1
|
Xiang Z, Ma B, Pei X, Wang W, Gong W. Mechanism of action of genistein on breast cancer and differential effects of different age stages. PHARMACEUTICAL BIOLOGY 2025; 63:141-155. [PMID: 39996512 PMCID: PMC11864014 DOI: 10.1080/13880209.2025.2469607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
CONTEXT Genistein, a soy-derived isoflavone, exhibits structural similarities with 17β-estradiol and demonstrates antioxidant, anti-inflammatory, and estrogenic properties. Despite its low bioavailability limiting its clinical application, it shows potential for breast cancer prevention and treatment. OBJECTIVE This review aims to summarize the pharmacological effects and molecular mechanisms of genistein in breast cancer, focusing on its therapeutic potential, strategies to overcome bioavailability limitations, and its role in personalized medicine. Differential impacts among population subgroups are also discussed. METHODS A systematic review was conducted using PubMed, ScienceDirect, and Google Scholar databases. Studies were selected based on their focus on genistein's mechanisms of action, strategies to enhance its bioavailability, and interactions with other therapies. RESULTS Genistein exerted anticancer effects by modulating estrogen receptor β (ERβ), inhibiting angiogenesis, arresting the cell cycle, and inducing apoptosis. Its antioxidant properties help mitigate tumor-associated oxidative stress. Bioavailability enhancement strategies, such as nanoparticle and lipid-based formulations, show promise. Age-dependent effects were evident, with distinct responses observed in prepubertal, menopausal, and postmenopausal populations, underscoring its potential for personalized therapies. Furthermore, genistein influences epigenetic modifications, including DNA methylation and miRNA expression, bolstering its anticancer efficacy. CONCLUSION Genistein is a promising candidate for breast cancer therapy, particularly for personalized treatment. Strategies to enhance bioavailability and further clinical research are essential to optimize its therapeutic potential and evaluate its efficacy in combination therapies.
Collapse
Affiliation(s)
- Zhebin Xiang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Ma
- Zhejiang Hospital, Hangzhou, China
| | - Xiujun Pei
- Shandong Provincial Hospital, Shandong, China
| | - Wenjie Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Weilun Gong
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Feng H, Jiang K, Zhang YF, Zhuang J, Ku C, Yang J, Zhang Y. Improvement of Cardiovascular Risk Factors by Genistein Supplementation: A Systematic Review and Meta-Analysis in Diverse Population-Based RCTs. J Nutr Metab 2025; 2025:1827252. [PMID: 40134817 PMCID: PMC11936529 DOI: 10.1155/jnme/1827252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Genistein[5,7-dihydroxy-3-(4-hydroxyphenyl)chromen-4-one] is a phytoestrogens known to positively impact various cardiovascular disease (CVD) risk factors. However, not all studies have yielded consistent results, and existing meta-analyses have not comprehensively addressed all CVD risk factors. We conducted a systematic search of the PubMed, ISI Web of Science, Embase, and Cochrane Library databases up to June 2024, following PRISMA 2020 guidelines. We included adult randomized controlled trials (RCTs) that examined pure genistein supplementation without other combined interventions and reported on at least one CVD risk factor. Data extraction and quality assessment were performed independently by two authors using a standardized form and the Cochrane Collaboration Scale. A total of 21 RCTs were included, with 941 participants in the genistein supplementation group and 918 participants in the control group. Statistical analyses were conducted using R software with the meta package. The meta-analysis revealed that, compared to the placebo group, genistein supplementation significantly improved the levels of TC ([MD 95% CI: -9.38 [-14.64, -4.12]; p < 0.001]), LDL-C ([MD 95% CI: -11.14 [-19.42, -2.86]; p < 0.001]), Lp(a) levels ([MD 95% CI: -0.69 [-0.98, -0.41]; p < 0.01), SBP ([MD 95% CI: -8.32 [-12.44, -4.20]; p < 0.01), DBP ([MD 95% CI: -3.57 [-5.25, -1.89]; P=0.04]), fasting blood glucose ([MD 95% CI: -3.98 [-6.79, -1.17]; p < 0.001]), fasting insulin ([MD 95% CI: -1.79 [-2.05, -1.54]; p < 0.01), HOMA-IR ([MD 95% CI: -0.56 [-0.64, -0.49]; p < 0.01), and homocysteine levels ([MD 95% CI: -0.74 [-1.05, -0.42]; p < 0.01). However, there were no significant improvements in TG, HDL-C, and CRP levels. The observed improvements align with clinically meaningful thresholds for cardiovascular risk reduction. Substantial heterogeneity observed for most outcomes was explored via subgroup analysis. Subgroup analyses were conducted based on treatment duration, geographic region, or participant health status, and heterogeneity was assessed using the I 2 statistic. Subgroup analysis did not reveal any significant differences, indicating that heterogeneity was not influenced by factors such as treatment duration, geographic region, or participant health status. Overall, this meta-analysis provides consistent evidence that genistein intake significantly reduces several important CVD risk factors, including TC, LDL-C, Lp(a), SBP, DBP, fasting blood glucose, fasting insulin, HOMA-IR, and homocysteine levels.
Collapse
Affiliation(s)
- Hanxiao Feng
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Kuan Jiang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yi-feng Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jinhong Zhuang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Cun Ku
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jinzhao Yang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- GuangDong Engineering Technology Research Center of Nutrition Transformation, Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Konstantinou EK, Gioxari A, Dimitriou M, Panoutsopoulos GI, Panagiotopoulos AA. Molecular Pathways of Genistein Activity in Breast Cancer Cells. Int J Mol Sci 2024; 25:5556. [PMID: 38791595 PMCID: PMC11122029 DOI: 10.3390/ijms25105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The most common malignancy in women is breast cancer. During the development of cancer, oncogenic transcription factors facilitate the overproduction of inflammatory cytokines and cell adhesion molecules. Antiapoptotic proteins are markedly upregulated in cancer cells, which promotes tumor development, metastasis, and cell survival. Promising findings have been found in studies on the cell cycle-mediated apoptosis pathway for medication development and treatment. Dietary phytoconstituents have been studied in great detail for their potential to prevent cancer by triggering the body's defense mechanisms. The underlying mechanisms of action may be clarified by considering the role of polyphenols in important cancer signaling pathways. Phenolic acids, flavonoids, tannins, coumarins, lignans, lignins, naphthoquinones, anthraquinones, xanthones, and stilbenes are examples of natural chemicals that are being studied for potential anticancer drugs. These substances are also vital for signaling pathways. This review focuses on innovations in the study of polyphenol genistein's effects on breast cancer cells and presents integrated chemical biology methods to harness mechanisms of action for important therapeutic advances.
Collapse
Affiliation(s)
| | | | | | | | - Athanasios A. Panagiotopoulos
- Department of Nutritional Science and Dietetics, School of Health Sciences, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.K.K.); (A.G.); (M.D.); (G.I.P.)
| |
Collapse
|
4
|
Xie Y, Fontenot L, Estrada AC, Nelson B, Bullock A, Faull KF, Feng H, Sun M, Koon HW. Genistein Inhibits Clostridioides difficile Infection via Estrogen Receptors and Lysine-Deficient Protein Kinase 1. J Infect Dis 2023; 227:806-819. [PMID: 36628948 PMCID: PMC10226758 DOI: 10.1093/infdis/jiad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is a debilitating nosocomial disease. Postmenopausal women may have an increased risk of CDI, suggesting estrogen influence. Soybean products contain a representative estrogenic isoflavone, genistein. METHODS The anti-inflammatory and antiapoptotic effects of genistein were determined using primary human cells and fresh colonic tissues. The effects of oral genistein therapy among mice and hamsters were evaluated. RESULTS Within 10 days of CDI, female c57BL/6J mice in a standard environment (regular diet) had a 50% survival rate, while those with estrogen depletion and in an isoflavone-free environment (soy-free diet) had a 25% survival rate. Oral genistein improved their 10-day survival rate to 100% on a regular diet and 75% in an isoflavone-free environment. Genistein reduced macrophage inflammatory protein-1α (MIP-1α) secretion in fresh human colonic tissues exposed to toxins. Genistein inhibited MIP-1α secretion in primary human peripheral blood mononuclear cells, abolished apoptosis and BCL-2-associated X (BAX) expression in human colonic epithelial cells, and activated lysine-deficient protein kinase 1 (WNK1) phosphorylation in both cell types. The anti-inflammatory and antiapoptotic effects of genistein were abolished by inhibiting estrogen receptors and WNK1. CONCLUSIONS Genistein reduces CDI disease activity by inhibiting proinflammatory cytokine expression and apoptosis via the estrogen receptor/G-protein estrogen receptor/WNK1 pathways.
Collapse
Affiliation(s)
- Ying Xie
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Lindsey Fontenot
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Andrea Chupina Estrada
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Becca Nelson
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Ashlen Bullock
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Maryland, Baltimore, USA
| | - Mingjun Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Hon Wai Koon
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Sibuh BZ, Quazi S, Panday H, Parashar R, Jha NK, Mathur R, Jha SK, Taneja P, Jha AK. The Emerging Role of Epigenetics in Metabolism and Endocrinology. BIOLOGY 2023; 12:256. [PMID: 36829533 PMCID: PMC9953656 DOI: 10.3390/biology12020256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Each cell in a multicellular organism has its own phenotype despite sharing the same genome. Epigenetics is a somatic, heritable pattern of gene expression or cellular phenotype mediated by structural changes in chromatin that occur without altering the DNA sequence. Epigenetic modification is an important factor in determining the level and timing of gene expression in response to endogenous and exogenous stimuli. There is also growing evidence concerning the interaction between epigenetics and metabolism. Accordingly, several enzymes that consume vital metabolites as substrates or cofactors are used during the catalysis of epigenetic modification. Therefore, altered metabolism might lead to diseases and pathogenesis, including endocrine disorders and cancer. In addition, it has been demonstrated that epigenetic modification influences the endocrine system and immune response-related pathways. In this regard, epigenetic modification may impact the levels of hormones that are important in regulating growth, development, reproduction, energy balance, and metabolism. Altering the function of the endocrine system has negative health consequences. Furthermore, endocrine disruptors (EDC) have a significant impact on the endocrine system, causing the abnormal functioning of hormones and their receptors, resulting in various diseases and disorders. Overall, this review focuses on the impact of epigenetics on the endocrine system and its interaction with metabolism.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore 560043, India
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
- Clinical Bioinformatics, School of Health Sciences, The University of Manchester, Manchester M13 9P, UK
- SCAMT Institute, ITMO University, St. Petersburg 197101, Russia
| | - Hrithika Panday
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Ritika Parashar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| |
Collapse
|
6
|
He HY, Shan HZ, Li SQ, Diao RG. Genistein attenuates renal ischemia-reperfusion injury via ADORA2A pathway. Hum Exp Toxicol 2023; 42:9603271231164913. [PMID: 36932924 DOI: 10.1177/09603271231164913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
BACKGROUND Studies have shown oxidative stress and apoptosis are the main pathogenic mechanisms of renal ischemia/reperfusion (IR) injury (IRI). Genistein, a polyphenolic non-steroidal compound, has been extensively explored in oxidative stress, inflammation and apoptosis. Our research aims to reveal the potential role of genistein on renal IRI and its potential molecular mechanism both in vivo and in vitro. METHODS In vivo experiments, mice were pretreated with or without genistein. Renal pathological changes and function, cell proliferation, oxidative stress and apoptosis were measured. In vitro experiments, overexpression of ADORA2A and knockout of ADORA2A cells were constructed. Cells proliferation, oxidative stress and apoptosis were analyzed. RESULTS Our results in vivo showed that the renal damage induced by IR was ameliorated by genistein pretreatment. Moreover, ADORA2A was activated by genistein, along with inhibition of oxidative stress and apoptosis. The results in vitro showed that genistein pretreatment and ADORA2A overexpression reversed the increase of apoptosis and oxidative stress in NRK-52E cells induced by H/R, while the knockdown of ADORA2A partially weakened this reversal from genistein treatment. CONCLUSIONS Our results demonstrated that genistein have a protective effect against renal IRI by inhibiting oxidative stress and apoptosis via activating ADORA2A, presenting its potential use for the treatment of renal IRI.
Collapse
Affiliation(s)
- H Y He
- Nephrology, 519688Yantaishan Hospital, Yantai, Shandong, China
| | - H Z Shan
- Department of Pharmacy, 155177Qingdao Traditional Chinese Medicine Hospital(Qingdao Hiser Hospital)Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, Shandong, China
| | - S Q Li
- Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - R G Diao
- Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
7
|
Soy Isoflavones and Bone Health: Focus on the RANKL/RANK/OPG Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8862278. [PMID: 36330454 PMCID: PMC9626210 DOI: 10.1155/2022/8862278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
Abstract
Bone remodels via resorption and formation, two phenomena that continuously occur in bone turnover. The RANKL/RANK/OPG pathway is one of the several mechanisms that affect bone turnover. The RANKL/OPG ratio has a substantial role in bone resorption. An imbalance between formation and resorption is related to an increased RANKL/OPG balance. OPG, a member of this system, can bind to RANKL and suppress RANK-RANKL interaction, and subsequently, inhibit further osteoclastogenesis. The serum levels of RANKL and OPG in the bone microenvironment are vital for osteoclasts formation. The RANK/RANKL/OPG system plays a role in the pathogenesis of bone disorders. This system can be considered a new treatment target for bone disorders. Soy isoflavones affect the RANK/RANKL/OPG system through numerous mechanisms. Soy isoflavones decrease RANKL levels and increase OPG levels. Therefore, isoflavones improve bone metabolism and decrease bone resorption. Soy isoflavones decrease serum markers of bone resorption and improve bone metabolism. However, while the available data are promising, the results of several studies reported no change in RANKL and OPG levels with isoflavones supplementation. In this regard, current evidence is insufficient for conclusive approval of the efficacy of isoflavones on RANKL/RANK/OPG and further research, including animal and human studies, are needed to confirm the effect of soy isoflavones on the RANKL/RANK/OPG pathway. This study was a review of available evidence to determine the role of isoflavones in bone hemostasis and the RANK/RANKL/OPG pathway. The identification of the effects of isoflavones on the RANKL/RANK/OPG pathway directs future studies and leads to the development of effective treatment strategies for bone disorders.
Collapse
|
8
|
The Role of Soy Isoflavones in the Prevention of Bone Loss in Postmenopausal Women: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. J Clin Med 2022; 11:jcm11164676. [PMID: 36012916 PMCID: PMC9409780 DOI: 10.3390/jcm11164676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the report was to determine the effects of soy isoflavones on lumbar spine, femoral neck, and total hip bone mineral density (BMD) in menopausal women. MEDLINE (PubMed), EMBASE, and Cochrane Library databases were searched for articles published in English during 1995–2019. Studies were identified and reviewed for inclusion and exclusion eligibility. Weighted mean differences (WMD) were calculated for each study and were pooled by using the random effects model. Eighteen randomized controlled trials were selected for meta-analysis. Different types of soy phytoestrogens, i.e., genistein extracts, soy isoflavones extracts, soy protein isolate, and foods containing diverse amounts of isoflavones were used in the studies. The analysis showed that daily intake of 106 (range, 40–300) mg of isoflavones for 6–24 months moderately but statistically significantly positively affects BMD, compared with controls: lumbar spine WMD = 1.63 (95% CI: 0.51 to 2.75)%, p = 0004; femoral neck WMD = 1.87 (95% CI: 0.14 to 3.60)%, p = 0.034; and total hip WMD = 0.39 (95% CI: 0.08 to 0.69)%, p = 0.013. Subgroups analyses indicated that the varying effects of isoflavones on BMD across the trials might be associated with intervention duration, racial diversity (Caucasian, Asian), time after menopause, form of supplements (especially genistein), and dose of isoflavones. Our review and meta-analysis suggest that soy isoflavones are effective in slowing down bone loss after menopause.
Collapse
|
9
|
Genistein induces long-term expression of progesterone receptor regardless of estrogen receptor status and improves the prognosis of endometrial cancer patients. Sci Rep 2022; 12:10303. [PMID: 35717540 PMCID: PMC9206647 DOI: 10.1038/s41598-022-13842-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Progesterone is used to treat uterine endometrial cancer in young patients wishing to preserve their fertility as well as in advanced or recurrent patients, but its response rate is limited. The antitumor effect of progesterone is mediated by progesterone receptor (PR) binding. Hence, loss of progesterone’s therapeutic effect, i.e., development of progesterone resistance, is mainly due to decreased PR expression. However, little is known about underlying mechanisms that regulate PR expression. Immunohistochemistry analysis of specimens from 31 young, endometrial cancer patients showed that elevated PR expression significantly increased (P < 0.05) rates of progression-free and overall survival. We investigated mechanisms of regulating PR expression and suppressing cell proliferation using genistein, a chemotherapeutic agent against different cancers. Genistein inhibits cell growth by inducing cell cycle arrest in G2 and apoptosis; moreover, it upregulates prolonged expression of PR-B and forkhead box protein O1, regardless of estrogen receptor alpha expression in endometrial cancer cells. Genistein-induced PR expression decreases CCAAT/enhancer binding protein beta expression and activates c-Jun N-terminal kinase pathway, rather than causing epigenetic alterations of the PR promoter. Therefore, increased PR expression is an important antitumor effect of genistein. This may help to improve the response rates of fertility-sparing treatments for young patients.
Collapse
|
10
|
Mas-Bargues C, Borrás C, Viña J. The multimodal action of genistein in Alzheimer's and other age-related diseases. Free Radic Biol Med 2022; 183:127-137. [PMID: 35346775 DOI: 10.1016/j.freeradbiomed.2022.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Genistein is a phytoestrogen that, due to its structural similarity with estrogen, can both mimic and antagonize estrogen effects. Early analysis proved that at high concentrations, genistein inhibits breast cancer cell proliferation, thereby suggesting an anticancer activity. Since then, many discoveries have identified the genistein mechanism of action, including cell cycle arrest, apoptosis induction, as well as angiogenesis, and metastasis inhibition. In this review, we aim to discuss the multimodal action of genistein as an antioxidant, anti-inflammatory, anti-amyloid β, and autophagy promoter, which could be responsible for the genistein beneficial effect on Alzheimer's. Furthermore, we pinpoint the main signal transduction pathways that are known to be modulated by genistein. Genistein has thus several beneficial effects in several diseases, many of them associated with age, such as the above mentioned Alzheimer disease. Indeed, the beneficial effects of genistein for health promotion depend on each multimodality. In the context of geroscience, genistein has promising beneficial effects due to its multimodal action to treat age associated-diseases.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain
| |
Collapse
|
11
|
Bhat SS, Prasad SK, Shivamallu C, Prasad KS, Syed A, Reddy P, Cull CA, Amachawadi RG. Genistein: A Potent Anti-Breast Cancer Agent. Curr Issues Mol Biol 2021; 43:1502-1517. [PMID: 34698063 PMCID: PMC8929066 DOI: 10.3390/cimb43030106] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Genistein is an isoflavonoid present in high quantities in soybeans. Possessing a wide range of bioactives, it is being studied extensively for its tumoricidal effects. Investigations into mechanisms of the anti-cancer activity have revealed many pathways including induction of cell proliferation, suppression of tyrosine kinases, regulation of Hedgehog-Gli1 signaling, modulation of epigenetic activities, seizing of cell cycle and Akt and MEK signaling pathways, among others via which the cancer cell proliferation can be controlled. Notwithstanding, the observed activities have been time- and dose-dependent. In addition, genistein has also shown varying results in women depending on the physiological parameters, such as the early or post-menopausal states.
Collapse
Affiliation(s)
- Smitha S. Bhat
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (S.S.B.); (S.K.P.); (C.S.)
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (S.S.B.); (S.K.P.); (C.S.)
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (S.S.B.); (S.K.P.); (C.S.)
| | - Kollur Shiva Prasad
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru 570026, Karnataka, India;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Pruthvish Reddy
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru 560107, Karnataka, India;
| | | | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
12
|
Kanadys W, Barańska A, Błaszczuk A, Polz-Dacewicz M, Drop B, Malm M, Kanecki K. Effects of Soy Isoflavones on Biochemical Markers of Bone Metabolism in Postmenopausal Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5346. [PMID: 34067865 PMCID: PMC8156509 DOI: 10.3390/ijerph18105346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/28/2022]
Abstract
This systematic review and meta-analysis of randomized controlled trials was performed to more completely assess potential changes in bone turnover marker levels in postmenopausal women during the intake of soy isoflavones. PubMed (Medline) and EMBASE were searched for relevant studies, and their quality was evaluated according to Cochrane criteria. The levels of markers were evaluated in a total of 1114 women who ingested mean daily doses of 98.2 mg (30.9 to 300) of soy isoflavones for 3 to 24 months, in comparison to those of 1081 subjects who used a placebo. Ten, eighteen, eight, and fourteen comparison studies were finally selected for an estimation of the effects on osteocalcin (OC), bone alkaline phosphatase (BAP), pyridinoline (PYD), and deoxypyridinoline (DPD), respectively. A summary of the results of intervention was as follows: 4.16%, 95% CI: -7.72-16.04, p = 0.49 for OC; 5.50%, 95% CI: -3.81-14.82, p = 0.25 for BAP; -12.09%, 95% CI: -25.37-1.20, p = 0.07 for PYD; and -7.48%, 95% CI: -15.37-0.41, p = 0.06 for DPD. The meta-analysis of the included studies revealed some statistically insignificant observations that soy isoflavones intake is associated with a trend in increased levels of OC and BAP, as well as a trend in reduced levels of PYD and DPD. Soy isoflavones may have a beneficial effect on bone formation markers, but this requires extensive multi-center research.
Collapse
Affiliation(s)
- Wiesław Kanadys
- Specialistic Medical Center “Czechów” in Lublin, 20-848 Lublin, Poland;
| | - Agnieszka Barańska
- Department of Medical Informatics and Statistics with E-learning Lab, Medical University of Lublin, 20-090 Lublin, Poland; (B.D.); (M.M.)
| | - Agata Błaszczuk
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (M.P.-D.)
| | - Małgorzata Polz-Dacewicz
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (M.P.-D.)
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics with E-learning Lab, Medical University of Lublin, 20-090 Lublin, Poland; (B.D.); (M.M.)
| | - Maria Malm
- Department of Medical Informatics and Statistics with E-learning Lab, Medical University of Lublin, 20-090 Lublin, Poland; (B.D.); (M.M.)
| | - Krzysztof Kanecki
- Department of Social Medicine and Public Health, Warsaw Medical University, 02-007 Warsaw, Poland;
| |
Collapse
|
13
|
Wu PS, Yen JH, Wang CY, Chen PY, Hung JH, Wu MJ. 8-Hydroxydaidzein, an Isoflavone from Fermented Soybean, Induces Autophagy, Apoptosis, Differentiation, and Degradation of Oncoprotein BCR-ABL in K562 Cells. Biomedicines 2020; 8:E506. [PMID: 33207739 PMCID: PMC7696406 DOI: 10.3390/biomedicines8110506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
8-Hydroxydaidzein (8-OHD, 7,8,4'-trihydoxyisoflavone) is a hydroxylated derivative of daidzein isolated from fermented soybean products. The aim of this study is to investigate the anti-proliferative effects and the underlying mechanisms of 8-OHD in K562 human chronic myeloid leukemia (CML) cells. We found that 8-OHD induced reactive oxygen species (ROS) overproduction and cell cycle arrest at the S phase by upregulating p21Cip1 and downregulating cyclin D2 (CCND2) and cyclin-dependent kinase 6 (CDK6) expression. 8-OHD also induced autophagy, caspase-7-dependent apoptosis, and the degradation of BCR-ABL oncoprotein. 8-OHD promoted Early Growth Response 1 (EGR1)-mediated megakaryocytic differentiation as an increased expression of marker genes, CD61 and CD42b, and the formation of multi-lobulated nuclei in enlarged K562 cells. A microarray-based transcriptome analysis revealed a total of 3174 differentially expressed genes (DEGs) after 8-OHD (100 μM) treatment for 48 h. Bioinformatics analysis of DEGs showed that hemopoiesis, cell cycle regulation, nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) and Janus kinase/signal transducers and activators of transcription (JAK-STAT)-mediated apoptosis/anti-apoptosis networks were significantly regulated by 8-OHD. Western blot analysis confirmed that 8-OHD significantly induced the activation of MAPK and NF-κB signaling pathways, both of which may be responsible, at least in part, for the stimulation of apoptosis, autophagy, and differentiation in K562 cells. This is the first report on the anti-CML effects of 8-OHD and the combination of experimental and in silico analyses could provide a better understanding for the development of 8-OHD on CML therapy.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (J.-H.Y.); (P.-Y.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Yi Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan; (J.-H.Y.); (P.-Y.C.)
- Center of Medical Genetics, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Ming-Jiuan Wu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| |
Collapse
|
14
|
Sürmen MG, Sürmen S, Ali A, Musharraf SG, Emekli N. Phosphoproteomic strategies in cancer research: a minireview. Analyst 2020; 145:7125-7149. [PMID: 32996481 DOI: 10.1039/d0an00915f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the cellular processes is central to comprehend disease conditions and is also true for cancer research. Proteomic studies provide significant insight into cancer mechanisms and aid in the diagnosis and prognosis of the disease. Phosphoproteome is one of the most studied complements of the whole proteome given its importance in the understanding of cellular processes such as signaling and regulations. Over the last decade, several new methods have been developed for phosphoproteome analysis. A significant amount of these efforts pertains to cancer research. The current use of powerful analytical instruments in phosphoproteomic approaches has paved the way for deeper and sensitive investigations. However, these methods and techniques need further improvements to deal with challenges posed by the complexity of samples and scarcity of phosphoproteins in the whole proteome, throughput and reproducibility. This review aims to provide a comprehensive summary of the variety of steps used in phosphoproteomic methods applied in cancer research including the enrichment and fractionation strategies. This will allow researchers to evaluate and choose a better combination of steps for their phosphoproteome studies.
Collapse
Affiliation(s)
- Mustafa Gani Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Saime Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Nesrin Emekli
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
15
|
Wheeldon RP, Bernacki DT, Dertinger SD, Bryce SM, Bemis JC, Johnson GE. Benchmark Dose Analysis of DNA Damage Biomarker Responses Provides Compound Potency and Adverse Outcome Pathway Information for the Topoisomerase II Inhibitor Class of Compounds. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:396-407. [PMID: 31983063 DOI: 10.1002/em.22360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/11/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Genetic toxicology data have traditionally been utilized for hazard identification to provide a binary call for a compound's risk. Recent advances in the scientific field, especially with the development of high-throughput methods to quantify DNA damage, have influenced a change of approach in genotoxicity assessment. The in vitro MultiFlow® DNA Damage Assay is one such method which multiplexes γH2AX, p53, phospho-histone H3 biomarkers into a single-flow cytometric analysis (Bryce et al., [2016]: Environ Mol Mutagen 57:546-558). This assay was used to study human TK6 cells exposed to each of eight topoisomerase II poisons for 4 and 24 hr. Using PROAST v65.5, the Benchmark Dose approach was applied to the resulting flow cytometric datasets. With "compound" serving as covariate, all eight compounds were combined into a single analysis, per time point and endpoint. The resulting 90% confidence intervals, plotted in Log scale, were considered as the potency rank for the eight compounds. The in vitro MultiFlow data showed a maximum confidence interval span of 1Log, which indicates data of good quality. Patterns observed in the compound potency rank were scrutinized by using the expert rule-based software program Derek Nexus, developed by Lhasa Limited. Compound sub-classification and structural alerts were considered contributory to the potencies observed for the topoisomerase II poisons studied herein. The Topo II poison Adverse Outcome Pathway was evaluated with MultiFlow endpoints serving as Key Events. The step-wise approach described herein can be considered as a foundation for risk assessment of compounds within a specific mode of action of interest. Environ. Mol. Mutagen. 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryan P Wheeldon
- Institute of Life Science, Swansea University Medical School, Swansea University, Wales, United Kingdom
| | | | | | | | | | - George E Johnson
- Institute of Life Science, Swansea University Medical School, Swansea University, Wales, United Kingdom
| |
Collapse
|
16
|
Horio Y, Sogabe R, Shichiri M, Ishida N, Morimoto R, Ohshima A, Isegawa Y. Induction of a 5-lipoxygenase product by daidzein is involved in the regulation of influenza virus replication. J Clin Biochem Nutr 2020; 66:36-42. [PMID: 32001954 PMCID: PMC6983437 DOI: 10.3164/jcbn.19-70] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 09/29/2019] [Indexed: 01/27/2023] Open
Abstract
This study was conducted to evaluate the regulation mechanism of influenza virus replication following treatment of Madin-Darby canine kidney cells with the soy isoflavone daidzein. We performed comparative qualitative and quantitative analyses of lipid peroxide between mock-infected and virus-infected cells treated with or without daidzein, as it had been reported that daidzein was an antioxidant and lipid peroxide levels increased upon virus infection. Contrary to our belief, lipid peroxides were not elevated in virus-infected cells and no decrease in lipid peroxides was observed in daidzein-treated cells. In daidzein-treated cells, 5-hydroxyeicosatetraenoic acid, the 5-lipoxygenase product derived from arachidonate, was significantly elevated compared to other lipid peroxides. Zileuton (5-lipoxygenase inhibitor) and 5-lipoxygenase knockdown reduced the daidzein-induced antiviral effect. Moreover, virus replication was regulated by treatment with 5-hydroperoxyeicosatetraenoic acid, a precursor of 5-hydroxyeicosatetraenoic acid and 5-lipoxygenase primary product. These results suggest that daidzein regulates virus replication via signal transduction through 5-lipoxygenase products.
Collapse
Affiliation(s)
- Yuka Horio
- Department of Food Sciences and Nutrition, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo 663-8558, Japan
| | - Riho Sogabe
- Department of Food Sciences and Nutrition, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo 663-8558, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.,DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), 1-1-1 Higashi, Tsukuba-shi, Ibaraki 305-8562, Japan
| | - Noriko Ishida
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Ryosuke Morimoto
- Department of Food Sciences and Nutrition, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo 663-8558, Japan
| | - Atsushi Ohshima
- Genomics Program, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga 526-0829, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo 663-8558, Japan.,Institute for Biosciences, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo 663-8558, Japan
| |
Collapse
|
17
|
Cooper AR. To eat soy or to not eat soy: the ongoing look at phytoestrogens and fertility. Fertil Steril 2019; 112:825-826. [PMID: 31585666 DOI: 10.1016/j.fertnstert.2019.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 10/25/2022]
|
18
|
Thangavel P, Puga-Olguín A, Rodríguez-Landa JF, Zepeda RC. Genistein as Potential Therapeutic Candidate for Menopausal Symptoms and Other Related Diseases. Molecules 2019; 24:molecules24213892. [PMID: 31671813 PMCID: PMC6864469 DOI: 10.3390/molecules24213892] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023] Open
Abstract
Plant-derived compounds have recently attracted greater interest in the field of new therapeutic agent development. These compounds have been widely screened for their pharmacological effects. Polyphenols, such as soy-derived isoflavones, also called phytoestrogens, have been extensively studied due to their ability to inhibit carcinogenesis. These compounds are chemically similar to 17β-estradiol, and mimic the binding of estrogens to its receptors, exerting estrogenic effects in target organs. Genistein is an isoflavone derived from soy-rich products and accounts for about 60% of total isoflavones found in soybeans. Genistein has been reported to exhibit several biological effects, such as anti-tumor activity (inhibition of cell proliferation, regulation of the cell cycle, induction of apoptosis), improvement of glucose metabolism, impairment of angiogenesis in both hormone-related and hormone-unrelated cancer cells, reduction of peri-menopausal and postmenopausal hot flashes, and modulation of antioxidant effects. Additionally, epidemiological and clinical studies have reported health benefits of genistein in many chronic diseases, such as cardiovascular disease, diabetes, and osteoporosis, and aid in the amelioration of typical menopausal symptoms, such as anxiety and depression. Although the biological effects are promising, certain limitations, such as low bioavailability, biological estrogenic activity, and effects on target organs, have limited the clinical applications of genistein to some extent. Moreover, studies report that modification of its molecular structure may eliminate the biological estrogenic activity and its effects on target organs. In this review, we summarize the potential benefits of genistein on menopause symptoms and menopause-related diseases like cardiovascular, osteoporosis, obesity, diabetes, anxiety, depression, and breast cancer.
Collapse
Affiliation(s)
- Prakash Thangavel
- Programa de Posgrado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa C.P. 91190, Veracruz, Mexico.
| | - Abraham Puga-Olguín
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa C.P. 91190, Veracruz, Mexico.
| | - Juan F Rodríguez-Landa
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa C.P. 91190, Veracruz, Mexico.
| | - Rossana C Zepeda
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa C.P. 91190, Veracruz, Mexico.
| |
Collapse
|
19
|
Salsano S, Pérez-Debén S, Quiñonero A, González-Martín R, Domínguez F. Phytoestrogen exposure alters endometrial stromal cells and interferes with decidualization signaling. Fertil Steril 2019; 112:947-958.e3. [PMID: 31371049 DOI: 10.1016/j.fertnstert.2019.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate whether phytoestrogens (genistein and daidzein) alter in vitro decidualization of human endometrial stromal cells (ESCs). DESIGN Isolated primary ESCs were exposed to phytoestrogens and decidualized in vitro. SETTING Academic fertility center. PATIENT(S) Twenty fertile oocyte donors attending the IVI Valencia clinic. INTERVENTION(S) Treatment of ESC with phytoestrogens at 0, 10, 20, 50, and 100 μM. MAIN OUTCOME MEASURE(S) The ESC proliferation was analyzed by MTS assay. In vitro decidualization was induced in the presence of phytoestrogens by medroxyprogesterone acetate/cyclic adenosine 3':5' monophosphate and evaluated by prolactin (PRL) ELISA and F-actin immunostaining. The Ki67 proliferative marker was analyzed by immunofluorescence. The ESC apoptosis was assessed by annexin V/propidium iodide detection using flow cytometry. Estrogen (ERβ) and P receptor (PR) localization were evaluated by immunofluorescence. RESULT(S) The ESC exposed to 0, 19, 20, 50, and 100 μM of genistein, daidzein, and genistein + daidzein showed a dose-dependent proliferation decrease. After 48-96 hours of culture, this reduction was significant in the presence of 50 μM of phytoestrogens versus 10 μM untreated ESC. The ESC decidualized in the presence of phytoestrogens did not rearrange their cytoskeletons and showed a significant decrease in PRL secretion compared with untreated decidualized ESCs (dESCs). However, phytoestrogens did not alter proliferative status or the percentage of viable/apoptotic cells in dESC compared with untreated dESC. During decidualization, phytoestrogens induced the same nuclear translocation of ERβ and PR as the control dESC. CONCLUSION(S) This study reveals that high doses of phytoestrogens could affect the in vitro decidualization process.
Collapse
Affiliation(s)
- Stefania Salsano
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Silvia Pérez-Debén
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Alicia Quiñonero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | - Francisco Domínguez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
20
|
Abbaszadeh H, Keikhaei B, Mottaghi S. A review of molecular mechanisms involved in anticancer and antiangiogenic effects of natural polyphenolic compounds. Phytother Res 2019; 33:2002-2014. [DOI: 10.1002/ptr.6403] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/21/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Cancer Research CenterAhvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Bijan Keikhaei
- Thalassemia and Hemoglobinopathy Research Center, Health InstituteAhvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Sayeh Mottaghi
- Department of PediatricsAhvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
21
|
Chu J, Pelletier J. Therapeutic Opportunities in Eukaryotic Translation. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032995. [PMID: 29440069 DOI: 10.1101/cshperspect.a032995] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to block biological processes with selective small molecules provides advantages distinct from most other experimental approaches. These include rapid time to onset, swift reversibility, ability to probe activities in manners that cannot be accessed by genetic means, and the potential to be further developed as therapeutic agents. Small molecule inhibitors can also be used to alter expression and activity without affecting the stoichiometry of interacting partners. These tenets have been especially evident in the field of translation. Small molecule inhibitors were instrumental in enabling investigators to capture short-lived complexes and characterize specific steps of protein synthesis. In addition, several drugs that are the mainstay of modern antimicrobial drug therapy are potent inhibitors of prokaryotic translation. Currently, there is much interest in targeting eukaryotic translation as decades of research have revealed that deregulated protein synthesis in cancer cells represents a targetable vulnerability. In addition to being potential therapeutics, small molecules that manipulate translation have also been shown to influence cognitive processes such as memory. In this review, we focus on small molecule modulators that target the eukaryotic translation initiation apparatus and provide an update on their potential application to the treatment of disease.
Collapse
Affiliation(s)
- Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Department of Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
22
|
Honndorf VS, Wiehr S, Rolle AM, Schmitt J, Kreft L, Quintanilla-Martinez L, Kohlhofer U, Reischl G, Maurer A, Boldt K, Schwarz M, Schmidt H, Pichler BJ. Preclinical evaluation of the anti-tumor effects of the natural isoflavone genistein in two xenograft mouse models monitored by [18F]FDG, [18F]FLT, and [64Cu]NODAGA-cetuximab small animal PET. Oncotarget 2017; 7:28247-61. [PMID: 27070087 PMCID: PMC5053724 DOI: 10.18632/oncotarget.8625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/28/2016] [Indexed: 12/11/2022] Open
Abstract
The natural phytoestrogen genistein is known as protein kinase inhibitor and tumor suppressor in various types of cancers. We studied its antitumor effect in two different xenograft models using positron emission tomography (PET) in vivo combined with ex vivo histology and nuclear magnetic resonance (NMR) metabolic fingerprinting.
Collapse
Affiliation(s)
- Valerie S Honndorf
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Stefan Wiehr
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Anna-Maria Rolle
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Julia Schmitt
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Luisa Kreft
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | | | - Ursula Kohlhofer
- Institute of Pathology, University Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| | - Karsten Boldt
- Medical Proteome Center, Institute for Ophthalmic Research, Eberhard Karls University, Tuebingen, Germany
| | - Michael Schwarz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, Eberhard Karls University, Tuebingen, Germany
| | - Holger Schmidt
- Department of Radiology, Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
23
|
Genistein affects proliferation and migration of bovine oviductal epithelial cells. Res Vet Sci 2017; 114:59-63. [DOI: 10.1016/j.rvsc.2017.02.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 01/10/2023]
|
24
|
Genistein: Its role in metabolic diseases and cancer. Crit Rev Oncol Hematol 2017; 119:13-22. [PMID: 29065980 DOI: 10.1016/j.critrevonc.2017.09.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/23/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Genistein is an isoflavone present in soy and is known to have multiple molecular effects, such as the inhibition of inflammation, promotion of apoptosis, and modulation of steroidal hormone receptors and metabolic pathways. Since these molecular effects impact carcinogenesis, cancer propagation, obesity, osteoporosis, and metabolic syndromes, genistein plays an important role in preventing and treating common disorders. The role of genistein has not been adequately evaluated in all these clinical settings. This review summarizes some of the known molecular effects of genistein and its potential role in health maintenance and treatment.
Collapse
|
25
|
van Duursen MBM. Modulation of estrogen synthesis and metabolism by phytoestrogens in vitro and the implications for women's health. Toxicol Res (Camb) 2017; 6:772-794. [PMID: 30090542 DOI: 10.1039/c7tx00184c] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
Phytoestrogens are increasingly used as dietary supplements due to their suggested health promoting properties, but also by women for breast enhancement and relief of menopausal symptoms. Generally, phytoestrogens are considered to exert estrogenic activity via estrogen receptors (ERs), but they may also affect estrogen synthesis and metabolism locally in breast, endometrial and ovarian tissues. Considering that accurate regulation of local hormone levels is crucial for normal physiology, it is not surprising that interference with hormonal synthesis and metabolism is associated with a wide variety of women's health problems, varying from altered menstrual cycle to hormone-dependent cancers. Yet, studies on phytoestrogens have mainly focused on ER-mediated effects of soy-derived phytoestrogens, with less attention paid to steroid synthesis and metabolism or other phytoestrogens. This review aims to evaluate the potential of phytoestrogens to modulate local estrogen levels and the implications for women's health. For that, an overview is provided of the effects of commonly used phytoestrogens, i.e. 8-prenylnaringenin, biochanin A, daidzein, genistein, naringenin, resveratrol and quercetin, on estrogen synthesizing and metabolizing enzymes in vitro. The potential implications for women's health are assessed by comparing the in vitro effect concentrations with blood concentrations that can be found after intake of these phytoestrogens. Based on this evaluation, it can be concluded that high-dose supplements with phytoestrogens might affect breast and endometrial health or fertility in women via the modulation of steroid hormone levels. However, more data regarding the tissue levels of phytoestrogens and effect data from dedicated, tissue-specific assays are needed for a better understanding of potential risks. At least until more certainty regarding the safety has been established, especially young women would better avoid using supplements containing high doses of phytoestrogens.
Collapse
Affiliation(s)
- Majorie B M van Duursen
- Research group Endocrine Toxicology , Institute for Risk Assessment Sciences , Faculty of Veterinary Medicine , Utrecht University , Yalelaan 104 , 3584 CM , Utrecht , the Netherlands . ; Tel: +31 (0)30 253 5398
| |
Collapse
|
26
|
Rietjens IMCM, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol 2017; 174:1263-1280. [PMID: 27723080 PMCID: PMC5429336 DOI: 10.1111/bph.13622] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/04/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Phytoestrogens are plant-derived dietary compounds with structural similarity to 17-β-oestradiol (E2), the primary female sex hormone. This structural similarity to E2 enables phytoestrogens to cause (anti)oestrogenic effects by binding to the oestrogen receptors. The aim of the present review is to present a state-of-the-art overview of the potential health effects of dietary phytoestrogens. Various beneficial health effects have been ascribed to phytoestrogens, such as a lowered risk of menopausal symptoms like hot flushes and osteoporosis, lowered risks of cardiovascular disease, obesity, metabolic syndrome and type 2 diabetes, brain function disorders, breast cancer, prostate cancer, bowel cancer and other cancers. In contrast to these beneficial health claims, the (anti)oestrogenic properties of phytoestrogens have also raised concerns since they might act as endocrine disruptors, indicating a potential to cause adverse health effects. The literature overview presented in this paper illustrates that several potential health benefits of phytoestrogens have been reported but that, given the data on potential adverse health effects, the current evidence on these beneficial health effects is not so obvious that they clearly outweigh the possible health risks. Furthermore, the data currently available are not sufficient to support a more refined (semi) quantitative risk-benefit analysis. This implies that a definite conclusion on possible beneficial health effects of phytoestrogens cannot be made. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
| | - Jochem Louisse
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| | - Karsten Beekmann
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
27
|
Bahadir A, Demir S, Orallar H, Beyazcicek E, Cetinkaya A, Ankarali S, Ankarali H. Gender Specificity of Genistein Treatment in Penicillin-Induced Epileptiform Activity in Rats. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Zhang HY, Cui J, Zhang Y, Wang ZL, Chong T, Wang ZM. Isoflavones and Prostate Cancer: A Review of Some Critical Issues. Chin Med J (Engl) 2017; 129:341-7. [PMID: 26831238 PMCID: PMC4799580 DOI: 10.4103/0366-6999.174488] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective: The purpose of this review is to discuss some critical issues of isoflavones protective against the development of prostate cancer (PCa). Data Sources: Data cited in this review were obtained primarily from PubMed and Embase from 1975 to 2015. Study Selection: Articles were selected with the search terms “isoflavone”, “Phytoestrogen”, “soy”, “genistin”, and “PCa”. Results: Isoflavones do not play an important role on prostate-specific antigen levels reduction in PCa patients or healthy men. The effect of isoflavones on sex hormone levels and PCa risk may be determined by equol converting bacteria in the intestine, specific polymorphic variation and concentrations of isoflavones. The intake of various types of phytoestrogens with lower concentrations in the daily diet may produce synergistic effects against PCa. Moreover, prostate tissue may concentrate isoflavones to potentially anti-carcinogenic levels. In addition, it is noteworthy that isoflavones may act as an agonist in PCa. Conclusions: Isoflavones play a protective role against the development of PCa. However, careful consideration should be given when isoflavones are used in the prevention and treatment of PCa.
Collapse
Affiliation(s)
| | | | | | | | | | - Zi-Ming Wang
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
29
|
Parajuli P, Pandey RP, Huyen Nguyen TT, Shrestha B, Yamaguchi T, Sohng JK. Biosynthesis of natural and non-natural genistein glycosides. RSC Adv 2017. [DOI: 10.1039/c6ra28145a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Biosynthesis of various genistein glycopyranoside scaffolds using versatile GTs and SOMTs. Each compound was structurally characterized and biological activity assay was carried out.
Collapse
Affiliation(s)
- Prakash Parajuli
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering
| | - Trang Thi Huyen Nguyen
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
| | - Biplav Shrestha
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
| | - Tokutaro Yamaguchi
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering
- Sun Moon University
- Tangjeong-myeon Asan-Si
- Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering
| |
Collapse
|
30
|
Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, Nabavi SM. Understanding genistein in cancer: The "good" and the "bad" effects: A review. Food Chem 2016; 196:589-600. [PMID: 26593532 DOI: 10.1016/j.foodchem.2015.09.085] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/29/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023]
Abstract
Nowadays, diet and specific dietary supplements are seen as potential adjuvants to prevent different chronic diseases, including cancer, or to ameliorate pharmacological therapies. Soybean is one of the most important food components in Asian diet. A plethora of evidence supports the in vitro and in vivo anticancer effects of genistein, a soybean isoflavone. Major tumors affected by genistein here reviewed are breast, prostate, colon, liver, ovarian, bladder, gastric, brain cancers, neuroblastoma and chronic lymphocytic leukemia. However, it is not always clear if and when genistein is beneficial against tumors (the "good" effects), or the opposite, when the same molecule exerts adverse effects (the "bad" effects), favouring cancer cell proliferation. This review will critically evaluate this concept in the light of the different molecular mechanisms of genistein which occur when the molecule is administered at low doses (chemopreventive effects), or at high doses (pharmacological effects).
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy
| | - Pandima Devi Kasi
- Department of Biotechnology, Alagappa University, Karaikudi 630 004, Tamil Nadu, India.
| | - Sakthivel Ravi
- Department of Biotechnology, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Rigalli JP, Tocchetti GN, Arana MR, Villanueva SSM, Catania VA, Theile D, Ruiz ML, Weiss J. The phytoestrogen genistein enhances multidrug resistance in breast cancer cell lines by translational regulation of ABC transporters. Cancer Lett 2016; 376:165-72. [PMID: 27033456 DOI: 10.1016/j.canlet.2016.03.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most frequent malignancy in women. Multidrug resistance due to overexpression of ABC drug transporters is a common cause of chemotherapy failure and disease recurrence. Genistein (GNT) is a phytoestrogen present in soybeans and hormone supplements. We investigated the effect of GNT on the expression and function of ABC transporters in MCF-7 and MDA-MB-231 breast cancer cell lines. Results demonstrated an induction at the protein level of ABCC1 and ABCG2 and of ABCC1 in MCF-7 and MDA-MB-231, respectively. MCF-7 cells showed a concomitant increase in doxorubicin and mitoxantrone efflux and resistance, dependent on ABCG2 activity. ABCC1 induction by GNT in MDA-MB-231 cells modified neither drug efflux nor chemoresistance due to simultaneous acute inhibition of the transporter activity by GNT. All inductions took place at the translational level, as no increment in mRNA was observed and protein increase was prevented by cycloheximide. miR-181a, already demonstrated to inhibit ABCG2 translation, was down-regulated by GNT, explaining translational induction. Effects were independent of classical estrogen receptors. Results suggest potential nutrient-drug interactions that could threaten chemotherapy efficacy, especially in ABCG2-expressing tumors treated with substrates of this transporter.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Guillermo Nicolás Tocchetti
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Maite Rocío Arana
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Silvina Stella Maris Villanueva
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Viviana Alicia Catania
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - María Laura Ruiz
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
32
|
Fan J, Zhang B, Li L, Xiao C, Oladele OA, Jiang G, Ding H, Wang S, Xing Y, Xiao D, Yin Y. Effect of Soyabean Isoflavones Exposure on Onset of Puberty, Serum Hormone Concentration and Gene Expression in Hypothalamus, Pituitary Gland and Ovary of Female Bama Miniature Pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1573-82. [PMID: 26580281 PMCID: PMC4647097 DOI: 10.5713/ajas.15.0185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/08/2015] [Accepted: 06/11/2015] [Indexed: 11/27/2022]
Abstract
This study was to investigate the effect of soyabean isoflavones (SIF) on onset of puberty, serum hormone concentration, and gene expression in hypothalamus, pituitary and ovary of female Bama miniature pigs. Fifty five, 35-days old pigs were randomly assigned into 5 treatment groups consisting of 11 pigs per treatment. Results showed that dietary supplementation of varying dosage (0, 250, 500, and 1,250 mg/kg) of SIF induced puberty delay of the pigs with the age of puberty of pigs fed basal diet supplemented with 1,250 mg/kg SIF was significantly higher (p<0.05) compared to control. Supplementation of SIF or estradiol valerate (EV) reduced (p<0.05) serum gonadotrophin releasing hormone and luteinizing hormone concentration, but increased follicle-stimulating hormone concentration in pigs at 4 months of age. The expression of KiSS-1 metastasis-suppressor (KISS1), steroidogenic acute regulatory protein (StAR) and 3-beta-hydroxysteroid dehydrogenase/delta-5-delta-4 isomerase (3β-HSD) was reduced (p<0.01) in SIF-supplemented groups. Expression of gonadotropin-releasing hormone receptor in the pituitary of miniature pigs was reduced (p<0.05) compared to the control when exposed to 250, 1,250 mg/kg SIF and EV. Pigs on 250 mg/kg SIF and EV also showed reduced (p<0.05) expression of cytochrome P450 19A1 compared to the control. Our results indicated that dietary supplementation of SIF induced puberty delay, which may be due to down-regulation of key genes that play vital roles in the synthesis of steroid hormones.
Collapse
Affiliation(s)
- Juexin Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China ; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory for Agro-Ecological Processes of Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
| | - Bin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Lili Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory for Agro-Ecological Processes of Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
| | - Chaowu Xiao
- Nutrition Research Division, Food Directorate, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Oso Abimbola Oladele
- Department of Animal Nutrition, College of Animal Science and Livestock Production, Federal University of Agriculture, Abeokuta, PMB2240, Nigeria
| | - Guoli Jiang
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory for Agro-Ecological Processes of Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
| | - Hao Ding
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China ; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory for Agro-Ecological Processes of Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
| | - Shengping Wang
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory for Agro-Ecological Processes of Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
| | - Yueteng Xing
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China ; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory for Agro-Ecological Processes of Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory for Agro-Ecological Processes of Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
33
|
Ha YR, Kang YJ, Lee SJ. In vivo study on splenomegaly inhibition by genistein in Plasmodium berghei -infected mice. Parasitol Int 2015; 64:369-76. [PMID: 26004668 DOI: 10.1016/j.parint.2015.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 01/24/2023]
|
34
|
Proteomics perturbations promoted by the protein kinase CK2 inhibitor quinalizarin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1676-86. [DOI: 10.1016/j.bbapap.2015.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/25/2015] [Accepted: 04/05/2015] [Indexed: 01/18/2023]
|
35
|
Song L, Wang F, Dong S, Hu C, Hua X, Xia Q. Paralytic peptide activates insect humoral immune response via epidermal growth factor receptor. Peptides 2015; 71:20-7. [PMID: 26003397 DOI: 10.1016/j.peptides.2015.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 02/03/2023]
Abstract
Paralytic peptide (PP) activates innate immunity of silkworm Bombyx mori, inducing production of anti-microbial peptides (AMPs) and phagocytosis-related proteins; however the signal pathways of PP-dependent immune responses are not clear. In present study, we characterized BmE cells as a PP-responsive cell line by examining the expression of AMP genes and activation of p38 mitogen-activated protein kinase (p38 MAPK) under PP stimulation, and we also found PP directly binds to BmE cell membrane. Then we found that PP-dependent expression of AMP genes is suppressed by tyrosine kinase inhibitor (genistein) both in BmE cells and in fat body of silkworm larvae. Moreover, the specific tyrosine kinase epidermal growth factor receptor (EGFR) inhibitor (AG1478) attenuates PP-induced expression of AMP genes in BmE cells and fat body of silkworm and RNA interference (RNAi) to BmEGFR also suppresses PP-induced expression of AMP genes. Furthermore, the PP-induced p38 MAPK phosphorylation is inhibited by AG1478. Our results suggest that BmE cells can be used as a cell model to investigate the signal pathway of PP-dependent humoral immune response and receptor tyrosine kinase EGFR/p38 MAPK pathway is involved in the production of AMPs induced by PP.
Collapse
Affiliation(s)
- Liang Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Shifeng Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Cuimei Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Xiaoting Hua
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
36
|
Boneh A. Signal transduction in inherited metabolic disorders: a model for a possible pathogenetic mechanism. J Inherit Metab Dis 2015; 38:729-40. [PMID: 25735935 DOI: 10.1007/s10545-015-9820-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 01/08/2023]
Abstract
Signal transduction is the process by which external or internal signals exert their intracellular biological effects and by which intracellular communication is regulated. An important component of the signalling pathway is the second messenger, which is produced upon stimulation of the cell and mediates its effects downstream through phosphorylation and dephosphorylation of target proteins. Intracellular accumulation or deficiency of metabolites that serve as second messengers, due to inborn errors of their metabolism, may lead to perturbation of signalling pathways and disruption of the balance between them, serving as a missing link between the genotype, biochemical phenotype and clinical phenotype. The main second messengers that are putatively associated with the pathogenesis of IEM are 'bioactive lipids' (complex lipids and long-chain fatty acids), 'calcium', 'stress' (osmotic, reactive oxygen/nitorgen species, misfolded proteins and others) and 'metabolic' (AMP/ATP ratio, leucine, glutamine). They act through protein kinase C, calcium dependent kinases (CamK) and phosphatase (CN), 'stress-mediated' kinases (MAPK) and AMP/ATP-dependent kinase (AMPK). These signalling pathways lead to cell proliferation, inflammatory response, autophagy (and mitophagy) and apoptosis, suggesting that there are only few final common pathways involved in this pathogenetic mechanism. Questions remain regarding the complexity of the effects of the accumulating metabolites on different signalling pathways, and regarding the relative role and origin of 'proxy' second messengers such as reactive oxygen species. A better understanding of the signalling pathways in IEM may enhance the development of novel therapies in situations where normalising intracellular concentrations of the second messenger is impossible or impractical.
Collapse
Affiliation(s)
- Avihu Boneh
- Metabolic Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Vic, 3052, Melbourne, Australia,
| |
Collapse
|
37
|
Singh BN, Singh HB, Singh A, Naqvi AH, Singh BR. Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade: phytoblockers of metastasis cascade. Cancer Metastasis Rev 2015; 33:41-85. [PMID: 24390421 DOI: 10.1007/s10555-013-9457-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer metastasis is a multistep process in which a cancer cell spreads from the site of the primary lesion, passes through the circulatory system, and establishes a secondary tumor at a new nonadjacent organ or part. Inhibition of cancer progression by dietary phytochemicals (DPs) offers significant promise for reducing the incidence and mortality of cancer. Consumption of DPs in the diet has been linked to a decrease in the rate of metastatic cancer in a number of preclinical animal models and human epidemiological studies. DPs have been reported to modulate the numerous biological events including epigenetic events (noncoding micro-RNAs, histone modification, and DNA methylation) and multiple signaling transduction pathways (Wnt/β-catenin, Notch, Sonic hedgehog, COX-2, EGFR, MAPK-ERK, JAK-STAT, Akt/PI3K/mTOR, NF-κB, AP-1, etc.), which can play a key role in regulation of metastasis cascade. Extensive studies have also been performed to determine the molecular mechanisms underlying antimetastatic activity of DPs, with results indicating that these DPs have significant inhibitory activity at nearly every step of the metastatic cascade. DPs have anticancer effects by inducing apoptosis and by inhibiting cell growth, migration, invasion, and angiogenesis. Growing evidence has also shown that these natural agents potentiate the efficacy of chemotherapy and radiotherapy through the regulation of multiple signaling pathways. In this review, we discuss the variety of molecular mechanisms by which DPs regulate metastatic cascade and highlight the potentials of these DPs as promising therapeutic inhibitors of cancer.
Collapse
Affiliation(s)
- B N Singh
- Research and Development Division, Sowbhagya Biotech Private Limited, Cherlapally, Hyderabad, 500051, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
38
|
Franchin C, Cesaro L, Salvi M, Millioni R, Iori E, Cifani P, James P, Arrigoni G, Pinna L. Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:609-23. [DOI: 10.1016/j.bbapap.2014.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 01/06/2023]
|
39
|
Lee CG, Koo JH, Kim SG. Phytochemical regulation of Fyn and AMPK signaling circuitry. Arch Pharm Res 2015; 38:2093-105. [PMID: 25951818 DOI: 10.1007/s12272-015-0611-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 04/27/2015] [Indexed: 01/03/2023]
Abstract
During the past decades, phytochemical terpenoids, polyphenols, lignans, flavonoids, and alkaloids have been identified as antioxidative and cytoprotective agents. Adenosine monophosphate-activated protein kinase (AMPK) is a kinase that controls redox-state and oxidative stress in the cell, and serves as a key molecule regulating energy metabolism. Many phytochemicals directly or indirectly alter the AMPK pathway in distinct manners, exerting catabolic metabolism. Some of them are considered promising in the treatment of metabolic diseases such as type II diabetes, obesity, and hyperlipidemia. Another important kinase that regulates energy metabolism is Fyn kinase, a member of the Src family kinases that plays a role in various cellular responses such as insulin signaling, cell growth, oxidative stress and apoptosis. Phytochemical inhibition of Fyn leads to AMPK-mediated protection of the cell in association with increased antioxidative capacity and mitochondrial biogenesis. The kinases may work together to form a signaling circuitry for the homeostasis of energy conservation and expenditure, and may serve as targets of phytochemicals. This review is intended as a compilation of recent advancements in the pharmacological research of phytochemicals targeting Fyn and AMPK circuitry, providing information for the prevention and treatment of metabolic diseases and the accompanying tissue injuries.
Collapse
Affiliation(s)
- Chan Gyu Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea.
| | - Ja Hyun Koo
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea.
| | - Sang Geon Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea.
| |
Collapse
|
40
|
Dai W, Wang F, He L, Lin C, Wu S, Chen P, Zhang Y, Shen M, Wu D, Wang C, Lu J, Zhou Y, Xu X, Xu L, Guo C. Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial-mesenchymal transition: partial mediation by the transcription factor NFAT1. Mol Carcinog 2015; 54:301-311. [PMID: 24243709 DOI: 10.1002/mc.22100] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 01/07/2023]
Abstract
To investigate the effects and mechanism of genistein on hepatocellular carcinoma. Cell counting kit-8 assays showed that genistein at 3, 6, and 9 µM had no significant cytotoxic effects on HepG2, SMMC-7721, and Bel-7402 cells. Cell scratch and Transwell assays identified that genistein inhibited migration of three cell lines. In three cell lines, genistein enhanced E-cadherin and α-catenin, but reduced N-cadherin and Vimentin at both mRNA and protein levels in a dose-dependent manner. Simultaneously, treatment with genistein suppressed epithelial-mesenchymal transition (EMT) induced by TGF-β. In HepG2 cells, genistein reduced mRNA, and protein expressions of nuclear factor of activated T cells 1 (NFAT1), Abca3, Autotaxin, CD154, and Cox-2. Phorbol 12-myristate 13-acetate (PMA) and ionomycin enhanced activity of NFAT1, reduced E-cadherin and α-catenin protein levels, and increased protein levels of N-cadherin and Vimentin. Transwell demonstrated that PMA and ionomycin reversed the migration inhibitory effects of genistein on HepG2 cells. In vivo, genistein inhibited the intrahepatic metastasis by reversing the EMT, which was correlated with reduced NFAT1 . Genistein inhibited hepatocellular carcinoma cell migration by reversing the EMT, which was partly mediated by NFAT1. The fact that EMT can be reversed by genistein may shed light on the possible mechanisms for its role in liver cancer therapy.
Collapse
Affiliation(s)
- Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Koong LY, Watson CS. Rapid, nongenomic signaling effects of several xenoestrogens involved in early- vs. late-stage prostate cancer cell proliferation. ACTA ACUST UNITED AC 2015. [DOI: 10.4161/23273747.2014.995003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Luke Y Koong
- Biochemistry & Molecular Biology Department; University of Texas Medical Branch; Galveston, TX USA
| | | |
Collapse
|
42
|
Bircsak KM, Aleksunes LM. Interaction of Isoflavones with the BCRP/ABCG2 Drug Transporter. Curr Drug Metab 2015; 16:124-40. [PMID: 26179608 PMCID: PMC4713194 DOI: 10.2174/138920021602150713114921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 03/03/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022]
Abstract
This review will provide a comprehensive overview of the interactions between dietary isoflavones and the ATP-binding cassette (ABC) G2 efflux transporter, which is also named the breast cancer resistance protein (BCRP). Expressed in a variety of organs including the liver, kidneys, intestine, and placenta, BCRP mediates the disposition and excretion of numerous endogenous chemicals and xenobiotics. Isoflavones are a class of naturallyoccurring compounds that are found at high concentrations in commonly consumed foods and dietary supplements. A number of isoflavones, including genistein and daidzein and their metabolites, interact with BCRP as substrates, inhibitors, and/or modulators of gene expression. To date, a variety of model systems have been employed to study the ability of isoflavones to serve as substrates and inhibitors of BCRP; these include whole cells, inverted plasma membrane vesicles, in situ organ perfusion, as well as in vivo rodent and sheep models. Evidence suggests that BCRP plays a role in mediating the disposition of isoflavones and in particular, their conjugated forms. Furthermore, as inhibitors, these compounds may aid in reversing multidrug resistance and sensitizing cancer cells to chemotherapeutic drugs. This review will also highlight the consequences of altered BCRP expression and/or function on the pharmacokinetics and toxicity of chemicals following isoflavone exposure.
Collapse
Affiliation(s)
| | - Lauren M Aleksunes
- Dept. of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd. Piscataway, NJ 08854, USA.
| |
Collapse
|
43
|
Synthetic genistein glycosides inhibiting EGFR phosphorylation enhance the effect of radiation in HCT 116 colon cancer cells. Molecules 2014; 19:18558-73. [PMID: 25401399 PMCID: PMC6270897 DOI: 10.3390/molecules191118558] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 11/23/2022] Open
Abstract
The need to find new EGFR inhibitors for use in combination with radiotherapy in the treatment of solid tumors has drawn our attention to compounds derived from genistein, a natural isoflavonoid. The antiproliferative potential of synthetic genistein derivatives used alone or in combination with ionizing radiation was evaluated in cancer cell lines using clonogenic assay. EGFR phosphorylation was assessed with western blotting. Genistein derivatives inhibited clonogenic growth of HCT 116 cancer cells additively or synergistically when used in combination with ionizing radiation, and decreased EGFR activation. Our preclinical evaluation of genistein-derived EGFR inhibitors suggests that these compounds are much more potent sensitizers of cells to radiation than the parent isoflavonoid, genistein and indicate that these compounds may be useful in the treatment of colon cancer with radiation therapy.
Collapse
|
44
|
|
45
|
Li B, Xiong M, Zhang HY. Elucidating polypharmacological mechanisms of polyphenols by gene module profile analysis. Int J Mol Sci 2014; 15:11245-54. [PMID: 24968267 PMCID: PMC4139780 DOI: 10.3390/ijms150711245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/04/2014] [Accepted: 06/17/2014] [Indexed: 02/05/2023] Open
Abstract
Due to the diverse medicinal effects, polyphenols are among the most intensively studied natural products. However, it is a great challenge to elucidate the polypharmacological mechanisms of polyphenols. To address this challenge, we establish a method for identifying multiple targets of chemical agents through analyzing the module profiles of gene expression upon chemical treatments. By using FABIA algorithm, we have performed a biclustering analysis of gene expression profiles derived from Connectivity Map (cMap), and clustered the profiles into 49 gene modules. This allowed us to define a 49 dimensional binary vector to characterize the gene module profiles, by which we can compare the expression profiles for each pair of chemical agents with Tanimoto coefficient. For the agent pairs with similar gene expression profiles, we can predict the target of one agent from the other. Drug target enrichment analysis indicated that this method is efficient to predict the multiple targets of chemical agents. By using this method, we identify 148 targets for 20 polyphenols derived from cMap. A large part of the targets are validated by experimental observations. The results show that the medicinal effects of polyphenols are far beyond their well-known antioxidant activities. This method is also applicable to dissect the polypharmacology of other natural products.
Collapse
Affiliation(s)
- Bin Li
- National Key Laboratory of Crop Genetic Improvement, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Min Xiong
- National Key Laboratory of Crop Genetic Improvement, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hong-Yu Zhang
- National Key Laboratory of Crop Genetic Improvement, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
46
|
Huang D, Li Y, Liu N, Zhang Z, Peng Z, Duan C, Tang X, Tan G, Yan G, Tang F. Identification of novel signaling components in N,N'-dinitrosopiperazine-mediated metastasis of nasopharyngeal carcinoma by quantitative phosphoproteomics. BMC Cancer 2014; 14:243. [PMID: 24708550 PMCID: PMC4101831 DOI: 10.1186/1471-2407-14-243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/25/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic cancer. N,N'-dinitrosopiperazine (DNP), a carcinogen with specificity for nasopharyngeal epithelium, facilitates NPC metastasis. However, the underlying mechanism is not known. METHODS Quantitative phosphoproteomics, using stable isotope labeling of amino acids in cell cultures, was employed to identify phosphoproteins associated with NPC metastasis mediated by DNP. NPC cell line 6-10B, which is relatively less metastatic, was used to investigate DNP-mediated metastasis. Boyden chamber invasion assay was used to measure DNP-induced motility and invasion, and nude mice were used to verify DNP-mediated metastasis in vivo. Several different phosphoproteins detected by proteomics analysis were verified by immunoblotting. DNP-mediated metastasis facilitated by lysine-rich CEACAM1 co-isolated protein (LYRIC) phosphorylation at serine 568 was confirmed using mutations targeting the phosphorylation site of LYRIC. DNP-mediated metastasis through LYRIC phosphorylation was confirmed in the NPC cell line CNE1. DNP-mediated LYRIC phosphorylation at serine 568 was also verified in metastatic tumors of BABL/c nude mice. RESULTS Boyden chamber invasion assay indicated that DNP mediated cell motility and invasion of NPC cell 6-10B in vitro, and experiments with nude mice indicated that DNP increased 6-10B metastasis in vivo. In the phosphoproteomics analysis, we detected 216 phosphorylation sites on 130 proteins; among these, 48 phosphorylation sites on 30 unique phosphopeptides were modulated by DNP by at least 1.5-fold. DNP mediated the expression of phosphorylated GTPase, ferritin, LYRIC, and RNA polymerase, and it decreased the expression of phosphorylated torsin-1A protein 1. Furthermore, DNP induced LYRIC phosphorylation at serine 568 to facilitate cell motility and invasion, whereas DNP-mediated motility and invasion was decreased when serine 568 in LYRIC was mutated. In another NPC cell line, CNE1, DNP also mediated cell motility and invasion followed by enhanced phosphorylation of LYRIC at serine 568. Finally, phosphorylated-LYRIC expression at serine 568 was significantly increased in metastatic tumors induced by DNP. CONCLUSION DNP regulates multiple signaling pathways through protein phosphorylation, including the phosphorylation of LYRIC at serine 568, and mediates NPC metastasis. These findings provide insights on the complexity and dynamics of DNP-facilitated metastasis, and may help to gain a better understanding of the mechanisms by clarifying NPC-induced metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Faqing Tang
- Medical Research Center and Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
47
|
Zhen AW, Nguyen NH, Gibert Y, Motola S, Buckett P, Wessling-Resnick M, Fraenkel E, Fraenkel PG. The small molecule, genistein, increases hepcidin expression in human hepatocytes. Hepatology 2013; 58:1315-25. [PMID: 23703590 PMCID: PMC3770762 DOI: 10.1002/hep.26490] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 04/17/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepcidin, a peptide hormone that decreases intestinal iron absorption and macrophage iron release, is a potential drug target for patients with iron overload syndromes because its levels are inappropriately low in these individuals. Endogenous stimulants of Hepcidin transcription include bone morphogenic protein 6 (BMP6) and interleukin-6 (IL-6) by effects on mothers against decapentaplegic homolog (Smad)4 or signal transducer and activator of transcription (Stat)3, respectively. We conducted a small-scale chemical screen in zebrafish embryos to identify small molecules that modulate hepcidin expression. We found that treatment with the isoflavone, genistein, from 28-52 hours postfertilization in zebrafish embryos enhanced Hepcidin transcript levels, as assessed by whole-mount in situ hybridization and quantitative real-time reverse-transcriptase polymerase chain reaction. Genistein's stimulatory effect was conserved in human hepatocytes: Genistein treatment of HepG2 cells increased both Hepcidin transcript levels and promoter activity. We found that genistein's effect on Hepcidin expression did not depend on estrogen receptor signaling or increased cellular iron uptake, but was impaired by mutation of either BMP response elements or the Stat3-binding site in the Hepcidin promoter. RNA sequencing of transcripts from genistein-treated hepatocytes indicated that genistein up-regulated 68% of the transcripts that were up-regulated by BMP6; however, genistein raised levels of several transcripts involved in Stat3 signaling that were not up-regulated by BMP6. Chromatin immunoprecipitation and ELISA experiments revealed that genistein enhanced Stat3 binding to the Hepcidin promoter and increased phosphorylation of Stat3 in HepG2 cells. CONCLUSION Genistein is the first small-molecule experimental drug that stimulates Hepcidin expression in vivo and in vitro. These experiments demonstrate the feasibility of identifying and characterizing small molecules that increase Hepcidin expression. Genistein and other candidate molecules may subsequently be developed into new therapies for iron overload syndromes.
Collapse
Affiliation(s)
- Aileen W Zhen
- Division of Hematology/Oncology Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical SchoolBoston, MA
| | - Nancy H Nguyen
- Division of Hematology/Oncology Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical SchoolBoston, MA
| | - Yann Gibert
- Metabolic Research Unit, Deakin School of MedicineGeelong, Victoria, Australia
| | - Shmulik Motola
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridge, MA
| | - Peter Buckett
- Department of Genetics and Complex Diseases and Department of Nutrition, Harvard School of Public HealthBoston, MA
| | - Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases and Department of Nutrition, Harvard School of Public HealthBoston, MA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridge, MA
| | - Paula G Fraenkel
- Division of Hematology/Oncology Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical SchoolBoston, MA,
Address reprint requests to: Paula Fraenkel, M.D., Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, SLD 423B, 330 Brookline Avenue, Boston, MA 02215. E-mail: ; fax: 866-345-0065
| |
Collapse
|
48
|
Extracellular matrix degradation and tissue remodeling in periprosthetic loosening and osteolysis: focus on matrix metalloproteinases, their endogenous tissue inhibitors, and the proteasome. BIOMED RESEARCH INTERNATIONAL 2013; 2013:230805. [PMID: 23862137 PMCID: PMC3703793 DOI: 10.1155/2013/230805] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 12/18/2022]
Abstract
The leading complication of total joint replacement is periprosthetic osteolysis, which often results in aseptic loosening of the implant, leading to revision surgery. Extracellular matrix degradation and connective tissue remodeling around implants have been considered as major biological events in the periprosthetic loosening. Critical mediators of wear particle-induced inflammatory osteolysis released by periprosthetic synovial cells (mainly macrophages) are inflammatory cytokines, chemokines, and proteolytic enzymes, mainly matrix metalloproteinases (MMPs). Numerous studies reveal a strong interdependence of MMP expression and activity with the molecular mechanisms that control the composition and turnover of periprosthetic matrices. MMPs can either actively modulate or be modulated by the molecular mechanisms that determine the debris-induced remodeling of the periprosthetic microenvironment. In the present study, the molecular mechanisms that control the composition, turnover, and activity of matrix macromolecules within the periprosthetic microenvironment exposed to wear debris are summarized and presented. Special emphasis is given to MMPs and their endogenous tissue inhibitors (TIMPs), as well as to the proteasome pathway, which appears to be an elegant molecular regulator of specific matrix macromolecules (including specific MMPs and TIMPs). Furthermore, strong rationale for potential clinical applications of the described molecular mechanisms to the treatment of periprosthetic loosening and osteolysis is provided.
Collapse
|
49
|
Yan GR, Zhou HH, Wang Y, Zhong Y, Tan ZL, Wang Y, He QY. Protective effects of andrographolide analogue AL-1 on ROS-induced RIN-mβ cell death by inducing ROS generation. PLoS One 2013; 8:e63656. [PMID: 23750203 PMCID: PMC3672203 DOI: 10.1371/journal.pone.0063656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress is considered to be a major factor contributing to pathogenesis and progression of many diseases. A novel andrographolide-lipoic acid conjugate (AL-1) could protect pancreatic β-cells from reactive oxygen species (ROS)-induced oxidative injury. However, its protective mechanism is still unclear. In this work, we used proteomics to identify AL-1-regulated proteins in β-cells and found that 13 of the 71 proteins regulated by AL-1 were closely associated with antioxidation. These differential proteins were mainly involved in the ERK1/2 and AKT1 signaling pathways. Functional investigation demonstrated that AL-1 exerted its protective effects on H2O2-induced cell death of β-cells by generating NADPH oxidase-dependent ROS to activate ERK1/2 and AKT1 signaling pathways. As a consequence, the expressions of antioxidant proteins including Trx1, Prx1 and Prx5, and anti-apoptotic proteins including PDCD6IP, prohibitin, galectin-1 and HSP were upregulated. AL-1 probably worked as a “vaccinum” to activate the cellular antioxidant system by inducing the generation of low concentration ROS which then reciprocally protected β-cells from oxidative damage caused by high-level ROS from H2O2. To the best of our knowledge, this is the first comprehensive proteomic analysis illustrating a novel molecular mechanism for the protective effects of antioxidants on β-cells from H2O2-induced cell death.
Collapse
Affiliation(s)
- Guang-Rong Yan
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- * E-mail: (GRY); (QYH)
| | - Hui-Hua Zhou
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yin Zhong
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zi-Lu Tan
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuqiang Wang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- * E-mail: (GRY); (QYH)
| |
Collapse
|
50
|
Yan GR, Zou FY, Dang BL, Zhang Y, Yu G, Liu X, He QY. Genistein-induced mitotic arrest of gastric cancer cells by downregulating KIF20A, a proteomics study. Proteomics 2013; 12:2391-9. [PMID: 22887948 DOI: 10.1002/pmic.201100652] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genistein exerts its anticarcinogenic effects by inducing G2/M arrest and apoptosis of cancer cells. However, the precise molecular mechanism of action of genistein has not been completely elucidated. In this study, we used quantitative proteomics to identify the genistein-induced protein alterations in gastric cancer cells and investigate the molecular mechanism responsible for the anti-cancer actions of genistein. Total 86 proteins were identified to be regulated by genistein, most of which were clustered into the regulation of cell division and G2/M transition, consistent with the anti-cancer effect of genistein. Many proteins including kinesin family proteins, TPX2, CDCA8, and CIT were identified for the first time to be regulated by genistein. Interestingly, five kinesin family proteins including KIF11, KIF20A, KIF22, KIF23, and CENPF were found to be simultaneously downregulated by genistein. Significantly decreased KIF20A was selected for further functional studies. The silencing of KIF20A inhibited cell viability and induced G2/M arrest, similar to the effects of genistein treatment in gastric cancer. And the silencing of KIF20A also increased cancer cell sensitivity to genistein inhibition, whereas overexpression of KIF20A markedly attenuated genistein-induced cell viability inhibition and G2/M arrest. These observations suggested that KIF20A played an important role in anti-cancer actions of genistein, and thus may be a potential molecular target for drug intervention of gastric cancer.
Collapse
Affiliation(s)
- Guang-Rong Yan
- Institute of Life and Health Engineering, and National Engineering and Research Center for Genetic Medicine, Jinan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|