1
|
Kramer A, Vaughan OR, Barentsen K, Urschitz J, Powell TL, Jansson T, Rosario FJ. Lentivirus-Mediated Trophoblast-Specific Deptor Knockdown Increases Transplacental System A and System L Amino Acid Transport and Fetal Growth in Mice. FUNCTION 2025; 6:zqaf018. [PMID: 40133007 PMCID: PMC11992690 DOI: 10.1093/function/zqaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/17/2025] [Accepted: 03/23/2025] [Indexed: 03/27/2025] Open
Abstract
Mechanistic target of rapamycin (mTOR) signaling is a positive regulator of human placental function including system A/L amino acid transport activity. Placental mTOR signaling is inhibited in fetal growth restriction (FGR) and activated in fetal overgrowth in women; however, the causes of these changes in placental mTOR signaling are unknown. DEP (Dishevelled, Egl-10, Pleckstrin) domain containing mTOR-interacting protein (DEPTOR) is an endogenous inhibitor of mTOR. We tested the hypothesis that trophoblast-specific Deptor knockdown activates placental mTOR signaling and amino acid transport and causes fetal overgrowth. Using lentiviral transduction of blastocyst trophectoderm with a small hairpin RNA, we achieved 47% knockdown of placental Deptor mRNA expression, without altering fetal Deptor mRNA expression. Trophoblast-specific Deptor knockdown activated placental mTORC1 and mTORC2 signaling and increased trophoblast plasma membrane (TPM) LAT1 and SNAT2 protein abundance, and TPM system L and A transporter activity. In addition, Deptor knockdown increased in vivo transplacental system A and L amino acid transport and stimulated placental and fetal growth. In human FGR, placental DEPTOR protein expression was higher and negatively correlated with birth weight and microvillus plasma membrane system A activity. In conclusion, we provide mechanistic evidence that DEPTOR regulates placental mTOR signaling and amino acid transport and fetal growth in vivo. We speculate that modulation of placental DEPTOR is a promising target for intervention in pregnancies characterized by abnormal placental function and fetal growth.
Collapse
Affiliation(s)
- Avery Kramer
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Owen R Vaughan
- EGA Institute for Women’s Health, University College London, London, WC1E 6HX, UK
| | - Kenneth Barentsen
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI 96822, USA
| | - Theresa L Powell
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Steane SS, Das T, Kalisch‐Smith JI, Mahaliyanage DT, Akison LK, Moritz KM, Cuffe JSM. Effects of periconceptional ethanol on mitochondrial content and oxidative stress in maternal liver and placentas from male and female fetuses in rats. J Physiol 2025; 603:1281-1298. [PMID: 39924874 PMCID: PMC11870040 DOI: 10.1113/jp287566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Alcohol exposure during pregnancy disrupts fetal development and programs lifelong disease. We have shown, in rats, that alcohol exposure during the periconceptional period (PC:EtOH), causes placental dysfunction and cardiometabolic disease in offspring. The process of metabolising alcohol can cause oxidative stress and damage mitochondrial DNA (mtDNA). It is unknown whether alcohol metabolism in a rat model of PC:EtOH impacts oxidative stress markers and mitochondrial content in maternal and placental tissues. We aimed to determine whether PC:EtOH induced oxidative stress and reduced mtDNA in maternal liver and the placental labyrinth and junctional zone. Sprague-Dawley rats were given an ethanol liquid (12.5% v/v) or control (0%) diet for one oestrous cycle before mating to embryonic day (E) 4. Maternal livers were collected at E5 and E20. Placentas were collected at E20 and separated into the junctional zone and labyrinth zone. PC:EtOH reduced Cyp2e1 mRNA levels and mtDNA in the E5 liver with lower mtDNA persisting to E20, at which time mitochondrial proteins were also decreased. PC:EtOH also reduced mitochondrial content in the E20 junctional zone, although mitochondrial protein levels were unaffected. Superoxide dismutase activity was increased in the placental junctional zone and there was no evidence of oxidative stress. The present study demonstrates that alcohol exposure around conception, reduces mitochondrial content within the maternal liver and the junctional zone of the placenta towards the end of pregnancy. These prolonged deficits may have disrupted metabolic processes required for a healthy pregnancy. The study further supports avoiding alcohol when planning a pregnancy. KEY POINTS: Even when alcohol is consumed only around conception (PC:EtOH), it can have profound impacts on the developing baby. Here, we use our established rat model to investigate if PC:EtOH causes oxidative stress and reduces mitochondrial content in the maternal liver immediately after exposure on embryonic day (E) 5. We also investigate these parameters at the end of pregnancy (E20) in maternal liver and the placenta. PC:EtOH reduced mitochondrial DNA content in the maternal liver by 77% at E5 and by 40% at E20. At E20, expression of proteins that form the electron transport chain were also reduced. The placenta had a more subtle reduction in mitochondrial DNA content, but protein levels of mitochondrial complexes were unchanged. There was no evidence of oxidative stress in the maternal liver or placenta in response to PC:EtOH. The lack of oxidative stress in the placenta may be a result of compensatory increases in antioxidants.
Collapse
Affiliation(s)
- Sarah S. Steane
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - Tulika Das
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| | | | | | - Lisa K. Akison
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - Karen M. Moritz
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - James S. M. Cuffe
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
3
|
Milyutina YP, Kerkeshko GO, Vasilev DS, Zalozniaia IV, Bochkovskii SK, Tumanova NL, Shcherbitskaia AD, Mikhel AV, Tolibova GH, Arutjunyan AV. Placental Transport of Amino Acids in Rats with Methionine-Induced Hyperhomocysteinemia. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1711-1726. [PMID: 39523111 DOI: 10.1134/s0006297924100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 11/16/2024]
Abstract
Maternal hyperhomocysteinemia (HHcy) is a risk factor for intrauterine growth restriction presumably caused by a decrease in the placental transport of nutrients. We investigated the effect of experimental HHcy induced by daily methionine administration to pregnant rats on the free amino acid levels in the maternal and fetal blood, as well as on morphological and biochemical parameters associated with the amino acid transport through the placenta. HHcy caused an increase in the levels of most free amino acids in the maternal blood on gestational day 20, while the levels of some amino acids in the fetal blood were decreased. In rats with HHcy, the maternal sinusoids in the placental labyrinth were narrowed, which was accompanied by aggregation of red blood cells. We also observed an increase in the neutral amino acid transporters (LAT1, SNAT2) protein levels and activation of 4E-BP1, a downstream effector of mTORC1 complex, in the labyrinth zone. Maternal HHcy affected the placental barrier permeability, as evidenced by intensification of the mother-to-fetus transfer of Evans Blue dye. The imbalance in the free amino acid levels in the maternal and fetal blood in HHcy may be due to the competition of homocysteine with other amino acids for common transporters, as well as a decrease in the area of exchange zone between maternal and fetal circulations in the placental labyrinth. Upregulation of the neutral amino acid transporter expression in the labyrinth zone may be a compensatory response to an insufficient intrauterine amino acid supply and fetal growth restriction.
Collapse
Affiliation(s)
- Yulia P Milyutina
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia.
| | - Gleb O Kerkeshko
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Dmitrii S Vasilev
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Irina V Zalozniaia
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Sergey K Bochkovskii
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Natalia L Tumanova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Anastasiia D Shcherbitskaia
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Anastasiia V Mikhel
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Gulrukhsor H Tolibova
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Alexander V Arutjunyan
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| |
Collapse
|
4
|
Álvarez-Sánchez A, Grinat J, Doria-Borrell P, Mellado-López M, Pedrera-Alcócer É, Malenchini M, Meseguer S, Hemberger M, Pérez-García V. The GPI-anchor biosynthesis pathway is critical for syncytiotrophoblast differentiation and placental development. Cell Mol Life Sci 2024; 81:246. [PMID: 38819479 PMCID: PMC11143174 DOI: 10.1007/s00018-024-05284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
The glycosylphosphatidylinositol (GPI) biosynthetic pathway in the endoplasmic reticulum (ER) is crucial for generating GPI-anchored proteins (GPI-APs), which are translocated to the cell surface and play a vital role in cell signaling and adhesion. This study focuses on two integral components of the GPI pathway, the PIGL and PIGF proteins, and their significance in trophoblast biology. We show that GPI pathway mutations impact on placental development impairing the differentiation of the syncytiotrophoblast (SynT), and especially the SynT-II layer, which is essential for the establishment of the definitive nutrient exchange area within the placental labyrinth. CRISPR/Cas9 knockout of Pigl and Pigf in mouse trophoblast stem cells (mTSCs) confirms the role of these GPI enzymes in syncytiotrophoblast differentiation. Mechanistically, impaired GPI-AP generation induces an excessive unfolded protein response (UPR) in the ER in mTSCs growing in stem cell conditions, akin to what is observed in human preeclampsia. Upon differentiation, the impairment of the GPI pathway hinders the induction of WNT signaling for early SynT-II development. Remarkably, the transcriptomic profile of Pigl- and Pigf-deficient cells separates human patient placental samples into preeclampsia and control groups, suggesting an involvement of Pigl and Pigf in establishing a preeclamptic gene signature. Our study unveils the pivotal role of GPI biosynthesis in early placentation and uncovers a new preeclampsia gene expression profile associated with mutations in the GPI biosynthesis pathway, providing novel molecular insights into placental development with implications for enhanced patient stratification and timely interventions.
Collapse
Affiliation(s)
- Andrea Álvarez-Sánchez
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Johanna Grinat
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Paula Doria-Borrell
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Maravillas Mellado-López
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Érica Pedrera-Alcócer
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Marta Malenchini
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Salvador Meseguer
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Vicente Pérez-García
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
5
|
Yang H, Miao H, Yin M, Wang Y, Zhao D, Yang M, Zou J, Zhang W, Zhang L, Liu C, Wang Y, Wang Z, Yu Y, Wei D. The difference in early trimester fetal growth between singletons after frozen embryo transfer and fresh embryo transfer. AJOG GLOBAL REPORTS 2024; 4:100334. [PMID: 38584796 PMCID: PMC10998200 DOI: 10.1016/j.xagr.2024.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Frozen embryo transfer resulted in a higher birthweight and an increased risk of macrosomia than fresh embryo transfer. However, the mechanism was still unclear. When the impact of frozen embryo transfer on fetal growth began was unknown. Crown-rump length at 11-13 weeks had been regarded as a good indicator of fetal growth in the first trimester and had been used for gestational age calculation in women with uncertain last menstrual periods. OBJECTIVE To evaluate the association between frozen embryo transfer and early fetal growth, particularly the crown-rump length, then fresh embryo transfer. The secondary objective was to investigate the potential correlation between crown-rump length and birthweight. STUDY DESIGN This was a retrospective cohort study conducted at the Reproductive Medical Center of Shandong University. A total of 4949 patients who obtained singleton pregnancy after frozen embryo transfer and 1793 patients who got singleton pregnancy after fresh embryo transfer between January 1, 2017 and December 31, 2022 were included. The primary outcome was the crown-rump length measured via ultrasound at 11-13 weeks gestation. The secondary outcomes were perinatal outcomes, including birthweight and the risk of large for gestational age, small for gestational age, macrosomia, low birthweight, and premature delivery. Multivariable linear regression models were used to adjust for potential confounders of crown-rump length. RESULTS A total of 6742 live singleton births after frozen embryo transfer or fresh embryo transfer were included in this study. In the univariable analysis, the frozen embryo transfer group had a larger crown-rump length (5.75±0.53 cm vs 5.57±0.48 cm, P<.001) and an increased risk of larger-than-expected crown-rump length (13.5% vs11.2%, P=.013) than the fresh embryo transfer group. After adjusting for confounders in multivariable linear regression models, frozen embryo transfer was still associated with a larger crown-rump length (regression coefficient, 3.809 [95% confidence intervals, 3.621-3.997], P<.001). When subgrouped by fetal gender, the crown-rump length of the frozen embryo transfer group was larger than the fresh embryo transfer group in both male and female fetuses. In addition, the crown-rump length was consistently larger in the frozen embryo transfer group than the fresh embryo transfer group in subgroups of the peak estradiol levels. The comparisons among different crown-rump length groups showed that smaller-than-expected crown-rump length was associated with increased risks of small for gestational age (6.3% vs 3.0%, P<.001) and preterm delivery (9.6% vs 6.7%, P=.004) than normal crown-rump length. CONCLUSION Frozen embryo transfer was associated with a larger crown-rump length than fresh embryo transfer, suggesting that the effect of frozen embryo transfer on fetal growth may begin in the early trimester. Suboptimal fetal growth in the first trimester may be associated with low birthweight and premature delivery.
Collapse
Affiliation(s)
- Huiming Yang
- Center for Reproductive Medicine, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Medical Integration and Practice Center, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, and Wei)
| | - Haozhe Miao
- Center for Reproductive Medicine, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Medical Integration and Practice Center, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, and Wei)
| | - Mengfei Yin
- Center for Reproductive Medicine, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Medical Integration and Practice Center, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, and Wei)
| | - Yixuan Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Medical Integration and Practice Center, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, and Wei)
| | - Dingying Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Medical Integration and Practice Center, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, and Wei)
| | - Min Yang
- Center for Reproductive Medicine, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Medical Integration and Practice Center, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, and Wei)
| | - Jialin Zou
- Center for Reproductive Medicine, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Medical Integration and Practice Center, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, and Wei)
| | - Wenwen Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Medical Integration and Practice Center, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, and Wei)
| | - Lingling Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Medical Integration and Practice Center, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, and Wei)
| | - Chendan Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Medical Integration and Practice Center, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, and Wei)
| | - Yue Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Medical Integration and Practice Center, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, and Wei)
| | - Ze Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
| | - Yunhai Yu
- Department of Obstetrics and Gynecology, Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China (Dr Yu)
| | - Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, Z Wang, and Wei)
- Medical Integration and Practice Center, Shandong University, Jinan, China (Drs H Yang, Miao, Yin, Yi Wang, Zhao, M Yang, Zou, W Zhang, L Zhang, Liu, Yu Wang, and Wei)
| |
Collapse
|
6
|
Shi JX, Yang L, Gan J, Gu WW, Gu Y, Shi Y, Jiang HY, Xu HR, Yang SH, Zhang X, Wang J. MiR-3074-5p Regulates Trophoblasts Function via EIF2S1/GDF15 Pathway in Recurrent Miscarriage. Reprod Sci 2024; 31:1290-1302. [PMID: 38151653 DOI: 10.1007/s43032-023-01436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Dysfunction of extravillous trophoblasts (EVTs) might cause early pregnancy failure by interfering with embryo implantation and/or placentation. We previously reported that the villus miR-3074-5p expression level was increased, whereas the peripheral level of GDF15, a predict target gene of miR-3074-5p, was decreased in recurrent miscarriages (RM) patients, and miR-3074-5p could enhance apoptosis but reduce invasion of human extravillous trophoblast cells (EVTs). The aim of this study was to further explore roles of miR-3074-5p/GDF15 pathway in regulation of EVTs function. It was validated that GDF15 was not the direct target of miR-3074-5p, whereas EIF2S1, an upstream regulator of GDF15 maturation and secretion, was the direct target of miR-3074-5p. The villus expression levels of GDF15 and EIF2S1 were significantly decreased in RM patients. Knockdown of GDF15 expression presented inhibitory effects on proliferation, migration, and invasion of HTR8/SVneo cells. Up-regulated miR-3074-5p expression led to the significant decreased GDF15 expression in HTR8/SVneo cells, and this effect could be efficiently reversed by the overexpression of EIF2S1. Meanwhile, the suppressive effects of miR-3074-5p on proliferation, migration, and invasion of HTR8/SVneo cells could be intercepted by the treatment of recombinant human GDF15 protein. Collectively, these data suggested that miR-3074-5p could reduce GDF15 production via targeting inhibition of EIF2S1 expression, and the deficiency in GDF15 function might lead to the early pregnancy loss by attenuating proliferation and invasion of EVTs.
Collapse
Affiliation(s)
- Jia-Xin Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Long Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Jie Gan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Wen-Wen Gu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Yan Gu
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yan Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Han-Yu Jiang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Hao-Ran Xu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Shu-Han Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Xuan Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China.
| | - Jian Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China.
| |
Collapse
|
7
|
Topbas Selcuki NF, Yalcin Bahat P, Deniz N, Kaya C, Bagci K, Oral E. Relationship Between Recurrent Pregnancy Loss With Unknown Etiology and Endoplasmic Reticulum Stress. Cureus 2024; 16:e60899. [PMID: 38910737 PMCID: PMC11193145 DOI: 10.7759/cureus.60899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
INTRODUCTION Recurrent pregnancy loss (RPL) is characterized by consecutive pregnancy losses before 20 weeks of gestation, with evolving definitions necessitating adjustments to prevent delays in couples' evaluation. Limited etiological data on RPL prompts comprehensive evaluations, often yielding no pathological findings. Emerging research implicates endoplasmic reticulum (ER) stress in various reproductive processes, yet its association with RPL remains understudied. AIM To evaluate ER stress in patients with RPL with unknown etiology by determining the plasma concentration of X-box binding protein-1 (XBP-1). MATERIALS AND METHODS A total of 45 patients aged 18 to 35 years with at least two pregnancy losses with unknown etiology before the completion of 20 weeks of gestation between March 2020 and September 2020 were included in the study group. The control group consisted of 45 healthy women with at least two previous live births, no pregnancy-associated complications, and no history of pregnancy loss or infertility. The XBP-1 levels were determined from serum samples. Statistical analyses assessed differences between groups, and receiver operating characteristic (ROC) curve analysis determined XBP-1's predictive value for RPL. RESULTS The mean XBP-1 concentration in the RPL group was significantly higher than in the control group (p < 0.001). The mean values were 2243.65 ± 9425.27 pg/mL and 1196.32 ± 4378.81 pg/mL, respectively. The use of XBP-1 levels for the prediction of RPL was evaluated. In an ROC curve analysis, the area under the curve was found to be 87% (95% CI: 80% to 94.8%). The specificity was 78%, the sensitivity was 88%, the positive likelihood ratio (LR) was 4, the negative LR was 0.15, the positive predictive value was 80%, and the negative predictive value was 87% for the cut-off XBP-1 level at 1364.68 pg/mL. CONCLUSION This study highlights the potential role of ER stress in RPL and proposes XBP-1 as a predictive biomarker for pregnancy loss. Understanding ER stress mechanisms in RPL could inform diagnostic and therapeutic strategies. Further research is essential to validate these findings and explore their clinical implications.
Collapse
Affiliation(s)
- Nura F Topbas Selcuki
- Obstetrics and Gynecology, University of Health Sciences, Istanbul Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, TUR
| | - Pinar Yalcin Bahat
- Obstetrics and Gynecology, Kanuni Sultan Süleyman Training and Research Hospital, Istanbul, TUR
| | - Necip Deniz
- Obstetrics and Gynecology, Sanko University Hospital, Gaziantep, TUR
| | - Cihan Kaya
- Obstetrics and Gynecology, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, TUR
| | - Kubra Bagci
- Obstetrics and Gynecology, Yeni Yüzyıl University Gaziosmanpaşa Hospital, Istanbul, TUR
| | - Engin Oral
- Obstetrics and Gynecology, Biruni University, Istanbul, TUR
| |
Collapse
|
8
|
Huang D, Li Y, Han J, Zuo H, Liu H, Chen Z. Xbp1 promotes odontoblastic differentiation through modulating mitochondrial homeostasis. FASEB J 2024; 38:e23600. [PMID: 38572599 DOI: 10.1096/fj.202400186r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Odontoblast differentiation depends on the orderly recruitment of transcriptional factors (TFs) in the transcriptional regulatory network. The depletion of crucial TFs disturbs dynamic alteration of the chromatin landscape and gene expression profile, leading to developmental defects. Our previous studies have revealed that the basic leucine zipper (bZIP) TF family is crucial in odontoblastic differentiation, but the function of bZIP TF family member XBP1 is still unknown. Here, we showed the stage-specific expression patterns of the spliced form Xbp1s during tooth development. Elevated Xbp1 expression and nuclear translocation of XBP1S in mesenchymal stem cells (MSCs) were induced by differentiation medium in vitro. Diminution of Xbp1 expression impaired the odontogenic differentiation potential of MSCs. The further integration of ATAC-seq and RNA-seq identified Hspa9 as a direct downstream target, an essential mitochondrial chaperonin gene that modulated mitochondrial homeostasis. The amelioration of mitochondrial dysfunction rescued the impaired odontogenic differentiation potential of MSCs caused by the diminution of Xbp1. Furthermore, the overexpression of Hspa9 rescued Xbp1-deficient defects in odontoblastic differentiation. Our study illustrates the crucial role of Xbp1 in odontoblastic differentiation via modulating mitochondrial homeostasis and brings evidence to the therapy of mitochondrial diseases caused by genetic defects.
Collapse
Affiliation(s)
- Delan Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiahao Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huanyan Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School of Stomatology, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Zhong J, Li J, Burton GJ, Koistinen H, Cheung KW, Ng EHY, Yao Y, Yeung WSB, Lee CL, Chiu PCN. The functional roles of protein glycosylation in human maternal-fetal crosstalk. Hum Reprod Update 2024; 30:81-108. [PMID: 37699855 DOI: 10.1093/humupd/dmad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The establishment of maternal-fetal crosstalk is vital to a successful pregnancy. Glycosylation is a post-translational modification in which glycans (monosaccharide chains) are attached to an organic molecule. Glycans are involved in many physiological and pathological processes. Human endometrial epithelium, endometrial gland secretions, decidual immune cells, and trophoblasts are highly enriched with glycoconjugates and glycan-binding molecules important for a healthy pregnancy. Aberrant glycosylation in the placenta and uterus has been linked to repeated implantation failure and various pregnancy complications, but there is no recent review summarizing the functional roles of glycosylation at the maternal-fetal interface and their associations with pathological processes. OBJECTIVE AND RATIONALE This review aims to summarize recent findings on glycosylation, glycosyltransferases, and glycan-binding receptors at the maternal-fetal interface, and their involvement in regulating the biology and pathological conditions associated with endometrial receptivity, placentation and maternal-fetal immunotolerance. Current knowledge limitations and future insights into the study of glycobiology in reproduction are discussed. SEARCH METHODS A comprehensive PubMed search was conducted using the following keywords: glycosylation, glycosyltransferases, glycan-binding proteins, endometrium, trophoblasts, maternal-fetal immunotolerance, siglec, selectin, galectin, repeated implantation failure, early pregnancy loss, recurrent pregnancy loss, preeclampsia, and fetal growth restriction. Relevant reports published between 1980 and 2023 and studies related to these reports were retrieved and reviewed. Only publications written in English were included. OUTCOMES The application of ultrasensitive mass spectrometry tools and lectin-based glycan profiling has enabled characterization of glycans present at the maternal-fetal interface and in maternal serum. The endometrial luminal epithelium is covered with highly glycosylated mucin that regulates blastocyst adhesion during implantation. In the placenta, fucose and sialic acid residues are abundantly presented on the villous membrane and are essential for proper placentation and establishment of maternal-fetal immunotolerance. Glycan-binding receptors, including selectins, sialic-acid-binding immunoglobulin-like lectins (siglecs) and galectins, also modulate implantation, trophoblast functions and maternal-fetal immunotolerance. Aberrant glycosylation is associated with repeated implantation failure, early pregnancy loss and various pregnancy complications. The current limitation in the field is that most glycobiological research relies on association studies, with few studies revealing the specific functions of glycans. Technological advancements in analytic, synthetic and functional glycobiology have laid the groundwork for further exploration of glycans in reproductive biology under both physiological and pathological conditions. WIDER IMPLICATIONS A deep understanding of the functions of glycan structures would provide insights into the molecular mechanisms underlying their involvement in the physiological and pathological regulation of early pregnancy. Glycans may also potentially serve as novel early predictive markers and therapeutic targets for repeated implantation failure, pregnancy loss, and other pregnancy complications.
Collapse
Affiliation(s)
- Jiangming Zhong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
10
|
Zhang H, Zha X, Zheng Y, Liu X, Elsabagh M, Wang H, Jiang H, Wang M. Mechanisms underlying the role of endoplasmic reticulum stress in the placental injury and fetal growth restriction in an ovine gestation model. J Anim Sci Biotechnol 2023; 14:117. [PMID: 37691111 PMCID: PMC10494380 DOI: 10.1186/s40104-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Exposure to bisphenol A (BPA), an environmental pollutant known for its endocrine-disrupting properties, during gestation has been reported to increase the risk of fetal growth restriction (FGR) in an ovine model of pregnancy. We hypothesized that the FGR results from the BPA-induced insufficiency and barrier dysfunction of the placenta, oxidative stress, inflammatory responses, autophagy and endoplasmic reticulum stress (ERS). However, precise mechanisms underlying the BPA-induced placental dysfunction, and subsequently, FGR, as well as the potential involvement of placental ERS in these complications, remain to be investigated. METHODS In vivo experiment, 16 twin-pregnant (from d 40 to 130 of gestation) Hu ewes were randomly distributed into two groups (8 ewes each). One group served as a control and received corn oil once a day, whereas the other group received BPA (5 mg/kg/d as a subcutaneous injection). In vitro study, ovine trophoblast cells (OTCs) were exposed to 4 treatments, 6 replicates each. The OTCs were treated with 400 μmol/L BPA, 400 μmol/L BPA + 0.5 μg/mL tunicamycin (Tm; ERS activator), 400 μmol/L BPA + 1 μmol/L 4-phenyl butyric acid (4-PBA; ERS antagonist) and DMEM/F12 complete medium (control), for 24 h. RESULTS In vivo experiments, pregnant Hu ewes receiving the BPA from 40 to 130 days of pregnancy experienced a decrease in placental efficiency, progesterone (P4) level and fetal weight, and an increase in placental estrogen (E2) level, together with barrier dysfunctions, OS, inflammatory responses, autophagy and ERS in type A cotyledons. In vitro experiment, the OTCs exposed to BPA for 24 h showed an increase in the E2 level and related protein and gene expressions of autophagy, ERS, pro-apoptosis and inflammatory response, and a decrease in the P4 level and the related protein and gene expressions of antioxidant, anti-apoptosis and barrier function. Moreover, treating the OTCs with Tm aggravated BPA-induced dysfunction of barrier and endocrine (the increased E2 level and decreased P4 level), OS, inflammatory responses, autophagy, and ERS. However, treating the OTCs with 4-PBA reversed the counteracted effects of Tm mentioned above. CONCLUSIONS In general, the results reveal that BPA exposure can cause ERS in the ovine placenta and OTCs, and ERS induction might aggravate BPA-induced dysfunction of the placental barrier and endocrine, OS, inflammatory responses, and autophagy. These data offer novel mechanistic insights into whether ERS is involved in BPA-mediated placental dysfunction and fetal development.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Honghua Jiang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, 832000, China.
| |
Collapse
|
11
|
Menkhorst E, Santos LL, Zhou W, Yang G, Winship AL, Rainczuk KE, Nguyen P, Zhang JG, Moore P, Williams M, Lê Cao KA, Mansell A, Dimitriadis E. IL11 activates the placental inflammasome to drive preeclampsia. Front Immunol 2023; 14:1175926. [PMID: 37292200 PMCID: PMC10244672 DOI: 10.3389/fimmu.2023.1175926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Preeclampsia is a life-threatening disorder of pregnancy unique to humans. Interleukin (IL)11 is elevated in serum from pregnancies that subsequently develop early-onset preeclampsia and pharmacological elevation of IL11 in pregnant mice causes the development of early-onset preeclampsia-like features (hypertension, proteinuria, and fetal growth restriction). However, the mechanism by which IL11 drives preeclampsia is unknown. Method Pregnant mice were administered PEGylated (PEG)IL11 or control (PEG) from embryonic day (E)10-16 and the effect on inflammasome activation, systolic blood pressure (during gestation and at 50/90 days post-natal), placental development, and fetal/post-natal pup growth measured. RNAseq analysis was performed on E13 placenta. Human 1st trimester placental villi were treated with IL11 and the effect on inflammasome activation and pyroptosis identified by immunohistochemistry and ELISA. Result PEGIL11 activated the placental inflammasome causing inflammation, fibrosis, and acute and chronic hypertension in wild-type mice. Global and placental-specific loss of the inflammasome adaptor protein Asc and global loss of the Nlrp3 sensor protein prevented PEGIL11-induced fibrosis and hypertension in mice but did not prevent PEGIL11-induced fetal growth restriction or stillbirths. RNA-sequencing and histology identified that PEGIL11 inhibited trophoblast differentiation towards spongiotrophoblast and syncytiotrophoblast lineages in mice and extravillous trophoblast lineages in human placental villi. Discussion Inhibition of ASC/NLRP3 inflammasome activity could prevent IL11-induced inflammation and fibrosis in various disease states including preeclampsia.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Leilani L. Santos
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Guannan Yang
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Amy L. Winship
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katarzyna E. Rainczuk
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Philana Nguyen
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Jian-Guo Zhang
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Paddy Moore
- Abortion and Contraception, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Michelle Williams
- Biomedical Animal Facility, The University of Melbourne, Parkville, VIC, Australia
| | - Kim-Anh Lê Cao
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Sapehia D, Mahajan A, Srinivasan R, Kaur J. Pre-natal dietary imbalance of folic acid and vitamin B12 deficiency adversely impacts placental development and fetal growth. Placenta 2023; 132:44-54. [PMID: 36657272 DOI: 10.1016/j.placenta.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/15/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The common practice of supplementing folic acid during pregnancy and the absence of such guidelines for vitamin B12 lead to an imbalance of these vitamins, especially in developing countries like India, where many women are vitamin B12 deficient. METHODS The present study was designed to explore the effect of low vitamin B12 in combination with different levels of folic acid in the parental diet on fetal growth parameters and maternal reproductive performance in a transgenerational manner. The reversibility of these effects was studied by shifting the mice to a regular diet in the F1 generation in the case of transient groups and continued on the same diet in the sustained groups after the dietary exposure in the F0 generation. RESULTS Vitamin B12 deficiency and different levels of folic acid resulted in the decreased placental and fetal weight of the F1 generation. Surprisingly, a decreased placental weight, low fetal weight, and reduced crown-rump length and head circumference were observed in F2 fetuses of vitamin B12 deficient with folate over-supplemented (BDFO) transient group, i.e. when F1 mice were shifted to normal diet conditions. Reduced follicles in ovaries and alteration in placental pathology in all the F0 groups and BDFO of the F1 transient group were also seen. DISCUSSION Overall, the study revealed that dietary imbalance of vitamin B12 and folic acid, particularly B12 deficiency with over-supplemented folic acid, negatively affects placental and fetal development and maternal reproductive performance. Such effects are passed on to the next generation too.
Collapse
Affiliation(s)
| | | | - Radhika Srinivasan
- Department Cytology & Gynaecological Pathology, PGIMER, Chandigarh, India.
| | - Jyotdeep Kaur
- Department of Biochemistry, PGIMER, Chandigarh, India.
| |
Collapse
|
13
|
Yung HW, Zhao X, Glover L, Burrin C, Pang PC, Jones CJ, Gill C, Duhig K, Olovsson M, Chappell LC, Haslam SM, Dell A, Burton GJ, Charnock-Jones DS. Perturbation of placental protein glycosylation by endoplasmic reticulum stress promotes maladaptation of maternal hepatic glucose metabolism. iScience 2023; 26:105911. [PMID: 36660474 PMCID: PMC9843443 DOI: 10.1016/j.isci.2022.105911] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Placental hormones orchestrate maternal metabolic adaptations to support pregnancy. We hypothesized that placental ER stress, which characterizes early-onset pre-eclampsia (ePE), compromises glycosylation, reducing hormone bioactivity and these maladaptations predispose the mother to metabolic disease in later life. We demonstrate ER stress reduces the complexity and sialylation of trophoblast protein N-glycosylation, while aberrant glycosylation of vascular endothelial growth factor reduced its bioactivity. ER stress alters the expression of 66 of the 146 genes annotated with "protein glycosylation" and reduces the expression of sialyltransferases. Using mouse placental explants, we show ER stress promotes the secretion of mis-glycosylated glycoproteins. Pregnant mice carrying placentas with junctional zone-specific ER stress have reduced blood glucose, anomalous hepatic glucose metabolism, increased cellular stress and elevated DNA methyltransferase 3A. Using pregnancy-specific glycoproteins as a readout, we also demonstrate aberrant glycosylation of placental proteins in women with ePE, thus providing a mechanistic link between ePE and subsequent maternal metabolic disorders.
Collapse
Affiliation(s)
- Hong Wa Yung
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Xiaohui Zhao
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Luke Glover
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Charlotte Burrin
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Poh-Choo Pang
- Department of Life Sciences, Imperial College London, London, UK
| | - Carolyn J.P. Jones
- Maternal and Fetal Health Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Carolyn Gill
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Kate Duhig
- Maternal and Fetal Health Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Matts Olovsson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Lucy C. Chappell
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Graham J. Burton
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - D. Stephen Charnock-Jones
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge CB2 0SW, UK
| |
Collapse
|
14
|
Ca 2+-Activated K + Channels and the Regulation of the Uteroplacental Circulation. Int J Mol Sci 2023; 24:ijms24021349. [PMID: 36674858 PMCID: PMC9867535 DOI: 10.3390/ijms24021349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Adequate uteroplacental blood supply is essential for the development and growth of the placenta and fetus during pregnancy. Aberrant uteroplacental perfusion is associated with pregnancy complications such as preeclampsia, fetal growth restriction (FGR), and gestational diabetes. The regulation of uteroplacental blood flow is thus vital to the well-being of the mother and fetus. Ca2+-activated K+ (KCa) channels of small, intermediate, and large conductance participate in setting and regulating the resting membrane potential of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) and play a critical role in controlling vascular tone and blood pressure. KCa channels are important mediators of estrogen/pregnancy-induced adaptive changes in the uteroplacental circulation. Activation of the channels hyperpolarizes uteroplacental VSMCs/ECs, leading to attenuated vascular tone, blunted vasopressor responses, and increased uteroplacental blood flow. However, the regulation of uteroplacental vascular function by KCa channels is compromised in pregnancy complications. This review intends to provide a comprehensive overview of roles of KCa channels in the regulation of the uteroplacental circulation under physiological and pathophysiological conditions.
Collapse
|
15
|
Ni W, Gao H, Wu B, Zhao J, Sun J, Song Y, Sun Y, Yang H. Gestational Exposure to Cyfluthrin through Endoplasmic Reticulum (ER) Stress-Mediated PERK Signaling Pathway Impairs Placental Development. TOXICS 2022; 10:733. [PMID: 36548566 PMCID: PMC9783295 DOI: 10.3390/toxics10120733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Cyfluthrin, a typical type II pyrethroid pesticide, is widely used in house hygiene and agricultural pest control. Several epidemiological investigations have found that maternal pyrethroid exposure is connected to adverse pregnancy outcomes. However, the underlying mechanisms remain to be elucidated. Thus, we evaluated the effect of cyfluthrin exposure during pregnancy on placenta development in vivo. In the current study, Pregnant SD rats were randomly divided into four groups and administered 6.25, 12.5, and 25 mg/kg body weight cyfluthrin or an equivalent volume of corn oil by gavage from GD0 to GD19. The results have shown that gestational exposure to cyfluthrin exerted no effect on the fetal birth defect, survival to PND4, or fetal resorption and death. However, live fetuses and implantation sites significantly decreased in the high-dose cyfluthrin-treated group. Moreover, a significant reduction in placenta weight and diameter was observed in rats. Correspondingly, the fetal weight and crown-rump length from dams exposed to cyfluthrin were reduced. Cyfluthrin-treat groups, the total area of the placenta, spongiotrophoblast area, and labyrinth area had abnormal changes. Meanwhile, the area of blood sinusoid and CD34-positive blood vessel numbers in the placenta were considerably reduced, as well as abnormal expression of placental pro-angiogenic and anti-angiogenic factors in dams exposed to cyfluthrin. Further observation by transmission electron microscopy revealed significant changes in the ultrastructure of the medium-dose and high-dose groups. Additional experiments showed gestational exposure to cyfluthrin inhibited proliferation and induced apoptosis of placentas, as decreased PCNA-positive cells and increased TUNEL-positive cells. Furthermore, western blot and qPCR analysis revealed that gestational exposure to medium-dose and high-dose cyfluthrin increased the expression of GRP78, and three downstream mRNA and proteins (p-eIF2α, ATF4, and CHOP) of the PERK signaling, indicating that endoplasmic reticulum (ER) stress-mediated PERK/eIF2α/ATF4/CHOP signaling pathway in rat placentas was activated. Our study demonstrated that gestational exposure to cyfluthrin leads to placental developmental disorder, which might be associated with ER stress-mediated PERK signaling pathway.
Collapse
Affiliation(s)
- Wensi Ni
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750001, China
| | - Haoxuan Gao
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750001, China
| | - Bing Wu
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750001, China
| | - Ji Zhao
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750001, China
| | - Jian Sun
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750001, China
| | - Yanan Song
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750001, China
| | - Yiping Sun
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750001, China
| | - Huifang Yang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750001, China
| |
Collapse
|
16
|
Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. Semin Cell Dev Biol 2022; 131:66-77. [PMID: 35393235 DOI: 10.1016/j.semcdb.2022.03.039] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
The placenta is a transient fetal organ that plays a critical role in the health and wellbeing of both the fetus and its mother. Functionally, the placenta sustains the growth of the fetus as it facilitates delivery of oxygen and nutrients and removal of waste products. Not surprisingly, defective early placental development is the primary cause of common disorders of pregnancy, including recurrent miscarriage, fetal growth restriction, pre-eclampsia and stillbirth. Adverse pregnancy conditions will also affect the life-long health of the fetus via developmental programming[1]. Despite its critical importance in reproductive success and life-long health, our understanding of placental development is not extensive, largely due to ethical limitations to studying early or chronological placental development, lack of long-term in vitro models, or comparative animal models. In this review, we examine current knowledge of early human placental development, discuss the critical role of the maternal endometrium and of the fetal-maternal dialogue in pregnancy success, and we explore the latest models of trophoblast and endometrial stem cells. In addition, we discuss the role of oxygen in placental formation and function, how nutrient delivery is mediated during the periods of histotrophic nutrition (uptake of uterine secretions) and haemotrophic nutrition (exchange between the maternal and fetal circulations), and how placental endocrine function facilitates fetal growth and development.
Collapse
Affiliation(s)
- Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
17
|
Ragusa A, Matta M, Cristiano L, Matassa R, Battaglione E, Svelato A, De Luca C, D’Avino S, Gulotta A, Rongioletti MCA, Catalano P, Santacroce C, Notarstefano V, Carnevali O, Giorgini E, Vizza E, Familiari G, Nottola SA. Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811593. [PMID: 36141864 PMCID: PMC9517680 DOI: 10.3390/ijerph191811593] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 05/04/2023]
Abstract
Microplastics (MPs) are defined as plastic particles smaller than 5 mm. They have been found almost everywhere they have been searched for and recent discoveries have also demonstrated their presence in human placenta, blood, meconium, and breastmilk, but their location and toxicity to humans have not been reported to date. The aim of this study was twofold: 1. To locate MPs within the intra/extracellular compartment in human placenta. 2. To understand whether their presence and location are associated with possible structural changes of cell organelles. Using variable pressure scanning electron microscopy and transmission electron microscopy, MPs have been localized in ten human placentas. In this study, we demonstrated for the first time the presence and localization in the cellular compartment of fragments compatible with MPs in the human placenta and we hypothesized a possible correlation between their presence and important ultrastructural alterations of some intracytoplasmic organelles (mitochondria and endoplasmic reticulum). These alterations have never been reported in normal healthy term pregnancies until today. They could be the result of a prolonged attempt to remove and destroy the plastic particles inside the placental tissue. The presence of virtually indestructible particles in term human placenta could contribute to the activation of pathological traits, such as oxidative stress, apoptosis, and inflammation, characteristic of metabolic disorders underlying obesity, diabetes, and metabolic syndrome and partially accounting for the recent epidemic of non-communicable diseases.
Collapse
Affiliation(s)
- Antonio Ragusa
- Department of Obstetrics and Gynecology, Università Campus Bio Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Maria Matta
- Department of Clinico-Surgical, Diagnostic and Pediatric Sciences, Faculty of Medicine and Surgery, University of Pavia, Via Alessandro Brambilla, 74, 27100 Pavia, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Loc. Coppito, 67010 Coppito, Italy
- Correspondence:
| | - Roberto Matassa
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, Via A. Borelli, 50, 00161 Rome, Italy
| | - Ezio Battaglione
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, Via A. Borelli, 50, 00161 Rome, Italy
| | - Alessandro Svelato
- Department of Gynecology and Obstetrics of “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina of Rome, Via di Ponte Quattro Capi, 39, 00186 Rome, Italy
| | - Caterina De Luca
- Department of Gynecology and Obstetrics of “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina of Rome, Via di Ponte Quattro Capi, 39, 00186 Rome, Italy
| | - Sara D’Avino
- Department of Gynecology and Obstetrics of “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina of Rome, Via di Ponte Quattro Capi, 39, 00186 Rome, Italy
| | - Alessandra Gulotta
- Department of Gynecology and Obstetrics of “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina of Rome, Via di Ponte Quattro Capi, 39, 00186 Rome, Italy
| | - Mauro Ciro Antonio Rongioletti
- Department of Pathological Anatomy of “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina of Rome, Via di Ponte Quattro Capi, 39, 00186 Rome, Italy
| | - Piera Catalano
- Department of Pathological Anatomy of “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina of Rome, Via di Ponte Quattro Capi, 39, 00186 Rome, Italy
| | - Criselda Santacroce
- Department of Pathological Anatomy of “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina of Rome, Via di Ponte Quattro Capi, 39, 00186 Rome, Italy
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Polo Montedago Via Brecce Bianche, 60131 Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Polo Montedago Via Brecce Bianche, 60131 Ancona, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Polo Montedago Via Brecce Bianche, 60131 Ancona, Italy
| | - Enrico Vizza
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, Via A. Borelli, 50, 00161 Rome, Italy
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, Via A. Borelli, 50, 00161 Rome, Italy
| |
Collapse
|
18
|
Capatina N, Burton GJ, Yung HW. Elevated homocysteine activates unfolded protein responses and causes aberrant trophoblast differentiation and mouse blastocyst development. Physiol Rep 2022; 10:e15467. [PMID: 36117391 PMCID: PMC9483615 DOI: 10.14814/phy2.15467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023] Open
Abstract
Hyperhomocysteinemia may arise from folate/vitamin B12 deficiency, genetic polymorphisms, kidney disease, or hypothyroidism. It is associated with an increased risk of early pregnancy loss and placenta-related complications of pregnancy, including pre-eclampsia and fetal growth restriction. While the majority of studies of hyperhomocysteinemia focus on epigenetic changes secondary to metabolic disruption, the effects of homocysteine toxicity on placental development remain unexplored. Here, we investigated the influence of hyperhomocysteinemia on early blastocyst development and trophoblast differentiation. Exposure of cultured blastocysts to high homocysteine levels reduces cell number in the trophectoderm layer, most likely through increased apoptosis. Homocysteine also promotes differentiation of a trophoblast stem cell line. Both effects diminish the stem cell pool, and are mediated in an endoplasmic reticulum (ER) unfolded protein response (UPRER )-dependent manner. Targeted alleviation of UPRER may therefore provide a new therapeutic intervention to improve pregnancy outcome in women with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Nadejda Capatina
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Graham J. Burton
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Hong Wa Yung
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
- Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
19
|
Pasha M, Kirschenman R, Wooldridge A, Spaans F, Cooke CLM, Davidge ST. The Effect of Tauroursodeoxycholic Acid (TUDCA) Treatment on Pregnancy Outcomes and Vascular Function in a Rat Model of Advanced Maternal Age. Antioxidants (Basel) 2022; 11:1275. [PMID: 35883766 PMCID: PMC9312116 DOI: 10.3390/antiox11071275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Advanced maternal age (≥35 years) increases the risk of vascular complications in pregnancy that can result in fetal growth restriction and preeclampsia. Endoplasmic reticulum (ER) stress has been linked to adverse pregnancy outcomes in these complicated pregnancies. However, the role of ER stress in advanced maternal age is not known. We hypothesize that increased ER stress contributes to altered vascular function and poor pregnancy outcomes, and that treatment with the ER-stress inhibitor TUDCA will improve pregnancy outcomes. First, young and aged non-pregnant/pregnant rats were used to assess ER stress markers in mesenteric arteries; mesenteric artery phospho-eIF2α and CHOP expression were increased in aged dams compared to young dams. In a second study, young and aged control and TUDCA-treated dams were studied on gestational day (GD) 20 (term = 22 days). TUDCA treatment was provided via the drinking water throughout pregnancy (GD0-GD20; calculated dose of 150 mg/kg/day TUDCA). ER stress markers were quantified in mesenteric arteries, blood pressure was measured, pregnancy outcomes were recorded, mesenteric and main uterine arteries were isolated and vascular function was assessed by wire myography. Aged dams had increased phospho-eIF2α and CHOP expression, reduced fetal weight, reduced litter size, and impaired uterine artery relaxation. In the aged dams, TUDCA treatment reduced phospho-eIF2α and CHOP expression, reduced blood pressure, improved fetal body weight, and tended to improve uterine artery function compared to control-treated aged dams. In conclusion, our data illustrate the role of ER stress, as well as TUDCA as a potential therapeutic that may benefit pregnancy outcomes in advanced maternal age.
Collapse
Affiliation(s)
- Mazhar Pasha
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; (R.K.); (A.W.); (F.S.); (C.-L.M.C.)
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; (R.K.); (A.W.); (F.S.); (C.-L.M.C.)
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Amy Wooldridge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; (R.K.); (A.W.); (F.S.); (C.-L.M.C.)
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; (R.K.); (A.W.); (F.S.); (C.-L.M.C.)
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Christy-Lynn M. Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; (R.K.); (A.W.); (F.S.); (C.-L.M.C.)
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Sandra T. Davidge
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; (R.K.); (A.W.); (F.S.); (C.-L.M.C.)
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| |
Collapse
|
20
|
Zhang H, Liu X, Zheng Y, Zhang Y, Loor JJ, Wang H, Wang M. Dietary N-carbamylglutamate or L-arginine improves fetal intestinal amino acid profiles during intrauterine growth restriction in undernourished ewes. ANIMAL NUTRITION 2022; 8:341-349. [PMID: 35059512 PMCID: PMC8740449 DOI: 10.1016/j.aninu.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 01/29/2023]
Abstract
Our previous studies demonstrated that prenatal in utero growth restriction impairs postnatal intestinal function. Thus, improving postpartal intestinal absorption capacity and growth by manipulating the maternal diet prepartum is of importance. This work was conducted to determine whether supplementation of N-carbamylglutamate (NCG) or rumen-protected L-arginine (RP-Arg) increased fetal intestinal amino acid (AA) profiles in intrauterine growth retardation (IUGR) fetuses. On d 35 of gestation, Hu ewes (n = 32) carrying twin fetuses were randomized into 4 groups (8 ewes and 16 fetuses in each group), where diets were as follows: 100% of nutrient requirements recommended by National Research Council (NRC, 2007) (CON); 50% of nutrient requirements recommended by NRC (2007) (RES); RES + RP-Arg (20 g/d), (RES + ARG); and RES + NCG (5 g/d), (RES + NCG). On d 110 of gestation, both fetal and maternal tissues were collected and weighed. Compared with RES, solute carrier family 1, member 5 (SLC1A5) was upregulated (P < 0.05) within fetal jejunum, duodenum and ileum when supplementing NCG and RP-Arg. Relative to RES, RP-Arg or NCG supplementation to RES resulted in upregulation (P < 0.05) of peptide transporter 1 protein abundance within the fetal ileum. NCG or RP-Arg supplementation to RES also upregulated phosphorylated mechanistic target of rapamycin (pmTOR)-to-mTOR ratio in the fetal ileum induced by IUGR (P < 0.05). As a result, during IUGR, supplementation of Arg or NCG affected intestinal AA profiles in the fetus in part through controlling mTOR signal transduction as well as AA and peptide transport. Future studies should be conducted to understand the role (if any) of the placenta on the improvement of growth and AA profiles independent of the fetal intestine. This would help demonstrate the relative contribution of intestinal uptake in fetal life.
Collapse
|
21
|
LncRNAs LCETRL3 and LCETRL4 at chromosome 4q12 diminish EGFR-TKIs efficiency in NSCLC through stabilizing TDP43 and EIF2S1. Signal Transduct Target Ther 2022; 7:30. [PMID: 35095099 PMCID: PMC8801511 DOI: 10.1038/s41392-021-00847-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/13/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are effective targeted therapy drugs for advanced non-small cell lung cancer (NSCLC) patients carrying sensitized EGFR mutations. The rapid development of EGFR-TKIs resistance represents a major clinical challenge for managing NSCLC. The chromosome 4q12 is the first genome-wide association study (GWAS)-reported locus associated with progression-free survival (PFS) of NSCLC patients treated with EGFR-TKIs. However, the biological significance of the noncoding transcripts at 4q12 in NSCLC remains elusive. In the present study, we identified two 4q12 long noncoding RNAs (lncRNAs) LCETRL3 and LCETRL4 which could significantly dimmish EGFR-TKIs efficiency. In line with their oncogenic role, evidently higher LCETRL3 and LCETRL4 levels were observed in NSCLC tissues as compared with normal specimens. Importantly, lncRNA LCETRL3 can interact with oncoprotein TDP43 and inhibit ubiquitination and degradation of TDP43. Similarly, lncRNA LCETRL4 can bind and stabilize oncoprotein EIF2S1 through reducing ubiquitin-proteasome degradation of EIF2S1. In particular, elevated levels of LCETRL3 or LCETRL4 in NSCLC cells resulted in stabilization of TDP43 or EIF2S1, increased levels of NOTCH1 or phosphorylated PDK1, activated AKT signaling and, thus, EGFR-TKIs resistance. Taken together, our data revealed a novel model that integrates two lncRNAs transcribed from the 4q12 locus into the regulation of EGFR-TKIs resistance in NSCLC. These findings shed new light on the importance of functionally annotating lncRNAs in the GWAS loci and provided insights to declare novel druggable targets, i.e., lncRNAs, which may unlock the therapeutic potential of EGFR-TKIs resistant NSCLC in the clinic.
Collapse
|
22
|
Santos BR, dos Anjos Cordeiro JM, Santos LC, Barbosa EM, Mendonça LD, Santos EO, de Macedo IO, de Lavor MSL, Szawka RE, Serakides R, Silva JF. Kisspeptin treatment improves fetal-placental development and blocks placental oxidative damage caused by maternal hypothyroidism in an experimental rat model. Front Endocrinol (Lausanne) 2022; 13:908240. [PMID: 35966095 PMCID: PMC9365946 DOI: 10.3389/fendo.2022.908240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Maternal hypothyroidism is associated with fetal growth restriction, placental dysfunction, and reduced kisspeptin/Kiss1R at the maternal-fetal interface. Kisspeptin affects trophoblastic migration and has antioxidant and immunomodulatory activities. This study aimed to evaluate the therapeutic potential of kisspeptin in the fetal-placental dysfunction of hypothyroid Wistar rats. Hypothyroidism was induced by daily administration of propylthiouracil. Kisspeptin-10 (Kp-10) treatment was performed every other day or daily beginning on day 8 of gestation. Feto-placental development, placental histomorphometry, and expression levels of growth factors (VEGF, PLGF, IGF1, IGF2, and GLUT1), hormonal (Dio2) and inflammatory mediators (TNFα, IL10, and IL6), markers of hypoxia (HIF1α) and oxidative damage (8-OHdG), antioxidant enzymes (SOD1, Cat, and GPx1), and endoplasmic reticulum stress mediators (ATF4, GRP78, and CHOP) were evaluated on day 18 of gestation. Daily treatment with Kp-10 increased free T3 and T4 levels and improved fetal weight. Both treatments reestablished the glycogen cell population in the junctional zone. Daily treatment with Kp-10 increased the gene expression levels of Plgf, Igf1, and Glut1 in the placenta of hypothyroid animals, in addition to blocking the increase in 8-OHdG and increasing protein and/or mRNA expression levels of SOD1, Cat, and GPx1. Daily treatment with Kp-10 did not alter the higher protein expression levels of VEGF, HIF1α, IL10, GRP78, and CHOP caused by hypothyroidism in the junctional zone compared to control, nor the lower expression of Dio2 caused by hypothyroidism. However, in the labyrinth zone, this treatment restored the expression of VEGF and IL10 and reduced the GRP78 and CHOP immunostaining. These findings demonstrate that daily treatment with Kp-10 improves fetal development and placental morphology in hypothyroid rats, blocks placental oxidative damage, and increases the expression of growth factors and antioxidant enzymes in the placenta.
Collapse
Affiliation(s)
- Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Jeane Martinha dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Erikles Macedo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Letícia Dias Mendonça
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Emilly Oliveira Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Isabella Oliveira de Macedo
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Mário Sergio Lima de Lavor
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Raphael Escorsim Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rogeria Serakides
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
- *Correspondence: Juneo Freitas Silva,
| |
Collapse
|
23
|
Decidual NK cells kill Zika virus-infected trophoblasts. Proc Natl Acad Sci U S A 2021; 118:2115410118. [PMID: 34785597 DOI: 10.1073/pnas.2115410118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Zika virus (ZIKV) during pregnancy infects fetal trophoblasts and causes placental damage and birth defects including microcephaly. Little is known about the anti-ZIKV cellular immune response at the maternal-fetal interface. Decidual natural killer cells (dNK), which directly contact fetal trophoblasts, are the dominant maternal immune cells in the first-trimester placenta, when ZIKV infection is most hazardous. Although dNK express all the cytolytic molecules needed to kill, they usually do not kill infected fetal cells but promote placentation. Here, we show that dNK degranulate and kill ZIKV-infected placental trophoblasts. ZIKV infection of trophoblasts causes endoplasmic reticulum (ER) stress, which makes them dNK targets by down-regulating HLA-C/G, natural killer (NK) inhibitory receptor ligands that help maintain tolerance of the semiallogeneic fetus. ER stress also activates the NK activating receptor NKp46. ZIKV infection of Ifnar1 -/- pregnant mice results in high viral titers and severe intrauterine growth restriction, which are exacerbated by depletion of NK or CD8 T cells, indicating that killer lymphocytes, on balance, protect the fetus from ZIKV by eliminating infected cells and reducing the spread of infection.
Collapse
|
24
|
Morey R, Farah O, Kallol S, Requena DF, Meads M, Moretto-Zita M, Soncin F, Laurent LC, Parast MM. Transcriptomic Drivers of Differentiation, Maturation, and Polyploidy in Human Extravillous Trophoblast. Front Cell Dev Biol 2021; 9:702046. [PMID: 34540826 PMCID: PMC8446284 DOI: 10.3389/fcell.2021.702046] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
During pregnancy, conceptus-derived extravillous trophoblast (EVT) invades the endomyometrium, anchors the placenta to the maternal uterus, and remodels the spiral arteries in order to establish maternal blood supply to the fetoplacental unit. Recent reports have described early gestation EVT as polyploid and senescent. Here, we extend these reports by performing comprehensive profiling of both the genomic organization and transcriptome of first trimester and term EVT. We define pathways and gene regulatory networks involved in both initial differentiation and maturation of this important trophoblast lineage at the maternal-fetal interface. Our results suggest that like first trimester EVT, term EVT undergoes senescence and endoreduplication, is primarily tetraploid, and lacks high rates of copy number variations. Additionally, we have highlighted senescence and polyploidy-related genes, pathways, networks, and transcription factors that appeared to be important in normal EVT differentiation and maturation and validated a key role for the unfolded protein response in this context.
Collapse
Affiliation(s)
- Robert Morey
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Omar Farah
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Sampada Kallol
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Daniela F Requena
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Morgan Meads
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Matteo Moretto-Zita
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Francesca Soncin
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mana M Parast
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
25
|
Capatina N, Hemberger M, Burton GJ, Watson ED, Yung HW. Excessive endoplasmic reticulum stress drives aberrant mouse trophoblast differentiation and placental development leading to pregnancy loss. J Physiol 2021; 599:4153-4181. [PMID: 34269420 DOI: 10.1113/jp281994] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Endoplasmic reticulum (ER) stress promotes placental dysmorphogenesis and is associated with poor pregnancy outcomes. We show that unfolded protein response signalling pathways located in the ER drive differentiation of mouse trophoblast stem cells into trophoblast subtypes involved in development of the placental labyrinth zone and trophoblast invasion. In a mouse model of chronic ER stress (Eif2s1tm1RjK ), higher ER stress in homozygous blastocysts is accompanied by reduced trophectoderm cell number and developmental delay and also is associated with an increased incidence of early pregnancy loss. Administration of the chemical chaperone, tauroursodeoxycholic acid, to Eif2s1+/ tm1RjK heterozygous females during pregnancy alleviated ER stress in the mutant placenta, restored normal trophoblast populations and reduced the frequency of early pregnancy loss. Our results suggest that alleviation of intrauterine ER stress could provide a potential therapeutic target to improve pregnancy outcome in women with pre-gestational metabolic or gynaecological conditions. ABSTRACT Women with pre-gestational health conditions (e.g. obesity, diabetes) or gynaecological problems (e.g. endometriosis) are at increased risk of adverse pregnancy outcomes including miscarriage, pre-eclampsia and fetal growth restriction. Increasing evidence suggests that unfavourable intrauterine conditions leading to poor implantation and/or defective placentation are a possible causative factor. The endoplasmic reticulum (ER) unfolded protein response (UPRER ) signalling pathways are a convergence point of various physiological stress stimuli that can be triggered by an unfavourable intrauterine environment. Therefore, we explored the impact of ER stress on mouse trophoblast differentiation in vitro, mouse blastocyst formation and early placenta development in the Eif2s1tm1RjK mutant mouse model of chronic ER stress. Chemically-manipulated ER stress or activation of UPRER pathways in a mouse trophoblast stem cell line promoted lineage-specific differentiation. Co-treatment with specific UPRER pathway inhibitors rescued this effect. Although the inner cell mass was unaffected, the trophectoderm of homozygous Eif2s1tm1RjK blastocysts exhibited ER stress associated with a reduced cell number. Furthermore, one-third of Eif2s1tm1RjK homozygous blastocysts exhibited severe developmental defects. We have previously reported a reduced trophoblast population and premature trophoblast differentiation in Eif2s1tm1RjK homozygous placentas at mid-gestation. Here, we demonstrate that treatment of Eif2s1+/tm1RjK heterozygous pregnant females with the chemical chaperone tauroursodeoxycholic acid alleviated ER stress, restored the trophoblast population and reduced the frequency of embryonic lethality. Our data suggest that therapeutic targeting of ER stress may improve pregnancy outcome in women with pre-gestational metabolic or gynaecological conditions.
Collapse
Affiliation(s)
- Nadejda Capatina
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Myriam Hemberger
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Erica D Watson
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hong Wa Yung
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
27
|
Almada M, Costa L, Fonseca B, Alves P, Braga J, Gonçalves D, Teixeira N, Correia-da-Silva G. The endocannabinoid 2-arachidonoylglycerol promotes endoplasmic reticulum stress in placental cells. Reproduction 2021; 160:171-180. [PMID: 32357311 PMCID: PMC7354702 DOI: 10.1530/rep-19-0539] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Proliferation, differentiation and apoptosis of trophoblast cells are required for normal placental development. Impairment of those processes may lead to pregnancy-related diseases. Disruption of endoplasmic reticulum (ER) homeostasis has been associated with several reproductive pathologies including recurrent pregnancy loss and preeclampsia. In the unfolded protein response (UPR), specific ER-stress signalling pathways are activated to restore ER homeostasis, but if the adaptive response fails, apoptosis is triggered. Protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and Activating transcription factor 6 (ATF6) are central players in UPR and in ER-stress-induced apoptosis, as well as downstream transcription factors, as C/EBP homologous protein (CHOP). Our previous studies have shown that the endocannabinoid 2-arachidonoylglycerol (2-AG) modulates trophoblast cell turnover. Nevertheless, the role of ER-stress on 2-AG induced apoptosis and cannabinoid signalling in trophoblast has never been addressed. In this work, we used BeWo cells and human primary cytotrophoblasts isolated from term-placenta. The expression of ER-stress markers was analysed by qRT-PCR and Western blotting. ROS generation was assessed by fluorometric methods, while apoptosis was detected by the evaluation of caspase -3/-7 activities and Poly (ADP-ribose) polymerase (PARP) cleavage. Our findings indicate that 2-AG is able to induce ER-stress and apoptosis. Moreover, the eukaryotic initiation factor 2 (eIF2α)/CHOP pathway involved in ER-stress-induced apoptosis is triggered through a mechanism dependent on cannabinoid receptor CB2 activation. The results bring novel insights on the importance of ER-stress and cannabinoid signalling on 2-AG mechanisms of action in placenta.
Collapse
Affiliation(s)
- Marta Almada
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Lia Costa
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Bruno Fonseca
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Patrícia Alves
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Jorge Braga
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte Dr Albino Aroso, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Daniela Gonçalves
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte Dr Albino Aroso, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Natércia Teixeira
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Aplin JD, Jones CJP. Cell dynamics in human villous trophoblast. Hum Reprod Update 2021; 27:904-922. [PMID: 34125187 DOI: 10.1093/humupd/dmab015] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Villous cytotrophoblast (vCTB) is a precursor cell population that supports the development of syncytiotrophoblast (vSTB), the high surface area barrier epithelium of the placental villus, and the primary interface between maternal and fetal tissue. In light of increasing evidence that the placenta can adapt to changing maternal environments or, under stress, can trigger maternal disease, we consider what properties of these cells empower them to exert a controlling influence on pregnancy progression and outcome. OBJECTIVE AND RATIONALE How are cytotrophoblast proliferation and differentiation regulated in the human placental villus to allow for the increasing demands of the fetal and environmental challenges and stresses that may arise during pregnancy? SEARCH METHODS PubMed was interrogated using relevant keywords and word roots combining trophoblast, villus/villous, syncytio/syncytium, placenta, stem, transcription factor (and the individual genes), signalling, apoptosis, autophagy (and the respective genes) from 1960 to the present. Since removal of trophoblast from its tissue environment is known to fundamentally change cell growth and differentiation kinetics, research that relied exclusively on cell culture has not been the main focus of this review, though it is mentioned where appropriate. Work on non-human placenta is not systematically covered, though mention is made where relevant hypotheses have emerged. OUTCOMES The synthesis of data from the literature has led to a new hypothesis for vCTB dynamics. We propose that a reversible transition can occur from a reserve population in G0 to a mitotically active state. Cells from the in-cycle population can then differentiate irreversibly to intermediate cells that leave the cycle and turn on genes that confer the capacity to fuse with the overlying vSTB as well as other functions associated with syncytial barrier and transport function. We speculate that alterations in the rate of entry to the cell cycle, or return of cells in the mitotic fraction to G0, can occur in response to environmental challenge. We also review evidence on the life cycle of trophoblast from the time that fusion occurs, and point to gaps in knowledge of how large quantities of fetal DNA arrive in maternal circulation. We critique historical methodology and make a case for research to re-address questions about trophoblast lifecycle and dynamics in normal pregnancy and the common diseases of pre-eclampsia and fetal growth restriction, where altered trophoblast kinetics have long been postulated. WIDER IMPLICATIONS The hypothesis requires experimental testing, moving research away from currently accepted methodology towards a new standard that includes representative cell and tissue sampling, assessment of cell cycle and differentiation parameters, and robust classification of cell subpopulations in villous trophoblast, with due attention to gestational age, maternal and fetal phenotype, disease and outcome.
Collapse
Affiliation(s)
- John D Aplin
- Maternal and Fetal Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| | - Carolyn J P Jones
- Maternal and Fetal Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| |
Collapse
|
29
|
Gong S, Gaccioli F, Dopierala J, Sovio U, Cook E, Volders PJ, Martens L, Kirk PDW, Richardson S, Smith GCS, Charnock-Jones DS. The RNA landscape of the human placenta in health and disease. Nat Commun 2021; 12:2639. [PMID: 33976128 PMCID: PMC8113443 DOI: 10.1038/s41467-021-22695-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The placenta is the interface between mother and fetus and inadequate function contributes to short and long-term ill-health. The placenta is absent from most large-scale RNA-Seq datasets. We therefore analyze long and small RNAs (~101 and 20 million reads per sample respectively) from 302 human placentas, including 94 cases of preeclampsia (PE) and 56 cases of fetal growth restriction (FGR). The placental transcriptome has the seventh lowest complexity of 50 human tissues: 271 genes account for 50% of all reads. We identify multiple circular RNAs and validate 6 of these by Sanger sequencing across the back-splice junction. Using large-scale mass spectrometry datasets, we find strong evidence of peptides produced by translation of two circular RNAs. We also identify novel piRNAs which are clustered on Chr1 and Chr14. PE and FGR are associated with multiple and overlapping differences in mRNA, lincRNA and circRNA but fewer consistent differences in small RNAs. Of the three protein coding genes differentially expressed in both PE and FGR, one encodes a secreted protein FSTL3 (follistatin-like 3). Elevated serum levels of FSTL3 in pregnant women are predictive of subsequent PE and FGR. To aid visualization of our placenta transcriptome data, we develop a web application ( https://www.obgyn.cam.ac.uk/placentome/ ).
Collapse
Affiliation(s)
- Sungsam Gong
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Francesca Gaccioli
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Justyna Dopierala
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Functional Genomics, GlaxoSmithKline Limited, Stevenage, Hertfordshire, UK
| | - Ulla Sovio
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma Cook
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Pieter-Jan Volders
- Computational Omics and Systems Biology Group, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lennart Martens
- Computational Omics and Systems Biology Group, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Paul D W Kirk
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sylvia Richardson
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
30
|
Denkl B, Cordasic N, Huebner H, Menendez-Castro C, Schmidt M, Mocker A, Woelfle J, Hartner A, Fahlbusch FB. No evidence of the unfolded protein response in the placenta of two rodent models of preeclampsia and intrauterine growth restriction. Biol Reprod 2021; 105:449-463. [PMID: 33955453 DOI: 10.1093/biolre/ioab087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/31/2021] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
In humans, intrauterine growth restriction (IUGR) and preeclampsia (PE) are associated with induction of the unfolded protein response (UPR) and increased placental endoplasmic reticulum (ER) stress. Especially in PE, oxidative stress occurs relative to the severity of maternal vascular underperfusion (MVU) of the placental bed. On the premise that understanding the mechanisms of placental dysfunction could lead to targeted therapeutic options for human IUGR and PE, we investigated the roles of the placental UPR and oxidative stress in two rodent models of these human gestational pathologies. We employed a rat IUGR model of gestational maternal protein restriction, as well as an endothelial nitric oxide synthase knockout mouse model (eNOS-/-) of PE/IUGR. Placental expression of UPR members was analyzed via qRT-PCR (Grp78, Calnexin, Perk, Chop, Atf6, and Ern1), immunohistochemistry, and Western blotting (Calnexin, ATF6, GRP78, CHOP, phospho-eIF2α, and phospho-IRE1). Oxidative stress was determined via Western blotting (3-nitrotyrosine and 4-hydroxy-2-nonenal). Both animal models showed a significant reduction of fetal and placental weight. These effects did not induce placental UPR. In contrast to human data, results from our rodent models suggest retention of placental plasticity in the setting of ER stress under an adverse gestational environment. Oxidative stress was significantly increased only in female IUGR rat placentas, suggesting a sexually dimorphic response to maternal malnutrition. Our study advances understanding of the involvement of the placental UPR in IUGR and PE. Moreover, it emphasizes the appropriate choice of animal models researching various aspects of these pregnancy complications.
Collapse
Affiliation(s)
- Barbara Denkl
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nada Cordasic
- Department of Nephrology and Hypertension, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center EMN, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marius Schmidt
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Mocker
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center EMN, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian B Fahlbusch
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
31
|
Lassi M, Tomar A, Comas-Armangué G, Vogtmann R, Dijkstra DJ, Corujo D, Gerlini R, Darr J, Scheid F, Rozman J, Aguilar-Pimentel A, Koren O, Buschbeck M, Fuchs H, Marschall S, Gailus-Durner V, Hrabe de Angelis M, Plösch T, Gellhaus A, Teperino R. Disruption of paternal circadian rhythm affects metabolic health in male offspring via nongerm cell factors. SCIENCE ADVANCES 2021; 7:7/22/eabg6424. [PMID: 34039610 PMCID: PMC8153725 DOI: 10.1126/sciadv.abg6424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Circadian rhythm synchronizes each body function with the environment and regulates physiology. Disruption of normal circadian rhythm alters organismal physiology and increases disease risk. Recent epidemiological data and studies in model organisms have shown that maternal circadian disruption is important for offspring health and adult phenotypes. Less is known about the role of paternal circadian rhythm for offspring health. Here, we disrupted circadian rhythm in male mice by night-restricted feeding and showed that paternal circadian disruption at conception is important for offspring feeding behavior, metabolic health, and oscillatory transcription. Mechanistically, our data suggest that the effect of paternal circadian disruption is not transferred to the offspring via the germ cells but initiated by corticosterone-based parental communication at conception and programmed during in utero development through a state of fetal growth restriction. These findings indicate paternal circadian health at conception as a newly identified determinant of offspring phenotypes.
Collapse
Affiliation(s)
- Maximilian Lassi
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
| | - Archana Tomar
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
| | - Gemma Comas-Armangué
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
| | - Rebekka Vogtmann
- Department of Gynecology and Obstetrics-University Hospital Essen - Essen, Germany
| | - Dorieke J Dijkstra
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, Groningen, Netherlands
| | - David Corujo
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Institute for Leukemia Research (IJC) Badalona, Spain
| | - Raffaele Gerlini
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
| | - Jonatan Darr
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
| | - Fabienne Scheid
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
| | - Jan Rozman
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Marcus Buschbeck
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Institute for Leukemia Research (IJC) Badalona, Spain
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), 08916 Badalona, Spain
| | - Helmut Fuchs
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München Freising, Germany
| | - Torsten Plösch
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, Groningen, Netherlands
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics-University Hospital Essen - Essen, Germany
| | - Raffaele Teperino
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany.
- German Center for Diabetes Research (DZD) Neuherberg, Germany
| |
Collapse
|
32
|
Jee B, Dhar R, Singh S, Karmakar S. Heat Shock Proteins and Their Role in Pregnancy: Redefining the Function of "Old Rum in a New Bottle". Front Cell Dev Biol 2021; 9:648463. [PMID: 33996811 PMCID: PMC8116900 DOI: 10.3389/fcell.2021.648463] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Pregnancy in humans is a multi-step complex physiological process comprising three discrete events, decidualization, implantation and placentation. Its overall success depends on the incremental advantage that each of the preceding stages passes on to the next. The success of these synchronized sequels of events is an outcome of timely coordination between them. The pregnancy events are coordinated and governed primarily by the ovarian steroid hormones, estrogen and progesterone, which are essentially ligand-activated transcription factors. It's well known that intercellular signaling of steroid hormones engages a plethora of adapter proteins that participate in executing the biological functions. This involves binding of the hormone receptor complex to the DNA response elements in a sequence specific manner. Working with Drosophila melanogaster, the heat shock proteins (HSPs) were originally described by Ferruccio Ritossa back in the early 1960s. Over the years, there has been considerable advancement of our understanding of these conserved families of proteins, particularly in pregnancy. Accumulating evidence suggests that endometrial and uterine cells have an abundance of HSP27, HSP60, HSP70 and HSP90, implying their possible involvement during the pregnancy process. HSPs have been found to be associated with decidualization, implantation and placentation, with their dysregulation associated with implantation failure, pregnancy loss and other feto-maternal complications. Furthermore, HSP is also associated with stress response, specifically in modulating the ER stress, a critical determinant for reproductive success. Recent advances suggest a therapeutic role of HSPs proteins in improving the pregnancy outcome. In this review, we summarized our latest understanding of the role of different members of the HSP families during pregnancy and associated complications based on experimental and clinical evidences, thereby redefining and exploring their novel function with new perspective, beyond their prototype role as molecular chaperones.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
33
|
Rezai H, Ahmad S, Alzahrani FA, Sanchez-Aranguren L, Dias IH, Agrawal S, Sparatore A, Wang K, Ahmed A. MZe786, a hydrogen sulfide-releasing aspirin prevents preeclampsia in heme oxygenase-1 haplodeficient pregnancy under high soluble flt-1 environment. Redox Biol 2020; 38:101768. [PMID: 33137710 PMCID: PMC7610044 DOI: 10.1016/j.redox.2020.101768] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/01/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023] Open
Abstract
Preeclampsia affects one in twelve of the 130 million pregnancies a year. The lack of an effective therapeutic to prevent or treat it is responsible for an annual global cost burden of 100 billion US dollars. Preeclampsia also affects these women later in life as it is a recognised risk factor for cardiovascular disease, stroke and vascular dementia. Our laboratory demonstrated that preeclampsia is associated with high soluble fms-like tyrosine kinase 1 (sFlt-1) and low heme oxygenase-1 (HO1/Hmox1) expression. Here we sought to determine the therapeutic value of a novel H2S-releasing aspirin (MZe786) in HO-1 haploid deficient (Hmox1+/−) pregnant mice in a high sFlt-1 environment. Pregnant Hmox1+/− mice were injected with adenovirus encoding sFlt-1 or control virus at gestation day E11.5. Subsequently, Hmox1+/− dams were treated daily with a number of treatment regimens until E17.5, when maternal and fetal outcomes were assessed. Here we show that HO-1 compromised mice in a high sFlt-1 environment during pregnancy exhibit severe preeclampsia signs and a reduction in antioxidant genes. MZe786 ameliorates preeclampsia by reducing hypertension and renal damage possibly by stimulating antioxidant genes. MZe786 also improved fetal outcome in comparison with aspirin alone and appears to be a better therapeutic agent at preventing preeclampsia than aspirin alone. Partial loss of heme oxygenase-1 under high soluble Flt-1 causes severe preeclampsia compared to high sFlt-1 alone. MZe786, hydrogen sulfide releasing aspirin prevents preeclampsia by suppressing maternal hypertension and kidney injury. MZe786 is able to rescue pregnancy and improves fetal outcome despite the persistent high levels of sFlt-1. MZe786 is a superior therapeutic candidate than aspirin in preventing preeclampsia.
Collapse
Affiliation(s)
- Homira Rezai
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Holt Street, Birmingham, B7 4BB, United Kingdom; Aston Medical Research Institute, Aston Medical School, Birmingham, United Kingdom
| | - Shakil Ahmad
- Aston Medical Research Institute, Aston Medical School, Birmingham, United Kingdom
| | - Faisal A Alzahrani
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Holt Street, Birmingham, B7 4BB, United Kingdom; Department of Biochemistry, ESC Research Unit, Faculty of Science, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Lissette Sanchez-Aranguren
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Holt Street, Birmingham, B7 4BB, United Kingdom; Aston Medical Research Institute, Aston Medical School, Birmingham, United Kingdom
| | - Irundika Hk Dias
- Aston Medical Research Institute, Aston Medical School, Birmingham, United Kingdom
| | - Swati Agrawal
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Holt Street, Birmingham, B7 4BB, United Kingdom; Department of Maternal Fetal Medicine, Mt Sinai Hospital, University of Toronto, Toronto, Canada
| | - Anna Sparatore
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Keqing Wang
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Holt Street, Birmingham, B7 4BB, United Kingdom; Aston Medical Research Institute, Aston Medical School, Birmingham, United Kingdom
| | - Asif Ahmed
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Holt Street, Birmingham, B7 4BB, United Kingdom; Aston Medical Research Institute, Aston Medical School, Birmingham, United Kingdom; Department of Biochemistry, ESC Research Unit, Faculty of Science, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; President's Office, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| |
Collapse
|
34
|
Hu XQ, Song R, Romero M, Dasgupta C, Min J, Hatcher D, Xiao D, Blood A, Wilson SM, Zhang L. Gestational Hypoxia Inhibits Pregnancy-Induced Upregulation of Ca 2+ Sparks and Spontaneous Transient Outward Currents in Uterine Arteries Via Heightened Endoplasmic Reticulum/Oxidative Stress. Hypertension 2020; 76:930-942. [PMID: 32683903 PMCID: PMC7429261 DOI: 10.1161/hypertensionaha.120.15235] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypoxia during pregnancy profoundly affects uterine vascular adaptation and increases the risk of pregnancy complications, including preeclampsia and fetal intrauterine growth restriction. We recently demonstrated that increases in Ca2+ sparks and spontaneous transient outward currents (STOCs) played an essential role in pregnancy-induced uterine vascular adaptation. In the present study, we hypothesize that gestational hypoxia suppresses Ca2+ sparks/STOCs coupling leading to increased uterine vascular tone via enhanced endoplasmic reticulum (ER)/oxidative stress. Uterine arteries were obtained from nonpregnant and near-term pregnant sheep residing in low altitude or acclimatizing to high-altitude (3801 m) hypoxia for ≈110 days. High-altitude hypoxia suppressed pregnancy-induced upregulation of RyR1 and RyR2 (ryanodine receptor 1 and 2) protein abundance, Ca2+ sparks, and STOCs in uterine arteries. Inhibition of Ca2+ sparks/STOCs with the RyR inhibitor ryanodine significantly increased pressure-dependent myogenic tone in uterine arteries from low-altitude normoxic pregnant animals but not those from high-altitude hypoxic pregnant animals. Gestational hypoxia significantly increased ER/oxidative stress in uterine arteries. Of importance, the hypoxia-mediated suppression of Ca2+ sparks/STOCs and increase in myogenic tone in uterine arteries of pregnant animals were reversed by inhibiting ER/oxidative stress. Of great interest, the impaired sex hormonal regulation of STOCs in high-altitude animals was annulled by scavenging reactive oxygen species but not by inhibiting ER stress. Together, the findings reveal the differential mechanisms of ER and oxidative stresses in suppressing Ca2+ sparks/STOCs and increasing myogenic tone of uterine arteries in hypoxia during gestation, providing new insights into the understanding of pregnancy complications associated with hypoxia.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Rui Song
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Monica Romero
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Chiranjib Dasgupta
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Joseph Min
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Daisy Hatcher
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Daliao Xiao
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Arlin Blood
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Sean M Wilson
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Lubo Zhang
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| |
Collapse
|
35
|
Dong J, Shin N, Chen S, Lei J, Burd I, Wang X. Is there a definite relationship between placental mTOR signaling and fetal growth? Biol Reprod 2020; 103:471-486. [PMID: 32401303 DOI: 10.1093/biolre/ioaa070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/22/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Fetal growth restriction and overgrowth are common obstetrical complications that result in adverse perinatal outcomes and long-term health risks later in life, including neurodevelopmental dysfunction and adult metabolic syndrome. The placenta plays a critical role in the nutrition transfer from mother to fetus and even exerts adaptive mechanism when the fetus is under poor developmental conditions. The mammalian/mechanistic target of rapamycin (mTOR) signaling serves as a critical hub of cell growth, survival, and metabolism in response to nutrients, growth factors, energy, and stress signals. Placental mTOR signaling regulates placental function, including oxygen and nutrient transport. Therefore, placental mTOR signaling is hypothesized to have a positive relationship with fetal growth. In this review, we summarize that most studies support the current evidence that there is connection between placental mTOR signaling and abnormal fetal growth; however, but more studies should be performed following a vigorous and unanimous method for assessment to determine placental mTOR activity.
Collapse
Affiliation(s)
- Jie Dong
- Reproductive Medical Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Na Shin
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuqiang Chen
- Reproductive Medical Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaohong Wang
- Reproductive Medical Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
36
|
Zhao S, Zhong S, Wang F, Wang H, Xu D, Li G. Microcystin-LR exposure decreased the fetal weight of mice by disturbance of placental development and ROS-mediated endoplasmic reticulum stress in the placenta. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113362. [PMID: 31672369 DOI: 10.1016/j.envpol.2019.113362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The placenta is essential for sustaining the growth of the fetus. The aim of this study was to investigate the role of the placenta in MCLR-induced significant reduction in fetal weight, especially the changes in placental structure and function. Pregnant mice were intraperitoneally injected with MCLR (5 or 20 μg/kg) from gestational day (GD) 13 to GD17. The results showed MCLR reduced fetal weight and placenta weight. The histological specimens of the placentas were taken for light and electron microscopy studies. The internal space of blood vessels decreased obviously in the placental labyrinth layer of mice treated with MCLR. After the ultrastructural examination, the edema and intracytoplasmic vacuolization, dilation of the endoplasmic reticulum and corrugation of the nucleus were observed. In addition, maternal MCLR exposure caused a reduction of 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) expression in placentae, a critical regulator of fetal development. Several genes of placental growth factors, such as Vegfα and Pgf and several genes of nutrient transport pumps, such as Glut1 and Pcft were depressed in placentas of MCLR-treated mice, however nutrient transporters Fatp1 and Snat4 were promoted. Moreover, significant increases in malondialdehyde (MDA) revealed the occurrence of oxidative stress caused by MCLR, which was also verified by remarkable decrease in the glutathione levels, total antioxidant capacity (T-AOC) as well as the activity of antioxidant enzymes. Real-time PCR and western blot analysis revealed that GRP78, CHOP, XBP-1, peIF2α and pIRE1 were remarkable increased in placentas of MCLR-treated mice, indicating that endoplasmic reticulum (ER) stress pathway was activated by MCLR. Furthermore, oxidative stress and ER stress consequently triggered apoptosis which contributed to the impairment of placental development. Collectively, these results suggest maternal MCLR exposure results in reduced fetal body weight, which might be associated with ROS-mediated endoplasmic reticulum stress and impairment in placental structure and function.
Collapse
Affiliation(s)
- Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Shengzheng Zhong
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Fang Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Honghui Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Dexiang Xu
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
37
|
Noncanonical mitochondrial unfolded protein response impairs placental oxidative phosphorylation in early-onset preeclampsia. Proc Natl Acad Sci U S A 2019; 116:18109-18118. [PMID: 31439814 PMCID: PMC6731647 DOI: 10.1073/pnas.1907548116] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Preeclampsia endangers the lives and well-being of mother and baby. The syndrome is associated with placental dysfunction. High demand for energy to support active nutrient transport and hormone production increases placental susceptibility to mitochondrial stress. Here, we investigate mitochondrial activity and explore stress-response pathways in preeclamptic placentas. We demonstrate activation of noncanonical mitochondrial unfolded protein response (UPRmt) pathways associated with reduced CLPP, a key protease in UPRmt signalling, that compromises mitochondrial respiration. The changes can be recapitulated in trophoblast cells by hypoxia–reoxygenation. Either activation of UPRmt or knockdown of CLPP can sufficiently reduce mitochondrial respiration. Translation of CLPP is negatively regulated by the endoplasmic reticulum UPR pathway. Understanding mitochondrial stress provides new insights into the pathophysiology of early-onset preeclampsia. Preeclampsia (PE) is a dangerous complication of pregnancy, especially when it presents at <34 wk of gestation (PE < 34 wk). It is a major cause of maternal and fetal morbidity and mortality and also increases the risk of cardiometabolic diseases in later life for both mother and offspring. Placental oxidative stress induced by defective placentation sits at the epicenter of the pathophysiology. The placenta is susceptible to activation of the unfolded protein response (UPR), and we hypothesized this may affect mitochondrial function. We first examined mitochondrial respiration before investigating evidence of mitochondrial UPR (UPRmt) in placentas of PE < 34 wk patients. Reduced placental oxidative phosphorylation (OXPHOS) capacity measured in situ was observed despite no change in protein or mRNA levels of electron transport chain complexes. These results were fully recapitulated by subjecting trophoblast cells to repetitive hypoxia–reoxygenation and were associated with activation of a noncanonical UPRmt pathway; the quality-control protease CLPP, central to UPRmt signal transduction, was reduced, while the cochaperone, TID1, was increased. Transcriptional factor ATF5, which regulates expression of key UPRmt genes including HSP60 and GRP75, showed no nuclear translocation. Induction of the UPRmt with methacycline reduced OXPHOS capacity, while silencing CLPP was sufficient to reduce OXPHOS capacity, membrane potential, and promoted mitochondrial fission. CLPP was negatively regulated by the PERK-eIF2α arm of the endoplasmic reticulum UPR pathway, independent of ATF4. Similar changes in the UPRmt pathway were observed in placentas from PE < 34 wk patients. Our results identify UPRmt as a therapeutic target for restoration of placental function in early-onset preeclampsia.
Collapse
|
38
|
Nakashima A, Cheng SB, Kusabiraki T, Motomura K, Aoki A, Ushijima A, Ono Y, Tsuda S, Shima T, Yoshino O, Sago H, Matsumoto K, Sharma S, Saito S. Endoplasmic reticulum stress disrupts lysosomal homeostasis and induces blockade of autophagic flux in human trophoblasts. Sci Rep 2019; 9:11466. [PMID: 31391477 PMCID: PMC6685987 DOI: 10.1038/s41598-019-47607-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy is a stress factor culminating into mild endoplasmic reticulum (ER) stress, which is necessary for placental development. However, excessive or chronic ER stress in pre-eclamptic placentas leads to placental dysfunction. The precise mechanisms through which excessive ER stress impacts trophoblasts are not well understood. Here, we showed that ER stress reduces the number of lysosomes, resulting in inhibition of autophagic flux in trophoblast cells. ER stress also disrupted the translocation of lysosomes to the surface of trophoblast cells, and inhibited lysosomal exocytosis, whereby the secretion of lysosomal-associated membrane protein 1 (LAMP1) into culture media was significantly attenuated. In addition, we found that serum LAMP1 and beta-galactosidase levels were significantly decreased in pre-eclampsia patients compared to normal pregnant women, potentially indicating lysosomal dysfunction through ER stress in pre-eclamptic placentas. Thus, we demonstrated that excessive ER stress essentially disrupts homeostasis in trophoblasts in conjunction with autophagy inhibition by lysosomal impairment.
Collapse
Affiliation(s)
- Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shi-Bin Cheng
- Departments of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, 101 Dudley street, Providence, RI, 02905, USA
| | - Tae Kusabiraki
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, 157-8535, Tokyo, Japan
| | - Aiko Aoki
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Akemi Ushijima
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yosuke Ono
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Sayaka Tsuda
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Osamu Yoshino
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, 157-8535, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, 157-8535, Tokyo, Japan
| | - Surendra Sharma
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
39
|
Lorenzon-Ojea AR, Yung HW, Burton GJ, Bevilacqua E. The potential contribution of stromal cell-derived factor 2 (SDF2) in endoplasmic reticulum stress response in severe preeclampsia and labor-onset. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165386. [PMID: 30776414 DOI: 10.1016/j.bbadis.2019.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/17/2018] [Accepted: 01/08/2019] [Indexed: 11/24/2022]
Abstract
Endoplasmic reticulum (ER) stress occurs when the protein folding machinery in the cell is unable to cope with newly synthesized proteins, which results in an accumulation of misfolded proteins in the ER lumen. In response, the cell activates a cellular signaling pathway known as the Unfolded Protein Response (UPR), aiming to restore cellular homeostasis. Activation and exacerbation of the UPR have been described in several human pathologies, including cancer and neurological disorders, and in some gestational diseases such as preeclampsia and gestational diabetes. This review explores the participation of stromal cell-derived factor 2 (SDF2) in UPR pathways, shows new information and discusses its exacerbation regarding protein expression in severe preeclampsia and labor, both of which are associated with ER stress.
Collapse
Affiliation(s)
- Aline R Lorenzon-Ojea
- Institute of Biomedical Sciences, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, SP, Brazil.
| | - Hong Wa Yung
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Estela Bevilacqua
- Institute of Biomedical Sciences, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
40
|
Hart B, Morgan E, Alejandro EU. Nutrient sensor signaling pathways and cellular stress in fetal growth restriction. J Mol Endocrinol 2019; 62:R155-R165. [PMID: 30400060 PMCID: PMC6443503 DOI: 10.1530/jme-18-0059] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 12/24/2022]
Abstract
Fetal growth restriction is one of the most common obstetrical complications resulting in significant perinatal morbidity and mortality. The most frequent etiology of human singleton fetal growth restriction is placental insufficiency, which occurs secondary to reduced utero-placental perfusion, abnormal placentation, impaired trophoblast invasion and spiral artery remodeling, resulting in altered nutrient and oxygen transport. Two nutrient-sensing proteins involved in placental development and glucose and amino acid transport are mechanistic target of rapamycin (mTOR) and O-linked N-acetylglucosamine transferase (OGT), which are both regulated by availability of oxygen. Impairment in either of these pathways is associated with fetal growth restriction and accompanied by cellular stress in the forms of hypoxia, oxidative and endoplasmic reticulum (ER) stress, metabolic dysfunction and nutrient starvation in the placenta. Recent evidence has emerged regarding the potential impact of nutrient sensors on fetal stress response, which occurs in a sexual dysmorphic manner, indicating a potential element of genetic gender susceptibility to fetal growth restriction. In this mini review, we focus on the known role of mTOR and OGT in placental development, nutrient regulation and response to cellular stress in human fetal growth restriction with supporting evidence from rodent models.
Collapse
Affiliation(s)
- Bethany Hart
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elizabeth Morgan
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
41
|
Zhang H, Li Y, Chen Y, Zhang L, Wang T. N-Acetylcysteine protects against intrauterine growth retardation-induced intestinal injury via restoring redox status and mitochondrial function in neonatal piglets. Eur J Nutr 2018; 58:3335-3347. [PMID: 30535793 DOI: 10.1007/s00394-018-1878-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Intrauterine growth retardation (IUGR) is detrimental to the intestinal development of neonates, yet satisfactory treatment strategies remain limited. This study was, therefore, conducted using neonatal piglets as a model to investigate the potential of N-acetylcysteine (NAC) to alleviate intestinal damage caused by IUGR. METHODS Seven normal birth weight (NBW) and fourteen IUGR neonatal male piglets were selected and then fed a basal milk diet (NBW-CON and IUGR-CON groups) or a basal milk diet supplemented with 1.2 g NAC per kg of diet (IUGR-NAC group) from 7 to 21 days of age (n = 7). Parameters associated with the severity of intestinal injury, villus morphology and ultrastructural structure, redox status, and mitochondrial function were analyzed. RESULTS Compared with the NBW-CON piglets, the IUGR-CON piglets exhibited decreased villus height and greater numbers of apoptotic cells in jejunum, along with the increases in malondialdehyde and protein carbonyl concentrations and a decreased adenosine triphosphate (ATP) content. Treatment with NAC significantly increased jejunal superoxide dismutase activity, reduced glutathione: oxidized glutathione ratio, and the mRNA abundance of nuclear respiratory factor 2, heme oxygenase 1, and superoxide dismutase 2 in the IUGR-NAC piglets compared with the IUGR-CON piglets. In addition, NAC improved the efficiency of mitochondrial oxidative metabolism and ATP generation, ameliorated mitochondrial swelling, and inhibited the overproduction of mitochondrial superoxide anion in the jejunal mucosa. CONCLUSIONS Dietary supplementation of NAC shows promise for attenuating the early intestinal injury of young piglets with IUGR, probably through its antioxidant action to restore redox status and mitochondrial function.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- Postdoctoral Research Station of Clinical Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, 200240, People's Republic of China
| | - Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- Postdoctoral Research Station of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, People's Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
42
|
Li R, Wang X, Wang B, Li J, Song Y, Luo B, Chen Y, Zhang C, Wang H, Xu D. Gestational 1-nitropyrene exposure causes fetal growth restriction through disturbing placental vascularity and proliferation. CHEMOSPHERE 2018; 213:252-258. [PMID: 30223130 DOI: 10.1016/j.chemosphere.2018.09.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
1-Nitropyrene (1-NP) is a widely distributed pollutant in the environment and is best known for its mutagenicity and carcinogenicity. In this study, we evaluated the effects of 1-NP exposure in different gestational stages on the pregnant outcomes. Pregnant mice were administered with 1-NP by gavage daily in early (GD1-GD6), middle (GD7-GD12) or late pregnancy (GD13-GD17), respectively. We found that gestational 1-NP exposure had no effect on implantation sites per litter, preterm delivery and fetal death. Interestingly, mice exposed to 1-NP in late pregnancy showed a significant reduction in fetal weight and crown-rump length. Correspondingly, placental weight and diameter were markedly reduced in dams exposed to 1-NP in late pregnancy. Additional experiment showed maternal 1-NP exposure in late pregnancy reduced blood sinusoid area of placental labyrinthine region in a dose-dependent manner. Although gestational 1-NP exposure had little effect on placental cell apoptosis, as determined by the TUNEL assay, the rate of Ki67-positive cell, a marker of cell proliferation, was reduced in placental labyrinthine region of mice exposed to 1-NP in late pregnancy. These findings provide evidence that gestational 1-NP exposure induces fetal growth restriction in a stage-dependent manner. Placenta is a toxic target in the process of 1-NP-induced fetal growth restriction.
Collapse
Affiliation(s)
- Ran Li
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei 230032, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xilu Wang
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Bo Wang
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Jian Li
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yaping Song
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Biao Luo
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yuanhua Chen
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Dexiang Xu
- Laboratory of Environmental Toxicology, Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
43
|
Wang H, Li J, Zhang X, Zhu P, Hao JH, Tao FB, Xu DX. Maternal serum arsenic level during pregnancy is positively associated with adverse pregnant outcomes in a Chinese population. Toxicol Appl Pharmacol 2018; 356:114-119. [DOI: 10.1016/j.taap.2018.07.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 01/07/2023]
|
44
|
Lim W, Bae H, Bazer FW, Song G. Ephrin A1 promotes proliferation of bovine endometrial cells with abundant expression of proliferating cell nuclear antigen and cyclin D1 changing the cell population at each stage of the cell cycle. J Cell Physiol 2018; 234:4864-4873. [PMID: 30238980 DOI: 10.1002/jcp.27275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Ephrin A1 has a role in a variety of biological events, including cell proliferation, differentiation, migration, and angiogenesis. Ephrin A1 expression is abundant in trophoblasts and endometrial cells during the implantation period; however, its intracellular activities have not yet been reported in bovine endometrial (BEND) epithelial cells. The aim of this study was to identify the functional role of ephrin A1 in BEND cells, which have served as a good model system for investigating the regulation of signal transduction following treatment with interferon-τ (IFNT) in vitro. Supplementation of ephrin A1 to BEND cells increased cell proliferation and increased levels of proliferating cell nuclear antigen and cyclin D1 protein in BEND cell nuclei. To investigate intracellular mechanisms regulated by ephrin A1, we performed Western blot analysis focused on mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling, which are significantly involved in the successful maintenance of pregnancy. Ephrin A1 dose-dependently increased phosphorylation of extracellular signal-regulated kinases (ERK)1/2, c-Jun N-terminal kinases (JNK), P38, protein kinase B (AKT), P70S6K, S6, and cyclin D1, and the activated proteins were suppressed by pharmacological inhibitors including wortmannin (a PI3K inhibitor), U0126 (an ERK1/2 inhibitor), and SP600125 (a JNK inhibitor). Among ephrin A1 receptors, abundant expression of EPHA2 and EPHA4 messenger RNA was detected in BEND cells by reverse transcription polymerase chain reaction analysis. Furthermore, tunicamycin-induced endoplasmic reticulum (ER) stress was inactivated by ephrin A1 treatment of BEND cells. Our findings suggest that ephrin A1 promotes the development of BEND cells and likely enhances uterine capacity and maintenance of pregnancy by activating MAPK and PI3K signaling cascades and by restoring ER stress.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, Korea
| | - Hyocheol Bae
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Fuller W Bazer
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
| | - Gwonhwa Song
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
45
|
The exposure to uteroplacental insufficiency is associated with activation of unfolded protein response in postnatal life. PLoS One 2018; 13:e0198490. [PMID: 29897997 PMCID: PMC5999290 DOI: 10.1371/journal.pone.0198490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022] Open
Abstract
Early life events are associated with the susceptibility to chronic diseases in adult life. Perturbations of endoplasmic reticulum (ER) homeostasis activate the unfolded protein response (UPR), which contributes to the development of metabolic alterations. Our aim was to evaluate liver UPR in an animal model of intrauterine growth restriction (IUGR). A significantly increased expression of X-box binding protein-1 spliced (XBP1s) mRNA (p<0.01), Endoplasmic Reticulum-localized DnaJ homologue (Erdj4) mRNA (p<0.05) and Bip/GRP78-glucose-regulated protein 78 (Bip) mRNA (p<0.05) was observed in the liver of IUGR rats at birth. Furthermore, the expression of gluconeogenesis genes and lipogenesis genes were significantly upregulated (p<0.05) in IUGR pups. At 105 d, IUGR male rats showed significantly reduced glucose tolerance (p<0.01). A significant decreased expression of XBP1s mRNA (p<0.01) and increased expression of double-stranded RNA-dependent protein kinase-like ER kinase (PERK) and Asparagine synthetase (ASNS) (p<0.05) was observed in the liver of IUGR male adult rats. Liver focal steatosis and periportal fibrosis were observed in IUGR rats. These findings show for the first time that fetal exposure to uteroplacental insufficiency is associated with the activation of hepatic UPR and suggest that UPR signaling may play a role in the metabolic risk.
Collapse
|
46
|
Lim W, Bae H, Bazer FW, Song G. Cell-specific expression and signal transduction of C-C motif chemokine ligand 2 and atypical chemokine receptors in the porcine endometrium during early pregnancy. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:312-323. [PMID: 29278679 DOI: 10.1016/j.dci.2017.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Chemokines and atypical chemokine receptors (ACKRs; also known as chemokine decoy receptors) play an important role in reproductive immunology by recruiting leukocytes during early pregnancy. The aim of this study was to determine the expression of C-C motif chemokine ligand 2 (CCL2) and ACKRs in the endometrium during estrous cycle and early pregnancy, and to investigate the functional effects of CCL2 on porcine uterine luminal epithelial (pLE) cells. Our results indicated that CCL2, ACKR1, ACKR3, and ACKR4 were strongly detected in the glandular and luminal epithelium of the endometrium during early pregnancy compared to that in non-pregnant pigs. Recombinant CCL2 improved pLE cell proliferation via activation of the PI3K and MAPK pathways and suppression of endoplasmic reticulum (ER) stress by reducing the expression of ER stress regulatory genes. Collectively, these results provide novel insights into CCL2-mediated signaling mechanisms in the porcine endometrium at the maternal-fetal interface during early pregnancy.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, 25601, Republic of Korea
| | - Hyocheol Bae
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, 77843-2471, Texas, USA
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
47
|
Guo MY, Wang H, Chen YH, Xia MZ, Zhang C, Xu DX. N-acetylcysteine alleviates cadmium-induced placental endoplasmic reticulum stress and fetal growth restriction in mice. PLoS One 2018; 13:e0191667. [PMID: 29373603 PMCID: PMC5786300 DOI: 10.1371/journal.pone.0191667] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/09/2018] [Indexed: 01/12/2023] Open
Abstract
Cadmium (Cd) is a developmental toxicant that induces fetal growth restriction (FGR). Placental endoplasmic reticulum (ER) stress is associated with FGR. This study investigated the effects of N-acetylcysteine (NAC) on Cd-induced placental ER stress and FGR. Pregnant mice were intraperitoneally injected with CdCl2 daily from gestational day (GD)13 to GD17. As expected, Cd reduced fetal weight and crown-rump length. Cd decreased the internal space of blood vessels in the placental labyrinth layer and inhibited placental cell proliferation. Several genes of growth factors, such as Vegf-a, placental growth factor, Igf1 and Igf1r, and several genes of nutrient transport pumps, such as Glut1, Fatp1 and Snat2, were down-regulated in placenta of Cd-treated mice. Moreover, Cd evoked placental ER stress. Of interest, NAC alleviated Cd-induced FGR. Additional experiment showed that NAC inhibited Cd-induced impairment of placental development and placental ER stress. Therefore, NAC may be exploited for prevention of Cd-induced placental insufficiency and FGR.
Collapse
Affiliation(s)
- Min-Yin Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- * E-mail: (DXX); (HW)
| | - Yuan-Hua Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
| | - Mi-Zhen Xia
- Life Science College, Anhui Medical University, Hefei, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- * E-mail: (DXX); (HW)
| |
Collapse
|
48
|
Liu X, Wang J, Gao L, Jiao Y, Liu C. Maternal Protein Restriction Induces Alterations in Hepatic Unfolded Protein Response-Related Molecules in Adult Rat Offspring. Front Endocrinol (Lausanne) 2018; 9:676. [PMID: 30524373 PMCID: PMC6262354 DOI: 10.3389/fendo.2018.00676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Intrauterine growth restriction (IUGR) leads to the development of metabolic syndrome in adulthood. To explore the potential mechanisms of metabolic imprinting, we investigated the effect of malnutrition in utero on hepatic unfolded protein response (UPR)-related genes in IUGR offspring. An IUGR rat model was developed by feeding a low-protein diet to pregnant rats. The expression levels and activity of hepatic UPR genes were analysed by quantitative PCR (qPCR) arrays and western blotting. The hepatic UPR molecules heat-shock 70-kDa protein 4l (Hspa4l), mitogen-activated protein kinase 10 (Mapk10), and endoplasmic reticulum to nucleus signalling 2 (Ern2) were markedly downregulated in IUGR foetuses, but the expression of Mapk10 and Ern2 returned to normal levels at 3 weeks postnatal. In contrast, cAMP responsive element binding protein 3-like 3 (Creb3l3) was upregulated in hepatic tissues at embryo 20(E20), then restored to normal in adulthood (12 weeks). The protein levels of activating transcription factor 2 (Atf2) and Atf6, two key factors of the UPR pathway, were upregulated in the livers of IUGR foetuses, and the latter remained upregulated until 12 weeks. Combined with our previous findings showing an increase in hepatic gluconeogenesis enzymes in IUGR offspring, we speculated that aberrant intrauterine milieu impaired UPR signalling in hepatic tissues; these alterations early in life might contribute to the predisposition of IUGR foetuses to adult metabolic disorders.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Maternal-fetal Medicine of Liaoning Province, Shengjing Hospital, China Medical University, Shenyang, China
- *Correspondence: Xiaomei Liu
| | - Jun Wang
- Key Laboratory of Maternal-fetal Medicine of Liaoning Province, Shengjing Hospital, China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Benxi Central Hospital of China Medical University, Benxi, China
| | - Linlin Gao
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yisheng Jiao
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Caixia Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
49
|
Chang CW, Wakeland AK, Parast MM. Trophoblast lineage specification, differentiation and their regulation by oxygen tension. J Endocrinol 2018; 236:R43-R56. [PMID: 29259074 PMCID: PMC5741095 DOI: 10.1530/joe-17-0402] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022]
Abstract
Development of the early embryo takes place under low oxygen tension. Under such conditions, the embryo implants and the trophectoderm, the outer layer of blastocyst, proliferate, forming the cytotrophoblastic shell, the early placenta. The cytotrophoblasts (CTBs) are the so-called epithelial 'stem cells' of the placenta, which, depending on the signals they receive, can differentiate into either extravillous trophoblast (EVT) or syncytiotrophoblast (STB). EVTs anchor the placenta to the uterine wall and remodel maternal spiral arterioles in order to provide ample blood supply to the growing fetus. STBs arise through CTB fusion, secrete hormones necessary for pregnancy maintenance and form a barrier across which nutrient and gas exchange can take place. The bulk of EVT differentiation occurs during the first trimester, before the onset of maternal arterial blood flow into the intervillous space of the placenta, and thus under low oxygen tension. These conditions affect numerous signaling pathways, including those acting through hypoxia-inducible factor, the nutrient sensor mTOR and the endoplasmic reticulum stress-induced unfolded protein response pathway. These pathways are known to be involved in placental development and disease, and specific components have even been identified as directly involved in lineage-specific trophoblast differentiation. Nevertheless, much controversy surrounds the role of hypoxia in trophoblast differentiation, particularly with EVT. This review summarizes previous studies on this topic, with the intent of integrating these results and synthesizing conclusions that resolve some of the controversy, but then also pointing to remaining areas, which require further investigation.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Department of PathologyUniversity of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative MedicineUniversity of California San Diego, La Jolla, California, USA
| | - Anna K Wakeland
- Department of PathologyUniversity of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative MedicineUniversity of California San Diego, La Jolla, California, USA
| | - Mana M Parast
- Department of PathologyUniversity of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative MedicineUniversity of California San Diego, La Jolla, California, USA
| |
Collapse
|
50
|
Woods L, Perez-Garcia V, Hemberger M. Regulation of Placental Development and Its Impact on Fetal Growth-New Insights From Mouse Models. Front Endocrinol (Lausanne) 2018; 9:570. [PMID: 30319550 PMCID: PMC6170611 DOI: 10.3389/fendo.2018.00570] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023] Open
Abstract
The placenta is the chief regulator of nutrient supply to the growing embryo during gestation. As such, adequate placental function is instrumental for developmental progression throughout intrauterine development. One of the most common complications during pregnancy is insufficient growth of the fetus, a problem termed intrauterine growth restriction (IUGR) that is most frequently rooted in a malfunctional placenta. Together with conventional gene targeting approaches, recent advances in screening mouse mutants for placental defects, combined with the ability to rapidly induce mutations in vitro and in vivo by CRISPR-Cas9 technology, has provided new insights into the contribution of the genome to normal placental development. Most importantly, these data have demonstrated that far more genes are required for normal placentation than previously appreciated. Here, we provide a summary of common types of placental defects in established mouse mutants, which will help us gain a better understanding of the genes impacting on human placentation. Based on a recent mouse mutant screen, we then provide examples on how these data can be mined to identify novel molecular hubs that may be critical for placental development. Given the close association between placental defects and abnormal cardiovascular and brain development, these functional nodes may also shed light onto the etiology of birth defects that co-occur with placental malformations. Taken together, recent insights into the regulation of mouse placental development have opened up new avenues for research that will promote the study of human pregnancy conditions, notably those based on defects in placentation that underlie the most common pregnancy pathologies such as IUGR and pre-eclampsia.
Collapse
Affiliation(s)
- Laura Woods
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Vicente Perez-Garcia
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Vicente Perez-Garcia
| | - Myriam Hemberger
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Myriam Hemberger
| |
Collapse
|