene FOCAD are associated with polyposis and colorectal cancer development. J Pathol 2015; 236:155-64. [PMID: 25712196 PMCID: PMC6681464 DOI: 10.1002/path.4520] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/09/2015] [Accepted: 02/18/2015] [Indexed: 12/20/2022]
Abstract
Heritable genetic variants can significantly affect the lifetime risk of developing cancer, including polyposis and colorectal cancer (CRC). Variants in genes currently known to be associated with a high risk for polyposis or CRC, however, explain only a limited number of hereditary cases. The identification of additional genetic causes is, therefore, crucial to improve CRC prevention, detection and treatment. We have performed genome-wide and targeted DNA copy number profiling and resequencing in early-onset and familial polyposis/CRC patients, and show that deletions affecting the open reading frame of the tumour suppressor gene FOCAD are recurrent and significantly enriched in CRC patients compared with unaffected controls. All patients carrying FOCAD deletions exhibited a personal or family history of polyposis. RNA in situ hybridization revealed FOCAD expression in epithelial cells in the colonic crypt, the site of tumour initiation, as well as in colonic tumours and organoids. Our data suggest that monoallelic germline deletions in the tumour suppressor gene FOCAD underlie moderate genetic predisposition to the development of polyposis and CRC.
Collapse
Affiliation(s)
- Robbert D A Weren
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | | | | | - Henner F Farin
- Hubrecht Institute, University Medical Centre Utrecht, The Netherlands
| | - C Marleen Kets
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Richarda M de Voer
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Lilian Vreede
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Eugène T P Verwiel
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Monique van Asseldonk
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Eveline J Kamping
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Lambertus A Kiemeney
- Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Katja K H Aben
- Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
- Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
| | - Luis Carvajal-Carmona
- Genome Center and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, CA, USA
| | - Iris D Nagtegaal
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Hans K Schackert
- Department of Surgical Research, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Hans Clevers
- Hubrecht Institute, University Medical Centre Utrecht, The Netherlands
| | | | - Ian P Tomlinson
- Wellcome Trust Centre for Human Genetics University of Oxford, UK
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Ad Geurts van Kessel
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Roland P Kuiper
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Zhou Y, Wang M, Wu J, Jie Z, Chang S, Shuang T. The clinicopathological significance of miR-1307 in chemotherapy resistant epithelial ovarian cancer. J Ovarian Res 2015; 8:23. [PMID: 25887170 PMCID: PMC4449560 DOI: 10.1186/s13048-015-0143-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/12/2015] [Indexed: 01/29/2023] Open
Abstract
Background We aimed to examine the expression of miR-1307 in chemosensitive and chemoresistant epithelial ovarian cancer tissues and cell lines and to analyze the clinicopathological significance of miR-1307 in ovarian cancer. Methods MicroRNA microarray was used to screen differentially expressed microRNAs between the chemosensitive and chemoresistant epithelial ovarian cancer tissues. RT-PCR was used to validate the candidate microRNA. The potential target genes and their enriched biological pathways of microRNA were also analyzed. Dual Luciferase Reporter Gene Assay was conducted to validate the regulation of miRNA-1307 on the 3’-UTR of DAPK3. Results miRNA-1307 was up-regulated in the chemoresistant epithelial ovarian cancer tissues compared to the chemosensitive counterparts. The up-regulation of miRNA-1307 was not associated with menopause, tumor differentiation state, clinical stage, and lymph node metastasis of ovarian cancer. Gene ontology analysis of miR-1307 candidate target genes indicated that miR-1307 candidate target genes were enriched in the processes of cell proliferation and differentiation, nucleotide synthesis and metabolism, and lymphocytes activation. Conclusion Our results suggest that miRNA-1307 may play a role in the development of chemoresistance in ovarian cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13048-015-0143-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yingying Zhou
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, P.R. China.
| | - Min Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, P.R. China.
| | - Jianlei Wu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, P.R. China.
| | - Zhihui Jie
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, P.R. China.
| | - Shuang Chang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, P.R. China.
| | - Ting Shuang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, P.R. China.
| |
Collapse
|
33
|
Ng CKY, Schultheis AM, Bidard FC, Weigelt B, Reis-Filho JS. Breast cancer genomics from microarrays to massively parallel sequencing: paradigms and new insights. J Natl Cancer Inst 2015; 107:djv015. [PMID: 25713166 DOI: 10.1093/jnci/djv015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rapid advancements in massively parallel sequencing methods have enabled the analysis of breast cancer genomes at an unprecedented resolution, which have revealed the remarkable heterogeneity of the disease. As a result, we now accept that despite originating in the breast, estrogen receptor (ER)-positive and ER-negative breast cancers are completely different diseases at the molecular level. It has become apparent that there are very few highly recurrently mutated genes such as TP53, PIK3CA, and GATA3, that no two breast cancers display an identical repertoire of somatic genetic alterations at base-pair resolution and that there might not be a single highly recurrently mutated gene that defines each of the "intrinsic" subtypes of breast cancer (ie, basal-like, HER2-enriched, luminal A, and luminal B). Breast cancer heterogeneity, however, extends beyond the diversity between tumors. There is burgeoning evidence to demonstrate that at least some primary breast cancers are composed of multiple, genetically diverse clones at diagnosis and that metastatic lesions may differ in their repertoire of somatic genetic alterations when compared with their respective primary tumors. Several biological phenomena may shape the reported intratumor genetic heterogeneity observed in breast cancers, including the different mutational processes and multiple types of genomic instability. Harnessing the emerging concepts of the diversity of breast cancer genomes and the phenomenon of intratumor genetic heterogeneity will be essential for the development of optimal methods for diagnosis, disease monitoring, and the matching of patients to the drugs that would benefit them the most.
Collapse
Affiliation(s)
- Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY (CKYN, AMS, BW, JSRF); Department of Medical Oncology, SIRIC, Institut Curie, Paris, France (FCB); Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY (JSRF)
| | - Anne M Schultheis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY (CKYN, AMS, BW, JSRF); Department of Medical Oncology, SIRIC, Institut Curie, Paris, France (FCB); Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY (JSRF)
| | - Francois-Clement Bidard
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY (CKYN, AMS, BW, JSRF); Department of Medical Oncology, SIRIC, Institut Curie, Paris, France (FCB); Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY (JSRF)
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY (CKYN, AMS, BW, JSRF); Department of Medical Oncology, SIRIC, Institut Curie, Paris, France (FCB); Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY (JSRF).
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY (CKYN, AMS, BW, JSRF); Department of Medical Oncology, SIRIC, Institut Curie, Paris, France (FCB); Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY (JSRF).
| |
Collapse
|
34
|
Gavrielides M, Furney SJ, Yates T, Miller CJ, Marais R. Onco-STS: a web-based laboratory information management system for sample and analysis tracking in oncogenomic experiments. SOURCE CODE FOR BIOLOGY AND MEDICINE 2014; 9:25. [PMID: 25580158 PMCID: PMC4288629 DOI: 10.1186/s13029-014-0025-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/12/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Whole genomes, whole exomes and transcriptomes of tumour samples are sequenced routinely to identify the drivers of cancer. The systematic sequencing and analysis of tumour samples, as well other oncogenomic experiments, necessitates the tracking of relevant sample information throughout the investigative process. These meta-data of the sequencing and analysis procedures include information about the samples and projects as well as the sequencing centres, platforms, data locations, results locations, alignments, analysis specifications and further information relevant to the experiments. RESULTS The current work presents a sample tracking system for oncogenomic studies (Onco-STS) to store these data and make them easily accessible to the researchers who work with the samples. The system is a web application, which includes a database and a front-end web page that allows the remote access, submission and updating of the sample data in the database. The web application development programming framework Grails was used for the development and implementation of the system. CONCLUSIONS The resulting Onco-STS solution is efficient, secure and easy to use and is intended to replace the manual data handling of text records. Onco-STS allows simultaneous remote access to the system making collaboration among researchers more effective. The system stores both information on the samples in oncogenomic studies and details of the analyses conducted on the resulting data. Onco-STS is based on open-source software, is easy to develop and can be modified according to a research group's needs. Hence it is suitable for laboratories that do not require a commercial system.
Collapse
Affiliation(s)
- Mike Gavrielides
- />Molecular Oncology Group, University of Manchester, Wilmslow Road, Manchester, M20 4BX UK
| | - Simon J Furney
- />Molecular Oncology Group, University of Manchester, Wilmslow Road, Manchester, M20 4BX UK
| | - Tim Yates
- />Applied Computational Biology and Bioinformatics Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX UK
| | - Crispin J Miller
- />Applied Computational Biology and Bioinformatics Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX UK
| | - Richard Marais
- />Molecular Oncology Group, University of Manchester, Wilmslow Road, Manchester, M20 4BX UK
| |
Collapse
|
35
|
Kocher BA, White LS, Piwnica-Worms D. DAPK3 suppresses acini morphogenesis and is required for mouse development. Mol Cancer Res 2014; 13:358-67. [PMID: 25304685 DOI: 10.1158/1541-7786.mcr-14-0333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Death-associated protein kinase (DAPK3) is a serine/threonine kinase involved in various signaling pathways important to tissue homeostasis and mammalian biology. Considered to be a putative tumor suppressor, the molecular mechanism by which DAPK3 exerts its suppressive function is not fully understood and the field lacks an appropriate mouse model. To address these gaps, an in vitro three-dimensional tumorigenesis model was used and a constitutive DAPK3-knockout mouse was generated. In the 3D morphogenesis model, loss of DAPK3 through lentiviral-mediated knockdown enlarged acinar size by accelerated acini proliferation and apoptosis while maintaining acini polarity. Depletion of DAPK3 enhanced growth factor-dependent mTOR activation and, furthermore, enlarged DAPK3 acini structures were uniquely sensitive to low doses of rapamycin. Simultaneous knockdown of RAPTOR, a key mTORC1 component, reversed the augmented acinar size in DAPK3-depleted structures indicating an epistatic interaction. Using a validated gene trap strategy to generate a constitutive DAPK3-knockout mouse, it was demonstrated that DAPK3 is vital for early mouse development. The Dapk3 promoter exhibits spatiotemporal activity in developing mice and is actively expressed in normal breast epithelia of adult mice. Importantly, reduction of DAPK3 expression correlates with the development of ductal carcinoma in situ (DCIS) and more aggressive breast cancer as observed in the Oncomine database of clinical breast cancer specimens. IMPLICATIONS Novel cellular and mouse modeling studies of DAPK3 shed light on its tumor-suppressive mechanisms and provide direct evidence that DAPK3 has relevance in early development.
Collapse
Affiliation(s)
- Brandon A Kocher
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Lynn S White
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - David Piwnica-Worms
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri. Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
36
|
Powers GL, Hammer KDP, Domenech M, Frantskevich K, Malinowski RL, Bushman W, Beebe DJ, Marker PC. Phosphodiesterase 4D inhibitors limit prostate cancer growth potential. Mol Cancer Res 2014; 13:149-60. [PMID: 25149359 DOI: 10.1158/1541-7786.mcr-14-0110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Phosphodiesterase 4D (PDE4D) has recently been implicated as a proliferation-promoting factor in prostate cancer and is overexpressed in human prostate carcinoma. However, the effects of PDE4D inhibition using pharmacologic inhibitors have not been examined in prostate cancer. These studies examined the effects of selective PDE4D inhibitors, NVP-ABE171 and cilomilast, as anti-prostate cancer therapies in both in vitro and in vivo models. The effects of PDE4D inhibitors on pathways that are critical in prostate cancer and/or downstream of cyclic AMP (cAMP) were examined. Both NVP-ABE171 and cilomilast decreased cell growth. In vitro, PDE4D inhibitors lead to decreased signaling of the sonic hedgehog (SHH), androgen receptor (AR), and MAPK pathways, but growth inhibition was best correlated to the SHH pathway. PDE4D inhibition also reduced proliferation of epithelial cells induced by paracrine signaling from cocultured stromal cells that had activated hedgehog signaling. In addition, PDE4D inhibitors decreased the weight of the prostate in wild-type mice. Prostate cancer xenografts grown in nude mice that were treated with cilomilast or NVP-ABE171 had decreased wet weight and increased apoptosis compared with vehicle-treated controls. These studies suggest the pharmacologic inhibition of PDE4D using small-molecule inhibitors is an effective option for prostate cancer therapy. IMPLICATIONS PDE4D inhibitors decrease the growth of prostate cancer cells in vivo and in vitro, and PDE4D inhibition has therapeutic potential in prostate cancer.
Collapse
Affiliation(s)
- Ginny L Powers
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kimberly D P Hammer
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | - Maribella Domenech
- Department of Biomedical Engineering and Wisconsin Institute for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin. Department of Chemical Engineering, University of Puerto Rico, Mayaguez, Puerto Rico
| | - Katsiaryna Frantskevich
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rita L Malinowski
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | - Wade Bushman
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - David J Beebe
- Department of Biomedical Engineering and Wisconsin Institute for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul C Marker
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
37
|
Natrajan R, Wilkerson PM, Marchiò C, Piscuoglio S, Ng CKY, Wai P, Lambros MB, Samartzis EP, Dedes KJ, Frankum J, Bajrami I, Kopec A, Mackay A, A'hern R, Fenwick K, Kozarewa I, Hakas J, Mitsopoulos C, Hardisson D, Lord CJ, Kumar-Sinha C, Ashworth A, Weigelt B, Sapino A, Chinnaiyan AM, Maher CA, Reis-Filho JS. Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast. J Pathol 2014; 232:553-65. [PMID: 24395524 PMCID: PMC4013428 DOI: 10.1002/path.4325] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/04/2013] [Accepted: 12/29/2013] [Indexed: 12/30/2022]
Abstract
Micropapillary carcinoma (MPC) is a rare histological special type of breast cancer, characterized by an aggressive clinical behaviour and a pattern of copy number aberrations (CNAs) distinct from that of grade- and oestrogen receptor (ER)-matched invasive carcinomas of no special type (IC-NSTs). The aims of this study were to determine whether MPCs are underpinned by a recurrent fusion gene(s) or mutations in 273 genes recurrently mutated in breast cancer. Sixteen MPCs were subjected to microarray-based comparative genomic hybridization (aCGH) analysis and Sequenom OncoCarta mutation analysis. Eight and five MPCs were subjected to targeted capture and RNA sequencing, respectively. aCGH analysis confirmed our previous observations about the repertoire of CNAs of MPCs. Sequencing analysis revealed a spectrum of mutations similar to those of luminal B IC-NSTs, and recurrent mutations affecting mitogen-activated protein kinase family genes and NBPF10. RNA-sequencing analysis identified 17 high-confidence fusion genes, eight of which were validated and two of which were in-frame. No recurrent fusions were identified in an independent series of MPCs and IC-NSTs. Forced expression of in-frame fusion genes (SLC2A1-FAF1 and BCAS4-AURKA) resulted in increased viability of breast cancer cells. In addition, genomic disruption of CDK12 caused by out-of-frame rearrangements was found in one MPC and in 13% of HER2-positive breast cancers, identified through a re-analysis of publicly available massively parallel sequencing data. In vitro analyses revealed that CDK12 gene disruption results in sensitivity to PARP inhibition, and forced expression of wild-type CDK12 in a CDK12-null cell line model resulted in relative resistance to PARP inhibition. Our findings demonstrate that MPCs are neither defined by highly recurrent mutations in the 273 genes tested, nor underpinned by a recurrent fusion gene. Although seemingly private genetic events, some of the fusion transcripts found in MPCs may play a role in maintenance of a malignant phenotype and potentially offer therapeutic opportunities.
Collapse
Affiliation(s)
- Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Paul M Wilkerson
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | | | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | - Charlotte KY Ng
- Department of Pathology, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | - Patty Wai
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Maryou B Lambros
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | | | | | - Jessica Frankum
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Ilirjana Bajrami
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Alicja Kopec
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Alan Mackay
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Roger A'hern
- Cancer Research UK Clinical Trials Unit, The Institute of Cancer ResearchSutton, UK
| | - Kerry Fenwick
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Iwanka Kozarewa
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Jarle Hakas
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Costas Mitsopoulos
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - David Hardisson
- Department of Pathology, Hospital Universitario La Paz, Universidad Autonoma de Madrid, Hospital La Paz Institute for Health Research (IdiPAZ)Madrid, Spain
| | - Christopher J Lord
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Chandan Kumar-Sinha
- Michigan Center for Translational Pathology (MCTP), Department of Pathology, University of MichiganAnn Arbor, MI, USA
| | - Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | - Anna Sapino
- Department of Medical Sciences, University of TurinTurin, Italy
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology (MCTP), Department of Pathology, University of MichiganAnn Arbor, MI, USA
| | - Christopher A Maher
- Washington University Genome Institute, Washington UniversitySt Louis, MO, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| |
Collapse
|
38
|
Cai H, Kumar N, Bagheri HC, von Mering C, Robinson MD, Baudis M. Chromothripsis-like patterns are recurring but heterogeneously distributed features in a survey of 22,347 cancer genome screens. BMC Genomics 2014; 15:82. [PMID: 24476156 PMCID: PMC3909908 DOI: 10.1186/1471-2164-15-82] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/10/2014] [Indexed: 01/22/2023] Open
Abstract
Background Chromothripsis is a recently discovered phenomenon of genomic rearrangement, possibly arising during a single genome-shattering event. This could provide an alternative paradigm in cancer development, replacing the gradual accumulation of genomic changes with a “one-off” catastrophic event. However, the term has been used with varying operational definitions, with the minimal consensus being a large number of locally clustered copy number aberrations. The mechanisms underlying these chromothripsis-like patterns (CTLP) and their specific impact on tumorigenesis are still poorly understood. Results Here, we identified CTLP in 918 cancer samples, from a dataset of more than 22,000 oncogenomic arrays covering 132 cancer types. Fragmentation hotspots were found to be located on chromosome 8, 11, 12 and 17. Among the various cancer types, soft-tissue tumors exhibited particularly high CTLP frequencies. Genomic context analysis revealed that CTLP rearrangements frequently occurred in genomes that additionally harbored multiple copy number aberrations (CNAs). An investigation into the affected chromosomal regions showed a large proportion of arm-level pulverization and telomere related events, which would be compatible to a number of underlying mechanisms. We also report evidence that these genomic events may be correlated with patient age, stage and survival rate. Conclusions Through a large-scale analysis of oncogenomic array data sets, this study characterized features associated with genomic aberrations patterns, compatible to the spectrum of “chromothripsis”-definitions as previously used. While quantifying clustered genomic copy number aberrations in cancer samples, our data indicates an underlying biological heterogeneity behind these chromothripsis-like patterns, beyond a well defined “chromthripsis” phenomenon.
Collapse
Affiliation(s)
| | | | | | | | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
39
|
Dimitrov SD, Lu D, Naetar N, Hu Y, Pathania S, Kanellopoulou C, Livingston DM. Physiological modulation of endogenous BRCA1 p220 abundance suppresses DNA damage during the cell cycle. Genes Dev 2013; 27:2274-91. [PMID: 24142877 PMCID: PMC3814647 DOI: 10.1101/gad.225045.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BRCA1 p220 participates in DNA damage responses. Dimitrov et al. find that miR-545 directly reduces p220 expression. miR-545 inhibition increased p220 expression, and aberrant p220-associated DNA damage responses and de novo DNA strand breaks accumulated. Strand breaks were a product of p220 overexpression and were also dependent on aberrant, overexpressed p220-driven recruitment of RAD51 to DNA damage sites. These results suggest that, like its loss, an excess of p220 function represents a threat to genome integrity. Endogenous BRCA1 p220 expression peaks in S and G2 when it is activated, and the protein participates in certain key DNA damage responses. In contrast, its expression is markedly reduced in G0/G1. While variations in transcription represent a significant part of p220 expression control, there is at least one other relevant process. We found that a microRNA, miR-545, that is expressed throughout the cell cycle down-modulates endogenous p220 mRNA and protein abundance directly in both G0/G1 and S/G2. When miR-545 function was inhibited by a specific antagomir, endogenous p220 expression increased in G0/G1, and aberrant p220-associated DNA damage responses and de novo DNA strand breaks accumulated. Analogous results were observed upon inhibition of miR-545 function in S/G2. Both sets of antagomir effects were mimicked by infecting cells with a p220 cDNA-encoding adenoviral vector. Thus, strand breaks were a product of p220 overexpression, and their prevention by miR-545 depends on its modulation of p220 expression. Breaks were also dependent on aberrant, overexpressed p220-driven recruitment of RAD51 to either spontaneously arising or mutagen-based DNA damage sites. Hence, when its level is not physiologically maintained, endogenous p220 aberrantly directs at least one DNA repair protein, RAD51, to damage sites, where their action contributes to the development of de novo DNA damage. Thus, like its loss, a surfeit of endogenous p220 function represents a threat to genome integrity.
Collapse
Affiliation(s)
- Stoil D Dimitrov
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Personalized Cancer Medicine: a Future Direction of Personal Genomics. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2013. [DOI: 10.5812/rijm.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Ghayoor Karimiani E. Personalized Cancer Medicine: a Future Direction of Personal Genomics. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2013. [DOI: 10.17795/rijm14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
42
|
Abstract
Combinatorial approaches that integrate conventional pathology with genomic profiling and functional genomics have begun to enhance our understanding of the genetic basis of breast cancer. These methods have identified key genotypic-phenotypic correlations in different breast cancer subtypes that have led to the discovery of genetic dependencies that drive their behavior. Moreover, this knowledge has been applied to define novel tailored therapies for these groups of patients with cancer. With the current emphasis on characterizing the mutational repertoire of breast cancers by next-generation sequencing, the question remains as to what constitutes a driver event. By focusing efforts on homogenous subgroups of breast cancer and integrating orthogonal data-types combined with functional approaches, we can begin to unravel the heterogeneity and identify aberrations that can be therapeutically targeted.
Collapse
Affiliation(s)
- Rachael Natrajan
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom.
| | | |
Collapse
|
43
|
Ng CKY, Pemberton HN, Reis-Filho JS. Breast cancer intratumor genetic heterogeneity: causes and implications. Expert Rev Anticancer Ther 2013; 12:1021-32. [PMID: 23030222 DOI: 10.1586/era.12.85] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is burgeoning evidence to suggest that tumor evolution follows the laws of Darwinian evolution, whereby individual tumor cell clones harbor private genetic aberrations in addition to the founder mutations, and that these distinct populations of cancer cells interact in competitive and mutualistic manners. The combined effect of genetic and epigenetic instability, and differential selective pressures according to the microenvironment and therapeutic interventions, create many different evolutionary routes such that intratumor heterogeneity is inevitable. Numerous cytogenetic, comparative genomic hybridization and, more recently, massively parallel sequencing studies have generated indisputable evidence of this phenomenon. The impact of intratumor heterogeneity on response and resistance to therapy is beginning to be understood; this information may prove crucial for the potentials of personalized medicine to be realized. In this review, the evidence of intratumor heterogeneity in breast cancer, its potential causes and implications for the clinical management of breast cancer patients are discussed.
Collapse
Affiliation(s)
- Charlotte K Y Ng
- Molecular Pathology Team, Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | | | | |
Collapse
|
44
|
The complex genetic landscape of familial breast cancer. Hum Genet 2013; 132:845-63. [PMID: 23552954 DOI: 10.1007/s00439-013-1299-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/21/2013] [Indexed: 01/19/2023]
Abstract
Familial breast cancer represents a minor percentage of all human breast cancers. Mutations in two high susceptibility genes BRCA1 and BRCA2 explain around 25 % of familial breast cancers, while other high, moderate and low susceptibility genes explain up to 20 % more of breast cancer families. Thus, it is important to decipher the genetic architecture of families that show no mutations to improve genetic counselling. The comprehensive description of familial breast cancer using different techniques and platforms has shown to be very valuable for better patient diagnosis, tumour surveillance, and ultimately patient treatment. This review focuses on the complex landscape of pathological, protein, genetic and genomic features associated with BRCA1-, BRCA2-, and non-BRCA1/BRCA2-related cancers described up to date. Special emphasis deserves the coexistence of distinct molecular breast cancer subtypes, the development of tumour classifiers to predict BRCA1/2 mutations, and the last insights from recent whole genome sequencing studies and miRNA profiling.
Collapse
|
45
|
Haider S, Pal R. Integrated analysis of transcriptomic and proteomic data. Curr Genomics 2013; 14:91-110. [PMID: 24082820 PMCID: PMC3637682 DOI: 10.2174/1389202911314020003] [Citation(s) in RCA: 285] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/09/2013] [Accepted: 01/22/2013] [Indexed: 12/14/2022] Open
Abstract
Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area.
Collapse
Affiliation(s)
| | - Ranadip Pal
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
46
|
Abstract
The rapid technological developments following the Human Genome Project have made possible the availability of personalized genomes. As the focus now shifts from characterizing genomes to making personalized disease associations, in combination with the availability of other omics technologies, the next big push will be not only to obtain a personalized genome, but to quantitatively follow other omics. This will include transcriptomes, proteomes, metabolomes, antibodyomes, and new emerging technologies, enabling the profiling of thousands of molecular components in individuals. Furthermore, omics profiling performed longitudinally can probe the temporal patterns associated with both molecular changes and associated physiological health and disease states. Such data necessitates the development of computational methodology to not only handle and descriptively assess such data, but also construct quantitative biological models. Here we describe the availability of personal genomes and developing omics technologies that can be brought together for personalized implementations and how these novel integrated approaches may effectively provide a precise personalized medicine that focuses on not only characterization and treatment but ultimately the prevention of disease.
Collapse
|
47
|
Chen R, Snyder M. Promise of personalized omics to precision medicine. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012. [PMID: 23184638 DOI: 10.1002/wsbm.1198] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rapid development of high-throughput technologies and computational frameworks enables the examination of biological systems in unprecedented detail. The ability to study biological phenomena at omics levels in turn is expected to lead to significant advances in personalized and precision medicine. Patients can be treated according to their own molecular characteristics. Individual omes as well as the integrated profiles of multiple omes, such as the genome, the epigenome, the transcriptome, the proteome, the metabolome, the antibodyome, and other omics information are expected to be valuable for health monitoring, preventative measures, and precision medicine. Moreover, omics technologies have the potential to transform medicine from traditional symptom-oriented diagnosis and treatment of diseases toward disease prevention and early diagnostics. We discuss here the advances and challenges in systems biology-powered personalized medicine at its current stage, as well as a prospective view of future personalized health care at the end of this review.
Collapse
Affiliation(s)
- Rui Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
48
|
Felten A, Brinckmann D, Landsberg G, Scheidtmann KH. Zipper-interacting protein kinase is involved in regulation of ubiquitination of the androgen receptor, thereby contributing to dynamic transcription complex assembly. Oncogene 2012; 32:4981-8. [PMID: 23146908 DOI: 10.1038/onc.2012.503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/29/2012] [Accepted: 09/18/2012] [Indexed: 12/30/2022]
Abstract
We have recently identified apoptosis-antagonizing transcription factor (AATF), tumor-susceptibility gene 101 (TSG101) and zipper-interacting protein kinase (ZIPK) as novel coactivators of the androgen receptor (AR). The mechanisms of coactivation remained obscure, however. Here we investigated the interplay and interdependence between these coactivators and the AR using the endogenous prostate specific antigen (PSA) gene as model for AR-target genes. Chromatin immunoprecipitation in combination with siRNA-mediated knockdown revealed that recruitment of AATF and ZIPK to the PSA enhancer was dependent on AR, whereas recruitment of TSG101 was dependent on AATF. Association of AR and its coactivators with the PSA enhancer or promoter occurred in cycles. Dissociation of AR-transcription complexes was due to degradation because inhibition of the proteasome system by MG132 caused accumulation of AR at enhancer/promoter elements. Moreover, inhibition of degradation strongly reduced transcription, indicating that continued and efficient transcription is based on initiation, degradation and reinitiation cycles. Interestingly, knockdown of ZIPK by siRNA had a similar effect as MG132, leading to reduced transcription but enhanced accumulation of AR at androgen-response elements. In addition, knockdown of ZIPK, as well as overexpression of a dominant-negative ZIPK mutant, diminished polyubiquitination of AR. Furthermore, ZIPK cooperated with the E3 ligase Mdm2 in AR-dependent transactivation, assembled into a single complex on chromatin and phosphorylated Mdm2 in vitro. These results suggest that ZIPK has a crucial role in regulation of ubiquitination and degradation of the AR, and hence promoter clearance and efficient transcription.
Collapse
Affiliation(s)
- A Felten
- Institute of Genetics, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
49
|
Weigelt B, Reis-Filho J, Swanton C. Genomic analyses to select patients for adjuvant chemotherapy: trials and tribulations. Ann Oncol 2012; 23 Suppl 10:x211-8. [DOI: 10.1093/annonc/mds323] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
50
|
Popova T, Manié E, Rieunier G, Caux-Moncoutier V, Tirapo C, Dubois T, Delattre O, Sigal-Zafrani B, Bollet M, Longy M, Houdayer C, Sastre-Garau X, Vincent-Salomon A, Stoppa-Lyonnet D, Stern MH. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res 2012; 72:5454-62. [PMID: 22933060 DOI: 10.1158/0008-5472.can-12-1470] [Citation(s) in RCA: 503] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BRCA1 inactivation is a frequent event in basal-like breast carcinomas (BLC). However, BRCA1 can be inactivated by multiple mechanisms and determining its status is not a trivial issue. As an alternate approach, we profiled 65 BLC cases using single-nucleotide polymorphism arrays to define a signature of BRCA1-associated genomic instability. Large-scale state transitions (LST), defined as chromosomal break between adjacent regions of at least 10 Mb, were found to be a robust indicator of BRCA1 status in this setting. Two major ploidy-specific cutoffs in LST distributions were sufficient to distinguish highly rearranged BLCs with 85% of proven BRCA1-inactivated cases from less rearranged BLCs devoid of proven BRCA1-inactivated cases. The genomic signature we defined was validated in a second independent series of 55 primary BLC cases and 17 BLC-derived tumor cell lines. High numbers of LSTs resembling BRCA1-inactivated BLC were observed in 4 primary BLC cases and 2 BLC cell lines that harbored BRCA2 mutations. Overall, the genomic signature we defined predicted BRCA1/2 inactivation in BLCs with 100% sensitivity and 90% specificity (97% accuracy). This assay may ease the challenge of selecting patients for genetic testing or recruitment to clinical trials of novel emerging therapies that target DNA repair deficiencies in cancer.
Collapse
Affiliation(s)
- Tatiana Popova
- Centre de Recherche, University Paris-Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|