1
|
Kamel NM, El-Sayed SS, Ali SO, Sayed RH, Safwat MH. Linagliptin mitigates lipopolysaccharide-induced acute kidney injury in mice: Novel renal BDNF/TrkB/NRF2-dependent antioxidant, anti-inflammatory, and antiapoptotic mechanisms. Life Sci 2025; 371:123602. [PMID: 40185468 DOI: 10.1016/j.lfs.2025.123602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Acute kidney injury (AKI) is a common complication associated with sepsis, yet no effective treatment is currently available. The primary mechanisms involved in lipopolysaccharide (LPS)-induced septic AKI are oxidative stress, inflammation, and apoptosis. This study aimed to investigate the potential renoprotective effects of linagliptin, an antidiabetic dipeptidyl peptidase (DPP)-4 inhibitor, against LPS-induced AKI with special emphasis on renal brain-derived neurotrophic factor (BDNF)/nuclear factor erythroid 2-related factor 2 (NRF2) axis. Mice were divided into control, LPS, LPS + linagliptin, and LPS + linagliptin+ANA-12 (tropomyosin receptor kinase B (TrkB) antagonist) groups. Our results revealed that linagliptin, partially through BDNF augmentation, ameliorated AKI, evidenced by the improved histological structure and function of the kidney where serum creatinine, blood urea nitrogen, cystatin C, and renal kidney injury molecule-1were decreased with increased serum albumin. These improvements result from glucagon-like peptide-1/BDNF/TrkB-mediated NRF2 activation, enhancing antioxidant, anti-inflammatory, and antiapoptotic pathways. Linagliptin, through NRF2 augmentation, suppressed renal myeloperoxidase, malondialdehyde, NLR Family pyrin domain-containing 3 inflammasome, nuclear factor-kappaB, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, B-cell lymphoma 2 (Bcl2)-associated X protein, while boosting the antioxidant glutathione and the antiapoptotic Bcl2 contents. The administration of ANA-12 before linagliptin partially reversed these beneficial effects. Accordingly, our results suggest that linagliptin has therapeutic potential in managing LPS-induced AKI. Furthermore, they provide insights into its underlying mechanisms, highlighting renal BDNF signaling as a potential therapeutic target through downstream NRF2 enhancement and its associated antioxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Nada M Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Sarah S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Shimaa O Ali
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Department of Clinical Pharmacy, School of Pharmacy, Newgiza University, Giza 12577, Egypt.
| | - Maheera H Safwat
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| |
Collapse
|
2
|
Gorji FS, Mahdavian SF, Khodashenas S, Kiasari ZR, Valadan R, Khalili S, Mahdavi MR. Exosomes with Engineered Brain Derived Neurotrophic Factor on Their Surfaces Can Proliferate Menstrual Blood Derived Mesenchymal Stem Cells: Targeted Delivery for a Protein Drug. Protein J 2024; 43:1070-1082. [PMID: 39397145 DOI: 10.1007/s10930-024-10234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Despite the efficacy of brain derived neurotrophic factor (BDNF) in neuro-regenerative medicine, it can't pass the blood-brain barrier. Recently, exosomes have been harnessed for targeted delivery of therapeutics into brain. Given these facts, an engineered exosome capable of BDNF expression on the surface would be an amenable tool for drug delivery. The BDNF gene was cloned into a plex-lamp lentiviral vector and virus particles were packaged using the Torano method. HEK293T cells were transduced by the purified viruses to produce and purify recombinant exosomes displaying the fusion protein on their surfaces. Western blot, Zeta sizer, TEM, and ELISA methods were used for exosome characterization. The effect of engineered exosomes on menstrual blood-derived mesenchymal stem cells (Mens-MSCs) proliferation was evaluated by cell counting assay, MTT assay, and qPCR on the bcl2 and nestin genes. Approximately, 1.8 × 108 TdU/ml of the viral particles was purified from the transfected cells and transduced into the HEK293T. Western blot and ELISA methods confirmed the surface display of the LAMP-BDNF fusion. TEM graphs and Zeta sizer results confirmed the morphology and the size of purified exosomes. Treatment of Mens-MSCs with the targeted exosomes augmented the expression level of bcl2 and nestin genes, increased the cell proliferation, and elevated the cell number. Chimeric BDNF on the exosome surface could retain its biological activity and elevate the expression of bcl2 and nestin genes. Moreover, these exosomes are capable of elevating the Mens-MSCs proliferation.
Collapse
Affiliation(s)
| | - Seyedeh Farzaneh Mahdavian
- Medical Biotechnology, School of Advance Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shabanali Khodashenas
- Medical Biotechnology, School of Advance Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Thalassemia Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Zeinab Rezaee Kiasari
- Medical Biotechnology, School of Advance Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Department of Immunology, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Reza Mahdavi
- Thalassemia Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Laboratory Sciences, Faculty of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Gliwińska A, Badeńska M, Dworak M, Świętochowska E, Badeński A, Bjanid O, Trembecka-Dubel E, Morawiec-Knysak A, Szczepańska M. Assessment of brain-derived neurotrophic factor and irisin concentration in children with chronic kidney disease: a pilot study. BMC Nephrol 2024; 25:318. [PMID: 39334009 PMCID: PMC11430335 DOI: 10.1186/s12882-024-03767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Patients suffering from chronic kidney disease (CKD) are particularly placed at risk of multiorgan complications. One of them is malnutrition, which adds up to a higher mortality factor among them. This study was designed to determine the usefulness of brain-derived neurotrophic factor (BDNF) and irisin assays in the assessment of CKD development. The study group included 28 children with CKD at stages 2-5 treated conservatively. The outcome of our study revealed decreased serum BDNF and irisin levels in CKD patients, whereas urine concentrations were increased for BDNF and decreased for irisin, comparing to healthy controls. There was a positive correlation between anthropometric measures and urine BDNF concentration, as well as anthropometric measures and both serum and urine irisin levels in the study group, however no dependence of the tested markers on the stage of CKD was observed. In recent years, a role of myokines was described as vital for maintaining metabolic homeostasis therefore we suspect a potential role of these multifaceted markers in detecting malnutrition in CKD children.
Collapse
Affiliation(s)
- Aleksandra Gliwińska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, 40-055, Silesia, Poland.
| | - Marta Badeńska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, 40-055, Silesia, Poland
| | - Marta Dworak
- Department of Pediatric Nephrology with Dialysis Division for Children, Independent Public Clinical Hospital No. 1, Zabrze, 41-800, Silesia, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, 40-055, Silesia, Poland
| | - Andrzej Badeński
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, 40-055, Silesia, Poland
| | - Omar Bjanid
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, 40-055, Silesia, Poland
| | - Elżbieta Trembecka-Dubel
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, 40-055, Silesia, Poland
| | - Aurelia Morawiec-Knysak
- Department of Pediatric Nephrology with Dialysis Division for Children, Independent Public Clinical Hospital No. 1, Zabrze, 41-800, Silesia, Poland
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, 40-055, Silesia, Poland
| |
Collapse
|
4
|
Chiang YH, Li YH, Chan YC, Cheng YC, Wu J, Lin JA, Huang WC, Lee IT. Low brain-derived neurotrophic factor and high vascular cell adhesion molecule-1 levels are associated with chronic kidney disease in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1403717. [PMID: 39355615 PMCID: PMC11442372 DOI: 10.3389/fendo.2024.1403717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Background Patients with type 2 diabetes mellitus (DM) have a high prevalence of chronic kidney disease (CKD). Energy imbalance and inflammation may be involved in the pathogenesis of CKD. We examined the effects of brain-derived neurotrophic factor (BDNF) and vascular cell adhesion molecule-1 (VCAM-1) on CKD in patients with type 2 DM. Methods Patients with type 2 DM were enrolled for this cross-sectional study. Fasting serum was prepared to measure the BDNF and VCAM-1 levels. An estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 was used as the criterion for identifying patients with CKD. Results Of the 548 enrolled participants, 156 had CKD. Patients with CKD exhibited significantly lower BDNF (median of 21.4 ng/mL, interquartile range [IQR]: 17.0-27.0 ng/mL vs. median of 25.9 ng/mL, IQR: 21.0-30.4 ng/mL, P <0.001) and higher VCAM-1 (median of 917 ng/mL, IQR: 761-1172 ng/mL vs. median of 669 ng/mL, IQR: 552-857 ng/mL, P <0.001) levels than those without CKD. Serum BDNF levels were inversely correlated with VCAM-1 levels (Spearman's rank correlation coefficient = -0.210, P <0.001). The patients were divided into four subgroups based on median BDNF and VCAM-1 levels (24.88 ng/mL and 750 ng/mL, respectively). Notably, patients in the high VCAM-1 and low BDNF group had the highest prevalence (50%) of CKD. Multivariate logistic regression revealed a significantly higher odds ratio (OR) of CKD in the high VCAM-1 and low BDNF group (OR = 3.885, 95% CI: 1.766-8.547, P <0.001), followed by that in the high VCAM-1 and high BDNF group (OR = 3.099, 95% CI: 1.373-6.992, P =0.006) compared with that in the low VCAM-1 and high BDNF group. However, the risk of CKD in the low VCAM-1 and low BDNF group was not significantly different from that in the low VCAM-1 and high BDNF group (P =0.266). Conclusion CKD in patients with type 2 DM is associated with low serum BDNF and high VCAM-1 levels. BDNF and VCAM-1 have a synergistic effect on CKD. Thus, BDNF and VCAM-1 can be potential biomarkers for CKD risk stratification in patients with type 2 DM.
Collapse
Affiliation(s)
- Yu-Hsin Chiang
- Department of Education, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsuan Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| | - Yu-Cheng Cheng
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Junyi Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chang Huang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Mycobacterial Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - I-Te Lee
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
5
|
Huang X, Li M, Espinoza MIM, Zennaro C, Bossi F, Lonati C, Oldoni S, Castellano G, Alfieri C, Messa P, Cellesi F. Brain-Derived Neurotrophic Factor-Loaded Low-Temperature-Sensitive liposomes as a drug delivery system for repairing podocyte damage. Int J Pharm 2024; 660:124322. [PMID: 38866082 DOI: 10.1016/j.ijpharm.2024.124322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Podocytes, cells of the glomerular filtration barrier, play a crucial role in kidney diseases and are gaining attention as potential targets for new therapies. Brain-Derived Neurotrophic Factor (BDNF) has shown promising results in repairing podocyte damage, but its efficacy via parenteral administration is limited by a short half-life. Low temperature sensitive liposomes (LTSL) are a promising tool for targeted BDNF delivery, preserving its activity after encapsulation. This study aimed to improve LTSL design for efficient BDNF encapsulation and targeted release to podocytes, while maintaining stability and biological activity, and exploiting the conjugation of targeting peptides. While cyclic RGD (cRGD) was used for targeting endothelial cells in vitro, a homing peptide (HITSLLS) was conjugated for more specific uptake by glomerular endothelial cells in vivo. BDNF-loaded LTSL successfully repaired cytoskeleton damage in podocytes and reduced albumin permeability in a glomerular co-culture model. cRGD conjugation enhanced endothelial cell targeting and uptake, highlighting an improved therapeutic effect when BDNF release was induced by thermoresponsive liposomal degradation. In vivo, targeted LTSL showed evidence of accumulation in the kidneys, and their BDNF delivery decreased proteinuria and ameliorated kidney histology. These findings highlight the potential of BDNF-LTSL formulations in restoring podocyte function and treating glomerular diseases.
Collapse
Affiliation(s)
- Xiaoyi Huang
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta". Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Maria Isabel Martinez Espinoza
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta". Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy
| | - Fleur Bossi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Samanta Oldoni
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Renal Transplant, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo Alfieri
- Unit of Nephrology, Dialysis and Renal Transplant, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Piergiorgio Messa
- Unit of Nephrology, Dialysis and Renal Transplant, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Francesco Cellesi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta". Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| |
Collapse
|
6
|
De Assis GG, Murawska-Ciałowicz E. BDNF Modulation by microRNAs: An Update on the Experimental Evidence. Cells 2024; 13:880. [PMID: 38786102 PMCID: PMC11119608 DOI: 10.3390/cells13100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
MicroRNAs can interfere with protein function by suppressing their messenger RNA translation or the synthesis of its related factors. The function of brain-derived neurotrophic factor (BDNF) is essential to the proper formation and function of the nervous system and is seen to be regulated by many microRNAs. However, understanding how microRNAs influence BDNF actions within cells requires a wider comprehension of their integrative regulatory mechanisms. Aim: In this literature review, we have synthesized the evidence of microRNA regulation on BDNF in cells and tissues, and provided an analytical discussion about direct and indirect mechanisms that appeared to be involved in BDNF regulation by microRNAs. Methods: Searches were conducted on PubMed.gov using the terms "BDNF" AND "MicroRNA" and "brain-derived neurotrophic factor" AND "MicroRNA", updated on 1 September 2023. Papers without open access were requested from the authors. One hundred and seventy-one papers were included for review and discussion. Results and Discussion: The local regulation of BDNF by microRNAs involves a complex interaction between a series of microRNAs with target proteins that can either inhibit or enhance BDNF expression, at the core of cell metabolism. Therefore, understanding this homeostatic balance provides resources for the future development of vector-delivery-based therapies for the neuroprotective effects of BDNF.
Collapse
Affiliation(s)
- Gilmara Gomes De Assis
- Department of Restorative Dentistry, Araraquara School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil
| | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biochemistry, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland;
| |
Collapse
|
7
|
Wang Y, Liang J, Xu B, Yang J, Wu Z, Cheng L. TrkB/BDNF signaling pathway and its small molecular agonists in CNS injury. Life Sci 2024; 336:122282. [PMID: 38008209 DOI: 10.1016/j.lfs.2023.122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
As one of the most prevalent neurotrophic factors in the central nervous system (CNS), brain-derived neurotrophic factor (BDNF) plays a significant role in CNS injury by binding to its specific receptor Tropomyosin-related kinase receptor B (TrkB). The BDNF/TrkB signaling pathway is crucial for neuronal survival, structural changes, and plasticity. BDNF acts as an axonal growth and extension factor, a pro-survival factor, and a synaptic modulator in the CNS. BDNF also plays an important role in the maintenance and plasticity of neuronal circuits. Several studies have demonstrated the importance of BDNF in the treatment and recovery of neurodegenerative and neurotraumatic disorders. By undertaking in-depth study on the mechanism of BDNF/TrkB function, important novel therapeutic strategies for treating neuropsychiatric disorders have been discovered. In this review, we discuss the expression patterns and mechanisms of the TrkB/BDNF signaling pathway in CNS damage and introduce several intriguing small molecule TrkB receptor agonists produced over the previous several decades.
Collapse
Affiliation(s)
- Yujin Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Jing Liang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; School of Stomatology, Tongji University, Shanghai 200072, China
| | - Boyu Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Jin Yang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China.
| |
Collapse
|
8
|
Tyczyńska K, Krajewski PK, Nowicka-Suszko D, Janczak D, Augustyniak-Bartosik H, Krajewska M, Szepietowski JC. Neurotrophin-4 and Brain-Derived Neurotrophic Factor Serum Levels in Renal Transplant Recipients with Chronic Pruritus. Dermatol Ther (Heidelb) 2023; 13:2785-2796. [PMID: 37779167 PMCID: PMC10613176 DOI: 10.1007/s13555-023-01029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Chronic pruritus (CP) is a common symptom defined as a sensation that provokes the desire to scratch and which lasts for at least 6 weeks. CP remains a problem for up to 21.3% of renal transplant recipients (RTRs). Our research aimed to establish the possible association between serum levels of neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF) and the presence and intensity of CP in RTR. METHODS The study was performed on a group of 129 RTRs, who were divided according to the presence or absence of pruritus in the previous 3 days. The assessment of pruritus was performed with the use of a numeric rating scale (NRS), 4-Item Itch Questionnaire (4IIQ), and Itchy Quality of Life (Itchy QoL). A total of 129 blood samples with a volume of 9 ml were drawn from RTRs during the monthly routine control. Serum levels (pg/mL) of NT-4 and BDNF were measured by the ELISA. RESULTS Pruritic RTRs have statistically significantly higher serum concentrations of NT-4 serum level compared to non-pruritic RTRs (229.17 ± 143.86 pg/mL and 153.08 ± 78.19 pg/mL [p = 0.024], respectively). Moreover, a statistically significant difference between pruritic and non-pruritic RTRs with healthy controls was shown (p < 0.001 and p < 0.001, respectively). Although there was a numerically higher serum concentration of BDNF in pruritic RTRs (32.18 ± 7.31 pg/mL vs. 31.58 ± 10.84 pg/mL), the difference did not reach statistical significance. No statistically significant difference was also seen in BDNF serum levels between RTRs and healthy controls. Furthermore, there was a statistically significant, positive correlation between serum concentration of NT-4 and NRS score (p = 0.008, r = 0.357). CONCLUSIONS The results indicate higher NT-4 serum concentration in RTRs with pruritus compared to RTRs without pruritus. Furthermore, the study revealed a statistically significant, positive correlation between the serum concentration of NT-4 and NRS score.
Collapse
Affiliation(s)
- Kinga Tyczyńska
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 50-556, Wroclaw, Poland
| | - Piotr K Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368, Wroclaw, Poland
| | - Danuta Nowicka-Suszko
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368, Wroclaw, Poland
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-566, Wroclaw, Poland
| | - Hanna Augustyniak-Bartosik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556, Wroclaw, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556, Wroclaw, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego 1, 50-368, Wroclaw, Poland.
| |
Collapse
|
9
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
10
|
Hsu CY, Sheu WHH, Lee IT. Brain-derived neurotrophic factor associated with kidney function. Diabetol Metab Syndr 2023; 15:16. [PMID: 36782254 PMCID: PMC9926783 DOI: 10.1186/s13098-023-00991-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND We examined the relationship between brain-derived neurotrophic factor (BDNF) and chronic kidney disease (CKD). METHODS First, a cross-sectional study was conducted in 480 participants without known diabetes. An oral glucose tolerance test (OGTT) was administered after overnight fasting, and blood samples were collected at 0, 30, and 120 min. Second, a total of 3003 participants were enrolled for the case-control genetic analysis. After assigning them to a case or a control group based on age and CKD status, we investigated the association between BDNF gene variants and susceptibility to CKD. RESULTS A higher fasting serum BDNF quartile was significantly associated with a lower prevalence of CKD (P value for trend < 0.001). Based on the receiver operating characteristic analysis, the fasting BDNF level had a larger area under the curve for differentiating CKD (0.645, 95% CI 0.583‒0.707) than the BDNF levels at both 30 min (0.547, 95% CI 0.481‒0.612) and 120 min (0.598, 95% CI 0.536‒0.661). A significantly lower CKD prevalence (odds ratio = 0.30, 95% CI 0.12‒0.71) was observed in the highest quartile of fasting BDNF level than that in the lowest quartile, whereas no interquartile differences were observed for BDNF levels determined at 30 or 120 min during the OGTT. Furthermore, BDNF-associated variants, including rs12098908, rs12577517, and rs72891405, were significantly associated with CKD. CONCLUSIONS The BDNF level at fasting, but not at 30 and 120 min after glucose intake, was an independent indicator of CKD. In addition, significant associations were observed between three BDNF gene variants and CKD.
Collapse
Affiliation(s)
- Cheng-Yueh Hsu
- Medical Education Department, Linkou Chang Gung Memorial Hospital, Taoyuan City, 33305, Taiwan
| | - Wayne Huey-Herng Sheu
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - I-Te Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650 Taiwan Boulevard, Sect. 4, Taichung, 40705, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.
| |
Collapse
|
11
|
MicroRNA-10 Family Promotes the Epithelial-to-Mesenchymal Transition in Renal Fibrosis by the PTEN/Akt Pathway. Curr Issues Mol Biol 2022; 44:6059-6074. [PMID: 36547074 PMCID: PMC9776942 DOI: 10.3390/cimb44120413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Renal fibrosis (RF) is a common reason for renal failure, and epithelial-mesenchymal transition (EMT) is a vital mechanism that promotes the development of RF. It is known that microRNA-10 (miR-10) plays an important role in cancer EMT; however, whether it takes part in the EMT process of RF remains unclear. Therefore, we established an in vivo model of unilateral ureteral obstruction (UUO), and an in vitro model using TGF-β1, to investigate whether and how miR-10a and miR-10b take part in the EMT of RF. In addition, the combinatorial effects of miR-10a and miR-10b were assessed. We discovered that miR-10a and miR-10b are overexpressed in UUO mice, and miR-10a, miR-10b, and miRs-10a/10b knockout attenuated RF and EMT in UUO-treated mouse kidneys. Moreover, miR-10a and miR-10b overexpression combinatorially promoted RF and EMT in TGF-β1-treated HK-2 cells. Inhibiting miR-10a and miR-10b attenuated RF and EMT induced by TGF-β1. Mechanistically, miR-10a and miR-10b suppressed PTEN expression by binding to its mRNA3'-UTR and promoting the Akt pathway. Moreover, PTEN overexpression reduced miR-10a and miR-10b effects on Akt phosphorylation (p-Akt), RF, and EMT in HK-2 cells treated with TGF-β1. Taken together, miR-10a and miR-10b act combinatorially to negatively regulate PTEN, thereby activating the Akt pathway and promoting the EMT process, which exacerbates RF progression.
Collapse
|
12
|
Wala-Zielińska K, Świerczyńska-Mróz K, Krajewski PK, Nowicka-Suszko D, Krajewska M, Szepietowski JC. Elevated Level of Serum Neurotrophin-4, but Not of Brain-Derived Neurotrophic Factor, in Patients with Chronic Kidney Disease-Associated Pruritus. J Clin Med 2022; 11:6292. [PMID: 36362520 PMCID: PMC9653946 DOI: 10.3390/jcm11216292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 10/03/2023] Open
Abstract
Chronic kidney disease-associated pruritus (CKD-aP) is a bothersome condition that occurs in patients with advanced chronic kidney disease (CKD) and severely reduces their quality of life. Recently, much research has focused on the search for markers that are involved in the pathogenesis of CKD-aP and may become a therapeutic target. One of the suggested hypotheses is the increased activation of sensory neurons by molecules such as neurotrophins (NTs). An increased serum concentration of NTs has been demonstrated in pruritic patients, which may suggest their involvement in the pathogenesis of itch. The purpose of this study is to assess the serum concentration of neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF) in hemodialysis patients. The study enrolled 126 patients undergoing dialysis. Participants were divided into 2 groups: with and without CKD-aP. NRS scale was used to evaluate itch severity. Serum levels of NT-4 and BDNF have been assessed using ELISA. The results showed a significantly higher level of NT-4 in the group with pruritus. No significant difference was reported in the serum level of BDNF between the two groups of patients. There was also no correlation between serum NT-4 nor BDNF levels and the severity of pruritus. In summary, NT-4 may play an important role in the pathophysiology of pruritus in dialysis patients. More research is needed to understand the exact mechanism by which NTs influence the pathogenesis of CKD-aP.
Collapse
Affiliation(s)
- Kamila Wala-Zielińska
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Karolina Świerczyńska-Mróz
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr K. Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Danuta Nowicka-Suszko
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
13
|
Assessment of Brain-Derived Neurotrophic Factor (BDNF) Concentration in Children with Idiopathic Nephrotic Syndrome. Int J Mol Sci 2022; 23:ijms232012312. [PMID: 36293164 PMCID: PMC9603999 DOI: 10.3390/ijms232012312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) is a chronic disease affecting children in early childhood. It is characterized by proteinuria, hypoalbuminemia, edema and hyperlipidemia. To date, the diagnosis is usually established at an advanced stage of proteinuria. Therefore, new methods of early INS detection are desired. This study was designed to assess brain-derived neurotrophic factor (BDNF) as a potential marker in the early diagnosis of INS. The study group included patients with a diagnosis of idiopathic nephrotic syndrome (n = 30) hospitalized in Clinical Hospital No. 1 in Zabrze, from December 2019 to December 2021. Our study shows that serum BDNF concentration decreased and urine BDNF concentration increased in a group of patients with INS, compared with healthy controls. Such outcomes might be related to loss of the BDNF contribution in podocyte structure maintenance. Moreover, we anticipate the role of BDNF in urine protein concentration increase, which could be used as a direct predictor of urine protein fluctuations in clinical practice. Moreover, the ROC curve has also shown that serum BDNF and urine BDNF levels might be useful as an INS marker.
Collapse
|
14
|
Ozkan S, Isildar B, Ercin M, Gezginci-Oktayoglu S, Konukoglu D, Neşetoğlu N, Oncul M, Koyuturk M. Therapeutic potential of conditioned medium obtained from deferoxamine preconditioned umbilical cord mesenchymal stem cells on diabetic nephropathy model. Stem Cell Res Ther 2022; 13:438. [PMID: 36056427 PMCID: PMC9438289 DOI: 10.1186/s13287-022-03121-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background The therapeutic potential of mesenchymal stem cells (MSCs)-derived conditioned media (CM) can be increased after preconditioning with various chemical agents. The aim of this study is comparative evaluation of effects of N-CM and DFS-CM which are collected from normal (N) and deferoxamine (DFS) preconditioned umbilical cord-derived MSCs on rat diabetic nephropathy (DN) model. Methods After incubation of the MSCs in serum-free medium with/without 150 µM DFS for 48 h, the contents of N-CM and DFS-CM were analyzed by enzyme-linked immunosorbent assay. Diabetes (D) was induced by single dose of 55 mg/kg streptozotocin. Therapeutic effects of CMs were evaluated by biochemical, physical, histopathological and immunohistochemical analysis. Results The concentrations of vascular endothelial growth factor alpha, nerve growth factor and glial-derived neurotrophic factor in DFS-CM increased, while one of brain-derived neurotrophic factor decreased in comparison with N-CM. The creatinine clearance rate increased significantly in both treatment groups, while the improvement in albumin/creatinine ratio and renal mass index values were only significant for D + DFS-CM group. Light and electron microscopic deteriorations and loss of podocytes-specific nephrin and Wilms tumor-1 (WT-1) expressions were significantly restored in both treatment groups. Tubular beclin-1 expression was significantly increased for DN group, but it decreased in both treatment groups. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cell death increased in the tubules of D group, while it was only significantly decreased for D + DFS-CM group. Conclusions DFS-CM can be more effective in the treatment of DN by reducing podocyte damage and tubular apoptotic cell death and regulating autophagic activity with its more concentrated secretome content than N-CM. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03121-6.
Collapse
Affiliation(s)
- Serbay Ozkan
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey
| | - Basak Isildar
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey
| | - Merve Ercin
- Biology Department, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Selda Gezginci-Oktayoglu
- Biology Department, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Dildar Konukoglu
- Medical Biochemistry Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Neşet Neşetoğlu
- Faculty of Pharmacy, Drug Application and Research Center, Istanbul University, Istanbul, Turkey
| | - Mahmut Oncul
- Cerrahpasa Faculty of Medicine, Obstetrics and Gynecology Department, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Meral Koyuturk
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey.
| |
Collapse
|
15
|
Brain-derived neurotrophic factor (BDNF): a multifaceted marker in chronic kidney disease. Clin Exp Nephrol 2022; 26:1149-1159. [DOI: 10.1007/s10157-022-02268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
|
16
|
Hsu CY, Sheu WHH, Lee IT. Brain-Derived Neurotrophic Factor Reduces Long-Term Mortality in Patients With Coronary Artery Disease and Chronic Kidney Disease. Front Cardiovasc Med 2022; 9:881441. [PMID: 35800175 PMCID: PMC9253370 DOI: 10.3389/fcvm.2022.881441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Chronic kidney disease (CKD) is a risk factor for coronary artery disease (CAD). We examined the effects of circulating brain-derived neurotrophic factor (BDNF) on long-term mortality in patients with CAD and CKD. Materials and Methods We enrolled patients with established CAD in the present study. Serum BDNF and estimated glomerular filtration rate (eGFR) were assessed after overnight fasting. All-cause mortality served as the primary endpoint. Results All 348 enrolled patients were divided into four groups according to their median BDNF level and CKD status, defined according to eGFR <60 mL/min/1.73 m2. Forty-five patients reached the primary endpoint during the median follow-up time of 6.0 years. Kaplan-Meier survival analysis indicated that the group with low BDNF and CKD had a significantly higher mortality rate than the other three groups (log-rank test p < 0.001). Compared to the high BDNF without CKD group, the low BDNF with CKD group had a hazard ratio (HR) of 3.186 [95% confidence interval (CI): 1.482–6.846] for all-cause mortality according to the multivariable Cox proportional hazard regression analysis after adjusting for age and urine albumin-creatinine ratio (p = 0.003). Furthermore, there was a significantly interactive effect between BDNF and CKD status on the risk of the primary endpoint (odds ratio = 6.413, 95% CI: 1.497–27.47 in the multivariable logistic regression model and HR = 3.640, 95% CI: 1.006–13.173 in the Cox regression model). Conclusion We observed a synergistic effect between low serum BDNF levels and CKD on the prediction of all-cause mortality in patients with CAD.
Collapse
Affiliation(s)
- Cheng-Yueh Hsu
- Master of Public Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wayne Huey-Herng Sheu
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - I-Te Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- *Correspondence: I-Te Lee,
| |
Collapse
|
17
|
Wang A, Li Z, Zhuo S, Gao F, Zhang H, Zhang Z, Ren G, Ma X. Mechanisms of Cardiorenal Protection With SGLT2 Inhibitors in Patients With T2DM Based on Network Pharmacology. Front Cardiovasc Med 2022; 9:857952. [PMID: 35677689 PMCID: PMC9169967 DOI: 10.3389/fcvm.2022.857952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Sodium-glucose cotransporter 2 (SGLT2) inhibitors have cardiorenal protective effects regardless of whether they are combined with type 2 diabetes mellitus, but their specific pharmacological mechanisms remain undetermined. Materials and Methods We used databases to obtain information on the disease targets of “Chronic Kidney Disease,” “Heart Failure,” and “Type 2 Diabetes Mellitus” as well as the targets of SGLT2 inhibitors. After screening the common targets, we used Cytoscape 3.8.2 software to construct SGLT2 inhibitors' regulatory network and protein-protein interaction network. The clusterProfiler R package was used to perform gene ontology functional analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analyses on the target genes. Molecular docking was utilized to verify the relationship between SGLT2 inhibitors and core targets. Results Seven different SGLT2 inhibitors were found to have cardiorenal protective effects on 146 targets. The main mechanisms of action may be associated with lipid and atherosclerosis, MAPK signaling pathway, Rap1 signaling pathway, endocrine resistance, fluid shear stress, atherosclerosis, TNF signaling pathway, relaxin signaling pathway, neurotrophin signaling pathway, and AGEs-RAGE signaling pathway in diabetic complications were related. Docking of SGLT2 inhibitors with key targets such as GAPDH, MAPK3, MMP9, MAPK1, and NRAS revealed that these compounds bind to proteins spontaneously. Conclusion Based on pharmacological networks, this study elucidates the potential mechanisms of action of SGLT2 inhibitors from a systemic and holistic perspective. These key targets and pathways will provide new ideas for future studies on the pharmacological mechanisms of cardiorenal protection by SGLT2 inhibitors.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhendong Li
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Sun Zhuo
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Feng Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Gaocan Ren
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- *Correspondence: Xiaochang Ma
| |
Collapse
|
18
|
Gao J, Liang Z, Zhao F, Liu X, Ma N. Triptolide inhibits oxidative stress and inflammation via the microRNA-155-5p/brain-derived neurotrophic factor to reduce podocyte injury in mice with diabetic nephropathy. Bioengineered 2022; 13:12275-12288. [PMID: 35603354 PMCID: PMC9275869 DOI: 10.1080/21655979.2022.2067293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diabetic nephropathy (DN) is a complication of diabetes. This study sought to explore the mechanism of triptolide (TP) in podocyte injury in DN. DN mice were induced by high-fat diet&streptozocin and treated with TP. Fasting blood glucose, 24 h urine microalbumin (UMA), the pathological changes of renal tissues, and ultrastructure of renal podocytes were observed. Podocytes (MPC5) were induced by high-glucose (HG) in vitro and treated with TP or microRNA (miR)-155-5p mimics, with Irbesartan as positive control. Reactive oxygen species (ROS) and levels of oxidative stress (OS) and inflammatory factors in MPC5 were detected. The levels of miR-155-5p, podocyte marker protein Nephrin, and inflammatory factors in mice and MPC5 were detected. The targeting relationship between miR-155-5p and brain-derived neurotrophic factor (BDNF) was verified. The expression levels of BDNF were detected. miR-155-5p mimics and overexpressed (oe)-BDNF plasmids were co-transfected into mouse podocytes treated with HG and TP. TP reduced fasting glucose and 24 h UMA of DN mice, alleviated the pathological damage and podocyte injury, up-regulated Nephrin level, and down-regulated miR-155-5p. TP down-regulated the high expression of miR-155-5p in HG-induced MPC5 cells and inhibited HG-induced OS and inflammatory injury, and the improvement effect of TP was better than Irbesartan. Overexpression of miR-155-5p reversed the protective effect of TP on injured mouse podocytes. miR-155-5p targeted BDNF. oe-BDNF reversed the inhibitory effect of oe-miR-155-5p on TP protection on podocyte injury in mice. Overall, TP up-regulated BDNF by inhibiting miR-155-5p, thus inhibiting OS and inflammatory damage and alleviating podocyte injury in DN mice.
Collapse
Affiliation(s)
- Jian Gao
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Zheng Liang
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Fei Zhao
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaojing Liu
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ning Ma
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
19
|
Kotake H, Yamada S, Ogura Y, Watanabe S, Inoue K, Ichikawa D, Sugaya T, Ohata K, Natsuki Y, Hoshino S, Watanabe M, Kimura K, Shibagaki Y, Kamijo-Ikemori A. Endurance exercise training-attenuated diabetic kidney disease with muscle weakness in spontaneously diabetic Torii fatty rats. Kidney Blood Press Res 2021; 47:203-218. [PMID: 34923497 DOI: 10.1159/000521464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/11/2021] [Indexed: 11/19/2022] Open
Abstract
Background The aim of this study was to evaluate protective effects of endurance exercise training against diabetic kidney disease (DKD) with muscle weakness by using male spontaneously diabetic Torii (SDT) fatty rats as type 2 diabetic animal models with obesity, hypertension, and hyperlipidemia. Methods Eight-week-old SDT fatty rats (n = 12) and Sprague-Dawley (SD) rats (n = 10) were randomly divided into exercise (Ex; SDT-Ex: n = 6, SD-Ex: n = 5) and sedentary groups (SDT-Cont: n = 6, SD-Cont: n = 5), respectively. Each group underwent regular treadmill exercise four times a week from ages 8 to 16 weeks. Results The exercise attenuated hypertension and hyperlipidemia and prevented increases in renal parameter levels without affecting blood glucose levels. In the SDT fatty rats, it prevented induction of renal morphological abnormalities in the interstitium of the superficial and intermediate layers of the cortex. Downregulated expression of endothelial nitric oxide synthase in the glomerulus of the SDT fatty rats was significantly upregulated by the exercise. The exercise upregulated the renal expressions of both medium-chain acyl-CoA dehydrogenase and peroxisome proliferator-activated receptor γ coactivator-1α related to fatty acid metabolism. It increased muscle strength and both muscle weight and cross-sectional area of type IIb muscle fibers in the extensor digitorum longus muscle in the SDT fatty rats. Conclusion Endurance exercise training in type 2 diabetes ameliorates DKD by improving endothelial abnormality and enhancing fatty acid metabolism in addition to attenuated hypertension, hyperlipidemia, and muscle weakness independently of blood glucose levels.
Collapse
Affiliation(s)
- Hitoshi Kotake
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Shohei Yamada
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yuji Ogura
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Shiika Watanabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazuho Inoue
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Daisuke Ichikawa
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takeshi Sugaya
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Keiichi Ohata
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yasunori Natsuki
- Institute for Ultrastructural Morphology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Seiko Hoshino
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | | | - Yugo Shibagaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Atsuko Kamijo-Ikemori
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Japan
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| |
Collapse
|
20
|
Sever S. Role of actin cytoskeleton in podocytes. Pediatr Nephrol 2021; 36:2607-2614. [PMID: 33188449 PMCID: PMC8116355 DOI: 10.1007/s00467-020-04812-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
The selectivity of the glomerular filter is established by physical, chemical, and signaling interplay among its three core constituents: glomerular endothelial cells, the glomerular basement membrane, and podocytes. Functional impairment or injury of any of these three components can lead to proteinuria. Podocytes are injured in many forms of human and experimental glomerular disease, including minimal change disease, focal segmental glomerulosclerosis, and diabetes mellitus. One of the earliest signs of podocyte injury is loss of their distinct structure, which is driven by dysregulated dynamics of the actin cytoskeleton. The status of the actin cytoskeleton in podocytes depends on a set of actin binding proteins, nucleators and inhibitors of actin polymerization, and regulatory GTPases. Mutations that alter protein function in each category have been implicated in glomerular diseases in humans and animal models. In addition, a growing body of studies suggest that pharmacological modifications of the actin cytoskeleton have the potential to become novel therapeutics for podocyte-dependent chronic kidney diseases. This review presents an overview of the essential proteins that establish actin cytoskeleton in podocytes and studies demonstrating the feasibility of drugging actin cytoskeleton in kidney diseases.
Collapse
Affiliation(s)
- Sanja Sever
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
21
|
Liu L, Li SW, Yuan W, Tang J, Sang Y. Downregulation of SUN2 promotes metastasis of colon cancer by activating BDNF/TrkB signalling by interacting with SIRT1. J Pathol 2021; 254:531-542. [PMID: 33931868 DOI: 10.1002/path.5697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
Distant metastasis is the major cause of colon cancer (CC) treatment failure. SAD1/UNC84 domain protein-2 (SUN2) is a key component of linker of the nucleoskeleton and cytoskeleton (LINC) complexes that may be relevant for metastasis in several cancers. Here, we first confirmed that SUN2 levels were significantly lower in primary CC tissues and distant metastasis than in normal colon tissues, and high SUN2 expression predicted good overall survival. Overexpression of SUN2 or knockdown of SUN2 inhibited or promoted cell migration and invasion in vitro, respectively. Moreover, silencing of SUN2 promoted metastasis in vivo. Mechanistically, we showed that SUN2 exerts its tumour suppressor functions by decreasing the expression of brain derived neurotrophic factor (BDNF) to inhibit BDNF/tropomyosin-related kinase B (TrkB) signalling. Additionally, SUN2 associated with SIRT1 and increased the acetylation of methyl-CpG binding protein 2 (MeCP2) to increase its occupancy at the BDNF promoter. Taken together, our findings indicate that SUN2 is a key component in CC progression that acts by inhibiting metastasis and that novel SUN2-SIRT1-MeCP2-BDNF signalling may prove to be useful for the development of new strategies for treating patients with CC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, Nanchang, PR China
| | - Si-Wei Li
- Department of Oncology, Tongji Huangzhou Hospital of Huazhong University of Science and Technology, Hubei, PR China
| | - Wenxin Yuan
- Department of Ultrasonography, The First Affiliated Hospital, Nanchang University, Nanchang, PR China
| | - Jianjun Tang
- Department of Ultrasonography, The First Affiliated Hospital, Nanchang University, Nanchang, PR China
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| |
Collapse
|
22
|
Ko KW, Park SY, Lee EH, Yoo YI, Kim DS, Kim JY, Kwon TG, Han DK. Integrated Bioactive Scaffold with Polydeoxyribonucleotide and Stem-Cell-Derived Extracellular Vesicles for Kidney Regeneration. ACS NANO 2021; 15:7575-7585. [PMID: 33724774 DOI: 10.1021/acsnano.1c01098] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Kidney tissue engineering and regeneration approaches offer great potential for chronic kidney disease treatment, but kidney tissue complexity imposes an additional challenge in applying regenerative medicine for renal tissue regeneration. In this study, a porous pneumatic microextrusion (PME) composite scaffold consisting of poly(lactic-co-glycolic acid) (PLGA, P), magnesium hydroxide (MH, M), and decellularized porcine kidney extracellular matrix (kECM, E) is functionalized with bioactive compounds, polydeoxyribonucleotide (PDRN), and tumour necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-primed mesenchymal stem-cell-derived extracellular vesicles (TI-EVs) to improve the regeneration and maintenance of a functional kidney tissue. The combination of PDRN and TI-EVs showed a significant synergistic effect in regenerative processes including cellular proliferation, angiogenesis, fibrosis, and inflammation. In addition, the PME/PDRN/TI-EV scaffold induced an effective glomerular regeneration and restoration of kidney function compared to the existing PME scaffold in a partial nephrectomy mouse model. Therefore, such an integrated bioactive scaffold that combines biochemical cues from PDRN and TI-EVs and biophysical cues from a porous PLGA scaffold containing MH and kECM can be used as an advanced tissue engineering platform for kidney tissue regeneration.
Collapse
Affiliation(s)
- Kyoung-Won Ko
- Department of Biomedical Science, College of Life Sciences, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
| | - So-Yeon Park
- Department of Biomedical Science, College of Life Sciences, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Eun Hye Lee
- Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Yong-In Yoo
- Department of Biomedical Science, College of Life Sciences, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, College of Life Sciences, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, College of Life Sciences, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, College of Life Sciences, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
23
|
Human reconstructed kidney models. In Vitro Cell Dev Biol Anim 2021; 57:133-147. [PMID: 33594607 DOI: 10.1007/s11626-021-00548-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
The human kidney, which consists of up to 2 million nephrons, is critical for blood filtration, electrolyte balance, pH regulation, and fluid balance in the body. Animal experiments, particularly mice and rats, combined with advances in genetically modified technology have been the primary mechanism to study kidney injury in recent years. Mouse or rat kidneys, however, differ substantially from human kidneys at the anatomical, histological, and molecular levels. These differences combined with increased regulatory hurdles and shifting attitudes towards animal testing by non-specialists have led scientists to develop new and more relevant models of kidney injury. Although in vitro tissue culture studies are a valuable tool to study kidney injury and have yielded a great deal of insight, they are not a perfect model. Perhaps, the biggest limitation of tissue culture is that it cannot replicate the complex architecture, consisting of multiple cell types, of the kidney, and the interplay between these cells. Recent studies have found that pluripotent stem cells (PSCs), which are capable of differentiation into any cell type, can be used to generate kidney organoids. Organoids recapitulate the multicellular relationships and microenvironments of complex organs like kidney. Kidney organoids have been used to successfully model nephrotoxin-induced tubular and glomerular disease as well as complex diseases such as chronic kidney disease (CKD), which involves multiple cell types. In combination with genetic engineering techniques, such as CRISPR-Cas9, genetic diseases of the kidney can be reproduced in organoids. Thus, organoid models have the potential to predict drug toxicity and enhance drug discovery for human disease more accurately than animal models.
Collapse
|
24
|
Calabrese V, Scuto M, Salinaro AT, Dionisio G, Modafferi S, Ontario ML, Greco V, Sciuto S, Schmitt CP, Calabrese EJ, Peters V. Hydrogen Sulfide and Carnosine: Modulation of Oxidative Stress and Inflammation in Kidney and Brain Axis. Antioxidants (Basel) 2020; 9:antiox9121303. [PMID: 33353117 PMCID: PMC7767317 DOI: 10.3390/antiox9121303] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence indicates that the dysregulation of cellular redox homeostasis and chronic inflammatory processes are implicated in the pathogenesis of kidney and brain disorders. In this light, endogenous dipeptide carnosine (β-alanyl-L-histidine) and hydrogen sulfide (H2S) exert cytoprotective actions through the modulation of redox-dependent resilience pathways during oxidative stress and inflammation. Several recent studies have elucidated a functional crosstalk occurring between kidney and the brain. The pathophysiological link of this crosstalk is represented by oxidative stress and inflammatory processes which contribute to the high prevalence of neuropsychiatric disorders, cognitive impairment, and dementia during the natural history of chronic kidney disease. Herein, we provide an overview of the main pathophysiological mechanisms related to high levels of pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and neurotoxins, which play a critical role in the kidney–brain crosstalk. The present paper also explores the respective role of H2S and carnosine in the modulation of oxidative stress and inflammation in the kidney–brain axis. It suggests that these activities are likely mediated, at least in part, via hormetic processes, involving Nrf2 (Nuclear factor-like 2), Hsp 70 (heat shock protein 70), SIRT-1 (Sirtuin-1), Trx (Thioredoxin), and the glutathione system. Metabolic interactions at the kidney and brain axis level operate in controlling and reducing oxidant-induced inflammatory damage and therefore, can be a promising potential therapeutic target to reduce the severity of renal and brain injuries in humans.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Giuseppe Dionisio
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - Verena Peters
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| |
Collapse
|
25
|
Uray K, Major E, Lontay B. MicroRNA Regulatory Pathways in the Control of the Actin-Myosin Cytoskeleton. Cells 2020; 9:E1649. [PMID: 32660059 PMCID: PMC7408560 DOI: 10.3390/cells9071649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin-myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin-myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly on the diverse signaling cascades modulating cytoskeletal arrangement. Furthermore, studies from various human models indicate that miRNAs contribute to the development of various human disorders. The potentially huge impact of miRNA-based mechanisms on cytoskeletal elements is just starting to be recognized. In this review, we summarize recent knowledge about the importance of microRNA modulation of the actin-myosin cytoskeleton affecting physiological processes, including cardiovascular function, hematopoiesis, podocyte physiology, and osteogenesis.
Collapse
Affiliation(s)
- Karen Uray
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| | | | - Beata Lontay
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| |
Collapse
|
26
|
Florijn BW, Duijs JMGJ, Levels JH, Dallinga-Thie GM, Wang Y, Boing AN, Yuana Y, Stam W, Limpens RWAL, Au YW, Nieuwland R, Rabelink TJ, Reinders MEJ, van Zonneveld AJ, Bijkerk R. Diabetic Nephropathy Alters the Distribution of Circulating Angiogenic MicroRNAs Among Extracellular Vesicles, HDL, and Ago-2. Diabetes 2019; 68:2287-2300. [PMID: 31506344 DOI: 10.2337/db18-1360] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 08/31/2019] [Indexed: 11/13/2022]
Abstract
Previously, we identified plasma microRNA (miR) profiles that associate with markers of microvascular injury in patients with diabetic nephropathy (DN). However, miRs circulate in extracellular vesicles (EVs) or in association with HDL or the RNA-binding protein argonaute-2 (Ago-2). Given that the EV- and HDL-mediated miR transfer toward endothelial cells (ECs) regulates cellular quiescence and inflammation, we hypothesized that the distribution of miRs among carriers affects microvascular homeostasis in DN. Therefore, we determined the miR expression in EV, HDL, and Ago-2 fractions isolated from EDTA plasma of healthy control subjects, patients with diabetes mellitus (DM) with or without early DN (estimated glomerular filtration rate [eGFR] >30 mL/min/1.73 m2), and patients with DN (eGFR <30 mL/min/1.73 m2). Consistent with our hypothesis, we observed alterations in miR carrier distribution in plasma of patients with DM and DN compared with healthy control subjects. Both miR-21 and miR-126 increased in EVs of patients with DN, whereas miR-660 increased in the Ago-2 fraction and miR-132 decreased in the HDL fraction. Moreover, in vitro, differentially expressed miRs improved EC barrier formation (EV-miR-21) and rescued the angiogenic potential (HDL-miR-132) of ECs cultured in serum from patients with DM and DN. In conclusion, miR measurement in EVs, HDL, and Ago-2 may improve the biomarker sensitivity of these miRs for microvascular injury in DN, while carrier-specific miRs can improve endothelial barrier formation (EV-miR-21/126) or exert a proangiogenic response (HDL-miR-132).
Collapse
Affiliation(s)
- Barend W Florijn
- Department of Internal Medicine (Nephrology), Amsterdam University Medical Center, Amsterdam, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jacques M G J Duijs
- Department of Internal Medicine (Nephrology), Amsterdam University Medical Center, Amsterdam, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Johannes H Levels
- Department of Vascular Biology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Geesje M Dallinga-Thie
- Department of Vascular Biology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Yanan Wang
- Department of Internal Medicine (Endocrinology), Leiden University Medical Center, Leiden, the Netherlands
| | - Anita N Boing
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, and Vesicle Observation Center, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Yuana Yuana
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, and Vesicle Observation Center, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Wendy Stam
- Department of Internal Medicine (Nephrology), Amsterdam University Medical Center, Amsterdam, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Ronald W A L Limpens
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Yu Wah Au
- Department of Internal Medicine (Nephrology), Amsterdam University Medical Center, Amsterdam, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, and Vesicle Observation Center, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology), Amsterdam University Medical Center, Amsterdam, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine (Nephrology), Amsterdam University Medical Center, Amsterdam, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Amsterdam University Medical Center, Amsterdam, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Amsterdam University Medical Center, Amsterdam, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Subramanian A, Sidhom EH, Emani M, Vernon K, Sahakian N, Zhou Y, Kost-Alimova M, Slyper M, Waldman J, Dionne D, Nguyen LT, Weins A, Marshall JL, Rosenblatt-Rosen O, Regev A, Greka A. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat Commun 2019; 10:5462. [PMID: 31784515 DOI: 10.0.4.14/s41467-019-13382-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/05/2019] [Indexed: 05/24/2023] Open
Abstract
Human iPSC-derived kidney organoids have the potential to revolutionize discovery, but assessing their consistency and reproducibility across iPSC lines, and reducing the generation of off-target cells remain an open challenge. Here, we profile four human iPSC lines for a total of 450,118 single cells to show how organoid composition and development are comparable to human fetal and adult kidneys. Although cell classes are largely reproducible across time points, protocols, and replicates, we detect variability in cell proportions between different iPSC lines, largely due to off-target cells. To address this, we analyze organoids transplanted under the mouse kidney capsule and find diminished off-target cells. Our work shows how single cell RNA-seq (scRNA-seq) can score organoids for reproducibility, faithfulness and quality, that kidney organoids derived from different iPSC lines are comparable surrogates for human kidney, and that transplantation enhances their formation by diminishing off-target cells.
Collapse
Affiliation(s)
| | - Eriene-Heidi Sidhom
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Katherine Vernon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Yiming Zhou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Kost-Alimova
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lan T Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Subramanian A, Sidhom EH, Emani M, Vernon K, Sahakian N, Zhou Y, Kost-Alimova M, Slyper M, Waldman J, Dionne D, Nguyen LT, Weins A, Marshall JL, Rosenblatt-Rosen O, Regev A, Greka A. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat Commun 2019; 10:5462. [PMID: 31784515 PMCID: PMC6884507 DOI: 10.1038/s41467-019-13382-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
Human iPSC-derived kidney organoids have the potential to revolutionize discovery, but assessing their consistency and reproducibility across iPSC lines, and reducing the generation of off-target cells remain an open challenge. Here, we profile four human iPSC lines for a total of 450,118 single cells to show how organoid composition and development are comparable to human fetal and adult kidneys. Although cell classes are largely reproducible across time points, protocols, and replicates, we detect variability in cell proportions between different iPSC lines, largely due to off-target cells. To address this, we analyze organoids transplanted under the mouse kidney capsule and find diminished off-target cells. Our work shows how single cell RNA-seq (scRNA-seq) can score organoids for reproducibility, faithfulness and quality, that kidney organoids derived from different iPSC lines are comparable surrogates for human kidney, and that transplantation enhances their formation by diminishing off-target cells.
Collapse
Affiliation(s)
| | - Eriene-Heidi Sidhom
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Katherine Vernon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Yiming Zhou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Kost-Alimova
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lan T Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Zhang J, Song N, Duan Z. Rs6265 polymorphism in brain-derived neurotrophic factor (Val/Val and Val/Met) promotes proliferation of bladder cancer cells by suppressing microRNA-205 and enhancing expression of cyclin J. J Cell Biochem 2019; 120:7297-7308. [PMID: 30387205 DOI: 10.1002/jcb.28004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND In this study, we evaluated the effect of rs6265 polymorphism on the expression of brain-derived neurotrophic factor (BDNF) and relevant downstream targets, as well as the involvement of this polymorphism in bladder cancer. METHOD A computational analysis and luciferase assays were used to explore the interaction among BDNF, miR-205, and cyclin J (CCNJ). Real-time polymerase chain reaction (RT-PCR) and Western blot analysis were carried out to determine the effect of rs6265 polymorphism on the expression of BDNF and relevant downstream genes. RESULT BDNF directly inhibited miR-205 expression but enhanced the expression of CCNJ, which was identified as a virtual target gene of miR-205. Furthermore, the inhibitory effect of BDNF carrying the Val genotype, defined as BDNF (Val), on miR-205 expression was much stronger than that of BDNF (Met), while the inductive effect of BDNF (Val) on CCNJ expression was much weaker than that of BDNF (Met). miR-205 and CCNJ small interfering RNA (siRNA) were found to reduce cell proliferation and arrest the cells in G0/G1 phase. In addition, miR-205 expression in patients carrying BDNF genotyped as Met/Met (defined as Met/Met group) was much higher than patients carrying BDNF genotyped as Val/Val and Val/Met (defined as Val/Val group and Val/Met group). As an inhibitor of CCNJ expression, the inhibitory effect of miR-205 was much higher in the Met/Met group than that in the Val/Val and Val/Met groups. CONCLUSION In summary, we suggested that the rs6265 polymorphism in BDNF upregulates the expression of CCNJ in bladder cancer via the inhibition of miR-205 expression, which leads to the promoted proliferation of bladder cancer cells.
Collapse
Affiliation(s)
- Jin Zhang
- Urinary Surgery Department, The Second Hospital of Yulin, Yulin, China
| | - Ni Song
- Geriatric Department, Xianyang Central Hospital, Xianyang, China
| | - Zhongqi Duan
- Urinary Surgery Department, Xi'an No.4 Hospital, Xi'an, China
| |
Collapse
|
30
|
Miyoshi T, Hiratsuka K, Saiz EG, Morizane R. Kidney organoids in translational medicine: Disease modeling and regenerative medicine. Dev Dyn 2019; 249:34-45. [PMID: 30843293 DOI: 10.1002/dvdy.22] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
The kidney is one of the most complex organs composed of multiple cell types, functioning to maintain homeostasis by means of the filtering of metabolic wastes, balancing of blood electrolytes, and adjustment of blood pressure. Recent advances in 3D culture technologies in vitro enabled the generation of "organoids" which mimic the structure and function of in vivo organs. Organoid technology has allowed for new insights into human organ development and human pathophysiology, with great potential for translational research. Increasing evidence shows that kidney organoids are a useful platform for disease modeling of genetic kidney diseases when derived from genetic patient iPSCs and/or CRISPR-mutated stem cells. Although single cell RNA-seq studies highlight the technical difficulties underlying kidney organoid generation reproducibility and variation in differentiation protocols, kidney organoids still hold great potential to understand kidney pathophysiology as applied to kidney injury and fibrosis. In this review, we summarize various studies of kidney organoids, disease modeling, genome-editing, and bioengineering, and additionally discuss the potential of and current challenges to kidney organoid research.
Collapse
Affiliation(s)
- Tomoya Miyoshi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ken Hiratsuka
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Edgar Garcia Saiz
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ryuji Morizane
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Harvard Stem Cell Institute, Cambridge, Massachusetts.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
31
|
Endlich N, Lange T, Kuhn J, Klemm P, Kotb AM, Siegerist F, Kindt F, Lindenmeyer MT, Cohen CD, Kuss AW, Nath N, Rettig R, Lendeckel U, Zimmermann U, Amann K, Stracke S, Endlich K. BDNF: mRNA expression in urine cells of patients with chronic kidney disease and its role in kidney function. J Cell Mol Med 2018; 22:5265-5277. [PMID: 30133147 PMCID: PMC6201371 DOI: 10.1111/jcmm.13762] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/30/2018] [Indexed: 12/21/2022] Open
Abstract
Podocyte loss and changes to the complex morphology are major causes of chronic kidney disease (CKD). As the incidence is continuously increasing over the last decades without sufficient treatment, it is important to find predicting biomarkers. Therefore, we measured urinary mRNA levels of podocyte genes NPHS1, NPHS2, PODXL and BDNF, KIM‐1, CTSL by qRT‐PCR of 120 CKD patients. We showed a strong correlation between BDNF and the kidney injury marker KIM‐1, which were also correlated with NPHS1, suggesting podocytes as a contributing source. In human biopsies, BDNF was localized in the cell body and major processes of podocytes. In glomeruli of diabetic nephropathy patients, we found a strong BDNF signal in the remaining podocytes. An inhibition of the BDNF receptor TrkB resulted in enhanced podocyte dedifferentiation. The knockdown of the orthologue resulted in pericardial oedema formation and lowered viability of zebrafish larvae. We found an enlarged Bowman's space, dilated glomerular capillaries, podocyte loss and an impaired glomerular filtration. We demonstrated that BDNF is essential for glomerular development, morphology and function and the expression of BDNF and KIM‐1 is highly correlated in urine cells of CKD patients. Therefore, BDNF mRNA in urine cells could serve as a potential CKD biomarker.
Collapse
Affiliation(s)
- Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Tim Lange
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Jana Kuhn
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.,Clinic for Diabetes and Metabolic Diseases, Karlsburg Hospital Dr. Guth GmbH & Co KG, Karlsburg, Germany
| | - Paul Klemm
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Ahmed M Kotb
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Frances Kindt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Maja T Lindenmeyer
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Andreas W Kuss
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Neetika Nath
- Institute of Bioinformatics, University of Greifswald, Greifswald, Germany
| | - Rainer Rettig
- Department of Physiology, University of Greifswald, Karlsburg, Germany
| | - Uwe Lendeckel
- Department of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Zimmermann
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Pathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sylvia Stracke
- Department of Internal Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
32
|
Role of MicroRNAs in Renal Parenchymal Diseases-A New Dimension. Int J Mol Sci 2018; 19:ijms19061797. [PMID: 29914215 PMCID: PMC6032378 DOI: 10.3390/ijms19061797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/18/2022] Open
Abstract
Since their discovery in 1993, numerous microRNAs (miRNAs) have been identified in humans and other eukaryotic organisms, and their role as key regulators of gene expression is still being elucidated. It is now known that miRNAs not only play a central role in the processes that ensure normal development and physiology, but they are often dysregulated in various diseases. In this review, we present an overview of the role of miRNAs in normal renal development and physiology, in maladaptive renal repair after injury, and in the pathogenesis of renal parenchymal diseases. In addition, we describe methods used for their detection and their potential as therapeutic targets. Continued research on renal miRNAs will undoubtedly improve our understanding of diseases affecting the kidneys and may also lead to new therapeutic agents.
Collapse
|
33
|
Starc N, Li M, Algeri M, Conforti A, Tomao L, Pitisci A, Emma F, Montini G, Messa P, Locatelli F, Bernardo ME, Vivarelli M. Phenotypic and functional characterization of mesenchymal stromal cells isolated from pediatric patients with severe idiopathic nephrotic syndrome. Cytotherapy 2017; 20:322-334. [PMID: 29291917 DOI: 10.1016/j.jcyt.2017.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/19/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Idiopathic nephrotic syndrome (INS) is one of the most common renal diseases in the pediatric population; considering the role of the immune system in its pathogenesis, corticosteroids are used as first-line immunosuppressive treatment. Due to its chronic nature and tendency to relapse, a significant proportion of children experience co-morbidity due to prolonged exposure to corticosteroids and concomitant immunosuppression with second-line, steroid-sparing agents. Mesenchymal stromal cells (MSCs) are multipotent cells that represent a key component of the bone marrow (BM) microenvironment; given their unique immunoregulatory properties, their clinical use may be exploited as an alternative therapeutic approach in INS treatment. METHODS In view of the possibility of exploiting their immunoregulatory properties, we performed a phenotypical and functional characterization of MSCs isolated from BM of five INS patients (INS-MSCs; median age, 13 years; range, 11-16 years) in comparison with MSCs isolated from eight healthy donors (HD-MSCs). MSCs were expanded ex vivo and then analyzed for their properties. RESULTS Morphology, proliferative capacity, immunophenotype and differentiation potential did not differ between INS-MSCs and HD-MSCs. In an allogeneic setting, INS-MSCs were able to prevent both T- and B-cell proliferation and plasma-cell differentiation. In an in-vitro model of experimental damage to podocytes, co-culture with INS-MSCs appeared to be protective. DISCUSSION Our results demonstrate that INS-MSCs maintain the main biological and functional properties typical of HD-MSCs; these data suggest that MSCs may be used in autologous cellular therapy approaches for INS treatment.
Collapse
Affiliation(s)
- Nadia Starc
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Min Li
- Renal Research Laboratory, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Mattia Algeri
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Antonella Conforti
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Luigi Tomao
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Angela Pitisci
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesco Emma
- Department of Pediatric Subspecialties, Division of Nephrology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Giovanni Montini
- Pediatric Nephrology and Dialysis Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda IRCCS Ospedale Maggiore Policlinico di Milano, Università degli studi di Milano, Milan, Italy
| | - Piergiorgio Messa
- Unit of Nephrology, Dialysis and Renal Transplant, Department of Medicine, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico di Milano, Università degli studi di Milano, Milan, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy; Department of Paediatrics, University of Pavia, Pavia, Italy
| | - Maria Ester Bernardo
- Department of Paediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Marina Vivarelli
- Department of Pediatric Subspecialties, Division of Nephrology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| |
Collapse
|
34
|
Cui M, Xiao H, Li Y, Dong J, Luo D, Li H, Feng G, Wang H, Fan S. Total abdominal irradiation exposure impairs cognitive function involving miR-34a-5p/BDNF axis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2333-2341. [PMID: 28668331 DOI: 10.1016/j.bbadis.2017.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/08/2017] [Accepted: 06/26/2017] [Indexed: 01/08/2023]
Abstract
Radiotherapy is often employed to treat abdominal and pelvic malignancies, but is frequently accompanied by diverse acute and chronic local injuries. It was previously unknown whether abdominal and pelvic radiotherapy impairs distant cognitive dysfunction. In the present study, we demonstrated that total abdominal irradiation (TAI) exposure caused cognitive deficits in mouse models. Mechanically, microarray assay analysis revealed that TAI elevated the expression level of miR-34a-5p in small intestine tissues and peripheral blood (PD), which targeted the 3'UTR of Brain-derived neurotrophic factor (Bdnf) mRNA in hippocampus to mediate cognitive dysfunction. Tail intravenous injection of miR-34a-5p antagomir immediately after TAI exposure rescued TAI-mediated cognitive impairment via blocking the up-regulation of miR-34a-5p in PD, resulting in restoring the Bdnf expression in the hippocampus. More importantly, high throughput sequencing validated that the gut bacterial composition of mice was shifted after TAI exposure, which was retained by miR-34a-5p antagomir injection. Thus, our findings provide new insights into pathogenic mechanism underlying abdominal and pelvic radiotherapy-mediated distant cognitive impairment.
Collapse
Affiliation(s)
- Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China.
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Dan Luo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Haichao Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China; Department of Emergency Medicine, North Shore University Hospital, Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China.
| |
Collapse
|
35
|
Kurajoh M, Kadoya M, Morimoto A, Miyoshi A, Kanzaki A, Kakutani-Hatayama M, Hamamoto K, Shoji T, Moriwaki Y, Yamamoto T, Inaba M, Namba M, Koyama H. Plasma brain-derived neurotrophic factor concentration is a predictor of chronic kidney disease in patients with cardiovascular risk factors - Hyogo Sleep Cardio-Autonomic Atherosclerosis study. PLoS One 2017; 12:e0178686. [PMID: 28575038 PMCID: PMC5456118 DOI: 10.1371/journal.pone.0178686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF) has been shown to have protective effects against cardiovascular diseases and death through neural and non-neural pathways via tropomyosin-related kinase B signaling. However, it is not known whether plasma BDNF concentration is a predictor of chronic kidney disease (CKD). Design This study was conducted as a prospective cohort study as part of the Hyogo Sleep Cardio-Autonomic Atherosclerosis. Methods We measured plasma BDNF concentration in 324 patients without CKD, defined as an estimated glomerular filtration rate (eGFR) less than 60 ml/min/1.73m2, and with cardiovascular risk factors. As potential confounders, sleep condition, nocturnal hypertension, and autonomic function were quantitatively examined. The patients were followed for a median 37 months (range 2–59 months) and occurrence of CKD was noted. Results Plasma BDNF concentration was significantly and independently associated with CKD development, which occurred in 38 patients (11.7%). Kaplan-Meier analysis revealed that patients with reduced plasma BDNF concentration exhibited a significantly (p = 0.029) greater number of CKD events as compared to those with a higher concentration. Moreover, comparisons of key subgroups showed that the risk of CKD in association with low plasma BDNF concentration was more prominent in patients with a greater reduction of nocturnal systolic blood pressure, better movement index, higher standard deviations of the NN(RR) interval or average NN(RR) interval for each 5-minute period, and without past cardiovascular disease events, smoking habit, or albuminuria. Conclusions Plasma BDNF concentration is an independent predictor for development of CKD in patients with cardiovascular risk factors.
Collapse
Affiliation(s)
- Masafumi Kurajoh
- Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Manabu Kadoya
- Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Akiko Morimoto
- Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Akio Miyoshi
- Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Akinori Kanzaki
- Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Miki Kakutani-Hatayama
- Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kae Hamamoto
- Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Takuhito Shoji
- Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yuji Moriwaki
- Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Tetsuya Yamamoto
- Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mitsuyoshi Namba
- Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hidenori Koyama
- Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
36
|
The effect of thermosensitive liposomal formulations on loading and release of high molecular weight biomolecules. Int J Pharm 2017; 524:279-289. [DOI: 10.1016/j.ijpharm.2017.03.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 12/16/2022]
|
37
|
Bruni R, Possenti P, Bordignon C, Li M, Ordanini S, Messa P, Rastaldi MP, Cellesi F. Ultrasmall polymeric nanocarriers for drug delivery to podocytes in kidney glomerulus. J Control Release 2017; 255:94-107. [PMID: 28395969 DOI: 10.1016/j.jconrel.2017.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
We explored the use of new drug-loaded nanocarriers and their targeted delivery to the kidney glomerulus and in particular to podocytes, in order to overcome the failure of current therapeutic regimens in patients with proteinuric (i.e. abnormal amount of proteins in the urine) diseases. Podocytes are glomerular cells which are mainly responsible for glomerular filtration and are primarily or secondarily involved in chronic kidney diseases. Therefore, the possibility to utilise a podocyte-targeted drug delivery could represent a major breakthrough in kidney disease research, particularly in terms of dosage reduction and elimination of systemic side effects of current therapies. Four-arm star-shaped polymers, with/without a hydrophobic poly-ε-caprolactone core and a brush-like polyethylene glycol (PEG) hydrophilic shell, were synthesised by controlled/living polymerisation (ROP and ATRP) to allow the formation of stable ultrasmall colloidal nanomaterials of tuneable size (5-30nm), which are able to cross the glomerular filtration barrier (GFB). The effects of these nanomaterials on glomerular cells were evaluated in vitro. Nanomaterial accumulation and permeability in the kidney glomerulus were also assessed in mice under physiological and pathological conditions. Drug (dexamethasone) encapsulation was performed in order to test loading capacity, release kinetics, and podocyte repairing effects. The marked efficacy of these drug-loaded nanocarriers in repairing damaged podocytes may pave the way for developing a cell-targeted administration of new and traditional drugs, increasing efficacy and limiting side effects.
Collapse
Affiliation(s)
- Riccardo Bruni
- Fondazione CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Paolo Possenti
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Carlotta Bordignon
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Min Li
- Fondazione CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Stefania Ordanini
- Fondazione CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Piergiorgio Messa
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Maria Pia Rastaldi
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Francesco Cellesi
- Fondazione CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy; Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy.
| |
Collapse
|
38
|
A biomimetic gelatin-based platform elicits a pro-differentiation effect on podocytes through mechanotransduction. Sci Rep 2017; 7:43934. [PMID: 28262745 PMCID: PMC5338254 DOI: 10.1038/srep43934] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 01/12/2023] Open
Abstract
Using a gelatin microbial transglutaminase (gelatin-mTG) cell culture platform tuned to exhibit stiffness spanning that of healthy and diseased glomeruli, we demonstrate that kidney podocytes show marked stiffness sensitivity. Podocyte-specific markers that are critical in the formation of the renal filtration barrier are found to be regulated in association with stiffness-mediated cellular behaviors. While podocytes typically de-differentiate in culture and show diminished physiological function in nephropathies characterized by altered tissue stiffness, we show that gelatin-mTG substrates with Young’s modulus near that of healthy glomeruli elicit a pro-differentiation and maturation response in podocytes better than substrates either softer or stiffer. The pro-differentiation phenotype is characterized by upregulation of gene and protein expression associated with podocyte function, which is observed for podocytes cultured on gelatin-mTG gels of physiological stiffness independent of extracellular matrix coating type and density. Signaling pathways involved in stiffness-mediated podocyte behaviors are identified, revealing the interdependence of podocyte mechanotransduction and maintenance of their physiological function. This study also highlights the utility of the gelatin-mTG platform as an in vitro system with tunable stiffness over a range relevant for recapitulating mechanical properties of soft tissues, suggesting its potential impact on a wide range of research in cellular biophysics.
Collapse
|
39
|
Trionfini P, Benigni A. MicroRNAs as Master Regulators of Glomerular Function in Health and Disease. J Am Soc Nephrol 2017; 28:1686-1696. [PMID: 28232619 DOI: 10.1681/asn.2016101117] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression, and the dysregulation of miRNAs is a common feature of several diseases. More miRNAs are identified almost daily, revealing the complexity of these transcripts in eukaryotic cellular networks. The study of renal miRNAs, using genetically modified mice or by perturbing endogenous miRNA levels, has revealed the important biologic roles miRNAs have in the major cell lineages that compose the glomerulus. Here, we provide an overview of miRNA biogenesis and function in regulating key genes and cellular pathways in glomerular cells during development and homeostasis. Moreover, we focus on the emerging mechanisms through which miRNAs contribute to different diseases affecting the glomerulus, such as FSGS, IgA nephropathy, lupus nephritis, and diabetic nephropathy. In-depth knowledge of miRNA-based gene regulation has made it possible to unravel pathomechanisms, enabling the design of new therapeutic strategies for glomerular diseases for which available therapies are not fully efficacious.
Collapse
Affiliation(s)
- Piera Trionfini
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
40
|
Leierer J, Mayer G, Kronbichler A. Primary focal segmental glomerulosclerosis: miRNAs and targeted therapies. Eur J Clin Invest 2016; 46:954-964. [PMID: 27651302 DOI: 10.1111/eci.12676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Primary focal segmental glomerulosclerosis (FSGS) is a common cause of nephrotic syndrome. AIMS The pathogenic steps leading to primary FSGS are still obscure, although evidence suggests that circulatory factor(s) are involved in the onset of disease. RESULTS Recent technical advances allow the analysis of miRNA expression in tissues and body fluids, leading to reports of miRNAs involved in the molecular mechanisms of FSGS-aetiopathogenesis. Moreover, investigations have also highlighted miRNAs that might serve as biomarkers for primary FSGS. DISCUSSION/CONCLUSIONS The aim of this review was to summarize reports showing a direct relation between miRNAs and primary FSGS. In addition, the impact of identified miRNAs on treatment response, prediction of the disease onset as well as the regulation in different disease activities is summarized.
Collapse
Affiliation(s)
- Johannes Leierer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria.
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
41
|
Zennaro C, Rastaldi MP, Bakeine GJ, Delfino R, Tonon F, Farra R, Grassi G, Artero M, Tormen M, Carraro M. A nanoporous surface is essential for glomerular podocyte differentiation in three-dimensional culture. Int J Nanomedicine 2016; 11:4957-4973. [PMID: 27757030 PMCID: PMC5053378 DOI: 10.2147/ijn.s110201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although it is well recognized that cell-matrix interactions are based on both molecular and geometrical characteristics, the relationship between specific cell types and the three-dimensional morphology of the surface to which they are attached is poorly understood. This is particularly true for glomerular podocytes - the gatekeepers of glomerular filtration - which completely enwrap the glomerular basement membrane with their primary and secondary ramifications. Nanotechnologies produce biocompatible materials which offer the possibility to build substrates which differ only by topology in order to mimic the spatial organization of diverse basement membranes. With this in mind, we produced and utilized rough and porous surfaces obtained from silicon to analyze the behavior of two diverse ramified cells: glomerular podocytes and a neuronal cell line used as a control. Proper differentiation and development of ramifications of both cell types was largely influenced by topographical characteristics. Confirming previous data, the neuronal cell line acquired features of maturation on rough nanosurfaces. In contrast, podocytes developed and matured preferentially on nanoporous surfaces provided with grooves, as shown by the organization of the actin cytoskeleton stress fibers and the proper development of vinculin-positive focal adhesions. On the basis of these findings, we suggest that in vitro studies regarding podocyte attachment to the glomerular basement membrane should take into account the geometrical properties of the surface on which the tests are conducted because physiological cellular activity depends on the three-dimensional microenvironment.
Collapse
Affiliation(s)
- Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| | | | - Gerald James Bakeine
- Department of Radiology, San Martino University Hospital, University of Genoa, Genoa
| | - Riccarda Delfino
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| | - Federica Tonon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste
| | - Gabriele Grassi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
- Department of Life Sciences, Cattinara University Hospital, University of Trieste
| | - Mary Artero
- Azienda Sanitaria Universitaria Integrata di Trieste, Trieste
| | | | - Michele Carraro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| |
Collapse
|
42
|
Hang P, Sun C, Guo J, Zhao J, Du Z. BDNF-mediates Down-regulation of MicroRNA-195 Inhibits Ischemic Cardiac Apoptosis in Rats. Int J Biol Sci 2016; 12:979-89. [PMID: 27489501 PMCID: PMC4971736 DOI: 10.7150/ijbs.15071] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/07/2016] [Indexed: 11/23/2022] Open
Abstract
Background: Our previous studies suggested that brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) axis inhibited cardiomyocyte apoptosis in myocardial infarction (MI). However, the relationship between BDNF and microRNA (miRNA) in cardiomyocytes are unclear. The present study was performed to investigate the role of miR-195 and the interplay between BDNF and miR-195 in ischemic cardiomyocyte apoptosis. Methods: Male Wistar rats were subjected to coronary artery ligation, and primary neonatal rat ventricular myocytes were treated with hypoxia or hydrogen peroxide (H2O2). BDNF level in rat ventricles was measured by enzyme linked immunosorbent assay (ELISA). miR-195 mimic, inhibitor or negative control was transfected into the cardiomyocytes. Cell viability and apoptosis were detected by MTT assay and TdT-mediated dUTP nick end labeling (TUNEL) staining, respectively. Cardiac function and apoptosis were detected in MI rats intravenously injected with antagomiR-195. Luciferase assay, Western blot and Real-time RT-PCR were employed to clarify the interplay between miR-195 and BDNF. Results: miR-195 level was dynamically regulated in response to MI and significantly increased in ischemic regions 24 h post-MI as well as in hypoxic or H2O2-treated cardiomyocytes. Meanwhile, BDNF protein level was rapidly increased in MI rats and H2O2-treated cardiomyocytes. Apoptosis in both hypoxic and H2O2-treated cardiomyocytes were markedly reduced and cell viability was increased by miR-195 inhibitor. Moreover, inhibition of miR-195 significantly improved cardiac function of MI rats. Bcl-2 but not BDNF was validated as the direct target of miR-195. Furthermore, BDNF abolished the pro-apoptotic role of miR-195, which was reversed by its scavenger TrkB-Fc. Conclusion: Up-regulation of miR-195 in ischemic cardiomyocytes promotes ischemic apoptosis by targeting Bcl-2. BDNF mitigated the pro-apoptotic effect of miR-195 in rat cardiomyocytes. These findings may provide better understanding of the pro-apoptotic role of miR-195 in MI and suggest that BDNF/miR-195/Bcl-2 axis may be beneficial for limiting myocardial ischemic injury.
Collapse
Affiliation(s)
- Pengzhou Hang
- 1. Institute of Clinical Pharmacology of the Second Affiliated Hospital (Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin Medical University, Harbin 150086, Heilongjiang Province, P. R. China
| | - Chuan Sun
- 1. Institute of Clinical Pharmacology of the Second Affiliated Hospital (Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin Medical University, Harbin 150086, Heilongjiang Province, P. R. China
| | - Jing Guo
- 1. Institute of Clinical Pharmacology of the Second Affiliated Hospital (Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin Medical University, Harbin 150086, Heilongjiang Province, P. R. China
| | - Jing Zhao
- 2. Department of Cardiology, the First Affiliated Hospital (Key Laboratory of Cardiac Diseases and Heart Failure), Harbin Medical University, Harbin 150001, Heilongjiang Province, P. R. China
| | - Zhimin Du
- 1. Institute of Clinical Pharmacology of the Second Affiliated Hospital (Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin Medical University, Harbin 150086, Heilongjiang Province, P. R. China
| |
Collapse
|
43
|
miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy. Nat Commun 2016; 7:12076. [PMID: 27350436 PMCID: PMC4931323 DOI: 10.1038/ncomms12076] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/26/2016] [Indexed: 01/15/2023] Open
Abstract
How the kidney responds to the metabolic cues from the environment remains a central question in kidney research. This question is particularly relevant to the pathogenesis of diabetic nephropathy (DN) in which evidence suggests that metabolic events in podocytes regulate chromatin structure. Here, we show that miR-93 is a critical metabolic/epigenetic switch in the diabetic milieu linking the metabolic state to chromatin remodelling. Mice with inducible overexpression of a miR-93 transgene exclusively in podocytes exhibit significant improvements in key features of DN. We identify miR-93 as a regulator of nucleosomal dynamics in podocytes. miR-93 has a critical role in chromatin reorganization and progression of DN by modulating its target Msk2, a histone kinase, and its substrate H3S10. These findings implicate a central role for miR-93 in high glucose-induced chromatin remodelling in the kidney, and provide evidence for a previously unrecognized role for Msk2 as a target for DN therapy. Podocyte injury is central to kidney dysfunction in diabetic nephropathy. Here the authors show that Msk2 is a target of miR-93 and this interaction mediates pathogenic chromatin remodelling in diabetic nephropathy.
Collapse
|
44
|
Guo N, Guo J, Su D. MicroRNA-206 and its down-regulation of Wilms’Tumor-1 dictate podocyte health in adriamycin-induced nephropathy. Ren Fail 2016; 38:989-95. [DOI: 10.3109/0886022x.2016.1165119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Li M, Corbelli A, Watanabe S, Armelloni S, Ikehata M, Parazzi V, Pignatari C, Giardino L, Mattinzoli D, Lazzari L, Puliti A, Cellesi F, Zennaro C, Messa P, Rastaldi MP. Three-dimensional podocyte-endothelial cell co-cultures: Assembly, validation, and application to drug testing and intercellular signaling studies. Eur J Pharm Sci 2016; 86:1-12. [PMID: 26924225 DOI: 10.1016/j.ejps.2016.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 11/29/2022]
Abstract
Proteinuria is a common symptom of glomerular diseases and is due to leakage of proteins from the glomerular filtration barrier, a three-layer structure composed by two post-mitotic highly specialized and interdependent cell populations, i.e. glomerular endothelial cells and podocytes, and the basement membrane in between. Despite enormous progresses made in the last years, pathogenesis of proteinuria remains to be completely uncovered. Studies in the field could largely benefit from an in vitro model of the glomerular filter, but such a system has proved difficult to realize. Here we describe a method to obtain and utilize a three-dimensional podocyte-endothelial co-culture which can be largely adopted by the scientific community because it does not rely on special instruments nor on the synthesis of devoted biomaterials. The device is composed by a porous membrane coated on both sides with type IV collagen. Adhesion of podocytes on the upper side of the membrane has to be preceded by VEGF-induced maturation of endothelial cells on the lower side. The co-culture can be assembled with podocyte cell lines as well as with primary podocytes, extending the use to cells derived from transgenic mice. An albumin permeability assay has been extensively validated and applied as functional readout, enabling rapid drug testing. Additionally, the bottom of the well can be populated with a third cell type, which multiplies the possibilities of analyzing more complex glomerular intercellular signaling events. In conclusion, the ease of assembly and versatility of use are the major advantages of this three-dimensional model of the glomerular filtration barrier over existing methods. The possibility to run a functional test that reliably measures albumin permeability makes the device a valid companion in several research applications ranging from drug screening to intercellular signaling studies.
Collapse
Affiliation(s)
- Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy; Fondazione D'Amico per la Ricerca sulle Malattie Renali, via Pace 9, 20122 Milan, Italy.
| | - Alessandro Corbelli
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy; Bio-imaging Unit, Department of Cardiovascular Research, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156 Milan, Italy; Fondazione D'Amico per la Ricerca sulle Malattie Renali, via Pace 9, 20122 Milan, Italy.
| | - Shojiro Watanabe
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy; Fondazione D'Amico per la Ricerca sulle Malattie Renali, via Pace 9, 20122 Milan, Italy.
| | - Silvia Armelloni
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy; Fondazione D'Amico per la Ricerca sulle Malattie Renali, via Pace 9, 20122 Milan, Italy.
| | - Masami Ikehata
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy; Fondazione D'Amico per la Ricerca sulle Malattie Renali, via Pace 9, 20122 Milan, Italy.
| | - Valentina Parazzi
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy.
| | - Chiara Pignatari
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy; Fondazione D'Amico per la Ricerca sulle Malattie Renali, via Pace 9, 20122 Milan, Italy.
| | - Laura Giardino
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy; Fondazione D'Amico per la Ricerca sulle Malattie Renali, via Pace 9, 20122 Milan, Italy.
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy; Fondazione D'Amico per la Ricerca sulle Malattie Renali, via Pace 9, 20122 Milan, Italy.
| | - Lorenza Lazzari
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy.
| | - Aldamaria Puliti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, via G. Gaslini 5, 16148 Genoa, Italy; Medical Genetics Unit, Istituto Giannina Gaslini, via G. Gaslini 5, 16148 Genoa, Italy.
| | - Francesco Cellesi
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy; Department of Chemistry, Materials, and Chemical Engineering "G.Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy; Fondazione CEN - European Centre for Nanomedicine, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Cristina Zennaro
- Laboratory of Renal Physiopathology, Department of Medical, Surgical, and Health Sciences, Trieste University, via Strada di Fiume 447, 34149 Trieste, Italy.
| | - Piergiorgio Messa
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy; Fondazione D'Amico per la Ricerca sulle Malattie Renali, via Pace 9, 20122 Milan, Italy.
| | - Maria Pia Rastaldi
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Pace 9, 20122 Milan, Italy; Fondazione D'Amico per la Ricerca sulle Malattie Renali, via Pace 9, 20122 Milan, Italy.
| |
Collapse
|
46
|
Hou G, Wu V, Singh G, Holzman LB, Tsui CC. Ret is critical for podocyte survival following glomerular injury in vivo. Am J Physiol Renal Physiol 2015; 308:F774-83. [PMID: 25587123 DOI: 10.1152/ajprenal.00483.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/06/2015] [Indexed: 12/16/2022] Open
Abstract
Podocyte injury and loss directly cause proteinuria and the progression to glomerulosclerosis. Elucidation of the mechanisms of podocyte survival and recovery from injury is critical for designing strategies to prevent the progression of glomerular diseases. Glial cell line-derived neurotrophic factor (GDNF) and its receptor tyrosine kinase, Ret, are upregulated in both nonimmune and immune-mediated in vitro and in vivo models of glomerular diseases. We investigated whether Ret, a known receptor tyrosine kinase critical for kidney morphogenesis and neuronal growth and development, is necessary for glomerular and podocyte development and survival in vivo. Since deletions of both GDNF and Ret result in embryonic lethality due to kidney agenesis, we examined the role of Ret in vivo by generating mice with a conditional deletion of Ret in podocytes (Ret(flox/flox); Nphs2-Cre). In contrast to the lack of any developmental and maintenance deficits, Ret(flox/flox); Nphs2-Cre mice showed a significantly enhanced susceptibility to adriamycin nephropathy, a rodent model of focal segmental glomerulosclerosis. Thus, these findings demonstrated that the Ret signaling pathway is important for podocyte survival and recovery from glomerular injury in vivo.
Collapse
Affiliation(s)
- Guoqing Hou
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Victoria Wu
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Gulmohar Singh
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Lawrence B Holzman
- Division of Renal Electrolyte and Hypertension, Department of Internal Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Cynthia C Tsui
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| |
Collapse
|