1
|
Wang T, Chen Z, Zhang Y, Liu M, Sui H, Tang Q. Recent advances in the development and application of colorectal cancer mouse models. Front Pharmacol 2025; 16:1553637. [PMID: 40406485 PMCID: PMC12096087 DOI: 10.3389/fphar.2025.1553637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/20/2025] [Indexed: 05/26/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, necessitating the development of reliable preclinical models to advance mechanistic understanding and therapeutic innovation. This review comprehensively examines the diverse spectrum of rodent models employed in CRC research, focusing on their unique characteristics, applications, and translational relevance. We systematically evaluate conventional models, including carcinogen-induced models and genetically engineered mouse models (GEMMs), which have been instrumental in elucidating tumorigenic pathways and genetic drivers. Furthermore, we highlight the emergence of patient-derived xenografts (PDX) as a transformative tool for recapitulating tumor heterogeneity and predicting clinical responses. The review also explores metastatic models, which are critical for studying advanced disease, and spontaneous models that mimic natural tumor progression. Additionally, we discuss the growing utility of composite animal models, which integrate multiple methodologies to better reflect the complexity of human CRC. By comparing the strengths and limitations of each model system, this review provides a framework for selecting appropriate models based on specific research objectives. Collectively, these preclinical platforms have significantly advanced our understanding of CRC biology and continue to drive the development of targeted therapies and personalized treatment strategies.
Collapse
Affiliation(s)
- Ting Wang
- Nanxiang Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen Chen
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuli Zhang
- Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Liu
- Nanxiang Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Sui
- Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Tang
- Nanxiang Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Mannino D, Basilotta R, De Luca F, Casili G, Esposito E, Paterniti I. KRAS-SOS-1 Inhibition as New Pharmacological Target to Counteract Anaplastic Thyroid Carcinoma (ATC). Int J Mol Sci 2025; 26:2579. [PMID: 40141222 PMCID: PMC11942110 DOI: 10.3390/ijms26062579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive type of thyroid cancer. Tumor cells have been shown to activate alternative signaling pathways, making treatments less effective. One of the major proteins involved in the progression of ATC is the proto-oncogene KRAS that belongs to a group of small guanosine triphosphate (GTP)-binding proteins. Despite its recognized importance in cancer malignancy, KRAS is considered non-druggable and has never been studied in the field of ATC. In this context, a new synthetic molecule, BAY-293, has recently been developed that selectively inhibits the KRAS-SOS-1 interaction. Based on these findings, the aim of this study was to evaluate for the first time the antitumor effect of BAY-293 using in vitro and in vivo models of ATC. The in vitro model included different thyroid cancer (TC) cell lines used to study the effect of BAY-293 on the modulation of mitogen-activated protein kinase (MAPK) pathways, apoptosis, and cell migration. To confirm the in vitro findings and better mimic the complex tumor microenvironment, an in vivo orthotopic model of ATC was used. The results of the study indicate that BAY-293, both in vitro and in vivo, effectively blocked the KRAS/MAPK/ERK pathway and β-catenin, which act as downstream effectors essential for cell migration, and increased the apoptotic process by slowing the progression of ATC. In conclusion, this study demonstrated that KRAS/SOS-1 inhibition could be a promising therapeutic target for the treatment of ATC and highlighted BAY-293 as an innovative molecule that needs further research to fully evaluate its efficacy in the field of thyroid cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (R.B.); (F.D.L.); (G.C.); (E.E.)
| |
Collapse
|
3
|
Richter KM, Wrage M, Krekeler C, De Oliveira T, Conradi LC, Menck K, Bleckmann A. Model systems to study tumor-microbiome interactions in early-onset colorectal cancer. EMBO Mol Med 2025; 17:395-413. [PMID: 39948421 PMCID: PMC11903813 DOI: 10.1038/s44321-025-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 03/14/2025] Open
Abstract
Colorectal cancer (CRC) is a major health problem, with an alarming increase of early-onset CRC (EO-CRC) cases among individuals under 50 years of age. This trend shows the urgent need for understanding the underlying mechanisms leading to EO-CRC development and progression. There is significant evidence that the gut microbiome acts as a key player in CRC by triggering molecular changes in the colon epithelium, leading to tumorigenesis. However, a comprehensive collection and comparison of methods to study such tumor-microbiome interactions in the context of EO-CRC is sparse. This review provides an overview of the available in vivo, ex vivo as well as in vitro approaches to model EO-CRC and assess the effect of gut microbes on tumor development and growth. By comparing the advantages and limitations of each model system, it highlights that, while no single model is perfect, each is suitable for studying specific aspects of microbiome-induced tumorigenesis. Taken together, multifaceted approaches can simulate the human body's complexity, aiding in the development of effective treatment and prevention strategies for EO-CRC.
Collapse
Affiliation(s)
- Katharina M Richter
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Marius Wrage
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Carolin Krekeler
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Kerstin Menck
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, University of Muenster, 48149, Muenster, Germany.
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany.
| |
Collapse
|
4
|
Zuidema A, Atherton P, van der Poel S, Kreft M, Song JY, Bierbooms M, Verhoeven S, Papagianni C, Kroese L, Ali RB, Huijbers I, Carvalho B, Sonnenberg A. Colorectal carcinoma progression is not influenced by the pseudokinase PEAK1. Sci Rep 2024; 14:27663. [PMID: 39532961 PMCID: PMC11557890 DOI: 10.1038/s41598-024-78776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The scaffold protein PEAK1 acts downstream of integrin adhesion complexes and the epidermal growth factor receptor, orchestrating signaling events that control cell proliferation and cytoskeletal remodeling. In this study we investigated the role of PEAK1 in colorectal carcinoma (CRC) progression using various in vitro and in vivo models to replicate the stepwise pathogenesis of CRC. While we observed a cell-type specific role for PEAK1 in the proliferation and in human CRC cell lines in vitro, our in vivo experiments using different CRC mouse models driven by loss of Apc, with or without oncogenic Kras or Pten loss suggest that PEAK1 does not significantly contribute to tumor formation in vivo. However, the survival time of Peak1-/- mice in the Apcfl/+ model appeared to be slightly increased. Furthermore, PEAK1 promotes EGF-induced Caco-2 cell proliferation and regulates spheroid polarization and lumenization. Given that the Caco-2 cells harbor mutations in the tumor suppressors APC and β-CATENIN, but not in other tumor suppressors or in proto-oncogenes, we conclude that the PEAK1's impact on colon carcinogenesis is limited, potentially playing a role in the initial stage of the adenoma to carcinoma progression.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Oncological Urology and Laboratory Translational Oncology, Division of Imaging and Oncology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Paul Atherton
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Molecular and Clinical Cancer Medicine Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, L69 7BE, Liverpool, UK
| | - Sabine van der Poel
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Martine Bierbooms
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Sophie Verhoeven
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Chrysoula Papagianni
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Lona Kroese
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Rahmen Bin Ali
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ivo Huijbers
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Beatriz Carvalho
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
6
|
Chen X, Ding Y, Yi Y, Chen Z, Fu J, Chang Y. Review of Animal Models of Colorectal Cancer in Different Carcinogenesis Pathways. Dig Dis Sci 2024; 69:1583-1592. [PMID: 38526618 DOI: 10.1007/s10620-024-08384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract with increasing morbidity and mortality. Exploring the factors affecting colorectal carcinogenesis and controlling its occurrence at its root is as important as studying post-cancer treatment and management. Establishing ideal animal models of CRC is crucial, which can occur through various pathways, such as adenoma-carcinoma sequence, inflammation-induced carcinogenesis, serrated polyp pathway and de-novo pathway. This article aims to categorize the existing well-established CRC animal models based on different carcinogenesis pathways, and to describe their mechanisms, methods, advantages and limitations using domestic and international literature sources. This will provide suggestions for the selection of animal models in early-stage CRC research.
Collapse
Affiliation(s)
- Xue Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Yirong Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Zhishan Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Jiaping Fu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
7
|
Pothuraju R, Khan I, Jain M, Bouvet M, Malafa M, Roy HK, Kumar S, Batra SK. Colorectal cancer murine models: Initiation to metastasis. Cancer Lett 2024; 587:216704. [PMID: 38360138 PMCID: PMC11257378 DOI: 10.1016/j.canlet.2024.216704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Despite significant advancements in prevention and treatment, colorectal cancer (CRC) remains the third leading cause of cancer-related deaths. Animal models, including xenografts, syngeneic, and genetically engineered, have emerged as indispensable tools in cancer research. These models offer a valuable platform to address critical questions regarding molecular pathogenesis and test therapeutic interventions before moving on to clinical trials. Advancements in CRC animal models have also facilitated the advent of personalized and precision medicine. Patient-derived xenografts and genetically engineered mice that mirror features of human tumors allow for tailoring treatments to specific CRC subtypes, improving treatment outcomes and quality of life. To overcome the limitations of individual model systems, recent studies have employed a multi-modal approach, combining different animal models, 3D organoids, and in vitro studies. This integrative approach provides a comprehensive understanding of CRC biology, including the tumor microenvironment and therapeutic responses, driving the development of more effective and personalized therapeutic interventions. This review discusses the animal models used for CRC research, including recent advancements and limitations of these animal models.
Collapse
Affiliation(s)
- Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, California, USA
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Hemant K Roy
- Department of Medicine, Baylor College of Medicine, Houston, TX-77030, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
8
|
Abstract
Mouse models of colorectal cancer (CRC) have been crucial in the identification of the role of genes responsible for the full range of pathology of the human disease and have proved to be dependable for testing anti-cancer drugs. Recent research points toward the relevance of tumor, angiogenic, and immune microenvironments in CRC progression to late-stage disease, as well as the treatment of it. This study examines important mouse models in CRC, discussing inherent strengths and weaknesses disclosed during their construction. It endeavors to provide both a synopsis of previous work covering how investigators have defined various models and to evaluate critically how researchers are most likely to use them in the future. Accumulated evidence regarding the metastatic process and the hope of using checkpoint inhibitors and immunological inhibitor therapies points to the need for a genetically engineered mouse model that is both immunocompetent and autochthonous.
Collapse
Affiliation(s)
- Melanie Haas Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
9
|
Won Y, Choi E. Mouse models of Kras activation in gastric cancer. Exp Mol Med 2022; 54:1793-1798. [PMID: 36369466 PMCID: PMC9723172 DOI: 10.1038/s12276-022-00882-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer has one of the highest incidence rates and is one of the leading causes of cancer-related mortality worldwide. Sequential steps within the carcinogenic process are observed in gastric cancer as well as in pancreatic cancer and colorectal cancer. Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most well-known oncogene and can be constitutively activated by somatic mutations in the gene locus. For over 2 decades, the functions of Kras activation in gastrointestinal (GI) cancers have been studied to elucidate its oncogenic roles during the carcinogenic process. Different approaches have been utilized to generate distinct in vivo models of GI cancer, and a number of mouse models have been established using Kras-inducible systems. In this review, we summarize the genetically engineered mouse models in which Kras is activated with cell-type and/or tissue-type specificity that are utilized for studying carcinogenic processes in gastric cancer as well as pancreatic cancer and colorectal cancer. We also provide a brief description of histological phenotypes and characteristics of those mouse models and the current limitations in the gastric cancer field to be investigated further.
Collapse
Affiliation(s)
- Yoonkyung Won
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Mouse Models for Application in Colorectal Cancer: Understanding the Pathogenesis and Relevance to the Human Condition. Biomedicines 2022; 10:biomedicines10071710. [PMID: 35885015 PMCID: PMC9313309 DOI: 10.3390/biomedicines10071710] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant disease that is the second most common cancer worldwide. CRC arises from the complex interactions among a variety of genetic and environmental factors. To understand the mechanism of colon tumorigenesis, preclinical studies have developed various mouse models including carcinogen-induced and transgenic mice to recapitulate CRC in humans. Using these mouse models, scientific breakthroughs have been made on the understanding of the pathogenesis of this complex disease. Moreover, the availability of transgenic knock-in or knock-out mice further increases the potential of CRC mouse models. In this review, the overall features of carcinogen-induced (focusing on azoxymethane and azoxymethane/dextran sulfate sodium) and transgenic (focusing on ApcMin/+) mouse models, as well as their mechanisms to induce colon tumorigenesis, are explored. We also discuss limitations of these mouse models and their applications in the evaluation and study of drugs and treatment regimens against CRC. Through these mouse models, a better understanding of colon tumorigenesis can be achieved, thereby facilitating the discovery of novel therapeutic strategies against CRC.
Collapse
|
11
|
Pothuraju R, Pai P, Chaudhary S, Siddiqui JA, Cox JL, Kaur S, Rachagani S, Roy HK, Bouvet M, Batra SK. Depletion of transmembrane mucin 4 (Muc4) alters intestinal homeostasis in a genetically engineered mouse model of colorectal cancer. Aging (Albany NY) 2022; 14:2025-2046. [PMID: 35255004 PMCID: PMC8954958 DOI: 10.18632/aging.203935] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
Mucins are components of the mucus layer overlying the intestinal epithelial cells, which maintains physiological homeostasis. Altered mucin expression is associated with disease progression. Expression of MUC4 decreases in colorectal cancer (CRC); however, its functional role and implications in the intestinal pathology in CRC are not studied well. Therefore, we generated a genetically engineered Muc4 knockout (Muc4-/-) CRC mouse model by crossing with Muc4-/- and Apcflox/flox mice in the presence of colon-specific inducible Cre. We observed that deficiency of Muc4 results in an increased number of macroscopic tumors in the colon and rectal region and leads to poor survival. Further, the absence of Muc4 was associated with goblet cell dysfunction where the expression of intestinal homeostasis molecules (Muc2 and Fam3D) was downregulated. Next, we also observed that loss of Muc4 showed reduced thickness of mucus layer, leading to infiltration of bacteria, reduction in anti-microbial peptides, and upregulation of pro-inflammatory cytokines. Further, Apc gene mutation results in activation of the Wnt/β-catenin signaling pathway that corroborated with an increased nuclear accumulation of β-catenin and activation of its target genes: cyclin D1 and c-Myc in Muc4-/- mice was observed. We conclude that the presence of Muc4 is essential for intestinal homeostasis, reduces tumor burden, and improves overall survival.
Collapse
Affiliation(s)
- Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hemant K Roy
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Bouvet
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA.,VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
12
|
Xu ZY, Huang JJ, Liu Y, Zhao Y, Wu XW, Ren JA. Current knowledge on the multiform reconstitution of intestinal stem cell niche. World J Stem Cells 2021; 13:1564-1579. [PMID: 34786158 PMCID: PMC8567451 DOI: 10.4252/wjsc.v13.i10.1564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The development of “mini-guts” organoid originates from the identification of Lgr5+ intestinal stem cells (ISCs) and circumambient signalings within their specific niche at the crypt bottom. These in vitro self-renewing “mini-guts”, also named enteroids or colonoids, undergo perpetual proliferation and regulated differentiation, which results in a high-performance, self-assembling and physiological organoid platform in diverse areas of intestinal research and therapy. The triumphant reconstitution of ISC niche in vitro also relies on Matrigel, a heterogeneous sarcoma extract. Despite the promising prospect of organoids research, their expanding applications are hampered by the canonical culture pattern, which reveals limitations such as inaccessible lumen, confine scale, batch to batch variation and low reproducibility. The tumor-origin of Matrigel also raises biosafety concerns in clinical treatment. However, the convergence of breakthroughs in cellular biology and bioengineering contribute to multiform reconstitution of the ISC niche. Herein, we review the recent advances in the microfabrication of intestinal organoids on hydrogel systems.
Collapse
Affiliation(s)
- Zi-Yan Xu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jin-Jian Huang
- Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ye Liu
- Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, Nanjing 210019, Jiangsu Province, China
| | - Xiu-Wen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jian-An Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
13
|
Role of Advanced Glycation End-Products and Other Ligands for AGE Receptors in Thyroid Cancer Progression. J Clin Med 2021; 10:jcm10184084. [PMID: 34575195 PMCID: PMC8470575 DOI: 10.3390/jcm10184084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
To date, thyroid cancers (TCs) remain a clinical challenge owing to their heterogeneous nature. The etiopathology of TCs is associated not only with genetic mutations or chromosomal rearrangements, but also non-genetic factors, such as oxidative-, nitrosative-, and carbonyl stress-related alterations in tumor environment. These factors, through leading to the activation of intracellular signaling pathways, induce tumor tissue proliferation. Interestingly, the incidence of TCs is often coexistent with various simultaneous mutations. Advanced glycation end-products (AGEs), their precursors and receptors (RAGEs), and other ligands for RAGEs are reported to have significant influence on carcinogenesis and TCs progression, inducing gene mutations, disturbances in histone methylation, and disorders in important carcinogenesis-related pathways, such as PI3K/AKT/NF-kB, p21/MEK/MPAK, or JAK/STAT, RAS/ERK/p53, which induce synthesis of interleukins, growth factors, and cytokines, thus influencing metastasis, angiogenesis, and cancer proliferation. Precursors of AGE (such as methylglyoxal (MG)) and selected ligands for RAGEs: AS1004, AS1008, and HMGB1 may, in the future, become potential targets for TCs treatment, as low MG concentration is associated with less aggressive anaplastic thyroid cancer, whereas the administration of anti-RAGE antibodies inhibits the progression of papillary thyroid cancer and anaplastic thyroid cancer. This review is aimed at collecting the information on the role of compounds, engaged in glycation process, in the pathogenesis of TCs. Moreover, the utility of these compounds in the diagnosis and treatment of TCs is thoroughly discussed. Understanding the mechanism of action of these compounds on TCs pathogenesis and progression may potentially be the grounds for the development of new treatment strategies, aiming at quality-of-life improvements.
Collapse
|
14
|
Meder L, Florin A, Ozretić L, Nill M, Koker M, Meemboor S, Radtke F, Diehl L, Ullrich RT, Odenthal M, Büttner R, Heukamp LC. Notch1 Deficiency Induces Tumor Cell Accumulation Inside the Bronchiolar Lumen and Increases TAZ Expression in an Autochthonous Kras LSL-G12V Driven Lung Cancer Mouse Model. Pathol Oncol Res 2021; 27:596522. [PMID: 34257546 PMCID: PMC8262161 DOI: 10.3389/pore.2021.596522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/11/2021] [Indexed: 01/15/2023]
Abstract
Purpose: Abrogation of Notch signaling, which is pivotal for lung development and pulmonary epithelial cell fate decisions was shown to be involved in the aggressiveness and the differentiation of lung carcinomas. Additionally, the transcription factors YAP and TAZ which are involved in the Hippo pathway, were recently shown to be tightly linked with Notch signaling and to regulate the cell fate in epidermal stem cells. Thus, we aim to elucidate the effects of conditional Notch1 deficiency on carcinogenesis and TAZ expression in lung cancer. Methods: We investigated the effect of conditional Cre-recombinase mediated Notch1 knock-out on lung cancer cells in vivo using an autochthonous mouse model of lung adenocarcinomas driven by Kras LSL-G12V and comprehensive immunohistochemical analysis. In addition, we analyzed clinical samples and human lung cancer cell lines for TAZ expression and supported our findings by publicly available data from The Cancer Genome Atlas (TCGA). Results: In mice, we found induction of papillary adenocarcinomas and protrusions of tumor cells from the bronchiolar lining upon Notch1 deficiency. Moreover, the mutated Kras driven lung tumors with deleted Notch1 showed increased TAZ expression and focal nuclear translocation which was frequently observed in human pulmonary adenocarcinomas and squamous cell carcinomas of the lung, but not in small cell lung carcinomas. In addition, we used data from TCGA to show that putative inactivating NOTCH1 mutations co-occur with KRAS mutations and genomic amplifications in lung adenocarcinomas. Conclusion: Our in vivo study provides evidence that Notch1 deficiency in mutated Kras driven lung carcinomas contributes to lung carcinogenesis in a subgroup of patients by increasing TAZ expression who might benefit from TAZ signaling blockade.
Collapse
Affiliation(s)
- Lydia Meder
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexandra Florin
- Institute for Pathology, University Hospital Cologne, Cologne, Germany
| | - Luka Ozretić
- Department of Cellular Pathology, Royal Free Hospital, London, United Kingdom
| | - Marieke Nill
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Mirjam Koker
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sonja Meemboor
- Institute for Pathology, University Hospital Cologne, Cologne, Germany
| | - Freddy Radtke
- École Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research Lausanne, Switzerland
| | - Linda Diehl
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland T Ullrich
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Pathology, University Hospital Cologne, Cologne, Germany
| | - Reinhard Büttner
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Pathology, University Hospital Cologne, Cologne, Germany
| | - Lukas C Heukamp
- Institute for Hematopathology Hamburg, Hamburg, Germany.,Lungen Netzwerk NOWEL, Oldenburg, Germany
| |
Collapse
|
15
|
Varga J, Nicolas A, Petrocelli V, Pesic M, Mahmoud A, Michels BE, Etlioglu E, Yepes D, Häupl B, Ziegler PK, Bankov K, Wild PJ, Wanninger S, Medyouf H, Farin HF, Tejpar S, Oellerich T, Ruland J, Siebel CW, Greten FR. AKT-dependent NOTCH3 activation drives tumor progression in a model of mesenchymal colorectal cancer. J Exp Med 2021; 217:151998. [PMID: 32749453 PMCID: PMC7537393 DOI: 10.1084/jem.20191515] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/26/2020] [Accepted: 06/05/2020] [Indexed: 01/15/2023] Open
Abstract
Recently, a transcriptome-based consensus molecular subtype (CMS) classification of colorectal cancer (CRC) has been established, which may ultimately help to individualize CRC therapy. However, the lack of animal models that faithfully recapitulate the different molecular subtypes impedes adequate preclinical testing of stratified therapeutic concepts. Here, we demonstrate that constitutive AKT activation in intestinal epithelial cells markedly enhances tumor invasion and metastasis in Trp53ΔIEC mice (Trp53ΔIECAktE17K) upon challenge with the carcinogen azoxymethane. Gene-expression profiling indicates that Trp53ΔIECAktE17K tumors resemble the human mesenchymal colorectal cancer subtype (CMS4), which is characterized by the poorest survival rate among the four CMSs. Trp53ΔIECAktE17K tumor cells are characterized by Notch3 up-regulation, and treatment of Trp53ΔIECAktE17K mice with a NOTCH3-inhibiting antibody reduces invasion and metastasis. In CRC patients, NOTCH3 expression correlates positively with tumor grading and the presence of lymph node as well as distant metastases and is specifically up-regulated in CMS4 tumors. Therefore, we suggest NOTCH3 as a putative target for advanced CMS4 CRC patients.
Collapse
Affiliation(s)
- Julia Varga
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Adele Nicolas
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Valentina Petrocelli
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Marina Pesic
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Abdelrahman Mahmoud
- German Cancer Research Center, Division of Applied Bioinformatics, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Birgitta E Michels
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Emre Etlioglu
- Digestive Oncology Unit, Department of Oncology, University Hospital Leuven, Leuven, Belgium
| | - Diego Yepes
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Björn Häupl
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Paul K Ziegler
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Stefan Wanninger
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich School of Medicine, Technical University of Munich, Munich, Germany
| | - Hind Medyouf
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Henner F Farin
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Sabine Tejpar
- Digestive Oncology Unit, Department of Oncology, University Hospital Leuven, Leuven, Belgium
| | - Thomas Oellerich
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Jürgen Ruland
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
16
|
Gillespie MA, Steele CW, Lannagan TR, Sansom OJ, Roxburgh CS. Pre-clinical modelling of rectal cancer to develop novel radiotherapy-based treatment strategies. Oncol Rev 2021; 15:511. [PMID: 34249240 PMCID: PMC8237517 DOI: 10.4081/oncol.2021.511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Pre-operative chemoradiotherapy reduces local recurrence rates in locally advanced rectal cancer. 10-20% of patients undergo complete response to chemoradiotherapy, however, many patients show no response. The mechanisms underlying this are poorly understood; identifying molecular and immunological factors underpinning heterogeneous responses to chemoradiotherapy, will promote development of treatment strategies to improve responses and overcome resistance mechanisms. This review describes the advances made in pre-clinical modelling of colorectal cancer, including genetically engineered mouse models, transplantation models, patient derived organoids and radiotherapy platforms to study responses to chemoradiotherapy. Relevant literature was identified through the PubMed and MEDLINE databases, using the following keywords: rectal cancer; mouse models; organoids; neo-adjuvant treatment; radiotherapy; chemotherapy. By delineating the advantages and disadvantages of available models, we discuss how modelling techniques can be utilized to address current research priorities in locally advanced rectal cancer. We provide unique insight into the potential application of pre-clinical models in the development of novel neo-adjuvant treatment strategies, which will hopefully guide future clinical trials.
Collapse
Affiliation(s)
- Michael A. Gillespie
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Campbell S.D. Roxburgh
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model of colorectal cancer. Proc Natl Acad Sci U S A 2020; 117:21598-21608. [PMID: 32817421 PMCID: PMC7474657 DOI: 10.1073/pnas.2008112117] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Using mouse models that recapitulate key genetic abnormalities accumulating during colorectal cancer (CRC) tumorigenesis, we report that chemically induced colitis promoted development of colon tumors that were largely resistant to anti-VEGF antibody treatment. Serum G-CSF levels were markedly elevated after induction of colitis. Inhibition of G-CSF or Bv8/PROK2 increased the efficacy of anti-VEGF antibody and prevented onset of resistance. To verify the potential clinical relevance of these findings, we examined a series of CRC specimens and found that tumor-infiltrating neutrophils strongly expressed Bv8/PROK2. CRC patients had significantly higher plasma Bv8/PROK2 levels than healthy volunteers and high plasma Bv8/PROK2 levels were inversely correlated with overall survival. These findings establish Bv8/PROK2 as a translational target in CRC, in combination with anti-VEGF agents. We tested cis-ApcΔ716/Smad4+/− and cis-ApcΔ716/Smad4+/−KrasG12D mice, which recapitulate key genetic abnormalities accumulating during colorectal cancer (CRC) tumorigenesis in humans, for responsiveness to anti-VEGF therapy. We found that even tumors in cis-ApcΔ716/Smad4+/−KrasG12D mice, although highly aggressive, were suppressed by anti-VEGF treatment. We tested the hypothesis that inflammation, a major risk factor and trigger for CRC, may affect responsiveness to anti-VEGF. Chemically induced colitis (CIC) in cis-ApcΔ716/Smad4+/− and cis-ApcΔ716/Smad4+/−KrasG12D mice promoted development of colon tumors that were largely resistant to anti-VEGF treatment. The myeloid growth factor G-CSF was markedly increased in the serum after induction of colitis. Antibodies blocking G-CSF, or its target Bv8/PROK2, suppressed tumor progression and myeloid cell infiltration when combined with anti-VEGF in CIC-associated CRC and in anti-VEGF-resistant CRC liver metastasis models. In a series of CRC specimens, tumor-infiltrating neutrophils strongly expressed Bv8/PROK2. CRC patients had significantly higher plasma Bv8/PROK2 levels than healthy volunteers and high plasma Bv8/PROK2 levels were inversely correlated with overall survival. Our findings establish Bv8/PROK2 as a translational target in CRC, in combination with anti-VEGF agents.
Collapse
|
18
|
Upregulation of OSBPL3 by HIF1A promotes colorectal cancer progression through activation of RAS signaling pathway. Cell Death Dis 2020; 11:571. [PMID: 32709922 PMCID: PMC7381633 DOI: 10.1038/s41419-020-02793-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Oxysterol-binding protein like protein 3 (OSBPL3) has been shown involving in the development of several human cancers. However, the relationship between OSBPL3 and colorectal cancer (CRC), particularly the role of OSBPL3 in the proliferation, invasion and metastasis of CRC remains unclear. In this study, we investigated the role of OSBPL3 in CRC and found that its expression was significantly higher in CRC tissues than that in normal tissues. In addition, high expression of OSBPL3 was closely related to poor differentiation, advanced TNM stage and poor prognosis of CRC. Further experiments showed that over-expression of OSBPL3 promoted the proliferation, invasion and metastasis of CRC in vitro and in vivo models. Moreover, we revealed that OSBPL3 promoted CRC progression through activation of RAS signaling pathway. Furthermore, we demonstrated that hypoxia induced factor 1 (HIF-1A) can regulate the expression of OSBPL3 via binding to the hypoxia response element (HRE) in the promoter of OSBPL3. In summary, Upregulation of OSBPL3 by HIF1A promotes colorectal cancer progression through activation of RAS signaling pathway. This novel mechanism provides a comprehensive understanding of both OSBPL3 and the RAS signaling pathway in the progression of CRC and indicates that the HIF1A–OSBPL3–RAS axis is a potential target for early therapeutic intervention in CRC progression.
Collapse
|
19
|
Kim B, Kang SY, Kim D, Heo YJ, Kim KM. PTEN Protein Loss and Loss-of-Function Mutations in Gastric Cancers: The Relationship with Microsatellite Instability, EBV, HER2, and PD-L1 Expression. Cancers (Basel) 2020; 12:cancers12071724. [PMID: 32610572 PMCID: PMC7407887 DOI: 10.3390/cancers12071724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022] Open
Abstract
Inactivation of phosphatase and tensin homolog (PTEN) is caused by multiple mechanisms, and loss of PTEN activity is related to the progression of various cancers. In gastric cancer (GC), the relationship between the loss of PTEN protein expression and various genetic alterations remains unclear. The effects of microsatellite instability (MSI), Epstein–Barr virus (EBV), HER2 overexpression, and PD-L1 expression on PTEN mutation have not been fully explored. We performed comprehensive cancer panel tests with a cohort of 322 tumor samples from patients with advanced GC. Immunohistochemistry for PTEN protein was performed in all cases, and the loss of protein expression was defined as a complete absence of nuclear staining. In total, 34 cases (10.6%) had pathogenic PTEN mutations, of which 19 (55.9%) showed PTEN protein loss. The most common PTEN variants associated with protein loss were p.R130 (n = 4) followed by p.R335, p.L265fs, and deletions (n = 2). All the ten nonsense mutations identified in the samples resulted in PTEN inactivation. In the remaining 288 GC cases with wild-type PTEN, protein loss was found in 35 cases (12.2%). Thus, PTEN mutations were significantly associated with PTEN protein loss (p = 5.232 × 10−10), high MSI (p = 3.936 × 10−8), and EBV-positivity (p = 0.0071). In conclusion, our results demonstrate that loss-of-function mutations in PTEN are a frequent genetic mechanism of PTEN inactivation in GC.
Collapse
Affiliation(s)
- Binnari Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (B.K.); (S.Y.K.)
- Center of Companion Diagnostics, Samsung Medical Center, Seoul 06351, Korea
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (B.K.); (S.Y.K.)
| | - Deokgeun Kim
- Department of Clinical Genomics, Samsung Medical Center, Seoul 06351, Korea;
| | - You Jeong Heo
- The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (B.K.); (S.Y.K.)
- Center of Companion Diagnostics, Samsung Medical Center, Seoul 06351, Korea
- Correspondence: ; Tel.: +82-2-3410-2807; Fax: +82-2-3410-6396
| |
Collapse
|
20
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient's CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development - even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
21
|
Biology and Therapeutic Targets of Colorectal Serrated Adenocarcinoma; Clues for a Histologically Based Treatment against an Aggressive Tumor. Int J Mol Sci 2020; 21:ijms21061991. [PMID: 32183342 PMCID: PMC7139914 DOI: 10.3390/ijms21061991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Serrated adenocarcinoma (SAC) is a tumor recognized by the WHO as a histological subtype accounting for around 9% of colorectal carcinomas. Compared to conventional carcinomas, SACs are characterized by a worse prognosis, weak development of the immune response, an active invasive front and a frequent resistance to targeted therapy due to a high occurrence of KRAS or BRAF mutation. Nonetheless, several high-throughput studies have recently been carried out unveiling the biology of this cancer and identifying potential molecular targets, favoring a future histologically based treatment. This review revises the current evidence, aiming to propose potential molecular targets and specific treatments for this aggressive tumor.
Collapse
|
22
|
Langlois MJ, Servant R, Reyes Nicolás V, Jones C, Roy SA, Paquet M, Carrier JC, Rivard N, Boudreau F, Perreault N. Loss of PTEN Signaling in Foxl1 + Mesenchymal Telocytes Initiates Spontaneous Colonic Neoplasia in Mice. Cell Mol Gastroenterol Hepatol 2019; 8:530-533.e5. [PMID: 31146066 PMCID: PMC6819895 DOI: 10.1016/j.jcmgh.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Marie-Josée Langlois
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Raphaëlle Servant
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vilcy Reyes Nicolás
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christine Jones
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sébastien A.B. Roy
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Julie C. Carrier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Rivard
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Francois Boudreau
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Perreault
- Département d’Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada,Correspondence Corresponding author:
| |
Collapse
|
23
|
Lannagan TRM, Lee YK, Wang T, Roper J, Bettington ML, Fennell L, Vrbanac L, Jonavicius L, Somashekar R, Gieniec K, Yang M, Ng JQ, Suzuki N, Ichinose M, Wright JA, Kobayashi H, Putoczki TL, Hayakawa Y, Leedham S, Abud HE, Yilmaz ÖH, Marker J, Klebe S, Wirapati P, Mukherjee S, Tejpar S, Leggett BA, Whitehall VLJ, Worthley DL, Woods SL. Genetic editing of colonic organoids provides a molecularly distinct and orthotopic preclinical model of serrated carcinogenesis. Gut 2019; 68:684-692. [PMID: 29666172 PMCID: PMC6192855 DOI: 10.1136/gutjnl-2017-315920] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/14/2018] [Accepted: 03/27/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Serrated colorectal cancer (CRC) accounts for approximately 25% of cases and includes tumours that are among the most treatment resistant and with worst outcomes. This CRC subtype is associated with activating mutations in the mitogen-activated kinase pathway gene, BRAF, and epigenetic modifications termed the CpG Island Methylator Phenotype, leading to epigenetic silencing of key tumour suppressor genes. It is still not clear which (epi-)genetic changes are most important in neoplastic progression and we begin to address this knowledge gap herein. DESIGN We use organoid culture combined with CRISPR/Cas9 genome engineering to sequentially introduce genetic alterations associated with serrated CRC and which regulate the stem cell niche, senescence and DNA mismatch repair. RESULTS Targeted biallelic gene alterations were verified by DNA sequencing. Organoid growth in the absence of niche factors was assessed, as well as analysis of downstream molecular pathway activity. Orthotopic engraftment of complex organoid lines, but not BrafV600E alone, quickly generated adenocarcinoma in vivo with serrated features consistent with human disease. Loss of the essential DNA mismatch repair enzyme, Mlh1, led to microsatellite instability. Sphingolipid metabolism genes are differentially regulated in both our mouse models of serrated CRC and human CRC, with key members of this pathway having prognostic significance in the human setting. CONCLUSION We generate rapid, complex models of serrated CRC to determine the contribution of specific genetic alterations to carcinogenesis. Analysis of our models alongside patient data has led to the identification of a potential susceptibility for this tumour type.
Collapse
Affiliation(s)
- Tamsin RM Lannagan
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Young K Lee
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Tongtong Wang
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Jatin Roper
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA
- Division of Gastroenterology, Tufts Medical Center, Boston, MA, United States
| | - Mark L Bettington
- Envoi Specialist Pathologists, Brisbane, QLD Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD Australia
| | - Lochlan Fennell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD Australia
| | - Laura Vrbanac
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Lisa Jonavicius
- Department of Anatomical Pathology, Flinders Medical Centre, Bedford Park, SA Australia
| | - Roshini Somashekar
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Krystyna Gieniec
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Miao Yang
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Jia Q Ng
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Nobumi Suzuki
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Mari Ichinose
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Josephine A Wright
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Hiroki Kobayashi
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Tracy L Putoczki
- Department of Medical Biology, University of Melbourne and the Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Yoku Hayakawa
- Dept of Gastroenterology, University of Tokyo, Japan
| | - Simon Leedham
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics University of Oxford, Oxford, & Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, Headington, UK
| | - Helen E Abud
- Cancer Program, Monash Biomedicine Discovery Institute and the Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC Australia
| | - Ömer H. Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA United States
| | | | - Sonja Klebe
- Department of Anatomical Pathology, Flinders Medical Centre, Bedford Park, SA Australia
| | - Pratyaksha Wirapati
- Swiss Institute of Bioinformatics, Bioinformatics Core Facility, Lausanne, Switzerland
| | | | - Sabine Tejpar
- Digestive Oncology Unit, Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Barbara A Leggett
- QIMR Berghofer Medical Research Institute, Brisbane, QLD Australia
- School of Medicine, University of Queensland, QLD Australia
- Royal Brisbane and Womens Hospital, Brisbane, QLD Australia
| | - Vicki LJ Whitehall
- QIMR Berghofer Medical Research Institute, Brisbane, QLD Australia
- School of Medicine, University of Queensland, QLD Australia
- Pathology Queensland, Brisbane, QLD
| | - Daniel L Worthley
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Susan L Woods
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, SA Australia
| |
Collapse
|
24
|
Kanth P, Hazel MW, Boucher KM, Yang Z, Wang L, Bronner MP, Boylan KE, Burt RW, Westover M, Neklason DW, Delker DA. Small RNA sequencing of sessile serrated polyps identifies microRNA profile associated with colon cancer. Genes Chromosomes Cancer 2018; 58:23-33. [PMID: 30265426 DOI: 10.1002/gcc.22686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Sessile serrated adenoma/polyps (SSA/Ps) of the colon account for 20-30% of all colon cancers. Small non-coding RNAs, including microRNAs (miRNAs), may function as oncogenes or tumor suppressor genes involved in cancer development. Small RNA sequencing (RNA-seq) was used to characterize miRNA profiles in SSA/Ps, hyperplastic polyps (HPs), adenomatous polyps and paired uninvolved colon. Our 108 small RNA-seq samples' results were compared to small RNA-seq data from 212 colon cancers from the Cancer Genome Atlas. Twenty-three and six miRNAs were differentially expressed in SSA/Ps compared to paired uninvolved colon and HPs, respectively. Differential expression of MIR31-5p, MIR135B-5p and MIR378A-5p was confirmed by RT-qPCR. SSA/P-specific miRNAs are similarly expressed in colon cancers containing genomic aberrations described in serrated cancers. Correlation of miRNA expression with consensus molecular subtypes suggests more than one subtype is associated with the serrated neoplasia pathway. Canonical pathway analysis suggests many of these miRNAs target growth factor signaling pathways.
Collapse
Affiliation(s)
- Priyanka Kanth
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, Salt Lake City, Utah
| | - Mark W Hazel
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Kenneth M Boucher
- Huntsman Cancer Institute, Salt Lake City, Utah.,Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Zhihong Yang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Li Wang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut.,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut
| | - Mary P Bronner
- Huntsman Cancer Institute, Salt Lake City, Utah.,Department of Pathology, University of Utah, Salt Lake City, Utah
| | | | - Randall W Burt
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Huntsman Cancer Institute, Salt Lake City, Utah
| | | | - Deborah W Neklason
- Huntsman Cancer Institute, Salt Lake City, Utah.,Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Don A Delker
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
25
|
Morris HT, Fort L, Spence HJ, Patel R, Vincent DF, Park JH, Snapper SB, Carey FA, Sansom OJ, Machesky LM. Loss of N-WASP drives early progression in an Apc model of intestinal tumourigenesis. J Pathol 2018; 245:337-348. [PMID: 29672847 PMCID: PMC6033012 DOI: 10.1002/path.5086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/15/2018] [Accepted: 04/12/2018] [Indexed: 01/23/2023]
Abstract
N-WASP (WASL) is a widely expressed cytoskeletal signalling and scaffold protein also implicated in regulation of Wnt signalling and homeostatic maintenance of skin epithelial architecture. N-WASP mediates invasion of cancer cells in vitro and its depletion reduces invasion and metastatic dissemination of breast cancer. Given this role in cancer invasion and universal expression in the gastrointestinal tract, we explored a role for N-WASP in the initiation and progression of colorectal cancer. While deletion of N-wasp is not detectably harmful in the murine intestinal tract, numbers of Paneth cells increased, indicating potential changes in the stem cell niche, and migration up the crypt-villus axis was enhanced. Loss of N-wasp promoted adenoma formation in an adenomatous polyposis coli (Apc) deletion model of intestinal tumourigenesis. Thus, we establish a tumour suppressive role of N-WASP in early intestinal carcinogenesis despite its later pro-invasive role in other cancers. Our study highlights that while the actin cytoskeletal machinery promotes invasion of cancer cells, it also maintains normal epithelial tissue function and thus may have tumour suppressive roles in pre-neoplastic tissues. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Adenomatous Polyposis Coli/genetics
- Adenomatous Polyposis Coli/metabolism
- Adenomatous Polyposis Coli/pathology
- Aged
- Animals
- Cell Differentiation
- Cell Movement
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colon/metabolism
- Colon/pathology
- DNA Mismatch Repair
- Disease Models, Animal
- Disease Progression
- Female
- Genes, APC
- Genes, Tumor Suppressor
- Genetic Predisposition to Disease
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Neoplasm Invasiveness
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Paneth Cells/metabolism
- Paneth Cells/pathology
- Phenotype
- Stem Cell Niche
- Tumor Microenvironment
- Wiskott-Aldrich Syndrome Protein, Neuronal/deficiency
- Wiskott-Aldrich Syndrome Protein, Neuronal/genetics
Collapse
Affiliation(s)
| | - Loic Fort
- Cancer Research UK Beatson InstituteBearsden, GlasgowUK
| | | | - Rachana Patel
- Cancer Research UK Beatson InstituteBearsden, GlasgowUK
| | | | - James H Park
- Academic Unit of Surgery, School of Medicine, Dentistry and NursingUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Scott B Snapper
- Harvard Medical School and Boston Children's HospitalDivision of Gastroenterology, Hepatology and NutritionBostonMassachusettsUSA
| | | | - Owen J Sansom
- Cancer Research UK Beatson InstituteBearsden, GlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowBearsden, GlasgowUK
| | - Laura M Machesky
- Cancer Research UK Beatson InstituteBearsden, GlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowBearsden, GlasgowUK
| |
Collapse
|
26
|
Targeting PTEN in Colorectal Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:55-73. [DOI: 10.1007/978-3-030-02771-1_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Waniczek D, Śnietura M, Lorenc Z, Nowakowska-Zajdel E, Muc-Wierzgoń M. Assessment of PI3K/AKT/PTEN signaling pathway activity in colorectal cancer using quantum dot-conjugated antibodies. Oncol Lett 2017; 15:1236-1240. [PMID: 29422975 DOI: 10.3892/ol.2017.7392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/19/2017] [Indexed: 01/18/2023] Open
Abstract
In certain patients with advanced colorectal cancer, loss of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) activity is observed. PTEN is a major gatekeeper gene of the AKT serine/threonine kinase (AKT) signaling pathway responsible for the proliferative activity of cells. The assessment of AKT activity may be a prognostic factor or a predictor of response to the targeted therapies against particular signaling proteins. To precisely identify the cause and the place of the pathway deregulation, it is necessary to identify phosphorylation states and concentrations of several proteins located at different levels of the regulatory cascade. In the present study, we propose the simultaneous use of specific antibodies conjugated with different quantum dots to highlight the nature of AKT/PKB cascade deregulation in patients with colorectal cancer and the loss of PTEN expression in tumor tissue. Fifty patients with colorectal cancer of no specific location were enrolled in the study. The expression of the PTEN protein, and concentrations of phosphorylated/activated forms of 3-Phosphoinositide-dependent kinase 1 (PDK1) and AKT were assessed using quantum dot-conjugated antibodies. In patients with a diminished or complete loss of the PTEN expression in the tumor tissue increased levels of activated/phosphorylated forms of PDK1 (Phospho-PDK1-Ser241) and AKT (Phospho-AKT-Thr308) proteins were found, which are responsible for the permanent activation of the phosphoinositide 3-kinase/AKT/PTEN signaling pathway in certain cases of colorectal cancer.
Collapse
Affiliation(s)
- Dariusz Waniczek
- SHS in Katowice, Department of Surgery Propedeutics, Chair of General, Colorectal and Trauma Surgery, Medical University of Silesia, 40-055 Katowice, Poland
| | - Mirosław Śnietura
- Tumor Pathology Department, Maria Sklodowska-Curie Memoria Cancer Center and Institute of Oncology, Gliwice Branch, 41-120 Gliwice, Poland
| | - Zbigniew Lorenc
- SHS in Katowice, Chair of General, Colorectal and Polytrauma Surgery, Medical University of Silesia, 40-055 Katowice, Poland
| | - Ewa Nowakowska-Zajdel
- Department of Nutrition Related Disease Prevention, School of Public Health in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Małgorzata Muc-Wierzgoń
- Department of Internal Medicine, School of Public Health in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
28
|
Phesse TJ, Durban VM, Sansom OJ. Defining key concepts of intestinal and epithelial cancer biology through the use of mouse models. Carcinogenesis 2017; 38:953-965. [PMID: 28981588 PMCID: PMC5862284 DOI: 10.1093/carcin/bgx080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Over the past 20 years, huge advances have been made in modelling human diseases such as cancer using genetically modified mice. Accurate in vivo models are essential to examine the complex interaction between cancer cells, surrounding stromal cells, tumour-associated inflammatory cells, fibroblast and blood vessels, and to recapitulate all the steps involved in metastasis. Elucidating these interactions in vitro has inherent limitations, and thus animal models are a powerful tool to enable researchers to gain insight into the complex interactions between signalling pathways and different cells types. This review will focus on how advances in in vivo models have shed light on many aspects of cancer biology including the identification of oncogenes, tumour suppressors and stem cells, epigenetics, cell death and context dependent cell signalling.
Collapse
Affiliation(s)
- Toby J Phesse
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, South Glamorgan, CF24 4HQ, UK
| | - Victoria Marsh Durban
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, South Glamorgan, CF24 4HQ, UK
- ReNeuron, Pencoed Business Park, Pencoed, Bridgend, CF35 5HY, UK and
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, G61 1BD, UK
| |
Collapse
|
29
|
Abstract
The intestinal microbiota consists of a dynamic organization of bacteria, viruses, archaea, and fungal species essential for maintaining gut homeostasis and protecting the host against pathogenic invasion. When dysregulated, the intestinal microbiota can contribute to colorectal cancer development. Though the microbiota is multifaceted in its ability to induce colorectal cancer, this review will focus on the capability of the microbiota to induce colorectal cancer through the modulation of immune function and the production of microbial-derived metabolites. We will also explore an experimental technique that is revolutionizing intestinal research. By elucidating the interactions of microbial species with epithelial tissue, and allowing for drug screening of patients with colorectal cancers, organoid development is a novel culturing technique that is innovating intestinal research. As a cancer that remains one of the leading causes of cancer-related deaths worldwide, it is imperative that scientific findings are translated into the creation of effective therapeutics to treat colorectal cancer.
Collapse
Affiliation(s)
- Sofia Oke
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, 1 King’s College Cir, MSB 7302, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
30
|
Sakamoto N, Feng Y, Stolfi C, Kurosu Y, Green M, Lin J, Green ME, Sentani K, Yasui W, McMahon M, Hardiman KM, Spence JR, Horita N, Greenson JK, Kuick R, Cho KR, Fearon ER. BRAF V600E cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis. eLife 2017; 6:e20331. [PMID: 28072391 PMCID: PMC5268782 DOI: 10.7554/elife.20331] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/09/2017] [Indexed: 01/07/2023] Open
Abstract
While 20-30% of colorectal cancers (CRCs) may arise from precursors with serrated glands, only 8-10% of CRCs manifest serrated morphology at diagnosis. Markers for distinguishing CRCs arising from 'serrated' versus 'conventional adenoma' precursors are lacking. We studied 36 human serrated CRCs and found CDX2 loss or BRAF mutations in ~60% of cases and often together (p=0.04). CDX2Null/BRAFV600E expression in adult mouse intestinal epithelium led to serrated morphology tumors (including carcinomas) and BRAFV600E potently interacted with CDX2 silencing to alter gene expression. Like human serrated lesions, CDX2Null/BRAFV600E-mutant epithelium expressed gastric markers. Organoids from CDX2Null/BRAFV600E-mutant colon epithelium showed serrated features, and partially recapitulated the gene expression pattern in mouse colon tissues. We present a novel mouse tumor model based on signature defects seen in many human serrated CRCs - CDX2 loss and BRAFV600E. The mouse intestinal tumors show significant phenotypic similarities to human serrated CRCs and inform about serrated CRC pathogenesis.
Collapse
Affiliation(s)
- Naoya Sakamoto
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ying Feng
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Carmine Stolfi
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Yuki Kurosu
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Maranne Green
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Jeffry Lin
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Megan E Green
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Martin McMahon
- Department of Dermatology, University of Utah Medical School, Salt Lake City, United States
- Huntsman Cancer Institute, University of Utah Medical School, Salt Lake City, United States
| | - Karin M Hardiman
- Department of Surgery, University of Michigan, Ann Arbor, United States
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Nobukatsu Horita
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Joel K Greenson
- Department of Pathology, University of Michigan, Ann Arbor, United States
| | - Rork Kuick
- Department of Biostatistics, University of Michigan, Ann Arbor, United States
| | - Kathleen R Cho
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States
- Department of Pathology, University of Michigan, Ann Arbor, United States
| | - Eric R Fearon
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States
- Department of Pathology, University of Michigan, Ann Arbor, United States
- Department of Human Genetics, University of Michigan, Ann Arbor, United States
| |
Collapse
|
31
|
Szparecki G, Ilczuk T, Gabzdyl N, Górnicka B. Comparison of Subtypes of Hepatocellular Adenoma to Hepatocellular Carcinoma and Non-Neoplastic Liver Tissue in Terms of PTEN Expression. Folia Biol (Praha) 2017; 63:202-208. [PMID: 29687774 DOI: 10.14712/fb2017063050202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
PTEN is a tumour suppressor gene whose loss of function has been found to be present in a variety of neoplasms, both benign and malignant. In hepatocellular carcinoma (HCC), loss of PTEN is associated with poorly differentiated cancer, advanced clinical stage and tendency to recur. The extent and meaning of PTEN loss in hepatocellular adenoma (HA), one of the precursor lesions for HCC, has not yet been analysed. The aim of the present study was to evaluate the possible loss of PTEN expression in HA in the wider context of hepatocarcinogenesis. Immunohistochemical analysis of PTEN expression was performed in non-neoplastic liver tissue, HAs and HCCs. It has been found that the loss of PTEN was markedly present in poorly differentiated HCC, whereas well to moderately differentiated HCC showed similar levels of PTEN expression to nonneoplastic liver. HAs presented as a heterogeneous group, with loss of PTEN observed in the inflammatory and HNF1A-mutated subtype and relatively intact PTEN expression in HA with nuclear β-catenin overexpression. This suggests that the loss of PTEN might occur both in HA and HCC, constituting different outcomes of the same molecular lesion in the various contexts of malignant or benign neoplasms.
Collapse
Affiliation(s)
- G Szparecki
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - T Ilczuk
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - N Gabzdyl
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - B Górnicka
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Rubio CA. Traditional serrated adenomas and serrated carcinomas in carcinogen-treated rats. J Clin Pathol 2016; 70:301-307. [PMID: 27566816 DOI: 10.1136/jclinpath-2016-204037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 01/23/2023]
Abstract
AIMS A recent review of archived sections from early experiments in rats showed neoplasias exhibiting serrated configurations. The aim was to assess the frequency of serrated neoplasias in the colon and small intestine of carcinogen-treated rats. METHODS While reviewing archival sections from early experiments in Sprague-Dawley (SD) and Fisher-344 (F-344) rats, we recently detected colonic and intestinal traditional serrated adenomas (displaying serrated or microtubular patterns) and serrated carcinomas. SD rats were injected 1,2-dimethylhydrazine (DMH) for 27 weeks whereas F-344 rats were fed with a pyrolysate (GLU-1) for 24 months. Filed sections from 358 colonic and small intestinal neoplasias were re-evaluated. RESULTS DMH-treated SD rats had 215 colonic neoplasias (1.4% were serrated adenomas, 7.9% microtubular adenomas, 2.8% serrated carcinomas and 2.8% microtubular carcinomas). GLU1-treated F-344 rats had 53 colonic neoplasias (1.9% were serrated adenomas and 20.8% microtubular adenomas), and 89 small intestinal neoplasias (1.1% were serrated adenomas, 42.7% microtubular adenomas and 6.7%, microtubular carcinomas). CONCLUSIONS DMH/SD-rats develop serrated and microtubular adenomas and carcinomas in the colon, whereas GLU1/F-344 rats develop microtubular adenomas in the colon and microtubular adenomas and carcinomas in the small intestine. The two rat-settings emerge as suitable models to study the molecular attributes of serrated and microtubular neoplasias under the standard conditions of the laboratory. This study is the first showing that a substantial number of serrated and particularly microtubular adenomas and carcinomas develop in the colon and small intestine of experimental rats. Importantly, serrated and microtubular neoplasias in rats recreate the histology of duodenal and colonic traditional serrated neoplasias in human beings.
Collapse
|
33
|
Merker SR, Weitz J, Stange DE. Gastrointestinal organoids: How they gut it out. Dev Biol 2016; 420:239-250. [PMID: 27521455 DOI: 10.1016/j.ydbio.2016.08.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/09/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023]
Abstract
The gastrointestinal tract is characterized by a self-renewing epithelium fueled by adult stem cells residing at the bottom of the intestinal crypt and gastric glands. Their activity and proliferation is strongly dependent on complex signaling pathways involving other crypt/gland cells as well as surrounding stromal cells. In recent years organoids are becoming increasingly popular as a new and powerful tool to study developmental or other biological processes. Organoids retain morphological and molecular patterns of the tissue they are derived from, are self-organizing, relatively simple to handle and accessible to genetic engineering. This review focuses on the developmental processes and signaling molecules involved in epithelial homeostasis and how a profound knowledge of these mechanisms allowed the establishment of a three dimensional organoid culture derived from adult gastrointestinal stem cells.
Collapse
Affiliation(s)
- Sebastian R Merker
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Daniel E Stange
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
34
|
Deevi RK, McClements J, McCloskey KD, Fatehullah A, Tkocz D, Javadi A, Higginson R, Durban VM, Jansen M, Clarke A, Loughrey MB, Campbell FC. Vitamin D3 suppresses morphological evolution of the cribriform cancerous phenotype. Oncotarget 2016; 7:49042-49064. [PMID: 27119498 PMCID: PMC5226489 DOI: 10.18632/oncotarget.8863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 12/14/2022] Open
Abstract
Development of cribriform morphology (CM) heralds malignant change in human colon but lack of mechanistic understanding hampers preventive therapy. This study investigated CM pathobiology in three-dimensional (3D) Caco-2 culture models of colorectal glandular architecture, assessed translational relevance and tested effects of 1,25(OH)2D3,theactive form of vitamin D. CM evolution was driven by oncogenic perturbation of the apical polarity (AP) complex comprising PTEN, CDC42 and PRKCZ (phosphatase and tensin homolog, cell division cycle 42 and protein kinase C zeta). Suppression of AP genes initiated a spatiotemporal cascade of mitotic spindle misorientation, apical membrane misalignment and aberrant epithelial configuration. Collectively, these events promoted "Swiss cheese-like" cribriform morphology (CM) comprising multiple abnormal "back to back" lumens surrounded by atypical stratified epithelium, in 3D colorectal gland models. Intestinal cancer driven purely by PTEN-deficiency in transgenic mice developed CM and in human CRC, CM associated with PTEN and PRKCZ readouts. Treatment of PTEN-deficient 3D cultures with 1,25(OH)2D3 upregulated PTEN, rapidly activated CDC42 and PRKCZ, corrected mitotic spindle alignment and suppressed CM development. Conversely, mutationally-activated KRAS blocked1,25(OH)2D3 rescue of glandular architecture. We conclude that 1,25(OH)2D3 upregulates AP signalling to reverse CM in a KRAS wild type (wt), clinically predictive CRC model system. Vitamin D could be developed as therapy to suppress inception or progression of a subset of colorectal tumors.
Collapse
Affiliation(s)
- Ravi K. Deevi
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK
| | - Jane McClements
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK
| | - Karen D. McCloskey
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK
| | - Aliya Fatehullah
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK
| | - Dorota Tkocz
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK
| | - Arman Javadi
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK
| | - Robyn Higginson
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK
| | | | - Marnix Jansen
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Alan Clarke
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
| | - Maurice B. Loughrey
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queens University Belfast and Belfast Health and Social Care Trust, Belfast, UK
| | - Frederick C. Campbell
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK
| |
Collapse
|
35
|
Kuperstein I, Robine S, Zinovyev A. Network biology elucidates metastatic colon cancer mechanisms. Cell Cycle 2016; 14:2189-90. [PMID: 26083805 DOI: 10.1080/15384101.2015.1060816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
36
|
Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures recapitulates phenotypic features of disease progression. Biomaterials 2016; 78:50-61. [DOI: 10.1016/j.biomaterials.2015.11.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022]
|
37
|
Jackstadt R, Sansom OJ. Mouse models of intestinal cancer. J Pathol 2016; 238:141-51. [PMID: 26414675 PMCID: PMC4832380 DOI: 10.1002/path.4645] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
Murine models of intestinal cancer are powerful tools to recapitulate human intestinal cancer, understand its biology and test therapies. With recent developments identifying the importance of the tumour microenvironment and the potential for immunotherapy, autochthonous genetically engineered mouse models (GEMMs) will remain an important part of preclinical studies for the foreseeable future. This review will provide an overview of the current mouse models of intestinal cancer, from the Apc(Min/+) mouse, which has been used for over 25 years, to the latest 'state-of-the-art' organoid models. We discuss here how these models have been used to define fundamental processes involved in tumour initiation and the attempts to generate metastatic models, which is the ultimate cause of cancer mortality. Together these models will provide key insights to understand this complex disease and hopefully will lead to the discovery of new therapeutic strategies.
Collapse
|
38
|
Affiliation(s)
- Shoichi Date
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 108-8345, Japan;
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 108-8345, Japan;
| |
Collapse
|
39
|
Conesa-Zamora P, García-Solano J, Turpin MDC, Sebastián-León P, Torres-Moreno D, Estrada E, Tuomisto A, Wilce J, Mäkinen MJ, Pérez-Guillermo M, Conesa A. Methylome profiling reveals functions and genes which are differentially methylated in serrated compared to conventional colorectal carcinoma. Clin Epigenetics 2015; 7:101. [PMID: 26388956 PMCID: PMC4574063 DOI: 10.1186/s13148-015-0128-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022] Open
Abstract
Background Serrated adenocarcinoma (SAC) is a recently recognized colorectal cancer (CRC) subtype accounting for 7.5–8.7 % of CRCs. It has been shown that SAC has a worse prognosis and different histological and molecular features compared to conventional carcinoma (CC) but, to date, there is no study analysing its methylome profile. Results The methylation status of 450,000 CpG sites using the Infinium Human Methylation 450 BeadChip array was investigated in 103 colorectal specimens, including 39 SACs and 34 matched CCs, from Spanish and Finnish patients. Microarray data showed a higher representation of morphogenesis-, neurogenesis-, cytoskeleton- and vesicle transport-related functions and also significant differential methylation of 15 genes, including the iodothyronine deiodinase DIO3 and the forkhead family transcription factor FOXD2 genes which were validated at the CpG, mRNA and protein level using pyrosequencing, methylation-specific PCR, quantitative polymerase chain reaction (qPCR) and immunohistochemistry. A quantification study of the methylation status of CpG sequences in FOXD2 demonstrated a novel region controlling gene expression. Moreover, differences in these markers were also evident when comparing SAC with CRC showing molecular and histological features of high-level microsatellite instability. Conclusions This methylome study demonstrates distinct epigenetic regulation patterns in SAC which are consistent to previous expression profile studies and that DIO3 and FOXD2 might be molecular targets for a specific histology-oriented treatment of CRC. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0128-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pablo Conesa-Zamora
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), C/Mezquita s/n, 30202 Cartagena, Spain ; Facultad de Ciencias de la Salud, Catholic University of Murcia (UCAM), Murcia, Spain
| | - José García-Solano
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), C/Mezquita s/n, 30202 Cartagena, Spain ; Facultad de Ciencias de la Salud, Catholic University of Murcia (UCAM), Murcia, Spain
| | | | - Patricia Sebastián-León
- Department of Bioinformatics and Genomics, Centro de Investigación Príncipe Felipe (CIPF), Yúfera, 3, 46012 Valencia, Spain
| | - Daniel Torres-Moreno
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), C/Mezquita s/n, 30202 Cartagena, Spain
| | - Eduardo Estrada
- Department of Social Psychology and Methodology, Autónoma University, Madrid, Spain
| | - Anne Tuomisto
- Department of Pathology, University of Oulu, Oulu, Finland
| | - Jamie Wilce
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), C/Mezquita s/n, 30202 Cartagena, Spain
| | | | - Miguel Pérez-Guillermo
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), C/Mezquita s/n, 30202 Cartagena, Spain
| | - Ana Conesa
- Department of Bioinformatics and Genomics, Centro de Investigación Príncipe Felipe (CIPF), Yúfera, 3, 46012 Valencia, Spain ; Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, USA
| |
Collapse
|
40
|
Raja M, Zverev M, Seipel K, Williams GT, Clarke AR, Shaw PHS. Assessment of the In Vivo Activity of PI3K and MEK Inhibitors in Genetically Defined Models of Colorectal Cancer. Mol Cancer Ther 2015. [PMID: 26206338 DOI: 10.1158/1535-7163.mct-15-0223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of tailoring medicines for cancer patients according to the molecular profile of their disease holds great promise for the improvement of cancer therapy. Nevertheless, this approach has been limited, in part, due to the lack of predictive and informative preclinical studies. Herein, we describe an assessment of the therapeutic potential of targeting PI3K/mTOR and MAPK signaling in genetically defined mouse models of colorectal cancer mirroring disease subtypes targeted for novel therapy in the FOCUS4 trial. Our studies demonstrate that dual PI3K/mTOR inhibition is highly effective in invasive adenocarcinoma models characterized by combinatorial mutations in Apc and Pten; Apc and Kras; and Apc, Pten and Kras. MEK inhibition was effective in the combinatorial Apc and Kras setting, but had no impact in either Apc Pten mutants or in Apc Pten Kras triple mutants. Furthermore, we describe the importance of scheduling for combination studies and show that although no additional benefit is gained in Apc Pten mice, combination of PI3K/mTOR and MAPK inhibition leads to an additive benefit in survival in Apc Kras mice and a synergistic increase in survival in Apc Pten Kras mice. This is the first study using robust colorectal cancer genetically engineered mouse models to support the validity of PI3K/mTOR and MEK inhibitors as tailored therapies for colorectal cancer and highlight the potential importance of drug scheduling in the clinic.
Collapse
Affiliation(s)
- Meera Raja
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Matt Zverev
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Katja Seipel
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom. University Hospital Bern, Bern, Switzerland
| | | | - Alan R Clarke
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom.
| | - Paul H S Shaw
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW To discuss the recent landmark findings that have increased our understanding not only of the role of the epithelial cell cycle in the homeostasis of the small intestine, but also its relevance to inflammation and cancer. RECENT FINDINGS Recent data have unveiled novel information on protein interactions directly involved in the cell cycle as well as in the pathways that transduce external environmental signals to the cell cycle. A growing body of the recent evidence confirms the importance of food as well as hormonal regulation in the gut on cell cycle. Information on the contribution of the epithelial microenvironment, including the microbiota, has grown substantially in the recent years as well as on the gene-environment interactions and the multiple epigenetic mechanisms involved in regulating cell-cycle proteins and signalling. Finally, further studies investigating the dysregulation of the cell cycle during inflammation and proliferation have increased our understanding of the pathophysiology of chronic inflammatory diseases and cancer. SUMMARY This review highlights some of the most recent advances that further emphasize the importance of the cell cycle in the small intestine during homeostasis as well as in inflammation and cancer.
Collapse
|
42
|
Adams JC. Fascin-1 as a biomarker and prospective therapeutic target in colorectal cancer. Expert Rev Mol Diagn 2014; 15:41-8. [DOI: 10.1586/14737159.2015.976557] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Chanrion M, Kuperstein I, Barrière C, El Marjou F, Cohen D, Vignjevic D, Stimmer L, Paul-Gilloteaux P, Bièche I, Tavares SDR, Boccia GF, Cacheux W, Meseure D, Fre S, Martignetti L, Legoix-Né P, Girard E, Fetler L, Barillot E, Louvard D, Zinovyev A, Robine S. Concomitant Notch activation and p53 deletion trigger epithelial-to-mesenchymal transition and metastasis in mouse gut. Nat Commun 2014; 5:5005. [PMID: 25295490 PMCID: PMC4214431 DOI: 10.1038/ncomms6005] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/15/2014] [Indexed: 12/31/2022] Open
Abstract
Epithelial-to-mesenchymal transition-like (EMT-like) is a critical process allowing initiation of metastases during tumour progression. Here, to investigate its role in intestinal cancer, we combine computational network-based and experimental approaches to create a mouse model with high metastatic potential. Construction and analysis of this network map depicting molecular mechanisms of EMT regulation based on the literature suggests that Notch activation and p53 deletion have a synergistic effect in activating EMT-like processes. To confirm this prediction, we generate transgenic mice by conditionally activating the Notch1 receptor and deleting p53 in the digestive epithelium (NICD/p53(-/-)). These mice develop metastatic tumours with high penetrance. Using GFP lineage tracing, we identify single malignant cells with mesenchymal features in primary and metastatic tumours in vivo. The development of such a model that recapitulates the cellular features observed in invasive human colorectal tumours is appealing for innovative drug discovery.
Collapse
Affiliation(s)
- Maia Chanrion
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | - Inna Kuperstein
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] Inserm, U900, Paris 75248, France
| | - Cédric Barrière
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | - Fatima El Marjou
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | - David Cohen
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] Inserm, U900, Paris 75248, France
| | - Danijela Vignjevic
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | - Lev Stimmer
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | - Perrine Paul-Gilloteaux
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] Cell and Tissue Imaging Facility, PICT-IBiSA, CNRS, UMR 144, Paris 75248, France
| | - Ivan Bièche
- 1] Inserm U735, Hôpital René Huguenin, 92210 Saint-Cloud, France [2] Institut Curie, Hôpital René Huguenin, 35 rue Dailly, 92210 Saint-Cloud, France
| | - Silvina Dos Reis Tavares
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | - Giuseppe-Fulvio Boccia
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | | | | | - Silvia Fre
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR3215, Paris 75248, France [3] Inserm U934, Paris 75248, France
| | - Loredana Martignetti
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] Inserm, U900, Paris 75248, France
| | - Patricia Legoix-Né
- Next-Generation Sequencing Platform, Institut Curie, Paris 75248, France
| | - Elodie Girard
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] Inserm, U900, Paris 75248, France
| | - Luc Fetler
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR168, Paris 75248, France
| | - Emmanuel Barillot
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] Inserm, U900, Paris 75248, France
| | - Daniel Louvard
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | - Andreï Zinovyev
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] Inserm, U900, Paris 75248, France
| | - Sylvie Robine
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| |
Collapse
|
44
|
HU YONG, XU SHENGLIN, JIN WENSEN, YI QIYI, WEI WEI. Effect of the PTEN gene on adhesion, invasion and metastasis of osteosarcoma cells. Oncol Rep 2014; 32:1741-7. [PMID: 25069680 DOI: 10.3892/or.2014.3362] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/04/2014] [Indexed: 11/05/2022] Open
|