1
|
Plubell DL, Huang E, Spencer SE, Poston KL, Montine TJ, MacCoss MJ. Data Independent Acquisition to Inform the Development of Targeted Proteomics Assays Using a Triple Quadrupole Mass Spectrometer. J Proteome Res 2025. [PMID: 40328514 DOI: 10.1021/acs.jproteome.5c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Mass spectrometry based targeted proteomics methods provide a sensitive and high-throughput analysis of selected proteins. To develop a targeted bottom-up proteomics assay, peptides must be evaluated as proxies for the measurement of a protein or proteoform in a biological matrix. Candidate peptide selection typically relies on predetermined biochemical properties, data from semistochastic sampling, or empirical measurements. These strategies require extensive testing and method refinement due to the difficulties associated with prediction of the peptide response in the biological matrix of interest. Gas-phase fractionated (GPF) narrow window data-independent acquisition (DIA) aids in the development of reproducible selected reaction monitoring (SRM) assays by providing matrix-specific information on peptide detectability and quantification by mass spectrometry. To demonstrate the suitability of DIA data for selecting peptide targets, we reimplement a portion of an existing assay to measure 98 Alzheimer's disease proteins in cerebrospinal fluid (CSF). Peptides were selected from GPF-DIA based on signal intensity and reproducibility. The resulting SRM assay exhibits a quantitative precision similar to that of published data, despite the inclusion of different peptides between the assays. This workflow enables development of new assays without additional upfront data acquisition, demonstrated here through generation of a separate assay for an unrelated set of proteins in CSF from the same data set.
Collapse
Affiliation(s)
- Deanna L Plubell
- University of Washington, Department of Genome Sciences, Seattle, Washington 98195, United States
| | - Eric Huang
- University of Washington, Department of Genome Sciences, Seattle, Washington 98195, United States
| | - Sandra E Spencer
- University of Washington, Department of Genome Sciences, Seattle, Washington 98195, United States
| | - Kathleen L Poston
- Stanford University, Department of Neurology & Neurological Sciences, Stanford, California 94305, United States
| | - Thomas J Montine
- Stanford University, Department of Pathology, Stanford, California 94305, United States
| | - Michael J MacCoss
- University of Washington, Department of Genome Sciences, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Angelis J, Schröder EA, Xiao Z, Gabriel W, Wilhelm M. Peptide Property Prediction for Mass Spectrometry Using AI: An Introduction to State of the Art Models. Proteomics 2025; 25:e202400398. [PMID: 40211610 DOI: 10.1002/pmic.202400398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 05/15/2025]
Abstract
This review explores state of the art machine learning and deep learning models for peptide property prediction in mass spectrometry-based proteomics, including, but not limited to, models for predicting digestibility, retention time, charge state distribution, collisional cross section, fragmentation ion intensities, and detectability. The combination of these models enables not only the in silico generation of spectral libraries but also finds many additional use cases in the design of targeted assays or data-driven rescoring. This review serves as both an introduction for newcomers and an update for experienced researchers aiming to develop accessible and reproducible models for peptide property predictions. Key limitations of the current models, including difficulties in handling diverse post-translational modifications and instrument variability, highlight the need for large-scale, harmonized datasets, and standardized evaluation metrics for benchmarking.
Collapse
Affiliation(s)
- Jesse Angelis
- Computational Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Eva Ayla Schröder
- Computational Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Zixuan Xiao
- Computational Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Wassim Gabriel
- Computational Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Mathias Wilhelm
- Computational Mass Spectrometry, Technical University of Munich, Freising, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, Garching, Germany
| |
Collapse
|
3
|
Pandey K, Faridi P, Ayala R, Lee YCG, Rouse E, Krishna SSG, Dick I, Redwood A, Robinson B, Creaney J, Purcell AW. Multiple Classes of Antigen Contribute to the Antigenic Landscape of Mesothelioma. Mol Cell Proteomics 2025; 24:100925. [PMID: 39921204 PMCID: PMC11929013 DOI: 10.1016/j.mcpro.2025.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025] Open
Abstract
Mesothelioma is an incurable, asbestos-exposure-related cancer that typically affects the lining or pleura of the lungs. Symptoms typically develop many decades after initial asbestos exposure, leaving an enduring legacy of disease. The current disease burden is peaking worldwide and thus there is a massive unmet clinical need for curative therapies. Recently, immune checkpoint blockade-based therapy has been adopted as a first-line of treatment for mesothelioma. Vaccine-induced augmentation of immune responses unleashed during checkpoint blockade may provide further clinical benefit in mesothelioma. In this study, we explore the human leukocyte antigen class I landscape (or immunopeptidome) of mesothelioma in patient-derived cell lines and clinical material (pleural effusion samples). We identify a range of peptide antigens derived from targets including cancer testis antigens, endogenous retroviruses as well as novel post-translational modification of peptides. This information will facilitate the characterization of the immune response to these antigens to determine which class of antigen is most immunogenic and has the potential to be tested in future vaccine studies.
Collapse
Affiliation(s)
- Kirti Pandey
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Pouya Faridi
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, Australia
| | - Rochelle Ayala
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Y C Gary Lee
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia; Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Ebony Rouse
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Sanjay S G Krishna
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ian Dick
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia; Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Alec Redwood
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia; Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Bruce Robinson
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia; Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia; Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia.
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Feldman D, Sims JN, Li X, Johnson R, Gerben S, Kim DE, Richardson C, Koepnick B, Eisenach H, Hicks DR, Yang EC, Wicky BIM, Milles LF, Bera AK, Kang A, Brackenbrough E, Joyce E, Sankaran B, Lubner JM, Goreshnik I, Vafeados D, Allen A, Stewart L, MacCoss MJ, Baker D. Massively parallel assessment of designed protein solution properties using mass spectrometry and peptide barcoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639402. [PMID: 40060547 PMCID: PMC11888366 DOI: 10.1101/2025.02.24.639402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Library screening and selection methods can determine the binding activities of individual members of large protein libraries given a physical link between protein and nucleotide sequence, which enables identification of functional molecules by DNA sequencing. However, the solution properties of individual protein molecules cannot be probed using such approaches because they are completely altered by DNA attachment. Mass spectrometry enables parallel evaluation of protein properties amenable to physical fractionation such as solubility and oligomeric state, but current approaches are limited to libraries of 1,000 or fewer proteins. Here, we improved mass spectrometry barcoding by co-synthesizing proteins with barcodes optimized to be highly multiplexable and minimally perturbative, scaling to libraries of >5,000 proteins. We use these barcodes together with mass spectrometry to assay the solution behavior of libraries of de novo-designed monomeric scaffolds, oligomers, binding proteins and nanocages, rapidly identifying design failure modes and successes.
Collapse
Affiliation(s)
- David Feldman
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Jeremiah N Sims
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Molecular & Cellular Biology, University of Washington, Seattle, WA 98105, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98105, USA
| | - Xinting Li
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Stacey Gerben
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - David E Kim
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Christian Richardson
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
| | - Brian Koepnick
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Helen Eisenach
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Derrick R Hicks
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Basile I M Wicky
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Lukas F Milles
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Asim K Bera
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Alex Kang
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Evans Brackenbrough
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Emily Joyce
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joshua M Lubner
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Inna Goreshnik
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Dionne Vafeados
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Aza Allen
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
5
|
Jadeja S, Naplekov DK, Starovoit MR, Plachká K, Ritchie H, Lawhorn J, Sklenářová H, Lenčo J. Microflow LC-MS Bottom-Up Proteomics Using 1.5 mm Internal Diameter Columns. ACS OMEGA 2025; 10:4094-4101. [PMID: 39926544 PMCID: PMC11800007 DOI: 10.1021/acsomega.4c10591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 02/11/2025]
Abstract
Microbore columns with a 1.0 mm inner diameter (i.d.) have gained popularity in microflow liquid chromatography-mass spectrometry (LC-MS) workflows for exploratory proteomics applications due to their high throughput, robustness, and reproducibility. However, obtaining highly efficient separation using these columns remains unachievable, primarily due to significant radial flow heterogeneity caused by uneven particle packing density across the column cross-section. In this study, we evaluated the integration of a 1.5 mm i.d. column, which offers greater packing uniformity and reduced radial flow dispersion, into a microflow LC-MS setup for bottom-up proteomics analysis. The performance of the 1.5 mm i.d. column was compared with that of the 1.0 mm i.d. column using protein samples of varying complexity. The results demonstrate that 1.5 mm i.d. columns provide superior chromatographic separation and better compatibility with conventional-flow LC systems, yielding higher reproducibility and comparable protein and peptide identifications to the 1.0 mm i.d. columns at higher sample amounts. These findings suggest that 1.5 mm i.d. columns could be a suitable alternative to 1.0 mm i.d. columns for microflow LC-MS/MS proteomic analysis, particularly in laboratories with only conventional-flow LC systems.
Collapse
Affiliation(s)
- Siddharth Jadeja
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Denis K. Naplekov
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Mykyta R. Starovoit
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Kateřina Plachká
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Harald Ritchie
- Advanced
Materials Technology, 3521 Silverside Road, Suite 1-K, Wilmington, Delaware 19810, United States
| | - Jason Lawhorn
- Advanced
Materials Technology, 3521 Silverside Road, Suite 1-K, Wilmington, Delaware 19810, United States
| | - Hana Sklenářová
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Juraj Lenčo
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Segelcke D, Sondermann JR, Kappert C, Pradier B, Görlich D, Fobker M, Vollert J, Zahn PK, Schmidt M, Pogatzki-Zahn EM. Blood proteomics and multimodal risk profiling of human volunteers after incision injury: A translational study for advancing personalized pain management after surgery. Pharmacol Res 2025; 212:107580. [PMID: 39756555 DOI: 10.1016/j.phrs.2025.107580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
A significant number of patients develop chronic pain after surgery, but prediction of those who are at risk is currently not possible. Thus, prognostic prediction models that include bio-psycho-social and physiological factors in line with the complex nature of chronic pain would be urgently required. Here, we performed a translational study in male volunteers before and after an experimental incision injury. We determined multi-modal features ranging from pain characteristics and psychological questionnaires to blood plasma proteomics. Outcome measures included pain intensity ratings and the extent of the area of hyperalgesia to mechanical stimuli surrounding the incision, as a proxy of central sensitization. A multi-step logistic regression analysis was performed to predict outcome measures based on feature combinations using data-driven cross-validation and prognostic model development. Phenotype-based stratification resulted in the identification of low and high responders for both outcome measures. Regression analysis revealed prognostic proteomic, specific psychophysical, and psychological features. A combinatorial set of distinct features enabled us to predict outcome measures with increased accuracy compared to using single features. Remarkably, in high responders, protein network analysis suggested a protein signature characteristic of low-grade inflammation. Alongside, in silico drug repurposing highlighted potential treatment options employing antidiabetic and anti-inflammatory drugs. Taken together, we present here an integrated pipeline that harnesses bio-psycho-physiological data for prognostic prediction in a translational approach. This pipeline opens new avenues for clinical application with the goal of stratifying patients and identifying potential new targets, as well as mechanistic correlates, for postsurgical pain.
Collapse
Affiliation(s)
- Daniel Segelcke
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster 44651, Germany
| | - Julia R Sondermann
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, Systems Biology of Pain Group, University of Vienna, UZA II, Josef-Holaubek-Platz 2, Vienna A-1090, Austria
| | - Christin Kappert
- Max-Planck Institute for Multidisciplinary Sciences, City Campus, Hermann-Rein-Straße 3, Göttingen 37075, Germany
| | - Bruno Pradier
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Albert-Schweitzer-Campus 1, Münster 44651, Germany
| | - Manfred Fobker
- Centre of Laboratory Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster 44651, Germany
| | - Jan Vollert
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster 44651, Germany; Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Peter K Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-Universität Bochum, Bürkle de la Camp-Platz 1, Bochum 44789, Germany
| | - Manuela Schmidt
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, Systems Biology of Pain Group, University of Vienna, UZA II, Josef-Holaubek-Platz 2, Vienna A-1090, Austria.
| | - Esther M Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster 44651, Germany.
| |
Collapse
|
7
|
Burton JB, Gascard P, Pan D, Bons J, Bai R, Chen-Tanyolac C, Caruso JA, Hunter CL, Schilling B, Tlsty TD. Proteomic Analysis of Breast Cancer Subtypes Identifies Stromal Contributions that Dictate Aggressive Malignant Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634187. [PMID: 39896465 PMCID: PMC11785059 DOI: 10.1101/2025.01.21.634187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Breast cancer manifests as multiple subtypes with distinct patient outcomes and treatment strategies. Here, we optimized proteomic analysis of Formalin-Fixed Paraffin-Embedded (FFPE) specimens from patients diagnosed with five breast cancer subtypes, luminal A, luminal B, Her2, triple negative (TNBC) and metaplastic breast cancers (MBC), and from disease-free individuals undergoing reduction mammoplasty (RM). We identified and quantified ∼6,000 protein groups (with >2 peptides per protein) with significant changes in over 26% of proteins comparing each cancer subtype with control RM. Stringent statistical filters allowed us to deeply mine 576 significant conserved protein changes shared by all subtypes and protein changes unique to each subtype. The most aggressive subtype, MBC, revealed exacerbated stromal stress responses, as illustrated by a collagenolytic extracellular matrix (ECM) and immune participation biased towards neutrophils and eosinophils. Immunostaining of breast tissue sections confirmed differences across subtypes, in particular, a dramatic upregulation of SERPINH1, neutrophil-specific myeloperoxidase and eosinophil cationic protein in MBC. In summary, deep proteomic, digitalized protein abundance profiles, generated from FFPE breast cancer tissues, revealed significant changes in ECM and cellular proteins providing insight into clinically relevant states.
Collapse
|
8
|
Du H, Rose JP, Bons J, Guo L, Valentino TR, Wu F, Burton JB, Basisty N, Manwaring-Mueller M, Makhijani P, Chen N, Chang V, Winer S, Campisi J, Furman D, Nagy A, Schilling B, Winer DA. Substrate stiffness dictates unique doxorubicin-induced senescence-associated secretory phenotypes and transcriptomic signatures in human pulmonary fibroblasts. GeroScience 2025:10.1007/s11357-025-01507-x. [PMID: 39826027 DOI: 10.1007/s11357-025-01507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/31/2024] [Indexed: 01/20/2025] Open
Abstract
Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood. Here, we show that mechanical tension, modeled using cell culture substrate rigidity, influences senescent cell markers like SA-β-gal and secretory phenotypes. Comparing human primary pulmonary fibroblasts (IMR-90) cultured on physiological (2 kPa), fibrotic (50 kPa), and plastic (approximately 3 GPa) substrates, followed by senescence induction using doxorubicin, we identified unique high-stiffness-driven secretory protein profiles using mass spectrometry and transcriptomic signatures, both showing an enrichment in collagen proteins. Consistently, clusters of p21 + cells are seen in fibrotic regions of bleomycin induced pulmonary fibrosis in mice. Computational meta-analysis of single-cell RNA sequencing datasets from human interstitial lung disease confirmed these stiffness SASP genes are highly expressed in disease fibroblasts and strongly correlate with mechanotransduction and senescence-related pathways. Thus, mechanical forces shape cell senescence and their secretory phenotypes.
Collapse
Affiliation(s)
- Huixun Du
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jacob P Rose
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Joanna Bons
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Li Guo
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | | | - Fei Wu
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Jordan B Burton
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Nathan Basisty
- Longitudinal Studies Section, Translational Gerontology Branch, NIA, NIH, Baltimore, MA, USA
| | | | - Priya Makhijani
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Nan Chen
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Veronica Chang
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, , Canada
| | - Judith Campisi
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - David Furman
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Andras Nagy
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Birgit Schilling
- Buck Institute for Research On Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Daniel A Winer
- Buck Institute for Research On Aging, Novato, CA, 94945, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
9
|
Madhavan SS, Roa Diaz S, Peralta S, Nomura M, King CD, Ceyhan KE, Lin A, Bhaumik D, Foulger AC, Shah S, Blade T, Gray W, Chamoli M, Eap B, Panda O, Diaz D, Garcia TY, Stubbs BJ, Ulrich SM, Lithgow GJ, Schilling B, Verdin E, Chaudhuri AR, Newman JC. β-hydroxybutyrate is a metabolic regulator of proteostasis in the aged and Alzheimer disease brain. Cell Chem Biol 2025; 32:174-191.e8. [PMID: 39626664 PMCID: PMC11741930 DOI: 10.1016/j.chembiol.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024]
Abstract
Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). We identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility. βHB primarily provides ATP substrate during periods of reduced glucose availability, and regulates other cellular processes through protein interactions. We demonstrate βHB-induced protein insolubility is not dependent on covalent protein modification, pH, or solute load, and is observable in mouse brain in vivo after delivery of a ketone ester. This mechanism is selective for pathological proteins such as amyloid-β, and exogenous βHB ameliorates pathology in nematode models of amyloid-β aggregation toxicity. We generate libraries of the βHB-induced protein insolublome using mass spectrometry proteomics, and identify common protein domains and upstream regulators. We show enrichment of neurodegeneration-related proteins among βHB targets and the clearance of these targets from mouse brain. These data indicate a metabolically regulated mechanism of proteostasis relevant to aging and AD.
Collapse
Affiliation(s)
- Sidharth S Madhavan
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA
| | - Stephanie Roa Diaz
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA
| | - Sawyer Peralta
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | | | - Kaya E Ceyhan
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Anwen Lin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Dipa Bhaumik
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Anna C Foulger
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Samah Shah
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Thanh Blade
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Wyatt Gray
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Manish Chamoli
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Brenda Eap
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Oishika Panda
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Diego Diaz
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Thelma Y Garcia
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA
| | | | - Scott M Ulrich
- Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA
| | - Gordon J Lithgow
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - John C Newman
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA.
| |
Collapse
|
10
|
Lopez ME, Wendt D, Lawrence R, Gong K, Ong H, Yip B, Chen J, Mangini L, Handyside B, Giaramita A, Lamichhane A, Lo M, Agrawal V, Van Vleet J, Abolhesn A, Felix JB, Villalpando I, Bhat V, De Angelis R, Ru Y, Khan A, Fong S, Christianson T, Bullens S, Crawford BE, Bunting S, Aoyagi-Scharber M. Intracerebroventricular administration of a modified hexosaminidase ameliorates late-stage neurodegeneration in a GM2 mouse model. PLoS One 2025; 20:e0315005. [PMID: 39752451 PMCID: PMC11698352 DOI: 10.1371/journal.pone.0315005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/19/2024] [Indexed: 01/06/2025] Open
Abstract
The GM2 gangliosidoses, Tay-Sachs disease and Sandhoff disease, are devastating neurodegenerative disorders caused by β-hexosaminidase A (HexA) deficiency. In the Sandhoff disease mouse model, rescue potential was severely reduced when HexA was introduced after disease onset. Here, we assess the effect of recombinant HexA and HexD3, a newly engineered mimetic of HexA optimized for the treatment of Tay-Sachs disease and Sandhoff disease. Enzyme replacement therapy was administered by repeat intracerebroventricular injections in Sandhoff disease model mice with dosing beginning before and after signs of neurodegeneration. As previously observed, HexA effectively increased the lifespan of Sandhoff disease mice by 3.5-fold only when treatment was started before onset of neurodegeneration. In contrast, HexD3 halted motor decline and ameliorated late-stage disease severity even when dosing began late, after neurodegeneration onset. Additionally, HexD3 had advantages over HexA in enzyme stability, distribution potential, and homodimer activity. Overall, our data indicate that advanced therapeutics may widen the treatment window for neurodegenerative disorders.
Collapse
Affiliation(s)
- Manuel E. Lopez
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Daniel Wendt
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Roger Lawrence
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Kerui Gong
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Hoonsan Ong
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Bryan Yip
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Joseph Chen
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Linley Mangini
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Britta Handyside
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | | | | | - Melanie Lo
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Vishal Agrawal
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Jeremy Van Vleet
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Amanda Abolhesn
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Jessica B. Felix
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | | | - Vikas Bhat
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | | | - Yuanbin Ru
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Ayesha Khan
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | | | - Sherry Bullens
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | | | - Stuart Bunting
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | | |
Collapse
|
11
|
Dinh TJ, Rogg M, Cosenza‐Contreras M, Li M, Zirngibl M, Pinter N, Kurowski K, Hause F, Pauli L, Imberg F, Huynh A, Schmid M, Glavinsky I, Braun L, Van Wymersch C, Bergmann L, Ungefug X, Kunz M, Werner T, Bernhard P, Espadas G, Brombacher E, Schueler J, Sabido E, Kreutz C, Gratzke C, Werner M, Grabbert M, Bronsert P, Schell C, Schilling O. Proteomic analysis of non-muscle invasive and muscle invasive bladder cancer highlights distinct subgroups with metabolic, matrisomal, and immune hallmarks and emphasizes importance of the stromal compartment. J Pathol 2025; 265:41-56. [PMID: 39582373 PMCID: PMC11638668 DOI: 10.1002/path.6367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 11/26/2024]
Abstract
We present the proteomic profiling of 79 bladder cancers, including treatment-naïve non-muscle-invasive bladder cancer (NMIBC, n = 17), muscle-invasive bladder cancer (MIBC, n = 51), and neoadjuvant-treated MIBC (n = 11). Proteins were extracted from formalin-fixed, paraffin-embedded samples and analyzed using data-independent acquisition, yielding >8,000 quantified proteins. MIBC, compared to NMIBC, shows an extracellular matrix (ECM) and immune response signature as well as alteration of the metabolic proteome together with concomitant depletion of proteins involved in cell-cell adhesion and lipid metabolism. Neoadjuvant treatment did not consistently impact the proteome of the residual tumor mass. NMIBC presents two proteomic subgroups that correlate with histological grade and feature signatures of cell adhesion or lipid/DNA metabolism. Treatment-naïve MIBC presents three proteomic subgroups with resemblance to the basal-squamous, stroma-rich, or luminal subtypes and signatures of metabolism, immune functionality, or ECM. The metabolic subgroup presents an immune-depleted microenvironment, whereas the ECM and immune subgroups are enriched for markers of M2-like tumor-associated macrophages and dendritic cells. Markers for natural killer cells are exclusive for the ECM subgroup, and markers for cytotoxic T cells are a hallmark of the immune subgroup. Endogenous proteolysis is increased in MIBC alongside upregulation of matrix metalloproteases, including MMP-14. Genomic panel sequencing yielded the prototypical profile of prevalent FGRF3 alterations in NMIBC and TP53 alterations in MIBC. Tumor-stroma interactions of MIBC were investigated by proteomic analysis of patient-derived xenografts, highlighting specific tumor and stroma contributions to the matrisome and tumor-induced stromal proteome phenotypes. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Thien‐Ly Julia Dinh
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Manuel Rogg
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Miguel Cosenza‐Contreras
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Mujia Li
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
- Institute of Pharmaceutical SciencesUniversity of FreiburgFreiburgGermany
| | - Max Zirngibl
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Niko Pinter
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Konrad Kurowski
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Frank Hause
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of PharmacyMartin Luther University Halle‐WittenbergHalleGermany
- Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del LlobregatBarcelonaSpain
| | - Lena Pauli
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Fiona Imberg
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Alana Huynh
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Marlene Schmid
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Ievgen Glavinsky
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Luisa Braun
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Clara Van Wymersch
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Luise Bergmann
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Xenia Ungefug
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Marion Kunz
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Tilman Werner
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Spemann Graduate School of Biology and MedicineFreiburgGermany
| | - Patrick Bernhard
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Spemann Graduate School of Biology and MedicineFreiburgGermany
| | - Guadalupe Espadas
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
- University Pompeu FabraBarcelonaSpain
| | - Eva Brombacher
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Spemann Graduate School of Biology and MedicineFreiburgGermany
- Institute of Medical Biometry and StatisticsFaculty of Medicine and Medical Center – University of FreiburgFreiburgGermany
- Centre for Integrative Biological Signalling Studies (CIBSS)University of FreiburgFreiburgGermany
| | | | - Eduard Sabido
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
- University Pompeu FabraBarcelonaSpain
| | - Clemens Kreutz
- Institute of Medical Biometry and StatisticsFaculty of Medicine and Medical Center – University of FreiburgFreiburgGermany
- Centre for Integrative Biological Signalling Studies (CIBSS)University of FreiburgFreiburgGermany
| | - Christian Gratzke
- Department of Urology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Martin Werner
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
- German Cancer Consortium and German Cancer Research CenterHeidelbergGermany
| | - Markus Grabbert
- Department of Urology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Peter Bronsert
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Christoph Schell
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Oliver Schilling
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center—University of FreiburgUniversity of FreiburgFreiburgGermany
- German Cancer Consortium and German Cancer Research CenterHeidelbergGermany
| |
Collapse
|
12
|
Begelman DV, Dixit B, Truong C, King CD, Watson MA, Schilling B, Brand MD, Boominathan A. Exogenous expression of ATP8, a mitochondrial encoded protein, from the nucleus in vivo. Mol Ther Methods Clin Dev 2024; 32:101372. [PMID: 39659757 PMCID: PMC11629202 DOI: 10.1016/j.omtm.2024.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Replicative errors, inefficient repair, and proximity to sites of reactive oxygen species production make mitochondrial DNA (mtDNA) susceptible to damage with time. We explore in vivo allotopic expression (re-engineering mitochondrial genes and expressing them from the nucleus) as an approach to rescue defects arising from mtDNA mutations. We used a mouse strain C57BL/6J(mtFVB) with a natural polymorphism (m.7778 G>T) in the mitochondrial ATP8 gene that encodes a protein subunit of the ATP synthase. We generated a transgenic mouse with an epitope-tagged recoded mitochondrial-targeted ATP8 gene expressed from the ROSA26 locus in the nucleus and used the C57BL/6J(mtFVB) strain to verify successful incorporation. The allotopically expressed ATP8 protein in transgenic mice was constitutively expressed across all tested tissues, successfully transported into the mitochondria, and incorporated into ATP synthase. The ATP synthase with transgene had similar activity to non-transgenic control, suggesting successful integration and function. Exogenous ATP8 protein had no negative impact on measured mitochondrial function, metabolism, or behavior. Successful allotopic expression of a mitochondrially encoded protein in vivo in a mammal is a step toward utilizing allotopic expression as a gene therapy in humans to repair physiological consequences of mtDNA defects that may accumulate in congenital mitochondrial diseases or with age.
Collapse
Affiliation(s)
- David V. Begelman
- SENS Research Foundation, Mountain View, CA 94041, USA
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Bhavna Dixit
- SENS Research Foundation, Mountain View, CA 94041, USA
| | - Carly Truong
- SENS Research Foundation, Mountain View, CA 94041, USA
| | | | - Mark A. Watson
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | | | | |
Collapse
|
13
|
Du H, Rose JP, Bons J, Guo L, Valentino TR, Wu F, Burton JB, Basisty N, Manwaring-Mueller M, Makhijani P, Chen N, Chang V, Winer S, Campisi J, Furman D, Nagy A, Schilling B, Winer DA. Substrate Stiffness Dictates Unique Doxorubicin-induced Senescence-associated Secretory Phenotypes and Transcriptomic Signatures in Human Pulmonary Fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623471. [PMID: 39605579 PMCID: PMC11601487 DOI: 10.1101/2024.11.18.623471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood. Here, we show that mechanical tension, modeled using cell culture substrate rigidity, influences senescent cell markers like SA-β-gal and secretory phenotypes. Comparing human primary pulmonary fibroblasts (IMR-90) cultured on physiological (2 kPa), fibrotic (50 kPa), and plastic (approximately 3 GPa) substrates, followed by senescence induction using doxorubicin, we identified unique high-stiffness-driven secretory protein profiles using mass spectrometry and transcriptomic signatures, both showing an enrichment in collagen proteins. Consistently, clusters of p21+ cells are seen in fibrotic regions of bleomycin induced pulmonary fibrosis in mice. Computational meta-analysis of single-cell RNA sequencing datasets from human interstitial lung disease confirmed these stiffness SASP genes are highly expressed in disease fibroblasts and strongly correlate with mechanotransduction and senescence-related pathways. Thus, mechanical forces shape cell senescence and their secretory phenotypes.
Collapse
Affiliation(s)
- Huixun Du
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jacob P Rose
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Li Guo
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | | | - Fei Wu
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Nathan Basisty
- Longitudinal Studies Section, Translational Gerontology Branch, NIA, NIH, Baltimore, Maryland, USA
| | | | | | - Nan Chen
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Veronica Chang
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, CA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Andras Nagy
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel A Winer
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
14
|
Ahn HS, Lee SY, Kang MJ, Hong SB, Song JW, Do KH, Yeom J, Yu J, Oh Y, Hong JY, Chung EH, Kim K, Hong SJ. Polyhexamethylene guanidine aerosol causes irreversible changes in blood proteins that associated with the severity of lung injury. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135359. [PMID: 39126856 DOI: 10.1016/j.jhazmat.2024.135359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Polyhexamethylene guanidine (PHMG) is a positively charged polymer used as a disinfectant that kills microbes but can cause pulmonary fibrosis if inhaled. After the long-term risks were confirmed in South Korea, it became crucial to measure toxicity through diverse surrogate biomarkers, not only proteins, especially after these hazardous chemicals had cleared from the body. These biomarkers, identified by their biological functions rather than simple numerical calculations, effectively explained the imbalance of pulmonary surfactant caused by fibrosis from PHMG exposure. These long-term studies on children exposed to PHMG has shown that blood protein indicators, primarily related to apolipoproteins and extracellular matrix, can distinguish the degree of exposure to humidifier disinfectants (HDs). We defined the extreme gradient boosting models and computed reflection scores based on just ten selected proteins, which were also verified in adult women exposed to HD. The reflection scores successfully discriminated between the HD-exposed and unexposed groups in both children and adult females (AUROC: 0.957 and 0.974, respectively) and had a strong negative correlation with lung function indicators. Even after an average of more than 10 years, blood is still considered a meaningful specimen for assessing the impact of environmental exposure to toxic substances, with proteins providing in identifying the pathological severity of such conditions.
Collapse
Affiliation(s)
- Hee-Sung Ahn
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul, South Korea.
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Mi-Jin Kang
- Humidifier Disinfectant Health Center, Asan Medical Center, Seoul, South Korea.
| | - Sang Bum Hong
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Kyung Hyun Do
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Jeounghun Yeom
- Prometabio Research Institute, prometabio co., ltd., Gyeonggi-do, South Korea.
| | - Jiyoung Yu
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul, South Korea.
| | - Yumi Oh
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Jeong Yeon Hong
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Eun Hee Chung
- Department of Pediatrics, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea.
| | - Kyunggon Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul, South Korea; Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
15
|
Tsantilas KA, Merrihew GE, Robbins JE, Johnson RS, Park J, Plubell DL, Canterbury JD, Huang E, Riffle M, Sharma V, MacLean BX, Eckels J, Wu CC, Bereman MS, Spencer SE, Hoofnagle AN, MacCoss MJ. A Framework for Quality Control in Quantitative Proteomics. J Proteome Res 2024; 23:4392-4408. [PMID: 39248652 PMCID: PMC11973981 DOI: 10.1021/acs.jproteome.4c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A thorough evaluation of the quality, reproducibility, and variability of bottom-up proteomics data is necessary at every stage of a workflow, from planning to analysis. We share vignettes applying adaptable quality control (QC) measures to assess sample preparation, system function, and quantitative analysis. System suitability samples are repeatedly measured longitudinally with targeted methods, and we share examples where they are used on three instrument platforms to identify severe system failures and track function over months to years. Internal QCs incorporated at the protein and peptide levels allow our team to assess sample preparation issues and to differentiate system failures from sample-specific issues. External QC samples prepared alongside our experimental samples are used to verify the consistency and quantitative potential of our results during batch correction and normalization before assessing biological phenotypes. We combine these controls with rapid analysis (Skyline), longitudinal QC metrics (AutoQC), and server-based data deposition (PanoramaWeb). We propose that this integrated approach to QC is a useful starting point for groups to facilitate rapid quality control assessment to ensure that valuable instrument time is used to collect the best quality data possible. Data are available on Panorama Public and ProteomeXchange under the identifier PXD051318.
Collapse
Affiliation(s)
- Kristine A. Tsantilas
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Julia E. Robbins
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Richard S. Johnson
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Jea Park
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Deanna L. Plubell
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Jesse D. Canterbury
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Eric Huang
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Washington 98195, United States
| | - Vagisha Sharma
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Brendan X. MacLean
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Josh Eckels
- LabKey, 500 Union St #1000, Seattle, Washington 98101, United States
| | - Christine C. Wu
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Michael S. Bereman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607
| | - Sandra E. Spencer
- Canada's Michael Smith Genome Sciences Centre (BC Cancer Research Institute), University of British Columbia, Vancouver, British Columbia V5Z 4S6, Canada
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| |
Collapse
|
16
|
Sun Y, Xing Z, Liang S, Miao Z, Zhuo LB, Jiang W, Zhao H, Gao H, Xie Y, Zhou Y, Yue L, Cai X, Chen YM, Zheng JS, Guo T. metaExpertPro: A Computational Workflow for Metaproteomics Spectral Library Construction and Data-Independent Acquisition Mass Spectrometry Data Analysis. Mol Cell Proteomics 2024; 23:100840. [PMID: 39278598 PMCID: PMC11795700 DOI: 10.1016/j.mcpro.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/04/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Analysis of large-scale data-independent acquisition mass spectrometry metaproteomics data remains a computational challenge. Here, we present a computational pipeline called metaExpertPro for metaproteomics data analysis. This pipeline encompasses spectral library generation using data-dependent acquisition MS, protein identification and quantification using data-independent acquisition mass spectrometry, functional and taxonomic annotation, as well as quantitative matrix generation for both microbiota and hosts. By integrating FragPipe and DIA-NN, metaExpertPro offers compatibility with both Orbitrap and timsTOF MS instruments. To evaluate the depth and accuracy of identification and quantification, we conducted extensive assessments using human fecal samples and benchmark tests. Performance tests conducted on human fecal samples indicated that metaExpertPro quantified an average of 45,000 peptides in a 60-min diaPASEF injection. Notably, metaExpertPro outperformed three existing software tools by characterizing a higher number of peptides and proteins. Importantly, metaExpertPro maintained a low factual false discovery rate of approximately 5% for protein groups across four benchmark tests. Applying a filter of five peptides per genus, metaExpertPro achieved relatively high accuracy (F-score = 0.67-0.90) in genus diversity and showed a high correlation (rSpearman = 0.73-0.82) between the measured and true genus relative abundance in benchmark tests. Additionally, the quantitative results at the protein, taxonomy, and function levels exhibited high reproducibility and consistency across the commonly adopted public human gut microbial protein databases IGC and UHGP. In a metaproteomic analysis of dyslipidemia patients, metaExpertPro revealed characteristic alterations in microbial functions and potential interactions between the microbiota and the host.
Collapse
Affiliation(s)
- Yingying Sun
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Ziyuan Xing
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Shuang Liang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zelei Miao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lai-Bao Zhuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Jiang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Hui Zhao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huanhuan Gao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yuting Xie
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Liang Yue
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Ren L, Shi L, Zheng Y. Reference Materials for Improving Reliability of Multiomics Profiling. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:487-521. [PMID: 39723231 PMCID: PMC11666855 DOI: 10.1007/s43657-023-00153-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2024]
Abstract
High-throughput technologies for multiomics or molecular phenomics profiling have been extensively adopted in biomedical research and clinical applications, offering a more comprehensive understanding of biological processes and diseases. Omics reference materials play a pivotal role in ensuring the accuracy, reliability, and comparability of laboratory measurements and analyses. However, the current application of omics reference materials has revealed several issues, including inappropriate selection and underutilization, leading to inconsistencies across laboratories. This review aims to address these concerns by emphasizing the importance of well-characterized reference materials at each level of omics, encompassing (epi-)genomics, transcriptomics, proteomics, and metabolomics. By summarizing their characteristics, advantages, and limitations along with appropriate performance metrics pertinent to study purposes, we provide an overview of how omics reference materials can enhance data quality and data integration, thus fostering robust scientific investigations with omics technologies.
Collapse
Affiliation(s)
- Luyao Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
- Shanghai Cancer Center, Fudan University, Shanghai, 200032 China
- International Human Phenome Institutes, Shanghai, 200438 China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| |
Collapse
|
18
|
Crawford AJ, Forjaz A, Bons J, Bhorkar I, Roy T, Schell D, Queiroga V, Ren K, Kramer D, Huang W, Russo GC, Lee MH, Wu PH, Shih IM, Wang TL, Atkinson MA, Schilling B, Kiemen AL, Wirtz D. Combined assembloid modeling and 3D whole-organ mapping captures the microanatomy and function of the human fallopian tube. SCIENCE ADVANCES 2024; 10:eadp6285. [PMID: 39331707 PMCID: PMC11430475 DOI: 10.1126/sciadv.adp6285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
The fallopian tubes play key roles in processes from pregnancy to ovarian cancer where three-dimensional (3D) cellular and extracellular interactions are important to their pathophysiology. Here, we develop a 3D multicompartment assembloid model of the fallopian tube that molecularly, functionally, and architecturally resembles the organ. Global label-free proteomics, innovative assays capturing physiological functions of the fallopian tube (i.e., oocyte transport), and whole-organ single-cell resolution mapping are used to validate these assembloids through a multifaceted platform with direct comparisons to fallopian tube tissue. These techniques converge at a unique combination of assembloid parameters with the highest similarity to the reference fallopian tube. This work establishes (i) an optimized model of the human fallopian tubes for in vitro studies of their pathophysiology and (ii) an iterative platform for customized 3D in vitro models of human organs that are molecularly, functionally, and microanatomically accurate by combining tunable assembloid and tissue mapping methods.
Collapse
Affiliation(s)
- Ashleigh J Crawford
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - André Forjaz
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Isha Bhorkar
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Triya Roy
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - David Schell
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vasco Queiroga
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kehan Ren
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Donald Kramer
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biotechnology, Johns Hopkins Advanced Academic Programs, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wilson Huang
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gabriella C Russo
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Meng-Horng Lee
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pei-Hsun Wu
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tian-Li Wang
- Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark A Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA
- Departments of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA
| | | | - Ashley L Kiemen
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Denis Wirtz
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Wei D, Sun J, Luo Z, Zhang H, Zhang G, Liu Y, Cai Y, Gu Z, Xie Z, Zhang Y. Label-Free Multiple Reaction Monitoring-Mass Spectrometry for Quantifying Phosphopeptides from Extracellular Vesicles. Anal Chem 2024. [PMID: 39265084 DOI: 10.1021/acs.analchem.4c03492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Increasing efforts have been made to develop proteins in circulating extracellular vesicles (EVs) as potential disease markers. It is in particular intriguing to measure post-translational modifications (PTMs) such as phosphorylation, preserved and stable in EVs. To facilitate the quantitative measurement of EV protein phosphorylation for potential clinical use, a label-free (LF) multiple reaction monitoring (MRM) strategy is introduced by utilizing a synthetic phosphopeptide set (phos-iRT) as the internal standards and a local normalization method. The quantitation method was investigated in terms of its linear dynamic range, sensitivity, accuracy, precision, and matrix effect, with a dynamic range spanning from 10 to 1000 ng/mL and an accuracy ranging from 82.4 to 116.8% for EV samples. Then, the LF-MRM-based local normalization method was utilized to evaluate and optimize our recently developed EVTOP method for the enrichment of phosphopeptides from EVs. Finally, we applied the optimized EV enrichment approach and the LF-MRM-based local normalization method to quantify phosphopeptides in urine EVs from patients with prostate cancer (PCa) and healthy individuals, showcasing the strategy's superiority in quantifying phosphopeptides without isotopic internal standards and validating that the method is generally applicable in MRM-based EV phosphopeptide quantification.
Collapse
Affiliation(s)
- Dong Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhuojun Luo
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Guiyuan Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Yufeng Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Yuhan Cai
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Ying Zhang
- Department of Chemistry, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Starovoit M, Jadeja S, Gazárková T, Lenčo J. Mitigating In-Column Artificial Modifications in High-Temperature LC-MS for Bottom-Up Proteomics and Quality Control of Protein Biopharmaceuticals. Anal Chem 2024; 96:14531-14540. [PMID: 39196537 PMCID: PMC11391404 DOI: 10.1021/acs.analchem.4c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Elevating the column temperature is an effective strategy for improving the chromatographic separation of peptides. However, high temperatures induce artificial modifications that compromise the quality of the peptide analysis. Here, we present a novel high-temperature LC-MS method that retains the benefits of a high column temperature while significantly reducing peptide modification and degradation during reversed-phase liquid chromatography. Our approach leverages a short inline trap column maintained at a near-ambient temperature installed upstream of a separation column. The retentivity and dimensions of the trap column were optimized to shorten the residence time of peptides in the heated separation column without compromising the separation performance. This easy-to-implement approach increased peak capacity by 1.4-fold within a 110 min peptide mapping of trastuzumab and provided 10% more peptide identifications in exploratory LC-MS proteomic analyses compared with analyses conducted at 30 °C while maintaining the extent of modifications close to the background level. In the peptide mapping of biopharmaceuticals, where in-column modifications can falsely elevate the levels of some critical quality attributes, the method reduced temperature-related artifacts by 66% for N-terminal pyroGlu and 63% for oxidized Met compared to direct injection at 60 °C, thus improving reliability in quality control of protein drugs. Our findings represent a promising advancement in LC-MS methodology, providing researchers and industry professionals with a valuable tool for improving the chromatographic separation of peptides while significantly reducing the unwanted modifications.
Collapse
Affiliation(s)
- Mykyta
R. Starovoit
- Department of Analytical
Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department of Analytical
Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Taťána Gazárková
- Department of Analytical
Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Juraj Lenčo
- Department of Analytical
Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
21
|
Braun A, Rowntree LC, Huang Z, Pandey K, Thuesen N, Li C, Petersen J, Littler DR, Raji S, Nguyen THO, Jappe Lange E, Persson G, Schantz Klausen M, Kringelum J, Chung S, Croft NP, Faridi P, Ayala R, Rossjohn J, Illing PT, Scull KE, Ramarathinam S, Mifsud NA, Kedzierska K, Sørensen AB, Purcell AW. Mapping the immunopeptidome of seven SARS-CoV-2 antigens across common HLA haplotypes. Nat Commun 2024; 15:7547. [PMID: 39214998 PMCID: PMC11364864 DOI: 10.1038/s41467-024-51959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Most COVID-19 vaccines elicit immunity against the SARS-CoV-2 Spike protein. However, Spike protein mutations in emerging strains and immune evasion by the SARS-CoV-2 virus demonstrates the need to develop more broadly targeting vaccines. To facilitate this, we use mass spectrometry to identify immunopeptides derived from seven relatively conserved structural and non-structural SARS-CoV-2 proteins (N, E, Nsp1/4/5/8/9). We use two different B-lymphoblastoid cell lines to map Human Leukocyte Antigen (HLA) class I and class II immunopeptidomes covering some of the prevalent HLA types across the global human population. We employ DNA plasmid transfection and direct antigen delivery approaches to sample different antigens and find 248 unique HLA class I and HLA class II bound peptides with 71 derived from N, 12 from E, 28 from Nsp1, 19 from Nsp4, 73 from Nsp8 and 45 peptides derived from Nsp9. Over half of the viral peptides are unpublished. T cell reactivity tested against 56 of the detected peptides shows CD8+ and CD4+ T cell responses against several peptides from the N, E, and Nsp9 proteins. Results from this study will aid the development of next-generation COVID vaccines targeting epitopes from across a number of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Asolina Braun
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ziyi Huang
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Chen Li
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jan Petersen
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dene R Littler
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Shabana Raji
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | | | | | | | - Shanzou Chung
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pouya Faridi
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rochelle Ayala
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK
| | - Patricia T Illing
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine E Scull
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sri Ramarathinam
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicole A Mifsud
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
22
|
Jadeja S, Karsakov AA, Sklenářová H, Lenčo J. Evaluating C 18 stationary phases with a positively charged surface for proteomic LC-MS applications using mobile phase acidified with reduced formic acid concentration. J Chromatogr A 2024; 1730:465142. [PMID: 39002507 DOI: 10.1016/j.chroma.2024.465142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
We have recently demonstrated the ability of a C18 stationary phase with a positively charged surface (PCS-C18) to provide superior chromatographic separation of peptides using mobile phase acidified with a mere 0.01 % formic acid, significantly improving MS sensitivity. Here, we examined three columns packed with different PCS-C18 phases using the MS-favorable mobile phase acidified with low formic acid concentrations to establish the impact of separation performance and better MS sensitivity on peptide identifications. The surface charge interaction was evaluated using the retention of nitrate. The highest interaction was observed for the AdvanceBio Peptide Plus column. A surface charge-dependent shift in the retention time of peptides was confirmed with a change in formic acid concentration in the mobile phase. The separation performance of the columns with MS-favorable mobile phase acidified with low concentrations of formic acid was evaluated using well-characterized peptides. The loading capacity was assessed using a basic peptide with three lysine residues. Good chromatographic peak shapes and high loading capacity were observed for the Acquity Premier CSH C18 column, even when using a mobile phase acidified with 0.01 % formic acid. The extent of improvement in peptide identification when using reduced formic acid concentration was evaluated by analyzing the tryptic digest of trastuzumab and tryptic digest of whole bacteria cell lysate. Each column provided improved MS signal intensity and peptide identification when using the mobile phase with 0.01 % formic acid. The ability of the Acquity Premier CSH C18 column to provide better separation of peptides, even with a reduced formic acid concentration in the mobile phase, boosted MS signal intensity by 65 % and increased the number of identified peptides from the bacterial sample by 19 %. Our study confirms that significant improvement in the proteomic outputs can be achieved without additional costs only by tailoring the chemistry of the stationary phase to the composition of the mobile phase. Our results can help researchers understand the retention mechanism of peptides on the PCS-C18 stationary phases using low-ionic strength mobile phases and, more importantly, select the best-suited stationary phases for their LC-MS proteomic applications.
Collapse
Affiliation(s)
- Siddharth Jadeja
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Aleksandr A Karsakov
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Hana Sklenářová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Juraj Lenčo
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic.
| |
Collapse
|
23
|
Tsantilas KA, Merrihew GE, Robbins JE, Johnson RS, Park J, Plubell DL, Canterbury JD, Huang E, Riffle M, Sharma V, MacLean BX, Eckels J, Wu CC, Bereman MS, Spencer SE, Hoofnagle AN, MacCoss MJ. A framework for quality control in quantitative proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589318. [PMID: 38645098 PMCID: PMC11030400 DOI: 10.1101/2024.04.12.589318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
A thorough evaluation of the quality, reproducibility, and variability of bottom-up proteomics data is necessary at every stage of a workflow from planning to analysis. We share vignettes applying adaptable quality control (QC) measures to assess sample preparation, system function, and quantitative analysis. System suitability samples are repeatedly measured longitudinally with targeted methods, and we share examples where they are used on three instrument platforms to identify severe system failures and track function over months to years. Internal QCs incorporated at protein and peptide-level allow our team to assess sample preparation issues and to differentiate system failures from sample-specific issues. External QC samples prepared alongside our experimental samples are used to verify the consistency and quantitative potential of our results during batch correction and normalization before assessing biological phenotypes. We combine these controls with rapid analysis (Skyline), longitudinal QC metrics (AutoQC), and server-based data deposition (PanoramaWeb). We propose that this integrated approach to QC is a useful starting point for groups to facilitate rapid quality control assessment to ensure that valuable instrument time is used to collect the best quality data possible. Data are available on Panorama Public and on ProteomeXchange under the identifier PXD051318.
Collapse
Affiliation(s)
- Kristine A. Tsantilas
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Julia E. Robbins
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Richard S. Johnson
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Jea Park
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Deanna L. Plubell
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Jesse D. Canterbury
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Eric Huang
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Washington 98195, United States
| | - Vagisha Sharma
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Brendan X. MacLean
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Josh Eckels
- LabKey, 500 Union St #1000, Seattle, Washington 98101, United States
| | - Christine C. Wu
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Michael S. Bereman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607
| | - Sandra E. Spencer
- Canada’s Michael Smith Genome Sciences Centre (BC Cancer Research Institute), University of British Columbia, Vancouver, British Columbia V5Z 4S6, Canada
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| |
Collapse
|
24
|
Schmidt L, Saynisch M, Hoegsbjerg C, Schmidt A, Mackey A, Lackmann JW, Müller S, Koch M, Brachvogel B, Kjaer M, Antczak P, Krüger M. Spatial proteomics of skeletal muscle using thin cryosections reveals metabolic adaptation at the muscle-tendon transition zone. Cell Rep 2024; 43:114374. [PMID: 38900641 DOI: 10.1016/j.celrep.2024.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/05/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Morphological studies of skeletal muscle tissue provide insights into the architecture of muscle fibers, the surrounding cells, and the extracellular matrix (ECM). However, a spatial proteomics analysis of the skeletal muscle including the muscle-tendon transition zone is lacking. Here, we prepare cryotome muscle sections of the mouse soleus muscle and measure each slice using short liquid chromatography-mass spectrometry (LC-MS) gradients. We generate 3,000 high-resolution protein profiles that serve as the basis for a network analysis to reveal the complex architecture of the muscle-tendon junction. Among the protein profiles that increase from muscle to tendon, we find proteins related to neuronal activity, fatty acid biosynthesis, and the renin-angiotensin system (RAS). Blocking the RAS in cultured mouse tenocytes using losartan reduces the ECM synthesis. Overall, our analysis of thin cryotome sections provides a spatial proteome of skeletal muscle and reveals that the RAS acts as an additional regulator of the matrix within muscle-tendon junctions.
Collapse
Affiliation(s)
- Luisa Schmidt
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Michael Saynisch
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Christian Hoegsbjerg
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Part of IOC Research Center Copenhagen and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Abigail Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Part of IOC Research Center Copenhagen and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan-Wilm Lackmann
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Stefan Müller
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Part of IOC Research Center Copenhagen and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philipp Antczak
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
25
|
Zhang Y, Hu C, Wu X, Song J. Calib-RT: an open source python package for peptide retention time calibration in DIA mass spectrometry data. Bioinformatics 2024; 40:btae417. [PMID: 38960865 PMCID: PMC11223842 DOI: 10.1093/bioinformatics/btae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024] Open
Abstract
MOTIVATION The data independent acquisition (DIA) mass spectrometry (MS) method is increasingly popular in the field of proteomics. But the loss of the correspondence between peptide ions and their spectra in DIA makes the identification challenging. One effective approach to reduce false positive identification is to calculate the deviation between the peptide's estimated retention time (RT) and measured RT. During this process, scaling the spectral library RT into the estimated RT, known as the RT calibration, is a prerequisite for calculating the deviation. Currently, within the DIA algorithm ecosystem, there is a lack of engine-independent and readily usable RT calibration toolkits. RESULTS In this work, we introduce Calib-RT, a RT calibration method tailored to the characteristics of RT data. This method can achieve the nonlinear calibration across various data scales and tolerate a certain level of noise interference. Calib-RT is expected to enrich the open source DIA algorithm toolchain and assist in the development of DIA identification algorithms. AVAILABILITY AND IMPLEMENTATION Calib-RT is released as an open source software under the MIT license and can be installed from PyPi as a python module. The source code is available on GitHub at https://github.com/chenghui03/Calib_RT.
Collapse
Affiliation(s)
- Yichi Zhang
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, China
| | - Chenghui Hu
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, China
| | - Xiaohui Wu
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, China
| | - Jian Song
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, China
| |
Collapse
|
26
|
Paramasivan S, Ashick M, Dudley KJ, Satake N, Mills PC, Sadowski P, Nagaraj SH. VPBrowse: Genome-based representation of MS/MS spectra to quantify 10,000 bovine proteins. Proteomics 2024; 24:e2300431. [PMID: 38468111 DOI: 10.1002/pmic.202300431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
SWATH is a data acquisition strategy acclaimed for generating quantitatively accurate and consistent measurements of proteins across multiple samples. Its utility for proteomics studies in nonlaboratory animals, however, is currently compromised by the lack of sufficiently comprehensive and reliable public libraries, either experimental or predicted, and relevant platforms that support their sharing and utilization in an intuitive manner. Here we describe the development of the Veterinary Proteome Browser, VPBrowse (http://browser.proteo.cloud/), an on-line platform for genome-based representation of the Bos taurus proteome, which is equipped with an interactive database and tools for searching, visualization, and building quantitative mass spectrometry assays. In its current version (VPBrowse 1.0), it contains high-quality fragmentation spectra acquired on QToF instrument for over 36,000 proteotypic peptides, the experimental evidence for over 10,000 proteins. Data can be downloaded in different formats to enable analysis using popular software packages for SWATH data processing whilst normalization to iRT scale ensures compatibility with diverse chromatography systems. When applied to published blood plasma dataset from the biomarker discovery study, the resource supported label-free quantification of additional proteins not reported by the authors previously including PSMA4, a tissue leakage protein and a promising candidate biomarker of animal's response to dehorning-related injury.
Collapse
Affiliation(s)
- Selvam Paramasivan
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Mohamed Ashick
- LifeBytes India Private Limited, Bengaluru, Karnataka, India
| | - Kevin J Dudley
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nana Satake
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Paul C Mills
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
He G, He Q, Cheng J, Yu R, Shuai J, Cao Y. ProPept-MT: A Multi-Task Learning Model for Peptide Feature Prediction. Int J Mol Sci 2024; 25:7237. [PMID: 39000344 PMCID: PMC11241495 DOI: 10.3390/ijms25137237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
In the realm of quantitative proteomics, data-independent acquisition (DIA) has emerged as a promising approach, offering enhanced reproducibility and quantitative accuracy compared to traditional data-dependent acquisition (DDA) methods. However, the analysis of DIA data is currently hindered by its reliance on project-specific spectral libraries derived from DDA analyses, which not only limits proteome coverage but also proves to be a time-intensive process. To overcome these challenges, we propose ProPept-MT, a novel deep learning-based multi-task prediction model designed to accurately forecast key features such as retention time (RT), ion intensity, and ion mobility (IM). Leveraging advanced techniques such as multi-head attention and BiLSTM for feature extraction, coupled with Nash-MTL for gradient coordination, ProPept-MT demonstrates superior prediction performance. Integrating ion mobility alongside RT, mass-to-charge ratio (m/z), and ion intensity forms 4D proteomics. Then, we outline a comprehensive workflow tailored for 4D DIA proteomics research, integrating the use of 4D in silico libraries predicted by ProPept-MT. Evaluation on a benchmark dataset showcases ProPept-MT's exceptional predictive capabilities, with impressive results including a 99.9% Pearson correlation coefficient (PCC) for RT prediction, a median dot product (DP) of 96.0% for fragment ion intensity prediction, and a 99.3% PCC for IM prediction on the test set. Notably, ProPept-MT manifests efficacy in predicting both unmodified and phosphorylated peptides, underscoring its potential as a valuable tool for constructing high-quality 4D DIA in silico libraries.
Collapse
Affiliation(s)
- Guoqiang He
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Qingzu He
- Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Jinyan Cheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Rongwen Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Jianwei Shuai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yi Cao
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
28
|
Zhang R, Bons J, Rose JP, Schilling B, Verdin E. Protocol for mass spectrometric profiling of lysine malonylation by lysine acetyltransferase in CRISPRi K562 cell lines. STAR Protoc 2024; 5:103074. [PMID: 38771695 PMCID: PMC11135037 DOI: 10.1016/j.xpro.2024.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
Lysine malonylation is a protein posttranslational modification. We present a protocol to generate stable gene-knockdown K562 cell lines through lentiviral infection of a CRISPR interference (CRISPRi) system followed by lysine malonylation measurement using mass spectrometry (MS). We detail guide RNA (gRNA) vector cloning, lentiviral infection, cell line purification, protein digestion, malonyl-lysine enrichment, desalting, and MS acquisition and analysis. For complete details on the use and execution of this protocol, please refer to Zhang et al.1 and Bons et al.2.
Collapse
Affiliation(s)
- Ran Zhang
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | - Joanna Bons
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Jacob P Rose
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|
29
|
Freestone J, Noble WS, Keich U. Analysis of Tandem Mass Spectrometry Data with CONGA: Combining Open and Narrow Searches with Group-Wise Analysis. J Proteome Res 2024; 23:1894-1906. [PMID: 38652578 DOI: 10.1021/acs.jproteome.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Searching for tandem mass spectrometry proteomics data against a database is a well-established method for assigning peptide sequences to observed spectra but typically cannot identify peptides harboring unexpected post-translational modifications (PTMs). Open modification searching aims to address this problem by allowing a spectrum to match a peptide even if the spectrum's precursor mass differs from the peptide mass. However, expanding the search space in this way can lead to a loss of statistical power to detect peptides. We therefore developed a method, called CONGA (combining open and narrow searches with group-wise analysis), that takes into account results from both types of searches─a traditional "narrow window" search and an open modification search─while carrying out rigorous false discovery rate control. The result is an algorithm that provides the best of both worlds: the ability to detect unexpected PTMs without a concomitant loss of power to detect unmodified peptides.
Collapse
Affiliation(s)
- Jack Freestone
- School of Mathematics and Statistics F07, University of Sydney, NSW 2006, Australia
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Uri Keich
- School of Mathematics and Statistics F07, University of Sydney, NSW 2006, Australia
| |
Collapse
|
30
|
Zang T, Fear MW, Parker TJ, Holland AJA, Martin L, Langley D, Kimble R, Wood FM, Cuttle L. Inflammatory proteins and neutrophil extracellular traps increase in burn blister fluid 24h after burn. Burns 2024; 50:1180-1191. [PMID: 38490838 DOI: 10.1016/j.burns.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Burn wound blister fluid is a valuable matrix for understanding the biological pathways associated with burn injury. In this study, 152 blister fluid samples collected from paediatric burn wounds at three different hospitals were analysed using mass spectrometry proteomic techniques. The protein abundance profile at different days after burn indicated more proteins were associated with cellular damage/repair in the first 24 h, whereas after this point more proteins were associated with antimicrobial defence. The inflammatory proteins persisted at a high level in the blister fluid for more than 7 days. This may indicate that removal of burn blisters prior to two days after burn is optimal to prevent excessive or prolonged inflammation in the wound environment. Additionally, many proteins associated with the neutrophil extracellular trap (NET) pathway were increased after burn, further implicating NETs in the post-burn inflammatory response. NET inhibitors may therefore be a potential treatment to reduce post-burn inflammation and coagulation pathology and enhance burn wound healing outcomes.
Collapse
Affiliation(s)
- Tuo Zang
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, South Brisbane, Queensland, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Tony J Parker
- Queensland University of Technology (QUT), School of Biomedical Sciences, Faculty of Health, Kelvin Grove, Queensland, Australia
| | - Andrew J A Holland
- The Children's Hospital at Westmead Burns Unit, Kids Research Institute, Department of Paediatrics and Child Health, Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Lisa Martin
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Donna Langley
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, South Brisbane, Queensland, Australia
| | - Roy Kimble
- Children's Health Queensland, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia; Burns Service of Western Australia, Perth Children's Hospital and Fiona Stanley Hospital, Perth, WA, Australia
| | - Leila Cuttle
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, South Brisbane, Queensland, Australia.
| |
Collapse
|
31
|
Plubell DL, Huang E, Spencer SE, Poston K, Montine TJ, MacCoss MJ. Data Independent Acquisition to Inform the Development of Targeted Proteomics Assays Using a Triple Quadrupole Mass Spectrometer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596554. [PMID: 38853953 PMCID: PMC11160738 DOI: 10.1101/2024.05.29.596554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mass spectrometry based targeted proteomics methods provide sensitive and high-throughput analysis of selected proteins. To develop a targeted bottom-up proteomics assay, peptides must be evaluated as proxies for the measurement of a protein or proteoform in a biological matrix. Candidate peptide selection typically relies on predetermined biochemical properties, data from semi-stochastic sampling, or by empirical measurements. These strategies require extensive testing and method refinement due to the difficulties associated with prediction of peptide response in the biological matrix of interest. Gas-phase fractionated (GPF) narrow window data-independent acquisition (DIA) aids in the development of reproducible selected reaction monitoring (SRM) assays by providing matrix-specific information on peptide detectability and quantification by mass spectrometry. To demonstrate the suitability of DIA data for selecting peptide targets, we reimplement a portion of an existing assay to measure 98 Alzheimer's disease proteins in cerebrospinal fluid (CSF). Peptides were selected from GPF-DIA based on signal intensity and reproducibility. The resulting SRM assay exhibits similar quantitative precision to published data, despite the inclusion of different peptides between the assays. This workflow enables development of new assays without additional up-front data acquisition, demonstrated here through generation of a separate assay for an unrelated set of proteins in CSF from the same dataset.
Collapse
Affiliation(s)
- Deanna L Plubell
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195, USA
| | - Eric Huang
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195, USA
| | - Sandra E Spencer
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195, USA
| | - Kathleen Poston
- Stanford University, Department of Neurology & Neurological Sciences, Stanford, CA, 94305, USA
| | - Thomas J Montine
- Stanford University, Department of Pathology, Stanford, CA, 94305, USA
| | - Michael J MacCoss
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195, USA
| |
Collapse
|
32
|
Deinhardt-Emmer S, Deshpande S, Kitazawa K, Herman AB, Bons J, Rose JP, Kumar PA, Anerillas C, Neri F, Ciotlos S, Perez K, Köse-Vogel N, Häder A, Abdelmohsen K, Löffler B, Gorospe M, Desprez PY, Melov S, Furman D, Schilling B, Campisi J. Role of the Senescence-Associated Factor Dipeptidyl Peptidase 4 in the Pathogenesis of SARS-CoV-2 Infection. Aging Dis 2024; 15:1398-1415. [PMID: 37728586 PMCID: PMC11081172 DOI: 10.14336/ad.2023.0812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/12/2023] [Indexed: 09/21/2023] Open
Abstract
During cellular senescence, persistent growth arrest and changes in protein expression programs are accompanied by a senescence-associated secretory phenotype (SASP). In this study, we detected the upregulation of the SASP-related protein dipeptidyl peptidase 4 (DDP4) in human primary lung cells rendered senescent by exposure to ionizing radiation. DPP4 is an exopeptidase that plays a crucial role in the cleavage of various proteins, resulting in the loss of N-terminal dipeptides and proinflammatory effects. Interestingly, our data revealed an association between severe coronavirus disease 2019 (COVID-19) and DDP4, namely that DPP4 levels increased in the plasma of patients with COVID-19 and were correlated with age and disease progression. Although we could not determine the direct effect of DDP4 on viral replication, mechanistic studies in cell culture revealed a negative impact on the expression of the tight junction protein zonula occludens-1 (ZO-1), which contributes to epithelial barrier function. Mass spectrometry analysis indicated that DPP4 overexpressing cells exhibited a decrease in ZO-1 and increased expression of pro-inflammatory cytokines and chemokines. By investigating the effect of DPP4 on the barrier function of human primary cells, we detected an increase in ZO-1 using DPP4 inhibitors. These results provide an important contribution to our understanding of DPP4 in the context of senescence, suggesting that DPP4 plays a major role as part of the SASP. Our results provide evidence that cellular senescence, a hallmark of aging, has an important impact on respiratory infections.
Collapse
Affiliation(s)
- Stefanie Deinhardt-Emmer
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
- Institute of Medical Microbiology, Jena University Hospital, Germany.
| | | | - Koji Kitazawa
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Jacob P. Rose
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | | | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Francesco Neri
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Serban Ciotlos
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Kevin Perez
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Nilay Köse-Vogel
- Institute of Medical Microbiology, Jena University Hospital, Germany.
| | - Antje Häder
- Institute of Medical Microbiology, Jena University Hospital, Germany.
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Germany.
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - David Furman
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
33
|
Veth TS, Nouwen LV, Zwaagstra M, Lyoo H, Wierenga KA, Westendorp B, Altelaar MAFM, Berkers C, van Kuppeveld FJM, Heck AJR. Assessment of Kinome-Wide Activity Remodeling upon Picornavirus Infection. Mol Cell Proteomics 2024; 23:100757. [PMID: 38556169 PMCID: PMC11067349 DOI: 10.1016/j.mcpro.2024.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/16/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Picornaviridae represent a large family of single-stranded positive RNA viruses of which different members can infect both humans and animals. These include the enteroviruses (e.g., poliovirus, coxsackievirus, and rhinoviruses) as well as the cardioviruses (e.g., encephalomyocarditis virus). Picornaviruses have evolved to interact with, use, and/or evade cellular host systems to create the optimal environment for replication and spreading. It is known that viruses modify kinase activity during infection, but a proteome-wide overview of the (de)regulation of cellular kinases during picornavirus infection is lacking. To study the kinase activity landscape during picornavirus infection, we here applied dedicated targeted mass spectrometry-based assays covering ∼40% of the human kinome. Our data show that upon infection, kinases of the MAPK pathways become activated (e.g., ERK1/2, RSK1/2, JNK1/2/3, and p38), while kinases involved in regulating the cell cycle (e.g., CDK1/2, GWL, and DYRK3) become inactivated. Additionally, we observed the activation of CHK2, an important kinase involved in the DNA damage response. Using pharmacological kinase inhibitors, we demonstrate that several of these activated kinases are essential for the replication of encephalomyocarditis virus. Altogether, the data provide a quantitative understanding of the regulation of kinome activity induced by picornavirus infection, providing a resource important for developing novel antiviral therapeutic interventions.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Lonneke V Nouwen
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Marleen Zwaagstra
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Heyrhyoung Lyoo
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Kathryn A Wierenga
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bart Westendorp
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten A F M Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Celia Berkers
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
34
|
Torres-Sangiao E, Happonen L, Heusel M, Palm F, Gueto-Tettay C, Malmström L, Shannon O, Malmström J. Quantification of Adaptive Immune Responses Against Protein-Binding Interfaces in the Streptococcal M1 Protein. Mol Cell Proteomics 2024; 23:100753. [PMID: 38527648 PMCID: PMC11059317 DOI: 10.1016/j.mcpro.2024.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024] Open
Abstract
Bacterial or viral antigens can contain subdominant protein regions that elicit weak antibody responses upon vaccination or infection although there is accumulating evidence that antibody responses against subdominant regions can enhance the protective immune response. One proposed mechanism for subdominant protein regions is the binding of host proteins that prevent antibody production against epitopes hidden within the protein binding interfaces. Here, we used affinity purification combined with quantitative mass spectrometry (AP-MS) to examine the level of competition between antigen-specific antibodies and host-pathogen protein interaction networks using the M1 protein from Streptococcus pyogenes as a model system. As most humans have circulating antibodies against the M1 protein, we first used AP-MS to show that the M1 protein interspecies protein network formed with human plasma proteins is largely conserved in naïve mice. Immunizing mice with the M1 protein generated a time-dependent increase of anti-M1 antibodies. AP-MS analysis comparing the composition of the M1-plasma protein network from naïve and immunized mice showed significant enrichment of 292 IgG peptides associated with 56 IgG chains in the immune mice. Despite the significant increase of bound IgGs, the levels of interacting plasma proteins were not significantly reduced in the immune mice. The results indicate that the antigen-specific polyclonal IgG against the M1 protein primarily targets epitopes outside the other plasma protein binding interfaces. In conclusion, this study demonstrates that AP-MS is a promising strategy to determine the relationship between antigen-specific antibodies and host-pathogen interaction networks that could be used to define subdominant protein regions of relevance for vaccine development.
Collapse
Affiliation(s)
- Eva Torres-Sangiao
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; Escherichia coli Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Clinical Microbiology Lab, University Hospital Complex of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Lotta Happonen
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Morizt Heusel
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; Evosep ApS, Odense, Denmark
| | - Frida Palm
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Carlos Gueto-Tettay
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lars Malmström
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Onna Shannon
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; Faculty of Odontology, Section for Oral Biology and Pathology, Malmö University, Malmö, Sweden
| | - Johan Malmström
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
35
|
Menon T, Illing PT, Chaurasia P, McQuilten HA, Shepherd C, Rowntree LC, Petersen J, Littler DR, Khuu G, Huang Z, Allen LF, Rockman S, Crowe J, Flanagan KL, Wakim LM, Nguyen THO, Mifsud NA, Rossjohn J, Purcell AW, van de Sandt CE, Kedzierska K. CD8 + T-cell responses towards conserved influenza B virus epitopes across anatomical sites and age. Nat Commun 2024; 15:3387. [PMID: 38684663 PMCID: PMC11059233 DOI: 10.1038/s41467-024-47576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Influenza B viruses (IBVs) cause substantive morbidity and mortality, and yet immunity towards IBVs remains understudied. CD8+ T-cells provide broadly cross-reactive immunity and alleviate disease severity by recognizing conserved epitopes. Despite the IBV burden, only 18 IBV-specific T-cell epitopes restricted by 5 HLAs have been identified currently. A broader array of conserved IBV T-cell epitopes is needed to develop effective cross-reactive T-cell based IBV vaccines. Here we identify 9 highly conserved IBV CD8+ T-cell epitopes restricted to HLA-B*07:02, HLA-B*08:01 and HLA-B*35:01. Memory IBV-specific tetramer+CD8+ T-cells are present within blood and tissues. Frequencies of IBV-specific CD8+ T-cells decline with age, but maintain a central memory phenotype. HLA-B*07:02 and HLA-B*08:01-restricted NP30-38 epitope-specific T-cells have distinct T-cell receptor repertoires. We provide structural basis for the IBV HLA-B*07:02-restricted NS1196-206 (11-mer) and HLA-B*07:02-restricted NP30-38 epitope presentation. Our study increases the number of IBV CD8+ T-cell epitopes, and defines IBV-specific CD8+ T-cells at cellular and molecular levels, across tissues and age.
Collapse
Affiliation(s)
- Tejas Menon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patricia T Illing
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Chloe Shepherd
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jan Petersen
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dene R Littler
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Grace Khuu
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ziyi Huang
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- CSL Seqirus Ltd, Parkville, VIC, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, VIC, Australia
| | - Katie L Flanagan
- Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| |
Collapse
|
36
|
Numa K, Patel SK, Zhang ZA, Burton JB, Matsumoto A, Hughes JWB, Sotozono C, Schilling B, Desprez PY, Campisi J, Kitazawa K. Senescent characteristics of human corneal endothelial cells upon ultraviolet-A exposure. Aging (Albany NY) 2024; 16:6673-6693. [PMID: 38683123 PMCID: PMC11087119 DOI: 10.18632/aging.205761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE The objective of this study was to investigate the senescent phenotypes of human corneal endothelial cells (hCEnCs) upon treatment with ultraviolet (UV)-A. METHODS We assessed cell morphology, senescence-associated β-galactosidase (SA-β-gal) activity, cell proliferation and expression of senescence markers (p16 and p21) in hCEnCs exposed to UV-A radiation, and senescent hCEnCs induced by ionizing radiation (IR) were used as positive controls. We performed RNA sequencing and proteomics analyses to compare gene and protein expression profiles between UV-A- and IR-induced senescent hCEnCs, and we also compared the results to non-senescent hCEnCs. RESULTS Cells exposed to 5 J/cm2 of UV-A or to IR exhibited typical senescent phenotypes, including enlargement, increased SA-β-gal activity, decreased cell proliferation and elevated expression of p16 and p21. RNA-Seq analysis revealed that 83.9% of the genes significantly upregulated and 82.6% of the genes significantly downregulated in UV-A-induced senescent hCEnCs overlapped with the genes regulated in IR-induced senescent hCEnCs. Proteomics also revealed that 93.8% of the proteins significantly upregulated in UV-A-induced senescent hCEnCs overlapped with those induced by IR. In proteomics analyses, senescent hCEnCs induced by UV-A exhibited elevated expression levels of several factors part of the senescence-associated secretory phenotype. CONCLUSIONS In this study, where senescence was induced by UV-A, a more physiological stress for hCEnCs compared to IR, we determined that UV-A modulated the expression of many genes and proteins typically altered upon IR treatment, a more conventional method of senescence induction, even though UV-A also modulated specific pathways unrelated to IR.
Collapse
Affiliation(s)
- Kohsaku Numa
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto 6020841, Japan
| | - Sandip Kumar Patel
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | | | | | - Akifumi Matsumoto
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto 6020841, Japan
| | | | - Chie Sotozono
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto 6020841, Japan
| | | | - Pierre-Yves Desprez
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- California Pacific Medical Center, Research Institute, San Francisco, CA 94107, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Koji Kitazawa
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto 6020841, Japan
| |
Collapse
|
37
|
Burns AR, Wiedrick J, Feryn A, Maes M, Midha MK, Baxter DH, Morrone SR, Prokop TJ, Kapil C, Hoopmann MR, Kusebauch U, Deutsch EW, Rappaport N, Watanabe K, Moritz RL, Miller RA, Lapidus JA, Orwoll ES. Proteomic changes induced by longevity-promoting interventions in mice. GeroScience 2024; 46:1543-1560. [PMID: 37653270 PMCID: PMC10828338 DOI: 10.1007/s11357-023-00917-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023] Open
Abstract
Using mouse models and high-throughput proteomics, we conducted an in-depth analysis of the proteome changes induced in response to seven interventions known to increase mouse lifespan. This included two genetic mutations, a growth hormone receptor knockout (GHRKO mice) and a mutation in the Pit-1 locus (Snell dwarf mice), four drug treatments (rapamycin, acarbose, canagliflozin, and 17α-estradiol), and caloric restriction. Each of the interventions studied induced variable changes in the concentrations of proteins across liver, kidney, and gastrocnemius muscle tissue samples, with the strongest responses in the liver and limited concordance in protein responses across tissues. To the extent that these interventions promote longevity through common biological mechanisms, we anticipated that proteins associated with longevity could be identified by characterizing shared responses across all or multiple interventions. Many of the proteome alterations induced by each intervention were distinct, potentially implicating a variety of biological pathways as being related to lifespan extension. While we found no protein that was affected similarly by every intervention, we identified a set of proteins that responded to multiple interventions. These proteins were functionally diverse but tended to be involved in peroxisomal oxidation and metabolism of fatty acids. These results provide candidate proteins and biological mechanisms related to enhancing longevity that can inform research on therapeutic approaches to promote healthy aging.
Collapse
Affiliation(s)
- Adam R Burns
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA.
| | - Jack Wiedrick
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Alicia Feryn
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Michal Maes
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | | | - Charu Kapil
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | | | | | | | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jodi A Lapidus
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Eric S Orwoll
- Department of Endocrinology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
38
|
Frommelt F, Fossati A, Uliana F, Wendt F, Xue P, Heusel M, Wollscheid B, Aebersold R, Ciuffa R, Gstaiger M. DIP-MS: ultra-deep interaction proteomics for the deconvolution of protein complexes. Nat Methods 2024; 21:635-647. [PMID: 38532014 PMCID: PMC11009110 DOI: 10.1038/s41592-024-02211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 02/14/2024] [Indexed: 03/28/2024]
Abstract
Most proteins are organized in macromolecular assemblies, which represent key functional units regulating and catalyzing most cellular processes. Affinity purification of the protein of interest combined with liquid chromatography coupled to tandem mass spectrometry (AP-MS) represents the method of choice to identify interacting proteins. The composition of complex isoforms concurrently present in the AP sample can, however, not be resolved from a single AP-MS experiment but requires computational inference from multiple time- and resource-intensive reciprocal AP-MS experiments. Here we introduce deep interactome profiling by mass spectrometry (DIP-MS), which combines AP with blue-native-PAGE separation, data-independent acquisition with mass spectrometry and deep-learning-based signal processing to resolve complex isoforms sharing the same bait protein in a single experiment. We applied DIP-MS to probe the organization of the human prefoldin family of complexes, resolving distinct prefoldin holo- and subcomplex variants, complex-complex interactions and complex isoforms with new subunits that were experimentally validated. Our results demonstrate that DIP-MS can reveal proteome modularity at unprecedented depth and resolution.
Collapse
Affiliation(s)
- Fabian Frommelt
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| | - Andrea Fossati
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
| | - Federico Uliana
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Fabian Wendt
- Department of Health Sciences and Technology (D-HEST), Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
| | - Peng Xue
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Guangzhou National Laboratory, Guang Zhou, China
| | - Moritz Heusel
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology (D-HEST), Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Rodolfo Ciuffa
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
39
|
Kirk AM, Crawford JC, Chou CH, Guy C, Pandey K, Kozlik T, Shah RK, Chung S, Nguyen P, Zhang X, Wang J, Bell M, Mettelman RC, Allen EK, Pogorelyy MV, Kim H, Minervina AA, Awad W, Bajracharya R, White T, Long D, Gordon B, Morrison M, Glazer ES, Murphy AJ, Jiang Y, Fitzpatrick EA, Yarchoan M, Sethupathy P, Croft NP, Purcell AW, Federico SM, Stewart E, Gottschalk S, Zamora AE, DeRenzo C, Strome SE, Thomas PG. DNAJB1-PRKACA fusion neoantigens elicit rare endogenous T cell responses that potentiate cell therapy for fibrolamellar carcinoma. Cell Rep Med 2024; 5:101469. [PMID: 38508137 PMCID: PMC10983114 DOI: 10.1016/j.xcrm.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies. We observe that fusion-specific CD8 T cells are rare and that FLC patient TCR repertoires lack large clusters of related TCR sequences characteristic of potent antigen-specific responses, potentially explaining why endogenous immune responses are insufficient to clear FLC tumors. Nevertheless, we define two functional fusion-specific TCRs, one of which has strong anti-tumor activity in vivo. Together, our results provide insights into the fragmented nature of neoantigen-specific repertoires in humans and indicate routes for clinical development of successful immunotherapies for FLC.
Collapse
Affiliation(s)
- Allison M Kirk
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Tanya Kozlik
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ravi K Shah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shanzou Chung
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaoyu Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jin Wang
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Matthew Bell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hyunjin Kim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Walid Awad
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Resha Bajracharya
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Toni White
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Donald Long
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Brittney Gordon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Morrison
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan S Glazer
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Andrew J Murphy
- Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yixing Jiang
- Department of Medical Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Elizabeth A Fitzpatrick
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Sara M Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anthony E Zamora
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Scott E Strome
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
40
|
Creus-Muncunill J, Haure-Mirande JV, Mattei D, Bons J, Ramirez AV, Hamilton BW, Corwin C, Chowdhury S, Schilling B, Ellerby LM, Ehrlich ME. TYROBP/DAP12 knockout in Huntington's disease Q175 mice cell-autonomously decreases microglial expression of disease-associated genes and non-cell-autonomously mitigates astrogliosis and motor deterioration. J Neuroinflammation 2024; 21:66. [PMID: 38459557 PMCID: PMC10924371 DOI: 10.1186/s12974-024-03052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the Huntingtin gene (HTT). Immune activation is abundant in the striatum of HD patients. Detection of active microglia at presymptomatic stages suggests that microgliosis is a key early driver of neuronal dysfunction and degeneration. Recent studies showed that deletion of Tyrobp, a microglial protein, ameliorates neuronal dysfunction in Alzheimer's disease amyloidopathy and tauopathy mouse models while decreasing components of the complement subnetwork. OBJECTIVE While TYROBP/DAP12-mediated microglial activation is detrimental for some diseases such as peripheral nerve injury, it is beneficial for other diseases. We sought to determine whether the TYROBP network is implicated in HD and whether Tyrobp deletion impacts HD striatal function and transcriptomics. METHODS To test the hypothesis that Tyrobp deficiency would be beneficial in an HD model, we placed the Q175 HD mouse model on a Tyrobp-null background. We characterized these mice with a combination of behavioral testing, immunohistochemistry, transcriptomic and proteomic profiling. Further, we evaluated the gene signature in isolated Q175 striatal microglia, with and without Tyrobp. RESULTS Comprehensive analysis of publicly available human HD transcriptomic data revealed that the TYROBP network is overactivated in the HD putamen. The Q175 mice showed morphologic microglial activation, reduced levels of post-synaptic density-95 protein and motor deficits at 6 and 9 months of age, all of which were ameliorated on the Tyrobp-null background. Gene expression analysis revealed that lack of Tyrobp in the Q175 model does not prevent the decrease in the expression of striatal neuronal genes but reduces pro-inflammatory pathways that are specifically active in HD human brain, including genes identified as detrimental in neurodegenerative diseases, e.g. C1q and members of the Ccr5 signaling pathway. Integration of transcriptomic and proteomic data revealed that astrogliosis and complement system pathway were reduced after Tyrobp deletion, which was further validated by immunofluorescence analysis. CONCLUSIONS Our data provide molecular and functional support demonstrating that Tyrobp deletion prevents many of the abnormalities in the HD Q175 mouse model, suggesting that the Tyrobp pathway is a potential therapeutic candidate for Huntington's disease.
Collapse
Affiliation(s)
| | | | - Daniele Mattei
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Angie V Ramirez
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - B Wade Hamilton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Chuhyon Corwin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sarah Chowdhury
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | | | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
41
|
Burton JB, Silva-Barbosa A, Bons J, Rose J, Pfister K, Simona F, Gandhi T, Reiter L, Bernhardt O, Hunter CL, Goetzman ES, Sims-Lucas S, Schilling B. Substantial downregulation of mitochondrial and peroxisomal proteins during acute kidney injury revealed by data-independent acquisition proteomics. Proteomics 2024; 24:e2300162. [PMID: 37775337 DOI: 10.1002/pmic.202300162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 10/01/2023]
Abstract
Acute kidney injury (AKI) manifests as a major health concern, particularly for the elderly. Understanding AKI-related proteome changes is critical for prevention and development of novel therapeutics to recover kidney function and to mitigate the susceptibility for recurrent AKI or development of chronic kidney disease. In this study, mouse kidneys were subjected to ischemia-reperfusion injury, and the contralateral kidneys remained uninjured to enable comparison and assess injury-induced changes in the kidney proteome. A ZenoTOF 7600 mass spectrometer was optimized for data-independent acquisition (DIA) to achieve comprehensive protein identification and quantification. Short microflow gradients and the generation of a deep kidney-specific spectral library allowed for high-throughput, comprehensive protein quantification. Upon AKI, the kidney proteome was completely remodeled, and over half of the 3945 quantified protein groups changed significantly. Downregulated proteins in the injured kidney were involved in energy production, including numerous peroxisomal matrix proteins that function in fatty acid oxidation, such as ACOX1, CAT, EHHADH, ACOT4, ACOT8, and Scp2. Injured kidneys exhibited severely damaged tissues and injury markers. The comprehensive and sensitive kidney-specific DIA-MS assays feature high-throughput analytical capabilities to achieve deep coverage of the kidney proteome, and will serve as useful tools for developing novel therapeutics to remediate kidney function.
Collapse
Affiliation(s)
- Jordan B Burton
- Buck Institute for Research on Aging, Novato, California, USA
| | - Anne Silva-Barbosa
- Department of Pediatrics, School of Medicine, Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jacob Rose
- Buck Institute for Research on Aging, Novato, California, USA
| | - Katherine Pfister
- Department of Pediatrics, School of Medicine, Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | - Eric S Goetzman
- Department of Pediatrics, School of Medicine, Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sunder Sims-Lucas
- Department of Pediatrics, School of Medicine, Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
42
|
Hou J, Deng Q, Qiu X, Liu S, Li Y, Huang C, Wang X, Zhang Q, Deng X, Zhong Z, Zhong W. Proteomic analysis of plasma proteins from patients with cardiac rupture after acute myocardial infarction using TMT-based quantitative proteomics approach. Clin Proteomics 2024; 21:18. [PMID: 38429673 PMCID: PMC10908035 DOI: 10.1186/s12014-024-09474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Cardiac rupture (CR) is a rare but catastrophic mechanical complication of acute myocardial infarction (AMI) that seriously threatens human health. However, the reliable biomarkers for clinical diagnosis and the underlying signaling pathways insights of CR has yet to be elucidated. METHODS In the present study, a quantitative approach with tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry was used to characterize the differential protein expression profiles of patients with CR. Plasma samples were collected from patients with CR (n = 37), patients with AMI (n = 47), and healthy controls (n = 47). Candidate proteins were selected for validation by multiple reaction monitoring (MRM) and enzyme-linked immunosorbent assay (ELISA). RESULTS In total, 1208 proteins were quantified and 958 differentially expressed proteins (DEPs) were identified. The difference in the expression levels of the DEPs was more noticeable between the CR and Con groups than between the AMI and Con groups. Bioinformatics analysis showed most of the DEPs to be involved in numerous crucial biological processes and signaling pathways, such as RNA transport, ribosome, proteasome, and protein processing in the endoplasmic reticulum, as well as necroptosis and leukocyte transendothelial migration, which might play essential roles in the complex pathological processes associated with CR. MRM analysis confirmed the accuracy of the proteomic analysis results. Four proteins i.e., C-reactive protein (CRP), heat shock protein beta-1 (HSPB1), vinculin (VINC) and growth/differentiation factor 15 (GDF15), were further validated via ELISA. By receiver operating characteristic (ROC) analysis, combinations of these four proteins distinguished CR patients from AMI patients with a high area under the curve (AUC) value (0.895, 95% CI, 0.802-0.988, p < 0.001). CONCLUSIONS Our study highlights the value of comprehensive proteomic characterization for identifying plasma proteome changes in patients with CR. This pilot study could serve as a valid foundation and initiation point for elucidation of the mechanisms of CR, which might aid in identifying effective diagnostic biomarkers in the future.
Collapse
Affiliation(s)
- Jingyuan Hou
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
- GuangDong Engineering Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, Guangdong, 514031, China
| | - Qiaoting Deng
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xiaohong Qiu
- Meizhou clinical Medical School, Guangdong Medical University, Meizhou, Guangdong, 514031, China
| | - Sudong Liu
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Youqian Li
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Changjing Huang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Xianfang Wang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Qunji Zhang
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xunwei Deng
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China.
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China.
| |
Collapse
|
43
|
Garralda E, Beaulieu ME, Moreno V, Casacuberta-Serra S, Martínez-Martín S, Foradada L, Alonso G, Massó-Vallés D, López-Estévez S, Jauset T, Corral de la Fuente E, Doger B, Hernández T, Perez-Lopez R, Arqués O, Castillo Cano V, Morales J, Whitfield JR, Niewel M, Soucek L, Calvo E. MYC targeting by OMO-103 in solid tumors: a phase 1 trial. Nat Med 2024; 30:762-771. [PMID: 38321218 PMCID: PMC10957469 DOI: 10.1038/s41591-024-02805-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Among the 'most wanted' targets in cancer therapy is the oncogene MYC, which coordinates key transcriptional programs in tumor development and maintenance. It has, however, long been considered undruggable. OMO-103 is a MYC inhibitor consisting of a 91-amino acid miniprotein. Here we present results from a phase 1 study of OMO-103 in advanced solid tumors, established to examine safety and tolerability as primary outcomes and pharmacokinetics, recommended phase 2 dose and preliminary signs of activity as secondary ones. A classical 3 + 3 design was used for dose escalation of weekly intravenous, single-agent OMO-103 administration in 21-day cycles, encompassing six dose levels (DLs). A total of 22 patients were enrolled, with treatment maintained until disease progression. The most common adverse events were grade 1 infusion-related reactions, occurring in ten patients. One dose-limiting toxicity occurred at DL5. Pharmacokinetics showed nonlinearity, with tissue saturation signs at DL5 and a terminal half-life in serum of 40 h. Of the 19 patients evaluable for response, 12 reached the predefined 9-week time point for assessment of drug antitumor activity, eight of those showing stable disease by computed tomography. One patient defined as stable disease by response evaluation criteria in solid tumors showed a 49% reduction in total tumor volume at best response. Transcriptomic analysis supported target engagement in tumor biopsies. In addition, we identified soluble factors that are potential pharmacodynamic and predictive response markers. Based on all these data, the recommended phase 2 dose was determined as DL5 (6.48 mg kg-1).ClinicalTrials.gov identifier: NCT04808362 .
Collapse
Affiliation(s)
| | | | - Víctor Moreno
- START Madrid-FJD-Hospital Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | - Guzman Alonso
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | | | | | | | - Bernard Doger
- START Madrid-FJD-Hospital Fundación Jiménez Díaz, Madrid, Spain
| | | | | | - Oriol Arqués
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | | | | | | | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Barcelona, Spain.
- Peptomyc S.L., Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Emiliano Calvo
- START Madrid-CIOCC-Centro Integral Oncológico Clara Campal, Madrid, Spain
| |
Collapse
|
44
|
Jiang L, Qin J, Dai Y, Zhao S, Zhan Q, Cui P, Ren L, Wang X, Zhang R, Gao C, Zhou Y, Cai S, Wang G, Xie W, Tang X, Shi M, Ma F, Liu J, Wang T, Wang C, Svrcek M, Bardier-Dupas A, Emile JF, de Mestier L, Bachet JB, Nicolle R, Cros J, Laurent-Puig P, Wei M, Song B, Jing W, Guo S, Zheng K, Jiang H, Wang H, Deng X, Chen H, Tian Q, Wang S, Shi S, Jin G, Yin T, Fang H, Chen S, Shen B. Prospective observational study on biomarkers of response in pancreatic ductal adenocarcinoma. Nat Med 2024; 30:749-761. [PMID: 38287168 DOI: 10.1038/s41591-023-02790-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
Adjuvant chemotherapy benefits patients with resected pancreatic ductal adenocarcinoma (PDAC), but the compromised physical state of post-operative patients can hinder compliance. Biomarkers that identify candidates for prompt adjuvant therapy are needed. In this prospective observational study, 1,171 patients with PDAC who underwent pancreatectomy were enrolled and extensively followed-up. Proteomic profiling of 191 patient samples unveiled clinically relevant functional protein modules. A proteomics-level prognostic risk model was established for PDAC, with its utility further validated using a publicly available external cohort. More importantly, through an interaction effect regression analysis leveraging both clinical and proteomic datasets, we discovered two biomarkers (NDUFB8 and CEMIP2), indicative of the overall sensitivity of patients with PDAC to adjuvant chemotherapy. The biomarkers were validated through immunohistochemistry on an internal cohort of 386 patients. Rigorous validation extended to two external multicentic cohorts-a French multicentric cohort (230 patients) and a cohort from two grade-A tertiary hospitals in China (466 patients)-enhancing the robustness and generalizability of our findings. Moreover, experimental validation through functional assays was conducted on PDAC cell lines and patient-derived organoids. In summary, our cohort-scale integration of clinical and proteomic data demonstrates the potential of proteomics-guided prognosis and biomarker-aided adjuvant chemotherapy for PDAC.
Collapse
Affiliation(s)
- Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiejie Qin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shulin Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Cui
- Burning Rock Biotech, Guangzhou, China
| | - Lingjie Ren
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelong Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruihong Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxu Gao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanting Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfang Ma
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Magali Svrcek
- Department of Pathology, Saint-Antoine Hospital - Sorbonne Universités, Paris, France
| | - Armelle Bardier-Dupas
- Department of Pathology, Pitié-Salpêtrière Hospital - Sorbonne Universités, Paris, France
| | - Jean Francois Emile
- Department of Pathology, Ambroise Paré Hospital - Université Saint Quentin en Yvelines, Paris, France
| | - Louis de Mestier
- Department of Pancreatology, Université Paris Cité - FHU MOSAIC, Beaujon Hospital, Clichy, France
| | - Jean-Baptiste Bachet
- Department of Gastroenterology, Pitié-Salpêtrière Hospital - Sorbonne Universités, Paris, France
| | - Remy Nicolle
- Université Paris Cité, FHU MOSAIC, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris, France
| | - Jerome Cros
- Department of Pathology, Université Paris Cité - FHU MOSAIC, Beaujon Hospital, Clichy, France
| | - Pierre Laurent-Puig
- Department of Biochemistry, Hôpital Européen Georges Pompidou, Centre de Recherche des Cordeliers, INSERM UMRS1138, CNRS, Sorbonne Université, USPC, Université Paris Cité, Equipe labellisée Ligue Nationale contre le cancer, CNRS, Paris, France
| | - Miaoyan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bin Song
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Jing
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Kailian Zheng
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hui Jiang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Pathology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Tian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengyue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Systems Medicine for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
45
|
Schurman CA, Kaya S, Dole N, Luna NMM, Castillo N, Potter R, Rose JP, Bons J, King CD, Burton JB, Schilling B, Melov S, Tang S, Schaible E, Alliston T. Aging impairs the osteocytic regulation of collagen integrity and bone quality. Bone Res 2024; 12:13. [PMID: 38409111 PMCID: PMC10897167 DOI: 10.1038/s41413-023-00303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 02/28/2024] Open
Abstract
Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFβ signaling (TβRIIocy-/-) that suppresses PLR. The control aged bone displayed decreased TGFβ signaling and PLR, but aging did not worsen the existing PLR suppression in male TβRIIocy-/- bone. This relationship impacted the behavior of collagen material at the nanoscale and tissue scale in macromechanical tests. The effects of age on bone mass, density, and mineral material behavior were independent of osteocytic TGFβ. We determined that the decline in bone quality with age arises from the loss of osteocyte function and the loss of TGFβ-dependent maintenance of collagen integrity.
Collapse
Affiliation(s)
- Charles A Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
| | - Neha Dole
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
| | - Nadja M Maldonado Luna
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA
| | - Natalia Castillo
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
| | - Ryan Potter
- Washington University in St Louis, Department of Orthopedics, St. Louis, MO, 63130, USA
| | - Jacob P Rose
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Jordan B Burton
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Simon Tang
- Washington University in St Louis, Department of Orthopedics, St. Louis, MO, 63130, USA
| | - Eric Schaible
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA.
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA.
| |
Collapse
|
46
|
Silva Barbosa AC, Pfister KE, Chiba T, Bons J, Rose JP, Burton JB, King CD, O'Broin A, Young V, Zhang B, Sivakama B, Schmidt AV, Uhlean R, Oda A, Schilling B, Goetzman ES, Sims-Lucas S. Dicarboxylic Acid Dietary Supplementation Protects against AKI. J Am Soc Nephrol 2024; 35:135-148. [PMID: 38044490 PMCID: PMC10843194 DOI: 10.1681/asn.0000000000000266] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/20/2023] [Indexed: 12/05/2023] Open
Abstract
SIGNIFICANCE STATEMENT In this study, we demonstrate that a common, low-cost compound known as octanedioic acid (DC 8 ) can protect mice from kidney damage typically caused by ischemia-reperfusion injury or the chemotherapy drug cisplatin. This compound seems to enhance peroxisomal activity, which is responsible for breaking down fats, without adversely affecting mitochondrial function. DC 8 is not only affordable and easy to administer but also effective. These encouraging findings suggest that DC 8 could potentially be used to assist patients who are at risk of experiencing this type of kidney damage. BACKGROUND Proximal tubules are rich in peroxisomes, which are damaged during AKI. Previous studies demonstrated that increasing peroxisomal fatty acid oxidation (FAO) is renoprotective, but no therapy has emerged to leverage this mechanism. METHODS Mice were fed with either a control diet or a diet enriched with dicarboxylic acids, which are peroxisome-specific FAO substrates, then subjected to either ischemia-reperfusion injury-AKI or cisplatin-AKI models. Biochemical, histologic, genetic, and proteomic analyses were performed. RESULTS Both octanedioic acid (DC 8 ) and dodecanedioic acid (DC 12 ) prevented the rise of AKI markers in mice that were exposed to renal injury. Proteomics analysis demonstrated that DC 8 preserved the peroxisomal and mitochondrial proteomes while inducing extensive remodeling of the lysine succinylome. This latter finding indicates that DC 8 is chain shortened to the anaplerotic substrate succinate and that peroxisomal FAO was increased by DC 8 . CONCLUSIONS DC 8 supplementation protects kidney mitochondria and peroxisomes and increases peroxisomal FAO, thereby protecting against AKI.
Collapse
Affiliation(s)
- Anne C. Silva Barbosa
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Katherine E. Pfister
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Takuto Chiba
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, California
| | - Jacob P. Rose
- Buck Institute for Research on Aging, Novato, California
| | | | | | - Amy O'Broin
- Buck Institute for Research on Aging, Novato, California
| | - Victoria Young
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bob Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharathi Sivakama
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexandra V. Schmidt
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca Uhlean
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Akira Oda
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Eric S. Goetzman
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sunder Sims-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
47
|
Lou R, Shui W. Acquisition and Analysis of DIA-Based Proteomic Data: A Comprehensive Survey in 2023. Mol Cell Proteomics 2024; 23:100712. [PMID: 38182042 PMCID: PMC10847697 DOI: 10.1016/j.mcpro.2024.100712] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Data-independent acquisition (DIA) mass spectrometry (MS) has emerged as a powerful technology for high-throughput, accurate, and reproducible quantitative proteomics. This review provides a comprehensive overview of recent advances in both the experimental and computational methods for DIA proteomics, from data acquisition schemes to analysis strategies and software tools. DIA acquisition schemes are categorized based on the design of precursor isolation windows, highlighting wide-window, overlapping-window, narrow-window, scanning quadrupole-based, and parallel accumulation-serial fragmentation-enhanced DIA methods. For DIA data analysis, major strategies are classified into spectrum reconstruction, sequence-based search, library-based search, de novo sequencing, and sequencing-independent approaches. A wide array of software tools implementing these strategies are reviewed, with details on their overall workflows and scoring approaches at different steps. The generation and optimization of spectral libraries, which are critical resources for DIA analysis, are also discussed. Publicly available benchmark datasets covering global proteomics and phosphoproteomics are summarized to facilitate performance evaluation of various software tools and analysis workflows. Continued advances and synergistic developments of versatile components in DIA workflows are expected to further enhance the power of DIA-based proteomics.
Collapse
Affiliation(s)
- Ronghui Lou
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
48
|
Wei D, Sun J, Luo Z, Zhang G, Liu Y, Zhang H, Xie Z, Gu Z, Tao WA. Targeted Phosphoproteomics of Human Saliva Extracellular Vesicles via Multiple Reaction Monitoring Cubed (MRM 3). Anal Chem 2024; 96:1223-1231. [PMID: 38205554 DOI: 10.1021/acs.analchem.3c04464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Oral squamous cell carcinoma (OSCC) has become a global health problem due to its increasing incidence and high mortality rate. Early intervention through monitoring of the diagnostic biomarker levels during OSCC treatment is critical. Extracellular vesicles (EVs) are emerging surrogates in intercellular communication through transporting biomolecule cargo and have recently been identified as a potential source of biomarkers such as phosphoproteins for many diseases. Here, we developed a multiple reaction monitoring cubed (MRM3) method coupled with a novel sample preparation strategy, extracellular vesicles to phosphoproteins (EVTOP), to quantify phosphoproteins using a minimal amount of saliva (50 μL) samples from OSCC patients with high specificity and sensitivity. Our results established differential patterns in the phosphopeptide content of healthy, presurgery, and postsurgery OSCC patient groups. Notably, we discovered significantly increased salivary phosphorylated alpha-amylase (AMY) in the postsurgery group compared to the presurgery group. We hereby present the first targeted MS method with extremely high sensitivity for measuring endogenous phosphoproteins in human saliva EVs.
Collapse
Affiliation(s)
- Dong Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhuojun Luo
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Guiyuan Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Yufeng Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - W Andy Tao
- Department of Chemistry and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
49
|
Sakson R, Beedgen L, Bernhard P, Alp KM, Lübbehusen N, Röth R, Niesler B, Luzarowski M, Shevchuk O, Mayer MP, Thiel C, Ruppert T. Targeted Proteomics Reveals Quantitative Differences in Low-Abundance Glycosyltransferases of Patients with Congenital Disorders of Glycosylation. Int J Mol Sci 2024; 25:1191. [PMID: 38256263 PMCID: PMC10816918 DOI: 10.3390/ijms25021191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Protein glycosylation is an essential post-translational modification in all domains of life. Its impairment in humans can result in severe diseases named congenital disorders of glycosylation (CDGs). Most of the glycosyltransferases (GTs) responsible for proper glycosylation are polytopic membrane proteins that represent challenging targets in proteomics. We established a multiple reaction monitoring (MRM) assay to comprehensively quantify GTs involved in the processes of N-glycosylation and O- and C-mannosylation in the endoplasmic reticulum. High robustness was achieved by using an enriched membrane protein fraction of isotopically labeled HEK 293T cells as an internal protein standard. The analysis of primary skin fibroblasts from eight CDG type I patients with impaired ALG1, ALG2, and ALG11 genes, respectively, revealed a substantial reduction in the corresponding protein levels. The abundance of the other GTs, however, remained unchanged at the transcript and protein levels, indicating that there is no fail-safe mechanism for the early steps of glycosylation in the endoplasmic reticulum. The established MRM assay was shared with the scientific community via the commonly used open source Skyline software environment, including Skyline Batch for automated data analysis. We demonstrate that another research group could easily reproduce all analysis steps, even while using different LC-MS hardware.
Collapse
Affiliation(s)
- Roman Sakson
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg University, 69120 Heidelberg, Germany
| | - Lars Beedgen
- Center for Child and Adolescent Medicine, Department Pediatrics I, Heidelberg University, 69120 Heidelberg, Germany
| | - Patrick Bernhard
- Institute for Surgical Pathology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - K. Merve Alp
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Nicole Lübbehusen
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Ralph Röth
- nCounter Core Facility, Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Marcin Luzarowski
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Olga Shevchuk
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, 45147 Essen, Germany
| | - Matthias P. Mayer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department Pediatrics I, Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Ruppert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
Wilson KA, Bar S, Dammer EB, Carrera EM, Hodge BA, Hilsabeck TAU, Bons J, Brownridge GW, Beck JN, Rose J, Granath-Panelo M, Nelson CS, Qi G, Gerencser AA, Lan J, Afenjar A, Chawla G, Brem RB, Campeau PM, Bellen HJ, Schilling B, Seyfried NT, Ellerby LM, Kapahi P. OXR1 maintains the retromer to delay brain aging under dietary restriction. Nat Commun 2024; 15:467. [PMID: 38212606 PMCID: PMC10784588 DOI: 10.1038/s41467-023-44343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Dietary restriction (DR) delays aging, but the mechanism remains unclear. We identified polymorphisms in mtd, the fly homolog of OXR1, which influenced lifespan and mtd expression in response to DR. Knockdown in adulthood inhibited DR-mediated lifespan extension in female flies. We found that mtd/OXR1 expression declines with age and it interacts with the retromer, which regulates trafficking of proteins and lipids. Loss of mtd/OXR1 destabilized the retromer, causing improper protein trafficking and endolysosomal defects. Overexpression of retromer genes or pharmacological restabilization with R55 rescued lifespan and neurodegeneration in mtd-deficient flies and endolysosomal defects in fibroblasts from patients with lethal loss-of-function of OXR1 variants. Multi-omic analyses in flies and humans showed that decreased Mtd/OXR1 is associated with aging and neurological diseases. mtd/OXR1 overexpression rescued age-related visual decline and tauopathy in a fly model. Hence, OXR1 plays a conserved role in preserving retromer function and is critical for neuronal health and longevity.
Collapse
Affiliation(s)
- Kenneth A Wilson
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sudipta Bar
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Brian A Hodge
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Tyler A U Hilsabeck
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Jennifer N Beck
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Jacob Rose
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | | | - Grace Qi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Jianfeng Lan
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Guanxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Afilliated Hospital of Guilin Medican University, Guilin, 541001, Guanxi, China
| | - Alexandra Afenjar
- Assistance Publique des Hôpitaux de Paris, Unité de Génétique Clinique, Hôpital Armand Trousseau, Groupe Hospitalier Universitaire, Paris, 75012, France
- Département de Génétique et Embryologie Médicale, CRMR des Malformations et Maladies Congénitales du Cervelet, GRC ConCer-LD, Sorbonne Universités, Hôpital Trousseau, Paris, 75012, France
| | - Geetanjali Chawla
- RNA Biology Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institute of Eminence, NH91, Tehsil Dadri, G. B. Nagar, 201314, Uttar Pradesh, India
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Saint-Justine Research Center, CHU Sainte-Justine, Montreal, QC, H3T 1J4, Canada
| | - Hugo J Bellen
- Departments of Molecular and Human Genetics and Neuroscience, Neurological Research Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lisa M Ellerby
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|