1
|
Liu W, Yang Y. Comment on "Adults and Adolescents With Neuroblastoma: An Analysis of the National Cancer Database". J Surg Oncol 2025. [PMID: 39865574 DOI: 10.1002/jso.28099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Affiliation(s)
- Wei Liu
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yuwei Yang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
2
|
Chidiac C, McDermott KM, Ramdat C, Price MD, Greer JB, Ladle BH, Rhee DS. Adults and Adolescents With Neuroblastoma: An Analysis of the National Cancer Database. J Surg Oncol 2025. [PMID: 39780459 DOI: 10.1002/jso.28076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND AND OBJECTIVES Neuroblastoma, the most common extracranial solid tumor in children, is rare in adults. This study compares patient characteristics, disease patterns, and treatments among adults, adolescents, and children with neuroblastoma. METHODS We queried the National Cancer Database (2004-2019) for neuroblastoma cases. Patient and tumor characteristics, treatments, and 5-year overall survival (5-OS) were compared between adults (≥ 18 years), adolescents (10-17 years), and children (0-9 years). Kaplan-Meier curves and Cox regression assessed survival differences. RESULTS Among 6350 neuroblastoma patients, 256 (4.0%) were adults, 222 (3.5%) were adolescents, and 5872 (92.5%) were children. Tumors were largest in adolescents (9.7 cm), followed by adults (8.0 cm) and children (6.7 cm) (p < 0.001). Adults were less likely to have tumors in the adrenal glands (34.0% vs. children: 54.7%, adolescents: 43.2%, p < 0.001) and had lower rates of metastasis (10.9% vs. 19.3% and 19.4%, p < 0.001). Compared to children, adults received less chemotherapy, immunotherapy, and bone marrow transplants (p < 0.001). 5-OS was worse in adults (65.8%), followed by adolescents (70.4%) and children (78.2%) (p < 0.001). After adjustment, adults (aHR: 2.27; 95% CI, 1.71-3.01) and adolescents (aHR: 2.02; 95% CI, 1.54-2.64) had higher hazards of death compared to children. CONCLUSIONS Adults and adolescents with neuroblastoma have distinct clinical features and lower survival than children, underscoring the need for tailored treatment approaches for older patients. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Charbel Chidiac
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine M McDermott
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Caitlyn Ramdat
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew D Price
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan B Greer
- Department of Surgery, Division of Surgical Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brian H Ladle
- Department of Oncology, Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel S Rhee
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Magnier O, Schiff I, Cristante J, Chabre O, Veloso M, Bosson JL, Defachelles AS, Cordero C, Do Cao C, Thebaud E, Drui D, Berlanga P, Dumont B, Chastagner P, Tandonnet J, Gambart M, Jannier S, Pluchart C, Andry L, Laithier V, Klein S, Carausu L, Akbaraly T, Probert J, Habert-Dantigny R, Plantaz D. Adolescent- and adult-onset neuroblastic tumor: A retrospective multicenter observational study of patients diagnosed in France between 2000 and 2020. Pediatr Blood Cancer 2024; 71:e31074. [PMID: 38778452 DOI: 10.1002/pbc.31074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Adult- and adolescent-onset neuroblastomas are rare, with no established therapy. In addition, rare pheochromocytomas may harbor neuroblastic components. This study was designed to collect epidemiological, diagnostic and therapeutic data in order to better define the characteristics of malignant peripheral neuroblastic tumors (MPNT) and composite pheochromocytomas (CP) with MPNT. PROCEDURE Fifty-nine adults and adolescents (aged over 15 years) diagnosed with a peripheral or composite neuroblastic tumor, who were treated in one of 17 institutions between 2000 and 2020, were retrospectively studied. RESULTS Eighteen patients with neuroblastoma (NB) or ganglioneuroblastoma (GNB) had locoregional disease, and 28 patients had metastatic stage 4 NB. Among the 13 patients with CP, 12 had locoregional disease. Fifty-eight percent of the population were adolescents and young adults under 24 years of age. The probability of 5-year event-free survival (EFS) was 40% (confidence interval: 27%-53%). CONCLUSIONS Outcomes were better for patients with localized tumor than for patients with metastases. For patients with localized tumor, in terms of survival, surgical treatment was the best therapeutic option. Multimodal treatment with chemotherapy, surgery, radiotherapy, and immunotherapy-based maintenance allowed long-term survival for some patients. Adolescent- and adult-onset neuroblastoma appeared to have specific characteristics associated with poorer outcomes compared to pediatric neuroblastoma. Nevertheless, complete disease control improved survival. The presence of a neuroblastic component in pheochromocytoma should be considered when making therapeutic management decisions. The development of specific tools/resources (Tumor Referral Board, Registry, biology, and trials with new agents or strategies) may help to improve outcomes for patients.
Collapse
Affiliation(s)
- Orlane Magnier
- Cancer and Blood Diseases Department, Medical Oncology, Grenoble Alpes University Hospital, Grenoble, France
| | - Isabelle Schiff
- Pediatric Oncology and Hematology Department, Grenoble Alpes University, Grenoble, France
| | - Justine Cristante
- Endocrinology Department, Grenoble Alpes University, Grenoble, France
| | - Olivier Chabre
- Endocrinology Department, Grenoble Alpes University, Grenoble, France
| | - Melanie Veloso
- Public Health and Biostatistics, Grenoble Alpes University Hospital, Grenoble, France
| | - Jean-Luc Bosson
- Public Health and Biostatistics, Grenoble Alpes University Hospital, Grenoble, France
| | | | - Camille Cordero
- Pediatric Oncology Department, Curie Institute, Paris, France
| | - Christine Do Cao
- Department of Endocrinology, Diabetology, and Metabolism, Lille University Hospital, Lille, France
| | - Estelle Thebaud
- Pediatric Oncology Department, Nantes University Hospital, Nantes, France
| | - Delphine Drui
- Endocrinology Department, Nantes University Hospital, Nantes, France
| | - Pablo Berlanga
- Pediatric and AYA Oncology Department, Gustave Roussy Institute, Paris, France
| | | | - Philippe Chastagner
- Pediatric Oncology and Hematology Department, Nancy University Hospital, Nancy, France
| | - Julie Tandonnet
- Pediatric Oncology Department, Bordeaux University Hospital, Bordeaux, France
| | - Marion Gambart
- Pediatric Oncology and Hematology Department, Toulouse University Hospital, Toulouse, France
| | - Sarah Jannier
- Pediatric Oncology Department, Strasbourg University Hospital, Strasbourg, France
| | - Claire Pluchart
- Pediatric Oncology and Hematology Department, Reims University Hospital, Reims, France
| | - Leslie Andry
- Pediatric Oncology Department, Amiens University Hospital, Amiens, France
| | - Véronique Laithier
- Pediatric Oncology Department, Besançon University Hospital, Besançon, France
| | - Sébastien Klein
- Pediatric Oncology Department, Besançon University Hospital, Besançon, France
| | - Liana Carausu
- Pediatric Oncology and Hematology Department, Brest University Hospital, Brest, France
| | - Tasmine Akbaraly
- Pediatric Oncology Department, Montpellier University Hospital, Montpellier, France
| | - Jamie Probert
- Pediatric Oncology and Hematology Department, Rennes University Hospital, Rennes, France
| | - Raphaelle Habert-Dantigny
- Cancer and Blood Diseases Department, Medical Oncology, Palliative Care Unit, Grenoble Alpes University, Grenoble, France
| | - Dominique Plantaz
- Pediatric Oncology and Hematology Department, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
4
|
Saldana-Guerrero IM, Montano-Gutierrez LF, Boswell K, Hafemeister C, Poon E, Shaw LE, Stavish D, Lea RA, Wernig-Zorc S, Bozsaky E, Fetahu IS, Zoescher P, Pötschger U, Bernkopf M, Wenninger-Weinzierl A, Sturtzel C, Souilhol C, Tarelli S, Shoeb MR, Bozatzi P, Rados M, Guarini M, Buri MC, Weninger W, Putz EM, Huang M, Ladenstein R, Andrews PW, Barbaric I, Cresswell GD, Bryant HE, Distel M, Chesler L, Taschner-Mandl S, Farlik M, Tsakiridis A, Halbritter F. A human neural crest model reveals the developmental impact of neuroblastoma-associated chromosomal aberrations. Nat Commun 2024; 15:3745. [PMID: 38702304 PMCID: PMC11068915 DOI: 10.1038/s41467-024-47945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.
Collapse
Affiliation(s)
- Ingrid M Saldana-Guerrero
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
- Sheffield Institute for Nucleic Acids (SInFoNiA), School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | | | - Katy Boswell
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | | | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research (ICR) & Royal Marsden NHS Trust, London, UK
| | - Lisa E Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Dylan Stavish
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Rebecca A Lea
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Sara Wernig-Zorc
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Eva Bozsaky
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Irfete S Fetahu
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Medical University of Vienna, Department of Neurology, Division of Neuropathology and Neurochemistry, Vienna, Austria
| | - Peter Zoescher
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Ulrike Pötschger
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Marie Bernkopf
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik GmbH, Vienna, Austria
| | | | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Celine Souilhol
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| | - Sophia Tarelli
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | - Mohamed R Shoeb
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Polyxeni Bozatzi
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Magdalena Rados
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Maria Guarini
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Michelle C Buri
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Eva M Putz
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Miller Huang
- Children's Hospital Los Angeles, Cancer and Blood Disease Institutes, and The Saban Research Institute, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ruth Ladenstein
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Peter W Andrews
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Neuroscience Institute, The University of Sheffield, Sheffield, UK
| | | | - Helen E Bryant
- Sheffield Institute for Nucleic Acids (SInFoNiA), School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Martin Distel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research (ICR) & Royal Marsden NHS Trust, London, UK
| | | | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK.
- Neuroscience Institute, The University of Sheffield, Sheffield, UK.
| | | |
Collapse
|
5
|
Mlakar V, Dupanloup I, Gonzales F, Papangelopoulou D, Ansari M, Gumy-Pause F. 17q Gain in Neuroblastoma: A Review of Clinical and Biological Implications. Cancers (Basel) 2024; 16:338. [PMID: 38254827 PMCID: PMC10814316 DOI: 10.3390/cancers16020338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Neuroblastoma (NB) is the most frequent extracranial solid childhood tumor. Despite advances in the understanding and treatment of this disease, the prognosis in cases of high-risk NB is still poor. 17q gain has been shown to be the most frequent genomic alteration in NB. However, the significance of this remains unclear because of its high frequency and association with other genetic modifications, particularly segmental chromosomal aberrations, 1p and 11q deletions, and MYCN amplification, all of which are also associated with a poor clinical prognosis. This work reviewed the evidence on the clinical and biological significance of 17q gain. It strongly supports the significance of 17q gain in the development of NB and its importance as a clinically relevant marker. However, it is crucial to distinguish between whole and partial chromosome 17q gains. The most important breakpoints appear to be at 17q12 and 17q21. The former distinguishes between whole and partial chromosome 17q gain; the latter is a site of IGF2BP1 and NME1 genes that appear to be the main oncogenes responsible for the functional effects of 17q gain.
Collapse
Affiliation(s)
- Vid Mlakar
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
| | - Isabelle Dupanloup
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Swiss Institute of Bioinformatics, Amphipôle, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Fanny Gonzales
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Danai Papangelopoulou
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Fabienne Gumy-Pause
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| |
Collapse
|
6
|
Dharmalingam P, Chenniappan AD, Alashetty S, Bidadi Lingappa K, Patil Okaly GV. Neuroblastoma in uncommon age group - A case series diagnosed on cytology. Diagn Cytopathol 2023; 51:629-635. [PMID: 37326472 DOI: 10.1002/dc.25189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Neuroblastoma is the most common extracranial malignant neoplasm in early childhood. It is rare in the adult population. AIMS AND OBJECTIVES We aimed to study the incidence of neuroblastoma in the uncommon age group diagnosed on cytology. MATERIALS AND METHODS A prospective descriptive study spanning 2 years from December 2020 to January 2022 was done, in which neuroblastoma cases diagnosed by Fine needle aspiration cytology aged >12 years were collected. The clinical, cytomorphological and immunohistochemical findings were studied. Histopathological correlation was done wherever available. RESULTS We identified three cases of neuroblastoma during this period. Two cases were middle-aged adults, and one was an adolescent. All cases presented with abdominal masses and revealed small round cell tumor on cytology. Two cases fell into undifferentiated category and one case fell into the poorly differentiated subtype. All cases were positive for neuroendocrine markers. Histopathological correlation was available in two cases. MYC N amplification was absent in all cases. CONCLUSION It differs from pediatric neuroblastoma due to the lack of classical histomorphological features and molecular alterations. Adult-onset neuroblastomas carry a worse prognosis than childhood tumors.
Collapse
Affiliation(s)
- Priya Dharmalingam
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bengaluru, India
| | | | - Soumya Alashetty
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bengaluru, India
| | | | - Geeta V Patil Okaly
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bengaluru, India
| |
Collapse
|
7
|
Lin L, Miao L, Lin H, Cheng J, Li M, Zhuo Z, He J. Targeting RAS in neuroblastoma: Is it possible? Pharmacol Ther 2022; 236:108054. [PMID: 34915055 DOI: 10.1016/j.pharmthera.2021.108054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is a common solid tumor in children and a leading cause of cancer death in children. Neuroblastoma exhibits genetic, morphological, and clinical heterogeneity that limits the efficacy of current monotherapies. With further research on neuroblastoma, the pathogenesis of neuroblastoma is found to be complex, and more and more treatment therapies are needed. The importance of personalized therapy is growing. Currently, various molecular features, including RAS mutations, are being used as targets for the development of new therapies for patients with neuroblastoma. A recent study found that RAS mutations are frequently present in recurrent neuroblastoma. RAS mutations have been shown to activate the MAPK pathway and play an important role in neuroblastoma. Treating RAS mutated neuroblastoma is a difficult challenge, but many preclinical studies have yielded effective results. At the same time, many of the therapies used to treat RAS mutated tumors also have good reference values for treating RAS mutated neuroblastoma. The success of KRAS-G12C inhibitors has greatly stimulated confidence in the direct suppression of RAS. This review describes the biological role of RAS and the frequency of RAS mutations in neuroblastoma. This paper focuses on the strategies, preclinical, and clinical progress of targeting carcinogenic RAS in neuroblastoma, and proposes possible prospects and challenges in the future.
Collapse
Affiliation(s)
- Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
8
|
Novel TENM3–ALK fusion is an alternate mechanism for ALK activation in neuroblastoma. Oncogene 2022; 41:2789-2797. [DOI: 10.1038/s41388-022-02301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 11/09/2022]
|
9
|
van Gerven MR, Bozsaky E, Matser YAH, Vosseberg J, Taschner-Mandl S, Koster J, Tytgat GAM, Molenaar JJ, van den Boogaard M. The mutational spectrum of ATRX aberrations in neuroblastoma and the associated patient and tumor characteristics. Cancer Sci 2022; 113:2167-2178. [PMID: 35384159 PMCID: PMC9207354 DOI: 10.1111/cas.15363] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 11/30/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. The chromatin remodeler ATRX is frequently mutated in high‐risk patients with a poor prognosis. Although many studies have reported ATRX aberrations and the associated clinical characteristics in neuroblastoma, a comprehensive overview is currently lacking. In this study, we extensively characterize the mutational spectrum of ATRX aberrations in neuroblastoma tumors reported in previous studies and present an overview of patient and tumor characteristics. We collected the data of a total of 127 neuroblastoma patients and three cell lines with ATRX aberrations originating from 20 papers. We subdivide the ATRX aberrations into nonsense, missense, and multiexon deletions (MEDs) and show that 68% of them are MEDs. Of these MEDs, 75% are predicted to be in‐frame. Furthermore, we identify a missense mutational hotspot region in the helicase domain. We also confirm that all three ATRX mutation types are more often identified in patients diagnosed at an older age, but still approximately 40% of the patients are aged 5 years or younger at diagnosis. Surprisingly, we found that 11q deletions are enriched in neuroblastomas with ATRX deletions compared to a reference cohort, but not in neuroblastomas with ATRX point mutations. Taken together, our data emphasizes a distinct ATRX mutation spectrum in neuroblastoma, which should be considered when studying molecular phenotypes and therapeutic strategies.
Collapse
Affiliation(s)
| | - Eva Bozsaky
- Tumor biology group, St Anna Children's Cancer Research Institute, Vienna, Austria
| | - Yvette A H Matser
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Julian Vosseberg
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
| | | | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | |
Collapse
|
10
|
Demir AB, Aktas S, Altun Z, Ercetin P, Aktas TC, Olgun N. Questioning How to Define the "Ultra-High-Risk" Subgroup of Neuroblastoma Patients. Folia Biol (Praha) 2021; 67:1-9. [PMID: 34273261 DOI: 10.14712/fb2021067010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Neuroblastic tumours exhibit heterogeneity, which results in different therapeutic outcomes. Neuroblastoma is categorized into three major risk groups (low, intermediate, high risk). Recent identification of new genes raised the possibility of new biomarkers to identify sub-risk groups. In this retrospective cross-sectional study, we aimed to assess new biomarkers defining the ultra-high-risk subgroup within the high-risk group that differ in clinical situation with very bad prognosis. Twenty-five low- and 29 high-risk groups of patients were analysed for their expression of ALK, ATRX, HIF1a, HIF2a (EPAS), H2AFX, and ETV5 genes at the RNA level. Immunohistochemistry was performed to confirm the protein expression level of ALK. The risk group of patients was determined according to the International Neuroblastoma Risk Group Stratification System. Spearman correlation analysis and Mann-Whitney-U nonparametric test were used to assess the importance of expression levels among the groups. P < 0.05 was considered as significant. Sensitivity of the results was checked by ROC curve analysis. All analysed genes were found to be highly expressed in the high-risk group compared to the low-risk group, except for ETV5. When the ultra-high-risk and highrisk groups were compared, ALK was found to be highly expressed in the ultra-high-risk group. Our results show that ALK may be a candidate gene whose mRNA expression levels can distinguish the ultrahigh- risk subgroup of patients in the high-risk group of patients with non-familial neuroblastoma.
Collapse
Affiliation(s)
- A B Demir
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
- Department of Basic Medical Sciences, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| | - S Aktas
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Z Altun
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - P Ercetin
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - T C Aktas
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - N Olgun
- Department of Clinical Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
11
|
Brizzolara A, Garbati P, Vella S, Calderoni M, Quattrone A, Tonini GP, Capasso M, Longo L, Barbieri R, Florio T, Pagano A. Co-Administration of Fendiline Hydrochloride Enhances Chemotherapeutic Efficacy of Cisplatin in Neuroblastoma Treatment. Molecules 2020; 25:molecules25225234. [PMID: 33182713 PMCID: PMC7698186 DOI: 10.3390/molecules25225234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Despite significant improvement of neuroblastoma (NB) patients’ survival due to recent treatment advancements in recent years, NB is still associated with high mortality rate. In search of novel strategies to increase NB’s susceptibility to pharmacological treatments, we investigated the in vitro and in vivo effects of fendiline hydrochloride as an enhancer of cisplatin antitumor activity. To assess the modulation of fendiline treatment on cisplatin responses, we used in vitro (evaluating NB cell proliferation by XCELLigence technology and colony formation, and gene expression by RT-PCR) and in vivo (NB cell grafts in NOD-SCID mice) models of NB. NB cell treatment with fendiline induced the expression of the ncRNA NDM29, leading to cell differentiation and to the reduction of the expression of MDRs/ABC transporters linked to multidrug resistance. These events were correlated to higher NB cell susceptibility to cisplatin and, consequently, increased its cytotoxic potency. In vivo, this drug interaction causes an enhanced ability of cisplatin to induce apoptosis in NB masses, resulting in tumor growth reduction and prolonged animal survival rate. Thus, the administration of fendiline might be a possible novel therapeutic approach to increase cisplatin efficacy in aggressive and poorly responsive NB cases.
Collapse
Affiliation(s)
| | - Patrizia Garbati
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
| | - Serena Vella
- Department of Laboratory Medicine and Advanced Biotechnologies, Institute of Hospitalization and Care of a Scientific Nature—Mediterranean Institute for Transplantation and Highly Specialized Therapies (IRCCS- ISMETT), 90127 Palermo, Italy;
- Anemocyte S.r.l., 21040 Gerenzano, Italy
| | - Matilde Calderoni
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy;
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute, The “Città della Speranza” Foundation, 35128 Padua, Italy;
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80145 Naples, Italy;
- CEINGE Biotecnologie Avanzate, 80131 Naples, Italy
- SDN Research Institute Diagnostics and Nuclear, 80133 Naples, Italy
| | - Luca Longo
- Lung Cancer Unit, Division of Medical Oncology II, IRCCS San Martino Polyclinic Hospital, 16132 Genova, Italy;
| | - Raffaella Barbieri
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
| | - Tullio Florio
- IRCCS AOU San Martino Polyclinic Hospital, 16132 Genova, Italy; (A.B.); (T.F.)
- Department of Internal Medicine (DIMI), University of Genova, 16126 Genova, Italy
| | - Aldo Pagano
- IRCCS AOU San Martino Polyclinic Hospital, 16132 Genova, Italy; (A.B.); (T.F.)
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
- Correspondence: ; Tel.: +39-010-5558213
| |
Collapse
|
12
|
Lasorsa VA, Cimmino F, Ognibene M, Mazzocco K, Erminio G, Morini M, Conte M, Iolascon A, Pezzolo A, Capasso M. 19p loss is significantly enriched in older age neuroblastoma patients and correlates with poor prognosis. NPJ Genom Med 2020; 5:18. [PMID: 32337068 PMCID: PMC7160145 DOI: 10.1038/s41525-020-0125-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Genomic aberrations of neuroblastoma occurring in late childhood and adolescence are still understudied. Publicly available DNA copy number profiles of 556 tumors (discovery set) and of 208 tumors obtained by array-CGH assay (validation set) were used to test if 19p loss is significantly over-represented in children and adolescents with neuroblastoma. The 19p loss occurrence was separately tested within different age groups in the discovery and validation set and the resulting P values were combined by meta-analysis and corrected by Bonferroni's method. In both sets, 19p loss was associated with older age at diagnosis. Particularly, the lowest age group significantly associated with 19p loss (discovery set: 20%; validation set: 35%) was 6 years. The 19p loss correlated with inferior overall survival in patients over 6 years of age. Relevant tumor suppressor genes (KEAP1, DNM2, SMARCA4, SLC44A2 and CDKN2D) and microRNAs (miR-181c, miR-27a, and mirR-199a-1) are located in the genomic region involved in 19p loss. Downregulation of DNM2, SLC44A2 and CDKN2D was associated with poor patient outcome and older age. Among the recurrent NB chromosomal aberrations, only 1q gain was enriched in patients older than 6, and its presence was mutually exclusive with respect to 19p loss. Our data demonstrate that 19p loss is a genomic biomarker of NB diagnosed in older children that can predict clinical outcome.
Collapse
Affiliation(s)
- Vito Alessandro Lasorsa
- 1Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy.,2CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Flora Cimmino
- 1Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy.,2CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Marzia Ognibene
- 3Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Katia Mazzocco
- 4UOC Anatomia Patologica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Erminio
- 5Epidemiologia e Biostatistica IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Martina Morini
- 6Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Massimo Conte
- 7UOC Oncologia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Achille Iolascon
- 1Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy.,2CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Annalisa Pezzolo
- 3Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mario Capasso
- 1Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy.,2CEINGE Biotecnologie Avanzate, Napoli, Italy.,IRCSS SDN, Napoli, Italy
| |
Collapse
|
13
|
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood with a median age of presentation of 17 months. A common theme in high-risk neuroblastoma is maintenance of telomeres, one mechanism for which involves alternate lengthening of telomeres (ALT) associated with ATRX gene mutations. Mutations are believed to result in loss of ATRX protein, and therefore immunohistochemistry is used to detect mutations. We screened 133 cases of neuroblastoma by ATRX immunohistochemistry, and found 9 cases with partial to total absence of ATRX. Sequencing for ATRX mutations detected a mutation in 1 of 9 cases, suggesting immunostaining was not reliable for detecting mutations. To correlate immunostaining with ALT, fluorescence in situ hybridization (FISH) for ALT was performed in 6 of these cases and 5 (from 4 patients) showed ALT, implying impaired ATRX protein function, despite the failure to identify a mutation. Two other cases with large deletions in the ATRX gene showed diffusely positive staining for ATRX protein but showed ALT by FISH. Four of the 6 patients with ALT-positive tumors were over 5 years old. Therefore, 29 additional patients 5 years old and above with ATRX-positive tumors were screened for ALT by FISH and 6 additional cases with ALT were detected, bringing the total to 29% (10/34) of children 5 years old and above, 70% of which showed positive ATRX immunohistochemistry. Patients with ATRX mutations in neuroblastoma tend to have a more chronic and progressive course of disease. Screening neuroblastoma tumors at diagnosis for ATRX mutations may help identify patients who might benefit from personalized therapy directed against ALT. However, relaying on negative immunohistochemistry for ATRX protein to identify ALT in neuroblastoma may miss a significant proportion of patients. The addition of FISH for ALT as part of the diagnostic workup, especially for older children (5 y old and above), would help ensure that patients are correctly identified for anti-ALT therapy.
Collapse
|
14
|
Matsuno R, Akiyama K, Toyama D, Ikeda H, Yamamoto S. Adolescent pulmonary metastatic neuroblastoma with ALK rearrangement: A case report. Pediatr Int 2020; 62:507-509. [PMID: 32297415 DOI: 10.1111/ped.14117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Ryosuke Matsuno
- Department of Pediatrics, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Kosuke Akiyama
- Department of Pediatrics, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Daisuke Toyama
- Department of Pediatrics, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hirokazu Ikeda
- Department of Pediatrics, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Shohei Yamamoto
- Department of Pediatrics, Showa University Fujigaoka Hospital, Yokohama, Japan
| |
Collapse
|
15
|
Duan K, Dickson BC, Marrano P, Thorner PS, Chung CT. Adult‐onset neuroblastoma: Report of seven cases with molecular genetic characterization. Genes Chromosomes Cancer 2019; 59:240-248. [DOI: 10.1002/gcc.22826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Kai Duan
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
| | - Brendan C. Dickson
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Department of Pathology and Laboratory Medicine Mount Sinai Hospital Toronto Ontario Canada
| | - Paula Marrano
- Division of Pathology The Hospital for Sick Children Toronto Ontario Canada
| | - Paul S. Thorner
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Division of Pathology The Hospital for Sick Children Toronto Ontario Canada
| | - Catherine T. Chung
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
- Division of Pathology The Hospital for Sick Children Toronto Ontario Canada
| |
Collapse
|
16
|
Li H, Yang F, Hu A, Wang X, Fang E, Chen Y, Li D, Song H, Wang J, Guo Y, Liu Y, Li H, Huang K, Zheng L, Tong Q. Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression. EMBO Mol Med 2019; 11:e10835. [PMID: 31709724 PMCID: PMC6895612 DOI: 10.15252/emmm.201910835] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
Aerobic glycolysis is a hallmark of metabolic reprogramming in tumor progression. However, the mechanisms regulating glycolytic gene expression remain elusive in neuroblastoma (NB), the most common extracranial malignancy in childhood. Herein, we identify that CUT‐like homeobox 1 (CUX1) and CUX1‐generated circular RNA (circ‐CUX1) contribute to aerobic glycolysis and NB progression. Mechanistically, p110 CUX1, a transcription factor generated by proteolytic processing of p200 CUX1, promotes the expression of enolase 1, glucose‐6‐phosphate isomerase, and phosphoglycerate kinase 1, while circ‐CUX1 binds to EWS RNA‐binding protein 1 (EWSR1) to facilitate its interaction with MYC‐associated zinc finger protein (MAZ), resulting in transactivation of MAZ and transcriptional alteration of CUX1 and other genes associated with tumor progression. Administration of an inhibitory peptide blocking circ‐CUX1‐EWSR1 interaction or lentivirus mediating circ‐CUX1 knockdown suppresses aerobic glycolysis, growth, and aggressiveness of NB cells. In clinical NB cases, CUX1 is an independent prognostic factor for unfavorable outcome, and patients with high circ‐CUX1 expression have lower survival probability. These results indicate circ‐CUX1/EWSR1/MAZ axis as a therapeutic target for aerobic glycolysis and NB progression.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yang Liu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongjun Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
17
|
Xiong X, Li Y, Liu L, Qi K, Zhang C, Chen Y, Fang J. Arsenic trioxide induces cell cycle arrest and affects Trk receptor expression in human neuroblastoma SK-N-SH cells. Biol Res 2018; 51:18. [PMID: 29898774 PMCID: PMC5998579 DOI: 10.1186/s40659-018-0167-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/06/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Arsenic trioxide (As2O3), a drug that has been used in China for approximately two thousand years, induces cell death in a variety of cancer cell types, including neuroblastoma (NB). The tyrosine kinase receptor (Trk) family comprises three members, namely TrkA, TrkB and TrkC. Various studies have confirmed that TrkA and TrkC expression is associated with a good prognosis in NB, while TrkB overexpression can lead to tumor cell growth and invasive metastasis. Previous studies have shown that As2O3 can inhibit the growth and proliferation of a human NB cell line and can also affect the N-Myc mRNA expression. It remains unclear whether As2O3 regulates Trks for the purposes of treating NB. METHODS The aim of the present study was to investigate the effect of As2O3 on Trk expression in NB cell lines and its potential therapeutic efficacy. SK-N-SH cells were grown with increasing doses of As2O3 at different time points. We cultured SK-N-SH cells, which were treated with increasing doses of As2O3 at different time points. Trk expression in the NB samples was quantified by immunohistochemistry, and the cell cycle was analyzed by flow cytometry. TrkA, TrkB and TrkC mRNA expression was evaluated by real-time PCR analysis. RESULTS Immunohistochemical and real-time PCR analyses indicated that TrkA and TrkC were over-expressed in NB, and specifically during stages 1, 2 and 4S of the disease progression. TrkB expression was increased in stage 3 and 4 NB. As2O3 significantly arrested SK-N-SH cells in the G2/M phase. In addition, TrkA, TrkB and TrkC expression levels were significantly upregulated by higher concentrations of As2O3 treatment, notably in the 48-h treatment period. Our findings suggested that to achieve the maximum effect and appropriate regulation of Trk expression in NB stages 1, 2 and 4S, As2O3 treatment should be at relatively higher concentrations for longer delivery times;however, for NB stages 3 and 4, an appropriate concentration and infusion time for As2O3 must be carefully determined. CONCLUSION The present findings suggested that As2O3 induced Trk expression in SK-N-SH cells to varying degrees and may be a promising adjuvant to current treatments for NB due to its apoptotic effects.
Collapse
Affiliation(s)
- Xilin Xiong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Ling Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Department of Pediatric Hematology/Oncology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524000 Guangdong China
| | - Kai Qi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Chi Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yueqin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Department of Life Sciences, Sun Yat-Sen University, Guangzhou, 510120 Guangdong China
| | - Jianpei Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| |
Collapse
|
18
|
Suzuki M, Kushner BH, Kramer K, Basu EM, Roberts SS, Hammond WJ, LaQuaglia MP, Wolden SL, Cheung NKV, Modak S. Treatment and outcome of adult-onset neuroblastoma. Int J Cancer 2018; 143:1249-1258. [PMID: 29574715 DOI: 10.1002/ijc.31399] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/08/2018] [Accepted: 02/27/2018] [Indexed: 12/15/2022]
Abstract
Adult-onset neuroblastoma is rare and little is known about its biology and clinical course. There is no established therapy for adult-onset neuroblastoma. Anti-GD2 immunotherapy is now standard therapy in children with high-risk neuroblastoma; however, its use has not been reported in adults. Forty-four adults (18-71 years old) diagnosed with neuroblastoma between 1979 and 2015 were treated at Memorial Sloan Kettering Cancer Center. Five, 1, 5 and 33 patients had INSS stage 1, 2, 3 and 4 diseases, respectively. Genetic abnormalities included somatic ATRX (58%) and ALK mutations (42%) but not MYCN-amplification. In the 11 patients with locoregional disease, 10-year progression-free (PFS) and overall survival (OS) was 35.4 ± 16.1% and 61.4 ± 15.3%, respectively. Among 33 adults with stage 4 neuroblastoma, 7 (21%) achieved complete response (CR) after induction chemotherapy and/or surgery. Seven patients with primary refractory neuroblastoma (all with osteomedullary but no soft tissue disease) received anti-GD2 antibodies, mouse or humanized 3F8. Antibody-related adverse events were similar to those in children, response rate being 71.4%. In patients with stage 4 disease at diagnosis, 5-year PFS was 9.7± 5.3% and most patients who were alive with disease at 5 years died of neuroblastoma over the next 5 years, 10-year OS being only 19.0 ± 8.2%. Patients who achieved CR after induction had superior PFS and OS (p = 0.006, p = 0.031, respectively). Adult-onset neuroblastoma appeared to have different biology from pediatric or adolescent NB, and poorer outcome. Complete disease control appeared to improve long-term survival. Anti-GD2 immunotherapy was well tolerated and might be beneficial.
Collapse
Affiliation(s)
- Maya Suzuki
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian H Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ellen M Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William J Hammond
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Suzanne L Wolden
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
19
|
Costa RA, Seuánez HN. Investigation of major genetic alterations in neuroblastoma. Mol Biol Rep 2018; 45:287-295. [PMID: 29455316 DOI: 10.1007/s11033-018-4161-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. This malignancy shows a wide spectrum of clinical outcome and its prognosis is conditioned by manifold biological and genetic factors. We investigated the tumor genetic profile and clinical data of 29 patients with NB by multiplex ligation-dependent probe amplification (MLPA) to assess therapeutic risk. In 18 of these tumors, MYCN status was assessed by fluorescence in situ hybridization (FISH). Copy number variation was also determined for confirming MLPA findings in two 6p loci. We found 2p, 7q and 17q gains, and 1p and 11q losses as the most frequent chromosome alterations in this cohort. FISH confirmed all cases of MYCN amplification detected by MLPA. In view of unexpected 6p imbalance, copy number variation of two 6p loci was assessed for validating MLPA findings. Based on clinical data and genetic profiles, patients were stratified in pretreatment risk groups according to international consensus. MLPA proved to be effective for detecting multiple genetic alterations in all chromosome regions as requested by the International Neuroblastoma Risk Group (INRG) for therapeutic stratification. Moreover, this technique proved to be cost effective, reliable, only requiring standard PCR equipment, and attractive for routine analysis. However, the observed 6p imbalances made PKHD1 and DCDC2 inadequate for control loci. This must be considered when designing commercial MLPA kits for NB. Finally, four patients showed a normal MLPA profile, suggesting that NB might have a more complex genetic pattern than the one assessed by presently available MLPA kits.
Collapse
Affiliation(s)
- Régis Afonso Costa
- Genetics Program, Instituto Nacional de Câncer, Rua André Cavalcanti 37, Rio de Janeiro, RJ, 20231-050, Brazil.,Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Héctor N Seuánez
- Genetics Program, Instituto Nacional de Câncer, Rua André Cavalcanti 37, Rio de Janeiro, RJ, 20231-050, Brazil. .,Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Abstract
Neuroblastomas (NB) are one of the most common extracranial solid tumors in children, and they frequently display high heterogeneity in the disease course. With ongoing research, more information regarding the genetic etiology and molecular mechanisms underlying these contrasting phenotypes is being uncovered. The proto-oncogene MYCN is amplified in approximately 20% of NB cases and is considered a indicator of poor prognosis and an indicator of high-risk NB. The poor prognosis of high risk NB is incompletely explained by MYCN amplification. Recently, massive parallel sequencing studies reported several relatively common gene alterations, such as ATRX mutation and TERT rearrangement that are involved in telomere maintenance through telomerase activity and alternative lengthening of telomeres. Thus, these are important for understanding the etiology and molecular pathogenesis of NB, and hence, for identifying diagnostic and treatment markers. Development of telomerase inhibitors and identification of alternative lengthening of telomeres related targets will contribute to the individualized treatment for high-risk NB. In this mini-review, we will discuss the research progress of TERT-mediated and ATRX-mediated telomere maintenance and NB, especially high-risk tumors.
Collapse
|
21
|
Ognibene M, Cangelosi D, Morini M, Segalerba D, Bosco MC, Sementa AR, Eva A, Varesio L. Immunohistochemical analysis of PDK1, PHD3 and HIF-1α expression defines the hypoxic status of neuroblastoma tumors. PLoS One 2017; 12:e0187206. [PMID: 29117193 PMCID: PMC5678880 DOI: 10.1371/journal.pone.0187206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/16/2017] [Indexed: 01/31/2023] Open
Abstract
Neuroblastoma (NB) is the most common solid tumor during infancy and the first cause of death among the preschool age diseases. The availability of several NB genomic profiles improves the prognostic ability, but the outcome prediction for this pathology remains imperfect. We previously produced a novel prognostic gene signature based on the response of NB cells to hypoxia, a condition of tumor microenvironment strictly connected with cancer aggressiveness. Here we attempted to further define the expression of hypoxia-modulated specific genes, looking at their protein level in NB specimens, considering in particular the hypoxia inducible factor-1α (HIF-1α), the mitochondrial pyruvate dehydrogenase kinase 1 (PDK1), and the HIF-prolyl hydroxylase domain 3 (PHD3). The evaluation of expression was performed by Western blot and immunocytochemistry on NB cell lines and by immunohistochemistry on tumor specimens. Stimulation of both HIF-1α and PDK1 and inhibition of PHD3 expression were observed in NB cell lines cultured under prolonged hypoxic conditions as well as in most of the tumors with poor outcome. Our results indicate that the immunohistochemistry analysis of the protein expression of PDK1, PHD3, and HIF-1α defines the hypoxic status of NB tumors and can be used as a simple and relevant tool to stratify high-risk patients.
Collapse
Affiliation(s)
- Marzia Ognibene
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
- * E-mail: (AE); (MO)
| | - Davide Cangelosi
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
| | - Daniela Segalerba
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
| | | | - Alessandra Eva
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
- * E-mail: (AE); (MO)
| | - Luigi Varesio
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
| |
Collapse
|
22
|
Rosswog C, Schmidt R, Oberthuer A, Juraeva D, Brors B, Engesser A, Kahlert Y, Volland R, Bartenhagen C, Simon T, Berthold F, Hero B, Faldum A, Fischer M. Molecular Classification Substitutes for the Prognostic Variables Stage, Age, and MYCN Status in Neuroblastoma Risk Assessment. Neoplasia 2017; 19:982-990. [PMID: 29091799 PMCID: PMC5678736 DOI: 10.1016/j.neo.2017.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND: Current risk stratification systems for neuroblastoma patients consider clinical, histopathological, and genetic variables, and additional prognostic markers have been proposed in recent years. We here sought to select highly informative covariates in a multistep strategy based on consecutive Cox regression models, resulting in a risk score that integrates hazard ratios of prognostic variables. METHODS: A cohort of 695 neuroblastoma patients was divided into a discovery set (n = 75) for multigene predictor generation, a training set (n = 411) for risk score development, and a validation set (n = 209). Relevant prognostic variables were identified by stepwise multivariable L1-penalized least absolute shrinkage and selection operator (LASSO) Cox regression, followed by backward selection in multivariable Cox regression, and then integrated into a novel risk score. RESULTS: The variables stage, age, MYCN status, and two multigene predictors, NB-th24 and NB-th44, were selected as independent prognostic markers by LASSO Cox regression analysis. Following backward selection, only the multigene predictors were retained in the final model. Integration of these classifiers in a risk scoring system distinguished three patient subgroups that differed substantially in their outcome. The scoring system discriminated patients with diverging outcome in the validation cohort (5-year event-free survival, 84.9 ± 3.4 vs 63.6 ± 14.5 vs 31.0 ± 5.4; P < .001), and its prognostic value was validated by multivariable analysis. CONCLUSION: We here propose a translational strategy for developing risk assessment systems based on hazard ratios of relevant prognostic variables. Our final neuroblastoma risk score comprised two multigene predictors only, supporting the notion that molecular properties of the tumor cells strongly impact clinical courses of neuroblastoma patients.
Collapse
Affiliation(s)
- Carolina Rosswog
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Rene Schmidt
- Institute of Biostatistics and Clinical Research, University of Muenster, Schmeddingstrasse 56, 48149 Münster, Germany
| | - André Oberthuer
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Dilafruz Juraeva
- Department of Applied Bioinformatics, German Cancer Research Center, Berliner Strasse 41, 69120 Heidelberg, Germany
| | - Benedikt Brors
- Department of Applied Bioinformatics, German Cancer Research Center, Berliner Strasse 41, 69120 Heidelberg, Germany
| | - Anne Engesser
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Yvonne Kahlert
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Ruth Volland
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Frank Berthold
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Barbara Hero
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Andreas Faldum
- Institute of Biostatistics and Clinical Research, University of Muenster, Schmeddingstrasse 56, 48149 Münster, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany.
| |
Collapse
|
23
|
Mlakar V, Jurkovic Mlakar S, Lopez G, Maris JM, Ansari M, Gumy-Pause F. 11q deletion in neuroblastoma: a review of biological and clinical implications. Mol Cancer 2017; 16:114. [PMID: 28662712 PMCID: PMC5492892 DOI: 10.1186/s12943-017-0686-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022] Open
Abstract
Deletion of the long arm of chromosome 11 (11q deletion) is one of the most frequent events that occur during the development of aggressive neuroblastoma. Clinically, 11q deletion is associated with higher disease stage and decreased survival probability. During the last 25 years, extensive efforts have been invested to identify the precise frequency of 11q aberrations in neuroblastoma, the recurrently involved genes, and to understand the molecular mechanisms of 11q deletion, but definitive answers are still unclear. In this review, it is our intent to compile and review the evidence acquired to date on 11q deletion in neuroblastoma.
Collapse
Affiliation(s)
- Vid Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Gonzalo Lopez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Ansari
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland.,Department of Pediatrics, Onco-Hematology Unit, Geneva University Hospitals, Rue Willy-Donzé 6, 1205, Geneva, Switzerland
| | - Fabienne Gumy-Pause
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland. .,Department of Pediatrics, Onco-Hematology Unit, Geneva University Hospitals, Rue Willy-Donzé 6, 1205, Geneva, Switzerland.
| |
Collapse
|
24
|
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood originating from sympathetic nervous system cells. Neuroblastoma has also been diagnosed in conjunction with other congenital conditions such as Hirschsprung's disease, congenital hypoventilation disorder, and neurofibromatosis type 1. Wolf-Hirschhorn syndrome is a congenital disorder caused by microdeletion of short arm of chromosome 4 encoding MSX1 gene with characteristic facial features. We describe a child with dysmorphic features, developmental delay, mental retardation who developed neuroblastoma at 2 years of age and cytogenetic analysis of blood lymphocytes revealed an interstitial deletion of 4p(15,2). To best our knowledge, this report is the first report of neuroblastoma in a child with Wolf-Hirschhorn syndrome; and the reported association may be an important clue for oncological follow-up of patients with Wolf-Hirschhorn syndrome.
Collapse
|