1
|
Chen J, Wang W, Li S, Wang Z, Zuo W, Nong T, Li Y, Liu H, Wei P, He X. RNA-seq reveals role of cell-cycle regulating genes in the pathogenicity of a field very virulent infectious bursal disease virus. Front Vet Sci 2024; 11:1334586. [PMID: 38362295 PMCID: PMC10867150 DOI: 10.3389/fvets.2024.1334586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Infectious bursal disease virus (IBDV) infection causes highly contagious and immunosuppressive disease in poultry. The thymus, serving as the primary organ for T cell maturation and differentiation, plays an important role in the pathogenicity of IBDV in the infected chickens. However, there are no reports on the molecular pathogenesis of IBDV in the thymus currently. The aim of the study was to elucidate the molecular mechanisms underlying the pathogenicity of a field very virulent (vv) IBDV strain NN1172 in the thymus of SPF chickens using integrative transcriptomic and proteomic analyses. Our results showed that a total of 4,972 Differentially expressed genes (DEGs) in the thymus of NN1172-infected chickens by transcriptomic analysis, with 2,796 up-regulated and 2,176 down-regulated. Meanwhile, the proteomic analysis identified 726 differentially expressed proteins (DEPs) in the infected thymus, with 289 up-regulated and 437 down-regulated. Overall, a total of 359 genes exhibited differentially expression at both mRNA and protein levels, with 134 consistently up-regulated and 198 genes consistently down-regulated, as confirmed through a comparison of the RNA-seq and the proteomic datasets. The gene ontology (GO) analysis unveiled the involvement of both DEGs and DEPs in diverse categories encompassing cellular components, biological processes, and molecular functions in the pathological changes in IBDV-infected thymus. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the host mainly displayed severely disruption of cell survival/repair, proliferation and metabolism pathway, meanwhile, the infection triggers antiviral immune activation with a potential emphasis on the MDA5 pathway. Network inference analysis identified seven core hub genes, which include CDK1, TYMS, MCM5, KIF11, CCNB2, MAD2L1, and MCM4. These genes are all associated with cell-cycle regulating pathway and are likely key mediators in the pathogenesis induced by NN1172 infection in the thymus. This study discovered dominant pathways and genes which enhanced our understanding of the molecular mechanisms underlying IBDV pathogenesis in the thymus.
Collapse
Affiliation(s)
- Jinnan Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Shangquan Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Zhiyuan Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Wenbo Zuo
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Tingbin Nong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yihai Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongquan Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Xiumiao He
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
2
|
Deng T, Hu B, Wang X, Ding S, Lin L, Yan Y, Peng X, Zheng X, Liao M, Jin Y, Dong W, Gu J, Zhou J. TRAF6 autophagic degradation by avibirnavirus VP3 inhibits antiviral innate immunity via blocking NFKB/NF-κB activation. Autophagy 2022; 18:2781-2798. [PMID: 35266845 PMCID: PMC9673932 DOI: 10.1080/15548627.2022.2047384] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ubiquitination is an important reversible post-translational modification. Many viruses hijack the host ubiquitin system to enhance self-replication. In the present study, we found that Avibirnavirus VP3 protein was ubiquitinated during infection and supported virus replication by ubiquitination. Mass spectrometry and mutation analysis showed that VP3 was ubiquitinated at residues K73, K135, K158, K193, and K219. Virus rescue showed that ubiquitination at sites K73, K193, and K219 on VP3 could enhance the replication abilities of infectious bursal disease virus (IBDV), and that K135 was essential for virus survival. Binding of the zinc finger domain of TRAF6 (TNF receptor associated factor 6) to VP3 mediated K11- and K33-linked ubiquitination of VP3, which promoted its nuclear accumulation to facilitate virus replication. Additionally, VP3 could inhibit TRAF6-mediated NFKB/NF-κB (nuclear factor kappa B) activation and IFNB/IFN-β (interferon beta) production to evade host innate immunity by inducing TRAF6 autophagic degradation in an SQSTM1/p62 (sequestosome 1)-dependent manner. Our findings demonstrated a macroautophagic/autophagic mechanism by which Avibirnavirus protein VP3 blocked NFKB-mediated IFNB production by targeting TRAF6 during virus infection, and provided a potential drug target for virus infection control.Abbreviations: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; Cas9: CRISPR-associated protein 9; CHX: cycloheximide; Co-IP: co-immunoprecipitation; CRISPR: clustered regularly interspaced short palindromic repeats; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GST: glutathione S-transferase; IBDV: infectious bursal disease virus; IF: indirect immunofluorescence; IFNB/IFN-β: interferon beta; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MS: mass spectrometry; NFKB/NF-κB: nuclear factor kappa B; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; pAb: polyclonal antibody; PRRs: pattern recognition receptors; RNF125: ring finger protein 125; RNF135/Riplet: ring finger protein 135; SQSTM1/p62: sequestosome 1; TAX1BP1: tax1 binding protein1; TCID50: 50% tissue culture infective dose; TRAF3: TNF receptor associated factor 3; TRAF6: TNF receptor associated factor 6; TRIM25: tripartite motif containing 25; Ub: ubiquitin; Wort: wortmannin; WT: wild type.
Collapse
Affiliation(s)
- Tingjuan Deng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Boli Hu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xingbo Wang
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | - Lulu Lin
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiran Peng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaojuan Zheng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Min Liao
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China,Collaborative innovation center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China,CONTACT Jiyong Zhou MOA Key Laboratory of Animal Virology, Zhejiang University, 866 Yuhangtang Road, Hangzhou310058, Zhejiang Province, P. R. China
| |
Collapse
|
3
|
Yun T, Hua J, Ye W, Ni Z, Chen L, Zhu Y, Zhang C. Intergrated Transcriptomic and Proteomic Analysis Revealed the Differential Responses to Novel Duck Reovirus Infection in the Bursa of Fabricius of Cairna moschata. Viruses 2022; 14:v14081615. [PMID: 35893682 PMCID: PMC9332436 DOI: 10.3390/v14081615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023] Open
Abstract
The bursa of Fabricius is an immunologically organ against the invasion of duck reovirus (DRV), which is a fatal bird virus belonging to the Reoviridae family. However, responses of the bursa of Fabricius of Cairna moschata to novel DRV (NDRV) infection are largely unknown. Transcriptomes and proteomes of the samples from control and two NDRV strain (HN10 and JDm10) with different virulence were analyzed. Differentially expressed genes and differential accumulated proteins were enriched in the serine protease system and innate immune response clusters. Most of the immune-related genes were up-regulated under both JDm10/HN10 infections. However, the immune-related proteins were only accumulated under HN10 infection. For the serine protease system, coagulation factor IX, three chains of fibrinogen, and complements C8, C5, and C2s were significantly up-regulated by the HN10 infection, suggesting that the serine protease-mediated immune system might be involved in the resistance to NDRV infection. For the innate and adaptive immune system, RIG-I, MDA5, MAPK20, and IRF3 were significantly up-regulated, indicating their important roles against invaded virus. TLR-3 and IKBKB were only up-regulated in the liver cells, MAPK20 was only up-regulated in the bursa of Fabricius cells, and IRAK2 was only up-regulated in the spleen samples. Coagulation factor IX was increased in the bursa of Fabricius, not in the liver and spleen samples. The data provides a detailed resource for studying the proteins participating in the resistances of the bursa of Fabricius of duck to NDRV infections.
Collapse
Affiliation(s)
- Tao Yun
- Correspondence: (T.Y.); (C.Z.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Xu C, Li T, Lei J, Zhang Y, Zhou J, Hu B. The Autophagy Cargo Receptor SQSTM1 Inhibits Infectious Bursal Disease Virus Infection through Selective Autophagic Degradation of Double-Stranded Viral RNA. Viruses 2021; 13:v13122494. [PMID: 34960763 PMCID: PMC8704251 DOI: 10.3390/v13122494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Selective autophagy mediates the degradation of cytoplasmic cargos, such as damaged organelles, invading pathogens, and protein aggregates. However, whether it targets double-stranded RNA (dsRNA) of intracellular pathogens is still largely unknown. Here, we show that selective autophagy regulates the degradation of the infectious bursal disease virus (IBDV) dsRNA genome. The amount of dsRNA decreased greatly in cells that overexpressed the autophagy-required protein VPS34 or autophagy cargo receptor SQSTM1, while it increased significantly in SQSTM1 or VPS34 knockout cells or by treating wild-type cells with the autophagy inhibitor chloroquine or wortmannin. Confocal microscopy and structured illumination microscopy showed SQSTM1 colocalized with dsRNA during IBDV infection. A pull-down assay further confirmed the direct binding of SQSTM1 to dsRNA through amino acid sites R139 and K141. Overexpression of SQSTM1 inhibited the replication of IBDV, while knockout of SQSTM1 promoted IBDV replication. Therefore, our findings reveal the role of SQSTM1 in clearing viral dsRNA through selective autophagy, highlighting the antiviral role of autophagy in the removal of the viral genome.
Collapse
Affiliation(s)
- Chenyang Xu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.X.); (T.L.); (J.L.)
| | - Tongtong Li
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.X.); (T.L.); (J.L.)
| | - Jing Lei
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.X.); (T.L.); (J.L.)
| | - Yina Zhang
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (J.Z.)
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (J.Z.)
| | - Boli Hu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.X.); (T.L.); (J.L.)
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (J.Z.)
- Correspondence:
| |
Collapse
|
5
|
Huang X, Xu Y, Lin Q, Guo W, Zhao D, Wang C, Wang L, Zhou H, Jiang Y, Cui W, Qiao X, Li Y, Ma G, Tang L. Determination of antiviral action of long non-coding RNA loc107051710 during infectious bursal disease virus infection due to enhancement of interferon production. Virulence 2021; 11:68-79. [PMID: 31865850 PMCID: PMC6961729 DOI: 10.1080/21505594.2019.1707957] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The functions and profiles of lncRNAs during infectious bursal disease virus (IBDV) infection have not been determined, yet. The objectives of this study were to determine the antiviral action of loc107051710 lncRNA during IBDV infection by investigating the relationship between loc107051710 and IRF8, Type I IFN, STATs, and ISGs. DF-1 cells were either left untreated as non-infected controls (n = 1) or infected with IBDV (n = 3). RNA sequencing was applied for analysis of mRNAs and lncRNAs expression. Differentially expressed genes were verified by RT-qPCR. Then identification, of 230 significantly different expressed genes (182 mRNAs and 48 lncRNA) by pairwise comparison of the infected and control groups, was carried out. The functions of differentially expressed lncRNAs were investigated by selection of lncRNAs and mRNAs significantly enriched in the aforementioned biological processes and signaling pathways for construction of lncRNA-mRNA co-expression networks. The techniques of gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways were applied. It was suggested that these differentially expressed genes were involved in the interaction between the host and IBDV. Loc107051710 was found to have potential antiviral effects. RT-qPCR and western blot were applied and revealed that loc107051710 was required for induction of IRF8, type I IFN, STAT, and ISG expression, and its knockdown promoted IBDV replication. By fluorescence in situ hybridization, it was found that loc107051710 was translocated from the nucleus to the cytoplasm after infection with IBDV. Overall, loc107051710 promoted the production of IFN-α and IFN-β by regulating IRF8, thereby promoting the antiviral activity of ISGs.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Qingyu Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Weilong Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Dongfang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Chunmei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Guangpeng Ma
- Agricultural High Technology Department, China Rural Technology Development Center, Beijing China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
6
|
Wang Y, Zhang H, Ma D, Deng X, Wu D, Li F, Wu Q, Liu H, Wang J. Hsp70 Is a Potential Therapeutic Target for Echovirus 9 Infection. Front Mol Biosci 2020; 7:146. [PMID: 32766279 PMCID: PMC7379509 DOI: 10.3389/fmolb.2020.00146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Echovirus is an important cause of viral pneumonia and encephalitis in infants, neonates, and young children worldwide. However, the exact mechanism of its pathogenesis is still not well understood. Here, we established an echovirus type 9 infection mice model, and performed two-dimensional gel electrophoresis (2DE) and tandem mass spectrometry (MS/MS)-based comparative proteomics analysis to investigate the differentially expressed host proteins in mice brain. A total of 21 differentially expressed proteins were identified by MS/MS. The annotation of the differentially expressed proteins by function using the UniProt and GO databases identified one viral protein (5%), seven cytoskeletal proteins (33%), six macromolecular biosynthesis and metabolism proteins (28%), two stress response and chaperone binding proteins (9%), and five other cellular proteins (25%). The subcellular locations of these proteins were mainly found in the cytoskeleton, cytoplasm, nucleus, mitochondria, and Golgi apparatus. The protein expression profiles and the results of quantitative RT-PCR in the detection of gene transcripts were found to complement each other. The differential protein interaction network was predicted using the STRING database. Of the identified proteins, heat shock protein 70 (Hsp70), showing consistent results in the proteomics and transcriptomic analyses, was analyzed through Western blotting to verify the reliability of differential protein expression data in this study. Further, evaluation of the function of Hsp70 using siRNA and quercetin, an inhibitor of Hsp70, showed that Hsp70 was necessary for the infection of echovirus type 9. This study revealed that echovirus infection could cause the differential expression of a series of host proteins, which is helpful to reveal the pathogenesis of viral infection and identify therapeutic drug targets. Additionally, our results suggest that Hsp70 could be a useful therapeutic host protein target for echovirus infection.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongbo Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiang Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongdong Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuge Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Yasmin AR, Omar AR, Farhanah MI, Hiscox AJ, Yeap SK. Quantitative Proteomics Analysis Revealed Compromised Chicken Dendritic Cells Function at Early Stage of Very Virulent Infectious Bursal Disease Virus Infection. Avian Dis 2020; 63:275-288. [PMID: 31251527 DOI: 10.1637/11936-072418-reg.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/19/2018] [Indexed: 11/05/2022]
Abstract
Chicken dendritic cells (DCs) have been demonstrated to be susceptible to infectious bursal disease virus (IBDV), a causative agent of acute and immunosuppressed disease in young chicks known as infectious bursal disease. Further functional characterization of IBDV-infected DCs of chickens is required to provide a better understanding on the influence of the virus on chicken bone marrow-derived dendritic cells (BM-DCs) following very virulent (vv) IBDV infection. Membrane proteins of BM-DCs were extracted and the proteins were further denatured and reduced before performing labeling with isobaric tags for relative and absolute quantitation. The differential expression protein profiles were identified and quantified using liquid chromatography coupled with tandem mass spectrometry, and later validated using flow cytometry and real-time reverse transcriptase PCR. The analysis has identified 134 differentially regulated proteins from a total of 283 proteins (cutoff values of ≤0.67, ≥1.5, and ProtScore >1.3 at 95% confidence interval), which produced high-yield membrane fractions. The entry of vvIBDV into the plasma membrane of BM-DCs was observed at 3 hr postinfection by the disruption of several important protein molecule functions, namely apoptosis, RNA/DNA/protein synthesis, and transport and cellular organization, without the activation of proteins associated with signaling. At the later stage of infection, vvIBDV induced expression of several proteins, namely CD200 receptor 1-A, integrin alpha-5, HSP-90, cathepsin, lysosomal-associated membrane protein, and Ras-related proteins, which play crucial roles in signaling, apoptosis, stress response, and antigen processing as well as in secretion of danger-associated proteins. These findings collectively indicated that the chicken DCs are expressing various receptors regarded as potential targets for pathogen interaction during viral infection. Therefore, fundamental study of the interaction of DCs and IBDV will provide valuable information in understanding the role of professional antigen-presenting cells in chickens and their molecular interactions during IBDV infection and vaccination.
Collapse
Affiliation(s)
- A R Yasmin
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia,
| | - A R Omar
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M I Farhanah
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - A J Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - S K Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| |
Collapse
|
8
|
Zhang Y, Hu B, Li Y, Deng T, Xu Y, Lei J, Zhou J. Binding of Avibirnavirus VP3 to the PIK3C3-PDPK1 complex inhibits autophagy by activating the AKT-MTOR pathway. Autophagy 2019; 16:1697-1710. [PMID: 31885313 DOI: 10.1080/15548627.2019.1704118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Macroautophagy/autophagy is a host natural defense response. Viruses have developed various strategies to subvert autophagy during their life cycle. Recently, we revealed that autophagy was activated by binding of Avibirnavirus to cells. In the present study, we report the inhibition of autophagy initiated by PIK3C3/VPS34 via the PDPK1-dependent AKT-MTOR pathway. Autophagy detection revealed that viral protein VP3 triggered inhibition of autophagy at the early stage of Avibirnavirus replication. Subsequent interaction analysis showed that the CC1 domain of VP3 disassociated PIK3C3-BECN1 complex by direct interaction with BECN1 and blocked autophagosome formation, while the CC3 domain of VP3 disrupted PIK3C3-PDPK1 complex via directly binding to PIK3C3 and inhibited both formation and maturation of autophagosome. Furthermore, we found that PDPK1 activated AKT-MTOR pathway for suppressing autophagy via binding to AKT. Finally, we proved that CC3 domain was critical for role of VP3 in regulating replication of Avibirnavirus through autophagy. Taken together, our study identified that Avibirnavirus VP3 links PIK3C3-PDPK1 complex to AKT-MTOR pathway and inhibits autophagy, a critical step for controlling virus replication. ABBREVIATIONS ATG14/Barkor: autophagy related 14; BECN1: beclin 1; CC: coiled-coil; ER: endoplasmic reticulum; hpi: hours post-infection; IBDV: infectious bursal disease virus; IP: co-immunoprecipitation; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; PDPK1: 3-phosphoinositid-dependent protein kinase-1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; SQSTM1: sequestosome 1; vBCL2: viral BCL2 apoptosis regulator.
Collapse
Affiliation(s)
- Yina Zhang
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University , Hangzhou, China
| | - Boli Hu
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University , Hangzhou, China
| | - Yahui Li
- MOE International Joint collaborative Research Laboratory for Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Tingjuan Deng
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China
| | - Yuting Xu
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China
| | - Jing Lei
- MOE International Joint collaborative Research Laboratory for Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University , Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University , Hangzhou, China
| |
Collapse
|
9
|
Seryl-tRNA synthetase is involved in methionine stimulation of β-casein synthesis in bovine mammary epithelial cells. Br J Nutr 2019; 123:489-498. [PMID: 31711551 PMCID: PMC7015878 DOI: 10.1017/s0007114519002885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the well-characterised mechanisms of amino acids (AA) regulation of milk protein synthesis in mammary glands (MG), the underlying specific AA regulatory machinery in bovine MG remains further elucidated. As methionine (Met) is one of the most important essential and limiting AA for dairy cows, it is crucial to expand how Met exerts its regulatory effects on dairy milk protein synthesis. Our previous work detected the potential regulatory role of seryl-tRNA synthetase (SARS) in essential AA (EAA)-stimulated bovine casein synthesis. Here, we investigated whether and how SARS participates in Met stimulation of casein production in bovine mammary epithelial cells (BMEC). With or without RNA interference against SARS, BMEC were treated with the medium in the absence (containing all other EAA and devoid of Met alone)/presence (containing 0·6 mm of Met in the medium devoid of Met alone) of Met. The protein abundance of β-casein and members of the mammalian target of rapamycin (mTOR) and general control nonderepressible 2 (GCN2) pathways was determined by immunoblot assay after 6 h treatment, the cell viability and cell cycle progression were determined by cell counting and propidium iodide-staining assay after 24 h treatment, and protein turnover was determined by l-[ring-3H5]phenylalanine isotope tracing assay after 48 h treatment. In the absence of Met, there was a general reduction in cell viability, total protein synthesis and β-casein production; in contrast, total protein degradation was enhanced. SARS knockdown strengthened these changes. Finally, SARS may work to promote Met-stimulated β-casein synthesis via affecting mTOR and GCN2 routes in BMEC.
Collapse
|
10
|
Dai W, White R, Liu J, Liu H. Seryl-tRNA synthetase-mediated essential amino acids regulate β-casein synthesis via cell proliferation and mammalian target of rapamycin (mTOR) signaling pathway in bovine mammary epithelial cells. J Dairy Sci 2018; 101:10456-10468. [DOI: 10.3168/jds.2018-14568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/25/2018] [Indexed: 01/14/2023]
|
11
|
Dai W, Wang Q, Zou Y, White R, Liu J, Liu H. Short communication: Comparative proteomic analysis of the lactating and nonlactating bovine mammary gland. J Dairy Sci 2017; 100:5928-5935. [DOI: 10.3168/jds.2016-12366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/06/2017] [Indexed: 01/09/2023]
|
12
|
Infectious Bursal Disease Virus Activates c-Src To Promote α4β1 Integrin-Dependent Viral Entry by Modulating the Downstream Akt-RhoA GTPase-Actin Rearrangement Cascade. J Virol 2017; 91:JVI.01891-16. [PMID: 27881656 DOI: 10.1128/jvi.01891-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
While the entry of infectious bursal disease virus (IBDV) is initiated by the binding of the virus to the two major receptors integrin and HSP90, the signaling events after receptor binding and how they contribute to virus entry remain elusive. We show here that IBDV activates c-Src by inducing the phosphorylation of the Y416 residue in c-Src both in DF-1 chicken fibroblasts and in vivo in the bursa of Fabricius from specific-pathogen-free (SPF) chickens. Importantly, inactivated IBDV fails to stimulate c-Src Y416 phosphorylation, and a very virulent IBDV strain induces a much higher level of c-Src Y416 phosphorylation than does an attenuated strain. Inhibition of c-Src activation by an Src kinase inhibitor or expression of a c-Src dominant negative mutant results in a significant decrease in the internalization of IBDV but has little effect on virus adhesion. Furthermore, short hairpin RNA (shRNA) downregulation of integrin, either the α4 or β1 subunit, but not HSP90 remarkably attenuates IBDV-induced c-Src Y416 phosphorylation, resulting in a decrease in IBDV internalization but not virus adhesion. Moreover, interestingly, inhibition of either c-Src downstream of the phosphatidylinositol 3-kinase (PI3K)/Akt-RhoA signaling cascade or actin rearrangement leads to a significant decrease in IBDV internalization irrespective of the IBDV-induced high levels of c-Src phosphorylation. Cumulatively, our results suggest a novel feed-forward model whereby IBDV activates c-Src for benefiting its cell entry via an integrin-mediated pathway by the activation of downstream PI3K/Akt-RhoA signaling and cytoskeleton actin rearrangement. IMPORTANCE While IBDV-caused immunosuppression is highly related to viral invasion, the molecular basis of the cellular entry of IBDV remains elusive. In this study, we demonstrate that IBDV activates c-Src by inducing the phosphorylation of the Y416 residue in c-Src to promote virus internalization but not virus adhesion. The ability to induce the level of c-Src Y416 phosphorylation correlates with the pathogenicity of an IBDV strain. IBDV-induced c-Src Y416 activation is α4β1 integrin but not HSP90 dependent and involves the activation of the downstream PI3K/Akt-RhoA GTPase-actin rearrangement cascade. Thus, our findings provide new insights into the IBDV infection process and the potential for c-Src as a candidate target for the development of IBDV therapeutic drugs.
Collapse
|
13
|
Quan R, Zhu S, Wei L, Wang J, Yan X, Li Z, Liu J. Transcriptional profiles in bursal B-lymphoid DT40 cells infected with very virulent infectious bursal disease virus. Virol J 2017; 14:7. [PMID: 28086922 PMCID: PMC5237357 DOI: 10.1186/s12985-016-0668-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Background Infectious bursal disease virus (IBDV) causes a highly contagious, immunosuppressive disease in chickens. The virus mainly infects immature B lymphocytes in the bursa of Fabricius (BF). Chicken B cell line DT40, an avian leukosis virus-induced B cell line, supports very virulent IBDV (vvIBDV) infection in vitro and thereby serves as a good model for investigating the infection and pathogenesis of this virus. However, a transcriptome-wide understanding of the interaction between vvIBDV and B cells has not yet been achieved. This study aimed to employ time-course DNA microarrays to investigate gene expression patterns in DT40 cells after infection with vvIBDV strain LX. Results DT40 cells infected with vvIBDV exhibited alterations in the expression of many important host genes involved in signal transduction pathways, including MAPK signaling, PI3K/mTOR signaling, cell death and survival, BCR signaling, and antigen presentation. The changes in cellular mRNA levels identified by microarray analysis were confirmed for 8 selected genes using real-time reverse transcription-PCR. The upregulation of inflammatory cytokines and Toll-like receptors (TLRs) in the bursa of vvIBDV-infected chickens might involve excessive activation of the innate immune and inflammatory responses and contribute to tissue damage. Conclusions The present study is the first to provide a comprehensive differential transcriptional profile of cultured DT40 cells in response to vvIBDV infection and further extends our understanding of the molecular mechanisms underlying vvIBDV infection and pathogenesis.
Collapse
Affiliation(s)
- Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Xu Yan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China.
| |
Collapse
|
14
|
Kong BW, Lassiter K, Piekarski-Welsher A, Dridi S, Reverter-Gomez A, Hudson NJ, Bottje WG. Proteomics of Breast Muscle Tissue Associated with the Phenotypic Expression of Feed Efficiency within a Pedigree Male Broiler Line: I. Highlight on Mitochondria. PLoS One 2016; 11:e0155679. [PMID: 27244447 PMCID: PMC4887024 DOI: 10.1371/journal.pone.0155679] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/03/2016] [Indexed: 02/07/2023] Open
Abstract
As feed represents 60 to 70% of the cost of raising an animal to market weight, feed efficiency (the amount of dry weight intake to amount of wet weight gain) remains an important genetic trait in animal agriculture. To gain greater understanding of cellular mechanisms of feed efficiency (FE), shotgun proteomics was conducted using in-gel trypsin digestion and tandem mass spectrometry on breast muscle samples obtained from pedigree male (PedM) broilers exhibiting high feed efficiency (FE) or low FE phenotypes (n = 4 per group). The high FE group had greater body weight gain (P = 0.004) but consumed the same amount of feed (P = 0.30) from 6 to 7 wk resulting in higher FE (P < 0.001). Over 1800 proteins were identified, of which 152 were different (P < 0.05) by at least 1.3 fold and ≤ 15 fold between the high and low FE phenotypes. Data were analyzed for a modified differential expression (DE) metric (Phenotypic Impact Factors or PIF) and interpretation of protein expression data facilitated using the Ingenuity Pathway Analysis (IPA) program. In the entire data set, 228 mitochondrial proteins were identified whose collective expression indicates a higher mitochondrial expression in the high FE phenotype (binomial probability P < 0.00001). Within the top up and down 5% PIF molecules in the dataset, there were 15 mitoproteome proteins up-regulated and only 5 down-regulated in the high FE phenotype. Pathway enrichment analysis also identified mitochondrial dysfunction and oxidative phosphorylation as the number 1 and 5 differentially expressed canonical pathways (up-regulated in high FE) in the proteomic dataset. Upstream analysis (based on DE of downstream molecules) predicted that insulin receptor, insulin like growth receptor 1, nuclear factor, erythroid 2-like 2, AMP activated protein kinase (α subunit), progesterone and triiodothyronine would be activated in the high FE phenotype whereas rapamycin independent companion of target of rapamycin, mitogen activated protein kinase 4, and serum response factor would be inhibited in the high FE phenotype. The results provide additional insight into the fundamental molecular landscape of feed efficiency in breast muscle of broilers as well as further support for a role of mitochondria in the phenotypic expression of FE. Funding provided by USDA-NIFA (#2013–01953), Arkansas Biosciences Institute (Little Rock, AR), McMaster Fellowship (AUS to WB) and the Agricultural Experiment Station (Univ. of Arkansas, Fayetteville).
Collapse
Affiliation(s)
- Byung-Whi Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
| | - Kentu Lassiter
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
| | - Alissa Piekarski-Welsher
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
| | - Sami Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
| | - Antonio Reverter-Gomez
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD 4067, Australia
| | - Nicholas James Hudson
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD 4067, Australia
| | - Walter Gay Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville AR 72701, United States of America
- * E-mail:
| |
Collapse
|
15
|
Sun Y, Hu B, Fan C, Jia L, Zhang Y, Du A, Zheng X, Zhou J. iTRAQ-based quantitative subcellular proteomic analysis of Avibirnavirus-infected cells. Electrophoresis 2015; 36:1596-611. [PMID: 25929241 PMCID: PMC7163642 DOI: 10.1002/elps.201500014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 11/19/2022]
Abstract
Infectious bursal disease virus (IBDV) enters the host cells via endocytic pathway to achieve viral replication in the cytoplasm. Here, we performed LC-MS/MS coupled with isobaric tags for relative and absolute quantification labeling of differentially abundant proteins of IBDV-infected cells using a subcellular fractionation strategy. We show that the viral infection regulates the abundance and/or subcellular localization of 3211 proteins during early infection. In total, 23 cellular proteins in the cytoplasmic proteome and 34 in the nuclear proteome were significantly altered after virus infection. These differentially abundant proteins are involved in such biological processes as immune response, signal transduction, RNA processing, macromolecular biosynthesis, energy metabolism, virus binding, and cellular apoptosis. Moreover, transcriptional profiles of the 25 genes corresponding to the identified proteins were analyzed by quantitative real-time RT-PCR. Ingenuity Pathway Analysis clustered the differentially abundant proteins primarily into the mTOR pathway, PI3K/Akt pathway, and interferon-β signaling cascades. Confocal microscopy showed colocalization of the viral protein VP3 with host proteins heterogeneous nuclear ribonucleoprotein H1, nuclear factor 45, apoptosis inhibitor 5, nuclear protein localization protein 4 and DEAD-box RNA helicase 42 during the virus infection. Together, these identified subcellular constituents provide important information for understanding host-IBDV interactions and underlying mechanisms of IBDV infection and pathogenesis.
Collapse
Affiliation(s)
- Yanting Sun
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Boli Hu
- College of Veterinary MedicineNanjing Agricultural UniversityNanjingP. R. China
| | - Chengfei Fan
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Lu Jia
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Yina Zhang
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Aifang Du
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
| | - Xiaojuan Zheng
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang UniversityHangzhouP. R. China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of AgricultureZhejiang UniversityHangzhouP. R. China
- College of Veterinary MedicineNanjing Agricultural UniversityNanjingP. R. China
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang UniversityHangzhouP. R. China
| |
Collapse
|
16
|
Hui RK, Leung FC. Differential Expression Profile of Chicken Embryo Fibroblast DF-1 Cells Infected with Cell-Adapted Infectious Bursal Disease Virus. PLoS One 2015; 10:e0111771. [PMID: 26053856 PMCID: PMC4460012 DOI: 10.1371/journal.pone.0111771] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/01/2014] [Indexed: 12/17/2022] Open
Abstract
RNA-Seq was used to unveil the transcriptional profile of DF-1 cells at the early stage of caIBDV infection. Total RNAs were extracted from virus-infected cells at 0, 6 and 12 hpi. RNA-Seq datasets of respective samples mapped to 56.5–57.6% of isoforms in the reference genome Galgal4.73. At 6 hpi, 23 isoforms underwent an elevated expression, while 128 isoforms were up-regulated and 5 were down-regulated at 12 hpi in the virus-infected group. Besides, 10 isoforms were exclusively expressed in the virus-infected cells. Though no significant change was detected in cytokine and interferon expression levels at the first 12 hours of infection, modulations of the upstream regulators were observed. In addition to the reported regulatory factors including EIF2AK2, MX, OAS*A, GBP7 and IFIT, IBDV infection also triggered a IFIT5-IRF1/3-RSAD5 pathway in the DF-1 cells which potentially restricted the viral replication cycle in the early infection stage. Over-expression of LIPA and CH25H, together with the suppression of STARD4, LSS and AACS genes implied a modulation of membrane fluidity and lipid raft arrangement in the infected cells. Alternative splicing of the EFR3 homolog A gene was also through to be involved in the lipid membrane regulation, and these cumulative responses projected an inhibition of viral endocytosis. Recognition of viral RNA genomes and intermediates was presumably enhanced by the elevated levels of IFIH1, DHX58 and TRIM25 genes which possess properties on detecting viral dsRNA. On the other hand, the caIBDV arrested the host's apoptotic process by inducing the expression of apoptosis inhibitors including NFKBIA/Z, TNFAIP2/3 and ITA at the first 12 hours of infection. In conclusion, the differential expression landscape demonstrated with RNA-Seq provides a comprehensive picture on the molecular interactions between host cells and virus at the early stage of infection.
Collapse
Affiliation(s)
- Raymond K. Hui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Frederick C. Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
17
|
Wang S, Hu B, Si W, Jia L, Zheng X, Zhou J. Avibirnavirus VP4 Protein Is a Phosphoprotein and Partially Contributes to the Cleavage of Intermediate Precursor VP4-VP3 Polyprotein. PLoS One 2015; 10:e0128828. [PMID: 26046798 PMCID: PMC4457844 DOI: 10.1371/journal.pone.0128828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/30/2015] [Indexed: 11/19/2022] Open
Abstract
Birnavirus-encoded viral protein 4 (VP4) utilizes a Ser/Lys catalytic dyad mechanism to process polyprotein. Here three phosphorylated amino acid residues Ser538, Tyr611 and Thr674 within the VP4 protein of the infectious bursal disease virus (IBDV), a member of the genus Avibirnavirus of the family Birnaviridae, were identified by mass spectrometry. Anti-VP4 monoclonal antibodies finely mapping to phosphorylated (p)Ser538 and the epitope motif 530PVVDGIL536 were generated and verified. Proteomic analysis showed that in IBDV-infected cells the VP4 was distributed mainly in the cytoskeletal fraction and existed with different isoelectric points and several phosphorylation modifications. Phosphorylation of VP4 did not influence the aggregation of VP4 molecules. The proteolytic activity analysis verified that the pTyr611 and pThr674 sites within VP4 are involved in the cleavage of viral intermediate precursor VP4-VP3. This study demonstrates that IBDV-encoded VP4 protein is a unique phosphoprotein and that phosphorylation of Tyr611 and Thr674 of VP4 affects its serine-protease activity.
Collapse
Affiliation(s)
- Sanying Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
- Shaoxing Center for Disease Control and Prevention, Shaoxing, PR China
| | - Boli Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Weiying Si
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Lu Jia
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Xiaojuan Zheng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, PR China
- * E-mail: (JYZ); (XJZ)
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, PR China
- * E-mail: (JYZ); (XJZ)
| |
Collapse
|
18
|
Inhibition of antiviral innate immunity by birnavirus VP3 protein via blockage of viral double-stranded RNA binding to the host cytoplasmic RNA detector MDA5. J Virol 2014; 88:11154-65. [PMID: 25031338 DOI: 10.1128/jvi.01115-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Chicken MDA5 (chMDA5), the sole known pattern recognition receptor for cytoplasmic viral RNA in chickens, initiates type I interferon (IFN) production. Infectious bursal disease virus (IBDV) evades host innate immunity, but the mechanism is unclear. We report here that IBDV inhibited antiviral innate immunity via the chMDA5-dependent signaling pathway. IBDV infection did not induce efficient type I interferon (IFN) production but antagonized the antiviral activity of beta interferon (IFN-β) in DF-1 cells pretreated with IFN-α/β. Dual-luciferase assays and inducible expression systems demonstrated that IBDV protein VP3 significantly inhibited IFN-β expression stimulated by naked IBDV genomic double-stranded RNA (dsRNA). The VP3 protein competed strongly with chMDA5 to bind IBDV genomic dsRNA in vitro and in vivo, and VP3 from other birnaviruses also bound dsRNA. Site-directed mutagenesis confirmed that deletion of the VP3 dsRNA binding domain restored IFN-β expression. Our data demonstrate that VP3 inhibits antiviral innate immunity by blocking binding of viral genomic dsRNA to MDA5. IMPORTANCE MDA5, a known pattern recognition receptor and cytoplasmic viral RNA sensor, plays a critical role in host antiviral innate immunity. Many pathogens escape or inhibit the host antiviral immune response, but the mechanisms involved are unclear for most pathogens. We report here that birnaviruses inhibit host antiviral innate immunity via the MDA5-dependent signaling pathway. The antiviral innate immune system involving IFN-β did not function effectively during birnavirus infection, and the viral protein VP3 significantly inhibited IFN-β expression stimulated by naked viral genomic dsRNA. We also show that VP3 blocks MDA5 binding to viral genomic dsRNA in vitro and in vivo. Our data reveal that birnavirus-encoded viral protein VP3 is an inhibitor of the antiviral innate immune response and inhibits the antiviral innate immune response via the MDA5-dependent signaling pathway.
Collapse
|
19
|
Chen WT, Wu YL, Chen T, Cheng CS, Chan HL, Chou HC, Chen YW, Yin HS. Proteomics analysis of the DF-1 chicken fibroblasts infected with avian reovirus strain S1133. PLoS One 2014; 9:e92154. [PMID: 24667214 PMCID: PMC3965424 DOI: 10.1371/journal.pone.0092154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Avian reovirus (ARV) is a member of the Orthoreovirus genus in the Reoviridae family. It is the etiological agent of several diseases, among which viral arthritis and malabsorption syndrome are the most commercially important, causing considerable economic losses in the poultry industry. Although a small but increasing number of reports have characterized some aspects of ARV infection, global changes in protein expression in ARV-infected host cells have not been examined. The current study used a proteomics approach to obtain a comprehensive view of changes in protein levels in host cells upon infection by ARV. METHODOLOGY AND PRINCIPAL FINDINGS The proteomics profiles of DF-1 chicken fibroblast cells infected with ARV strain S1133 were analyzed by two-dimensional differential-image gel electrophoresis. The majority of protein expression changes (≥ 1.5 fold, p<0.05) occurred at 72 h post-infection. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified 51 proteins with differential expression levels, including 25 that were upregulated during ARV infection and 26 that were downregulated. These proteins were divided into eight groups according to biological function: signal transduction, stress response, RNA processing, the ubiquitin-proteasome pathway, lipid metabolism, carbohydrate metabolism, energy metabolism, and cytoskeleton organization. They were further examined by immunoblotting to validate the observed alterations in protein expression. CONCLUSION/SIGNIFICANCE This is the first report of a time-course proteomic analysis of ARV-infected host cells. Notably, all identified proteins involved in signal transduction, RNA processing, and the ubiquitin-proteasome pathway were downregulated in infected cells, whereas proteins involved in DNA synthesis, apoptosis, and energy production pathways were upregulated. In addition, other differentially expressed proteins were linked with the cytoskeleton, metabolism, redox regulation, and stress response. These proteomics data provide valuable information about host cell responses to ARV infection and will facilitate further studies of the molecular mechanisms underlying ARV pathogenesis.
Collapse
Affiliation(s)
- Wen-Ting Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Le Wu
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Sheng Cheng
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiu-Chuan Chou
- Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan
| | - Yi-Wen Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsien-Sheng Yin
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
20
|
Wu Y, Jin Y, Pan W, Ye C, Sun X, Sun Y, Hu B, Zhou J. Comparative proteomics analysis of host cells infected with Brucella abortus A19. Electrophoresis 2014; 35:1130-43. [PMID: 24519676 DOI: 10.1002/elps.201300378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/18/2023]
Abstract
We carried out a proteomic analysis of THP-1-derived macrophages with and without Brucella abortus A19 (B. abortus A19) infection in order to study the cellular responses to B. abortus A19. The proteins were analyzed at different time points after infection with 2DE followed by MALDI-TOF/TOF identification. Comparative analysis of multiple 2DE gels revealed that the majority of changes in protein abundance appeared between 48 and 96 h after infection. MS identified 44 altered proteins, including 20 proteins increased in abundance and 24 proteins decreased in abundance, which were found to be involved in cytoskeleton, signal transduction, energy metabolism, host macromolecular biosynthesis, and stress response. Moreover, 22 genes corresponding to the altered proteins were quantified by real-time RT-PCR to examine the transcriptional profiles between infected and uninfected THP-1-derived macrophages. Finally, we mapped the altered pathways and networks using ingenuity pathway analysis, which suggested that the altered protein species were heavily favored germ cell-Sertoli cell junction signaling as the primary pathway. Furthermore, mechanisms of viral exit from host cell and macrophage stimulating protein-recepteur d'origine nantais signaling appeared to be major pathways modulated in infected cells. This study effectively provides useful dynamic protein-related information concerning B. abortus infection in macrophages.
Collapse
Affiliation(s)
- Yongping Wu
- College of Animal Sciences and Technology, Zhejiang A&F University, Hangzhou, P.R. China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang S, Teng Q, Jia L, Sun X, Wu Y, Zhou J. Infectious bursal disease virus influences the transcription of chicken γc and γc family cytokines during infection. PLoS One 2014; 9:e84503. [PMID: 24416239 PMCID: PMC3887008 DOI: 10.1371/journal.pone.0084503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 11/20/2013] [Indexed: 01/05/2023] Open
Abstract
Infectious bursal disease virus (IBDV) infection causes immunodeficiency in chickens. To understand cell-mediated immunity during IBDV infection, this study perform a detailed analysis of chicken γc chain (chCD132) and γc family cytokines, including interleukins 2, 4, 7, 9, and 15. The mouse anti-chCD132 monoclonal antibody (mAb) was first generated by the E.coli-expressed γc protein. Immunofluorescence assay further showed that γc was a protein located with the anti-chCD132 mAb on the surface of chicken's splenic mononuclear cells. Real-time quantitative RT-PCR revealed that the chCD132 mRNA transcript was persistently downregulated in embryo fibroblasts, spleen and thymus of chickens infected with IBDV. Correspondingly during IBDV infection, the transcription of five γc family cytokines was downregulated in the thymus and presented an imbalance in the spleen. Fluorescence-activated cell sorting analyses also indicated that the percentage of CD132+CD8+ T cells linearly decreased in the bursa of IBDV-infected chickens. These results confirmed that IBDV infection disturbed the in vivo balance of CD132 and γc family cytokine expression and that IBDV-induced immunodeficiency involved cellular networks related to the γc family.
Collapse
Affiliation(s)
- Sanying Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Qiaoyang Teng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lu Jia
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyuan Sun
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yongping Wu
- College of Animal Sciences and Technology, Zhejiang A&F University, Lin'an, Zhejiang, People's Republic of China
- * E-mail: (YPW); (JYZ)
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail: (YPW); (JYZ)
| |
Collapse
|
22
|
Zhang J, Hu YH, Xiao ZZ, Sun L. Megalocytivirus-induced proteins of turbot (Scophthalmus maximus): identification and antiviral potential. J Proteomics 2013; 91:430-43. [PMID: 23933595 DOI: 10.1016/j.jprot.2013.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022]
Abstract
UNLABELLED Megalocytivirus is an important fish pathogen with a broad host range that includes turbot. In this study, proteomic analysis was conducted to examine turbot proteins modulated in expression by megalocytivirus infection. Thirty five proteins from spleen were identified to be differentially expressed at 2days post-viral infection (dpi) and 7dpi. Three upregulated proteins, i.e. heat shock protein 70 (Hsp70), Mx protein, and natural killer enhancing factor (NKEF), were further analyzed for potential antiviral effect. For this purpose, turbot were administered separately with the plasmids pHsp70, pMx, and pNKEF, which express Hsp70, Mx, and NKEF respectively, before megalocytivirus infection. Viral dissemination and propagation in spleen were subsequently determined. The results showed that the viral loads in fish administered with pNKEF were significantly reduced. To examine the potential of Hsp70, Mx, and NKEF as immunological adjuvant, turbot were immunized with a DNA vaccine in the presence of pHsp70, pMx, or pNKEF. Subsequent analysis showed that the presence of pNKEF and pHsp70, but not pMx, significantly reduced viral infection and enhanced fish survival. Taken together, these results indicate that NKEF exhibits antiviral property against megalocytivirus, and that both NKEF and Hsp70 may be used in DNA vaccine-based control of megalocytivirus infection. BIOLOGICAL SIGNIFICANCE This study provides the first proteomic picture of turbot in response to megalocytivirus infection. We demonstrated that megalocytivirus infection modulates the expression of turbot proteins associated with various cellular functions, and that one of the upregulated proteins, NKEF, exhibits antiviral effect when overexpressed in vivo, while another upregulated protein, Hsp70, exhibits adjuvant effect when co-immunized with a DNA vaccine. These results add molecular insights into turbot immune response induced by megalocytivirus and provide candidate proteins with application potentials in the control of megalocytivirus-associated disease.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | |
Collapse
|
23
|
Mitochondrial proteomic analysis of human host cells infected with H3N2 swine influenza virus. J Proteomics 2013; 91:136-50. [PMID: 23856606 DOI: 10.1016/j.jprot.2013.06.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/21/2013] [Accepted: 06/29/2013] [Indexed: 12/20/2022]
Abstract
UNLABELLED Swine influenza viruses (SIV) are zoonotic pathogens that pose a potential threat to human health. In this study, we analyzed the differential mitochondrial proteomes of H3N2 SIV-infected human lung A549 cells using two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) analysis. In the comparative analysis, 24 altered proteins (13 upregulated and 11 downregulated) were identified in the mitochondria of H3N2 SIV-infected cells; these proteins were involved in cell-to-cell signaling and interaction, cellular movement, and post-translational modification. Moreover, the transcriptional profiles of 16 genes corresponding to the identified proteins were estimated by real time RT-PCR. IPA analysis suggested that the differentially expressed proteins were clustered primarily into the mammalian target of rapamycin (mTOR) and d-glucose signaling pathways. In addition, oxidative phosphorylation and integrin signaling appeared to be major pathways modulated in the mitochondria of infected cells. We further demonstrated that apolipoprotein L2 was upregulated in the cytoplasm and translocated to mitochondria during virus infection. These results were verified by Western blot analysis coupled with confocal microscopy. Collectively, the mitochondrial proteome data provide insights to further understand the underlying mechanisms of H3N2 SIV cross-species infection. BIOLOGICAL SIGNIFICANCE In recent years, proteomics has emerged as an indispensable tool to unveil the complex molecular events in virology. we firstly perform mitochondrial proteomic profiles of human cells infected with H3N2 subtype SIV to understand virus-host interactions, and 24 differentially expressed proteins in mitochondrial proteomes were identified in SIV-infected cells. The proteins that were identified to have differential expression were involved in cell-to-cell signaling and interaction, post-translational modification, cell morphology, cellular assembly, cell death, and energy production. Furthermore, Western blot analysis and a confocal assay further demonstrated that the cellular protein APOL2 partially co-localized with mitochondria after virus infection. This is a very important discovery in the underlying replication and pathogenesis of SIV which provides a potential target clue for the design of anti-SIV drugs. Our results will inspire basic study on SIV infection and drive the understanding for replication and pathogenesis of SIV to control this disease.
Collapse
|
24
|
Cellular chaperonin CCTγ contributes to rabies virus replication during infection. J Virol 2013; 87:7608-21. [PMID: 23637400 DOI: 10.1128/jvi.03186-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rabies, as the oldest known infectious disease, remains a serious threat to public health worldwide. The eukaryotic cytosolic chaperonin TRiC/CCT complex facilitates the folding of proteins through ATP hydrolysis. Here, we investigated the expression, cellular localization, and function of neuronal CCTγ during neurotropic rabies virus (RABV) infection using mouse N2a cells as a model. Following RABV infection, 24 altered proteins were identified by using two-dimensional electrophoresis and mass spectrometry, including 20 upregulated proteins and 4 downregulated proteins. In mouse N2a cells infected with RABV or cotransfected with RABV genes encoding nucleoprotein (N) and phosphoprotein (P), confocal microscopy demonstrated that upregulated cellular CCTγ was colocalized with viral proteins N and P, which formed a hollow cricoid inclusion within the region around the nucleus. These inclusions, which correspond to Negri bodies (NBs), did not form in mouse N2a cells only expressing the viral protein N or P. Knockdown of CCTγ by lentivirus-mediated RNA interference led to significant inhibition of RABV replication. These results demonstrate that the complex consisting of viral proteins N and P recruits CCTγ to NBs and identify the chaperonin CCTγ as a host factor that facilitates intracellular RABV replication. This work illustrates how viruses can utilize cellular chaperonins and compartmentalization for their own benefit.
Collapse
|