1
|
Li TL, Blair JD, Yoo T, Grant GA, Hockemeyer D, Porter BE, Bateup HS. mTORC1 activation drives astrocyte reactivity in cortical tubers and brain organoid models of TSC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640914. [PMID: 40093155 PMCID: PMC11908165 DOI: 10.1101/2025.02.28.640914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Tuberous Sclerosis Complex (TSC) is a genetic neurodevelopmental disorder associated with early onset epilepsy, intellectual disability and neuropsychiatric disorders. A hallmark of the disorder is cortical tubers, which are focal malformations of brain development containing dysplastic cells with hyperactive mTORC1 signaling. One barrier to developing therapeutic approaches and understanding the origins of tuber cells is the lack of a model system that recapitulates this pathology. To address this, we established a genetically mosaic cortical organoid system that models a somatic "second-hit" mutation, which is thought to drive the formation of tubers in TSC. With this model, we find that loss of TSC2 cell-autonomously promotes the differentiation of astrocytes, which exhibit features of a disease-associated reactive state. TSC2 -/- astrocytes have pronounced changes in morphology and upregulation of proteins that are risk factors for neurodegenerative diseases, such as clusterin and APOE. Using multiplexed immunofluorescence in primary tubers from TSC patients, we show that tuber cells with hyperactive mTORC1 activity also express reactive astrocyte proteins, and we identify a unique population of cells with expression profiles that match those observed in organoids. Together, this work reveals that reactive astrogliosis is a primary feature of TSC that arises early in cortical development. Dysfunctional glia are therefore poised to be drivers of pathophysiology, nominating a potential therapeutic target for treating TSC and related mTORopathies.
Collapse
Affiliation(s)
- Thomas L. Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| | - John D. Blair
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Taesun Yoo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| | - Gerald A. Grant
- Department of Neurosurgery, Lucile Packard Children’s Hospital and Stanford University Medical Center, Stanford, CA, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Brenda E. Porter
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Helen S. Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
Connors CQ, Mauro MS, Wiles JT, Countryman AD, Martin SL, Lacroix B, Shirasu-Hiza M, Dumont J, Kasza KE, Davies TR, Canman JC. Germ fate determinants protect germ precursor cell division by reducing septin and anillin levels at the cell division plane. Mol Biol Cell 2024; 35:ar94. [PMID: 38696255 PMCID: PMC11244169 DOI: 10.1091/mbc.e24-02-0096-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024] Open
Abstract
Animal cell cytokinesis, or the physical division of one cell into two, is thought to be driven by constriction of an actomyosin contractile ring at the division plane. The mechanisms underlying cell type-specific differences in cytokinesis remain unknown. Germ cells are totipotent cells that pass genetic information to the next generation. Previously, using formincyk-1(ts) mutant Caenorhabditis elegans 4-cell embryos, we found that the P2 germ precursor cell is protected from cytokinesis failure and can divide with greatly reduced F-actin levels at the cell division plane. Here, we identified two canonical germ fate determinants required for P2-specific cytokinetic protection: PIE-1 and POS-1. Neither has been implicated previously in cytokinesis. These germ fate determinants protect P2 cytokinesis by reducing the accumulation of septinUNC-59 and anillinANI-1 at the division plane, which here act as negative regulators of cytokinesis. These findings may provide insight into the regulation of cytokinesis in other cell types, especially in stem cells with high potency.
Collapse
Affiliation(s)
- Caroline Q. Connors
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Michael S. Mauro
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - J. Tristian Wiles
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | - Sophia L. Martin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Benjamin Lacroix
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Université de Montpellier, CNRS, Centre de Recherche en Biologie Cellulaire de Montpellier, UMR 5237 Montpellier, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Karen E. Kasza
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Timothy R. Davies
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Julie C. Canman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
3
|
Marqués P, Burillo J, González-Blanco C, Jiménez B, García G, García-Aguilar A, Iglesias-Fortes S, Lockwood Á, Guillén C. Regulation of TSC2 lysosome translocation and mitochondrial turnover by TSC2 acetylation status. Sci Rep 2024; 14:12521. [PMID: 38822085 PMCID: PMC11143182 DOI: 10.1038/s41598-024-63525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Sirtuin1 (SIRT1) activity decreases the tuberous sclerosis complex 2 (TSC2) lysine acetylation status, inhibiting the mechanistic target of rapamycin complex 1 (mTORC1) signalling and concomitantly, activating autophagy. This study analyzes the role of TSC2 acetylation levels in its translocation to the lysosome and the mitochondrial turnover in both mouse embryonic fibroblast (MEF) and in mouse insulinoma cells (MIN6) as a model of pancreatic β cells. Resveratrol (RESV), an activator of SIRT1 activity, promotes TSC2 deacetylation and its translocation to the lysosome, inhibiting mTORC1 activity. An improvement in mitochondrial turnover was also observed in cells treated with RESV, associated with an increase in the fissioned mitochondria, positive autophagic and mitophagic fluxes and an enhancement of mitochondrial biogenesis. This study proves that TSC2 in its deacetylated form is essential for regulating mTORC1 signalling and the maintenance of the mitochondrial quality control, which is involved in the homeostasis of pancreatic beta cells and prevents from several metabolic disorders such as Type 2 Diabetes Mellitus.
Collapse
Affiliation(s)
- Patricia Marqués
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Jesús Burillo
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
| | - Gema García
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
| | - Ana García-Aguilar
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Sarai Iglesias-Fortes
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Ángela Lockwood
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
- CIBER of Diabetes and Associated Metabolic Disorders, Instituto de Salud Carlos III, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, IdISSC, Madrid, Spain.
- P2022/BMD-7227, MOIR-ACTOME-CM, Dirección General de Investigación e Innovación Tecnológica (DGIIT), Consejería de Educación y Universidades, Comunidad de Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Connors CQ, Mauro MS, Tristian Wiles J, Countryman AD, Martin SL, Lacroix B, Shirasu-Hiza M, Dumont J, Kasza KE, Davies TR, Canman JC. Germ fate determinants protect germ precursor cell division by restricting septin and anillin levels at the division plane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.566773. [PMID: 38014027 PMCID: PMC10680835 DOI: 10.1101/2023.11.17.566773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Animal cell cytokinesis, or the physical division of one cell into two, is thought to be driven by constriction of an actomyosin contractile ring at the division plane. The mechanisms underlying cell type-specific differences in cytokinesis remain unknown. Germ cells are totipotent cells that pass genetic information to the next generation. Previously, using formin cyk-1 (ts) mutant C. elegans embryos, we found that the P2 germ precursor cell is protected from cytokinesis failure and can divide without detectable F-actin at the division plane. Here, we identified two canonical germ fate determinants required for P2-specific cytokinetic protection: PIE-1 and POS-1. Neither has been implicated previously in cytokinesis. These germ fate determinants protect P2 cytokinesis by reducing the accumulation of septin UNC-59 and anillin ANI-1 at the division plane, which here act as negative regulators of cytokinesis. These findings may provide insight into cytokinetic regulation in other cell types, especially in stem cells with high potency.
Collapse
|
5
|
Gąssowska-Dobrowolska M, Czapski GA, Cieślik M, Zajdel K, Frontczak-Baniewicz M, Babiec L, Adamczyk A. Microtubule Cytoskeletal Network Alterations in a Transgenic Model of Tuberous Sclerosis Complex: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2023; 24:7303. [PMID: 37108467 PMCID: PMC10138344 DOI: 10.3390/ijms24087303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic multisystem disorder caused by loss-of-function mutations in the tumour suppressors TSC1/TSC2, both of which are negative regulators of the mammalian target of rapamycin (mTOR) kinase. Importantly, mTOR hyperactivity seems to be linked with the pathobiology of autism spectrum disorders (ASD). Recent studies suggest the potential involvement of microtubule (MT) network dysfunction in the neuropathology of "mTORopathies", including ASD. Cytoskeletal reorganization could be responsible for neuroplasticity disturbances in ASD individuals. Thus, the aim of this work was to study the effect of Tsc2 haploinsufficiency on the cytoskeletal pathology and disturbances in the proteostasis of the key cytoskeletal proteins in the brain of a TSC mouse model of ASD. Western-blot analysis indicated significant brain-structure-dependent abnormalities in the microtubule-associated protein Tau (MAP-Tau), and reduced MAP1B and neurofilament light (NF-L) protein level in 2-month-old male B6;129S4-Tsc2tm1Djk/J mice. Alongside, pathological irregularities in the ultrastructure of both MT and neurofilament (NFL) networks as well as swelling of the nerve endings were demonstrated. These changes in the level of key cytoskeletal proteins in the brain of the autistic-like TSC mice suggest the possible molecular mechanisms responsible for neuroplasticity alterations in the ASD brain.
Collapse
Affiliation(s)
- Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Grzegorz A. Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Karolina Zajdel
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
6
|
Dutta R, Sharma MC, Suri V, Sarkar C, Garg A, Suri A, Kale SS. TTF-1: A Well-Favored Addition to the Immunohistochemistry Armamentarium as a Diagnostic Marker of SEGA. World Neurosurg 2021; 159:e62-e69. [PMID: 34871801 DOI: 10.1016/j.wneu.2021.11.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Subependymal giant cell astrocytoma (SEGA) is a World Health Organization grade 1 neoplasm, which, due to its dubious morphologic features, may be misdiagnosed as a high-grade tumor at times. This tumor shows binary immunoexpression including both glial and neural markers, leading to a state of diagnostic quandary. Recent evidences have surmised the diagnostic utility of thyroid transcription factor 1 (TTF-1), spurring us to study the practicality of this marker in distinguishing SEGAs from its mimics. METHODS In this study, TTF-1 immunohistochemistry using clone 8G7G3/1 (1:50) was performed in 38 cases of SEGA, 30 cases of central neurocytoma, 10 cases each of intraventricular glioblastoma and ependymoma, and 5 cases of cortical tubers. Additionally, serine/threonine-protein kinase B-Raf (BRAFV600E) mutation, a common genetic alteration in pediatric low-grade-glial tumors with neuronal-differentiation, was analyzed using Ventana immunohistochemistry platform. RESULTS TTF-1 immunopositivity was seen in all 38 cases (100%) of SEGAs, with 20 cases (52.6%) showing diffuse (>50% of tumor area) expression while focal (<50%) immunopositivity was seen in 18 cases (47.3%). None of the cases demonstrated serine/threonine-protein kinase B-Raf immunolabeling. Barring 2 cases of neurocytoma (6.6%), all other cases including ependymoma, glioblastoma, and cortical tubers were immunonegative for TTF-1. CONCLUSIONS The congruous finding of TTF-1 expression in SEGA and cells of the developing neuroepithelium in the medial ganglionic eminence hint toward a primogenitor cell with neoplastic potential in the presence of impelling factors.
Collapse
Affiliation(s)
- Rimlee Dutta
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Garg
- Department of Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Sharad Kale
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Ferrer I, García MA, González IL, Lucena DD, Villalonga AR, Tech MC, Llorens F, Garcia‐Esparcia P, Martinez‐Maldonado A, Mendez MF, Escribano BT, Bech‐Serra JJ, Sabido E, de la Torre Gómez C, del Rio JA. Aging-related tau astrogliopathy (ARTAG): not only tau phosphorylation in astrocytes. Brain Pathol 2018; 28:965-985. [PMID: 29396893 PMCID: PMC8028270 DOI: 10.1111/bpa.12593] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/26/2018] [Indexed: 12/12/2022] Open
Abstract
Aging-related tau astrogliopathy (ARTAG) is defined by the presence of two types of tau-bearing astrocytes: thorn-shaped astrocytes (TSAs) and granular/fuzzy astrocytes in the brain of old-aged individuals. The present study is focused on TSAs in rare forms of ARTAG with no neuronal tau pathology or restricted to entorhinal and transentorhinal cortices, to avoid bias from associated tauopathies. TSAs show 4Rtau phosphorylation at several specific sites and abnormal tau conformation, but they lack ubiquitin and they are not immunostained with tau-C3 antibodies which recognize truncated tau at Asp421. Astrocytes in ARTAG have atrophic processes, reduced glial fibrillary acidic protein (GFAP) and increased superoxide dismutase 2 (SOD2) immunoreactivity. Gel electrophoresis and western blotting of sarkosyl-insoluble fractions reveal a pattern of phospho-tau in ARTAG characterized by two bands of 68 and 64 kDa, and several middle bands between 35 and 50 kDa which differ from what is seen in AD. Phosphoproteomics of dissected vulnerable regions identifies an increase of phosphorylation marks in a large number of proteins in ARTAG compared with controls. GFAP, aquaporin 4, several serine-threonine kinases, microtubule associated proteins and other neuronal proteins are among the differentially phosphorylated proteins in ARTAG thus suggesting a hyper-phosphorylation background that affects several molecules, including many kinases and proteins from several cell compartments and various cell types. Finally, present results show for the first time that tau seeding is produced in neurons of the hippocampal complex, astrocytes, oligodendroglia and along fibers of the corpus callosum, fimbria and fornix following inoculation into the hippocampus of wild type mice of sarkosyl-insoluble fractions enriched in hyper-phosphorylated tau from selected ARTAG cases. These findings show astrocytes as crucial players of tau seeding in tauopathies.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre)BarcelonaSpain
- Ministry of Economy and CompetitivenessCIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos IIIBarcelonaSpain
- Institute of Neurosciences, University of BarcelonaBarcelonaSpain
| | - Meritxell Aguiló García
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- Laboratory of Molecular Biology and BiochemistryInstitute for Molecular Biosciences, Karl‐Franzens University of GrazAustria
| | - Irene López González
- Ministry of Economy and CompetitivenessCIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos IIIBarcelonaSpain
| | - Daniela Diaz Lucena
- Ministry of Economy and CompetitivenessCIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos IIIBarcelonaSpain
| | - Aina Roig Villalonga
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
| | - Margarita Carmona Tech
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- Ministry of Economy and CompetitivenessCIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos IIIBarcelonaSpain
| | - Franc Llorens
- Ministry of Economy and CompetitivenessCIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos IIIBarcelonaSpain
| | - Paula Garcia‐Esparcia
- Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre)BarcelonaSpain
| | | | - Margalida Frau Mendez
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
| | - Benjamín Torrejón Escribano
- Biology Unit, Scientific and Technical ServicesUniversity of Barcelona, Hospitalet de LlobregatBarcelonaSpain
| | | | - Eduard Sabido
- Proteomics Unit, Centre de Regulació GenòmicaBarcelona Institute of Science and TechnologyBarcelonaSpain
| | | | - José Antonio del Rio
- Ministry of Economy and CompetitivenessCIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos IIIBarcelonaSpain
- Institute of Neurosciences, University of BarcelonaBarcelonaSpain
- Molecular and Cellular NeurobiotechnologyInstitute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Parc Científic de BarcelonaBarcelonaSpain
| |
Collapse
|
8
|
Davies T, Kim HX, Romano Spica N, Lesea-Pringle BJ, Dumont J, Shirasu-Hiza M, Canman JC. Cell-intrinsic and -extrinsic mechanisms promote cell-type-specific cytokinetic diversity. eLife 2018; 7:36204. [PMID: 30028292 PMCID: PMC6054530 DOI: 10.7554/elife.36204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/10/2018] [Indexed: 01/05/2023] Open
Abstract
Cytokinesis, the physical division of one cell into two, is powered by constriction of an actomyosin contractile ring. It has long been assumed that all animal cells divide by a similar molecular mechanism, but growing evidence suggests that cytokinetic regulation in individual cell types has more variation than previously realized. In the four-cell Caenorhabditis elegans embryo, each blastomere has a distinct cell fate, specified by conserved pathways. Using fast-acting temperature-sensitive mutants and acute drug treatment, we identified cell-type-specific variation in the cytokinetic requirement for a robust forminCYK-1-dependent filamentous-actin (F-actin) cytoskeleton. In one cell (P2), this cytokinetic variation is cell-intrinsically regulated, whereas in another cell (EMS) this variation is cell-extrinsically regulated, dependent on both SrcSRC-1 signaling and direct contact with its neighbor cell, P2. Thus, both cell-intrinsic and -extrinsic mechanisms control cytokinetic variation in individual cell types and can protect against division failure when the contractile ring is weakened. The successful division of one cell into two is essential for all organisms to live, grow and reproduce. For an animal cell, the nucleus – the compartment containing the genetic material – must divide before the surrounding material. The rest of the cell, called the cytoplasm, physically separates later in a process known as cytokinesis. Cytokinesis in animal cells is driven by the formation of a ring in the middle of the dividing cell. The ring is composed of myosin motor proteins and filaments made of a protein called actin. The movements of the motor proteins along the filaments cause the ring to contract and tighten. This pulls the cell membrane inward and physically pinches the cell into two. For a long time, the mechanism of cytokinesis was assumed to be same across different types of animal cell, but later evidence suggested otherwise. For example, in liver, heat and bone cells, cytokinesis naturally fails during development to create cells with two or more nuclei. If a similar ‘failure’ happened in other cell types, it could lead to diseases such as cancers or blood disorders. This raised the question: what are the molecular mechanisms that allow cytokinesis to happen differently in different cell types? Davies et al. investigated this question using embryos of the worm Caenorhabditis elegans at a stage in their development when they consist of just four cells. The proteins forming the contractile ring in this worm are the same as those in humans. However, in the worm, the contractile ring can easily be damaged using chemical inhibitors or by mutating the genes that encode its proteins. Davies et al. show that when the contractile ring was damaged, two of the four cells in the worm embryo still divided successfully. This result indicates the existence of new mechanisms to divide the cytoplasm that allow division even with a weak contractile ring. In a further experiment, the embryos were dissected to isolate each of the four cells. Davies et al. saw that one of the two dividing cells could still divide on its own, while the other cell could not. This shows that this new method of cytokinesis is regulated both by factors inherent to the dividing cell and by external signals from other cells. Moreover, one of these extrinsic signals was found to be a signaling protein that had previously been implicated in human cancers. Future work will determine if these variations in cytokinesis between the different cell types found in the worm apply to humans too; and, more importantly from a therapeutic standpoint, if these new mechanisms exist in human cancers.
Collapse
Affiliation(s)
- Tim Davies
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Han X Kim
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States
| | - Natalia Romano Spica
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Benjamin J Lesea-Pringle
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Julien Dumont
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, United States
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| |
Collapse
|
9
|
Xu S, Zhang Y, Wang J, Li K, Tan K, Liang K, Shen J, Cai D, Jin D, Li M, Xiao G, Xu J, Jiang Y, Bai X. TSC1 regulates osteoclast podosome organization and bone resorption through mTORC1 and Rac1/Cdc42. Cell Death Differ 2018; 25:1549-1566. [PMID: 29358671 DOI: 10.1038/s41418-017-0049-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 11/13/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
Reorganization of the podosome into the sealing zone is crucial for osteoclasts (OCLs) to resorb bone, but the underlying mechanisms are unclear. Here, we show that tuberous sclerosis complex 1 (TSC1) functions centrally in OCLs to promote podosome organization and bone resorption through mechanistic target of rapamycin complex 1 (mTORC1) and the small GTPases Rac1/Cdc42. During osteoclastogenesis, enhanced expression of TSC1 downregulates mTORC1 activity. TSC1 deletion in OCLs reduced podosome belt formation in vitro and sealing zone formation in vivo, leading to bone resorption deficiency and osteopetrosis. Mechanistically, TSC1 promoted podosome superstructure assembly by releasing mTORC1-dependent negative feedback inhibition of Rac1/Cdc42. Rapamycin and active Rac1/Cdc42 restore podosome organization and bone resorption and alleviate osteopetrotic phenotypes in mutant mice. Our findings reveal an essential role of TSC1 signaling in the regulation of bone resorption. Targeting TSC1 represents a novel strategy to inhibit bone resorption and prevent bone loss-related diseases.
Collapse
Affiliation(s)
- Song Xu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Department of Arthroplasty, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yue Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Jian Wang
- Department of Arthroplasty, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kai Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Kang Tan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kangyan Liang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junhui Shen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Daozhang Cai
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Dadi Jin
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Mangmang Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guozhi Xiao
- Department of Biochemistry and Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Jiake Xu
- Molecular Laboratory, School of Pathology and Laboratory Medicine, The University of Western Australia, M504, Perth, 6009, Australia
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, 15260, USA
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Department of Arthroplasty, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Ruiz de Garibay G, Herranz C, Llorente A, Boni J, Serra-Musach J, Mateo F, Aguilar H, Gómez-Baldó L, Petit A, Vidal A, Climent F, Hernández-Losa J, Cordero Á, González-Suárez E, Sánchez-Mut JV, Esteller M, Llatjós R, Varela M, López JI, García N, Extremera AI, Gumà A, Ortega R, Plà MJ, Fernández A, Pernas S, Falo C, Morilla I, Campos M, Gil M, Román A, Molina-Molina M, Ussetti P, Laporta R, Valenzuela C, Ancochea J, Xaubet A, Casanova Á, Pujana MA. Lymphangioleiomyomatosis Biomarkers Linked to Lung Metastatic Potential and Cell Stemness. PLoS One 2015; 10:e0132546. [PMID: 26167915 PMCID: PMC4500593 DOI: 10.1371/journal.pone.0132546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/17/2015] [Indexed: 12/23/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare lung-metastasizing neoplasm caused by the proliferation of smooth muscle-like cells that commonly carry loss-of-function mutations in either the tuberous sclerosis complex 1 or 2 (TSC1 or TSC2) genes. While allosteric inhibition of the mechanistic target of rapamycin (mTOR) has shown substantial clinical benefit, complementary therapies are required to improve response and/or to treat specific patients. However, there is a lack of LAM biomarkers that could potentially be used to monitor the disease and to develop other targeted therapies. We hypothesized that the mediators of cancer metastasis to lung, particularly in breast cancer, also play a relevant role in LAM. Analyses across independent breast cancer datasets revealed associations between low TSC1/2 expression, altered mTOR complex 1 (mTORC1) pathway signaling, and metastasis to lung. Subsequently, immunohistochemical analyses of 23 LAM lesions revealed positivity in all cases for the lung metastasis mediators fascin 1 (FSCN1) and inhibitor of DNA binding 1 (ID1). Moreover, assessment of breast cancer stem or luminal progenitor cell biomarkers showed positivity in most LAM tissue for the aldehyde dehydrogenase 1 (ALDH1), integrin-ß3 (ITGB3/CD61), and/or the sex-determining region Y-box 9 (SOX9) proteins. The immunohistochemical analyses also provided evidence of heterogeneity between and within LAM cases. The analysis of Tsc2-deficient cells revealed relative over-expression of FSCN1 and ID1; however, Tsc2-deficient cells did not show higher sensitivity to ID1-based cancer inhibitors. Collectively, the results of this study reveal novel LAM biomarkers linked to breast cancer metastasis to lung and to cell stemness, which in turn might guide the assessment of additional or complementary therapeutic opportunities for LAM.
Collapse
Affiliation(s)
- Gorka Ruiz de Garibay
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Carmen Herranz
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Alicia Llorente
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Jacopo Boni
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Jordi Serra-Musach
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Francesca Mateo
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Helena Aguilar
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Laia Gómez-Baldó
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Anna Petit
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - August Vidal
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Fina Climent
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | | | - Álex Cordero
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Eva González-Suárez
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - José Vicente Sánchez-Mut
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Roger Llatjós
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Mar Varela
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - José Ignacio López
- Cruces University Hospital, BioCruces Research Institute, University of the Basque Country, Barakaldo, Spain
| | - Nadia García
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Ana I. Extremera
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Anna Gumà
- Department of Radiology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Raúl Ortega
- Department of Radiology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - María Jesús Plà
- Department of Gynecology, University Hospital of Bellvitge, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Adela Fernández
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Sònia Pernas
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Catalina Falo
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Idoia Morilla
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Miriam Campos
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Miguel Gil
- Department of Medical Oncology, Breast Cancer Unit, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
| | - Antonio Román
- Department of Pulmonology, Lung Transplant Unit, Lymphangioleiomyomatosis (LAM) Clinic, Vall d'Hebron University Hospital, Barcelona, Catalonia, Spain
| | - María Molina-Molina
- Department of Pneumology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
- Biomedical Research Centre Network for Respiratory Diseases (CIBERES), Madrid, Spain
| | - Piedad Ussetti
- Department of Pneumology, University Hospital Clínica Puerta del Hierro, Madrid, Spain
| | - Rosalía Laporta
- Department of Pneumology, University Hospital Clínica Puerta del Hierro, Madrid, Spain
| | - Claudia Valenzuela
- Department of Pneumology, Instituto de Investigación Sanitaria La Princesa, Hospital La Princesa, Madrid, Spain
| | - Julio Ancochea
- Department of Pneumology, Instituto de Investigación Sanitaria La Princesa, Hospital La Princesa, Madrid, Spain
| | - Antoni Xaubet
- Biomedical Research Centre Network for Respiratory Diseases (CIBERES), Madrid, Spain
- Department of Pneumology, Hospital Clinic of Barcelona, Agusti Pi Suñer Biomedical Research Institute (IDIBAPS), Barcelona, Catalonia, Spain
| | | | - Miguel Angel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Breast Cancer and Systems Biology, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Catalonia, Spain
- * E-mail:
| |
Collapse
|