1
|
Quintana-Escobar AO, Méndez-Hernández HA, De-la-Peña C, Loyola-Vargas VM. Beyond the surface: the plant secretome as a bridge between the cell and its environment. PLANTA 2025; 261:67. [PMID: 40000454 DOI: 10.1007/s00425-025-04648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
MAIN CONCLUSIONS We describe the biological importance of proteins secreted in plants under different conditions and biological processes, the secretion mechanisms, methodologies for obtaining and identifying these proteins, and future perspectives. Molecule secretion inside and outside the cell is relevant to all areas of plant biology. Protein secretion, in particular, has intriguing possibilities due to the different secretion pathways that the cell uses to send biochemical messages. The secretion of proteins-secretomes-into extracellular space in response to different stimuli or stress situations, in vitro or in planta conditions, has been studied in plants and plant tissues. Proteomics has allowed the quantitative and qualitative analysis of this process and the measurement of proteins associated with the cellular development of different tissues. This has provided the means of evaluating a more precise biochemical state of the cells and the changes that occur during their growth. With the development of new techniques in proteomics, such as mass spectrometry, sequencing, and bioinformatics, it is now possible to elucidate the main proteins secreted, with all their posttranslational modifications, in different plant species and under different specific conditions. This review presents the different pathways of protein secretion in plants, highlighting the well-known importance of signal peptides. The advances and disadvantages of in planta and in vitro systems used for proteomic purposes are discussed. The principal proteomic techniques to better understand the biological function of the secretome are summarized.
Collapse
Affiliation(s)
- Ana O Quintana-Escobar
- Centro de Investigación Científica de Yucatán, Unidad de Biología Integrativa, Calle 43 #130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Hugo A Méndez-Hernández
- Centro de Investigación Científica de Yucatán, Unidad de Biología Integrativa, Calle 43 #130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Clelia De-la-Peña
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 #130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Víctor M Loyola-Vargas
- Centro de Investigación Científica de Yucatán, Unidad de Biología Integrativa, Calle 43 #130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México.
| |
Collapse
|
2
|
Mahood EH, Bennett AA, Komatsu K, Kruse LH, Lau V, Rahmati Ishka M, Jiang Y, Bravo A, Louie K, Bowen BP, Harrison MJ, Provart NJ, Vatamaniuk OK, Moghe GD. Information theory and machine learning illuminate large-scale metabolomic responses of Brachypodium distachyon to environmental change. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:463-481. [PMID: 36880270 DOI: 10.1111/tpj.16160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 05/10/2023]
Abstract
Plant responses to environmental change are mediated via changes in cellular metabolomes. However, <5% of signals obtained from liquid chromatography tandem mass spectrometry (LC-MS/MS) can be identified, limiting our understanding of how metabolomes change under biotic/abiotic stress. To address this challenge, we performed untargeted LC-MS/MS of leaves, roots, and other organs of Brachypodium distachyon (Poaceae) under 17 organ-condition combinations, including copper deficiency, heat stress, low phosphate, and arbuscular mycorrhizal symbiosis. We found that both leaf and root metabolomes were significantly affected by the growth medium. Leaf metabolomes were more diverse than root metabolomes, but the latter were more specialized and more responsive to environmental change. We found that 1 week of copper deficiency shielded the root, but not the leaf metabolome, from perturbation due to heat stress. Machine learning (ML)-based analysis annotated approximately 81% of the fragmented peaks versus approximately 6% using spectral matches alone. We performed one of the most extensive validations of ML-based peak annotations in plants using thousands of authentic standards, and analyzed approximately 37% of the annotated peaks based on these assessments. Analyzing responsiveness of each predicted metabolite class to environmental change revealed significant perturbations of glycerophospholipids, sphingolipids, and flavonoids. Co-accumulation analysis further identified condition-specific biomarkers. To make these results accessible, we developed a visualization platform on the Bio-Analytic Resource for Plant Biology website (https://bar.utoronto.ca/efp_brachypodium_metabolites/cgi-bin/efpWeb.cgi), where perturbed metabolite classes can be readily visualized. Overall, our study illustrates how emerging chemoinformatic methods can be applied to reveal novel insights into the dynamic plant metabolome and stress adaptation.
Collapse
Affiliation(s)
- Elizabeth H Mahood
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Alexandra A Bennett
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Karyn Komatsu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Lars H Kruse
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Vincent Lau
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Maryam Rahmati Ishka
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Yulin Jiang
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Katherine Louie
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - Nicholas J Provart
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Olena K Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Cheng M, Meng F, Qi H, Mo F, Wang P, Chen X, Wang A. Escaping drought: The pectin methylesterase inhibitor gene Slpmei27 can significantly change drought resistance in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:207-217. [PMID: 36265205 DOI: 10.1016/j.plaphy.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Drought stress will lead to a decrease in tomato yield and poor flavour, yield and quality, resulting in economic losses in agricultural production. Mining the key genes regulating tomato drought resistance is of great significance to improve the drought resistance of tomato plants. The cell wall can directly participate in the plant drought stress response as one of the main components of the cell wall, and the regulation of pectin content in plant drought resistance is still unclear. Here, the candidate gene Solyc08g006690 (Slpmei27) was obtained by fine mapping based on genome sequencing technology (BSA-seq) of late-maturing stress-resistant tomato mutants found in the field. Slpmei27 is expressed in the cell wall. The transient silencing of Slpmei27 by VIGS significantly improved the drought resistance of tomato. Meanwhile, Slpmei27 silencing could significantly change the cell wall structure of plants, change the stomatal pass rate, reduce the water loss rate of plants, improve the scavenging ability of reactive oxygen species, change the redox balance in plants, and thus improve the drought resistance of tomato. The promoter region of this gene contains a large number of hormone-response and stress-response binding sites. The promoter region of the Slpmei27 gene in the mutant could lower the expression of downstream genes. Through this study, the mechanism by which Slpmei27 improves tomato drought resistance was revealed, and the relationship between pectin methyl ester metabolism and plant drought resistance was established, providing a theoretical basis for the production of high-quality tomato materials with high drought resistance.
Collapse
Affiliation(s)
- Mozhen Cheng
- College of School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China.
| | - Fanyue Meng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China; College of Life Sciences, Northeast Agricultural University, Harbin, China.
| | - Haonan Qi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China; College of Life Sciences, Northeast Agricultural University, Harbin, China.
| | - Fulei Mo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China; College of Life Sciences, Northeast Agricultural University, Harbin, China.
| | - Peiwen Wang
- College of School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; College of Life Sciences, Northeast Agricultural University, Harbin, China.
| | - Xiuling Chen
- College of School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China.
| | - Aoxue Wang
- College of School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China; College of Life Sciences, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
4
|
San Clemente H, Kolkas H, Canut H, Jamet E. Plant Cell Wall Proteomes: The Core of Conserved Protein Families and the Case of Non-Canonical Proteins. Int J Mol Sci 2022; 23:4273. [PMID: 35457091 PMCID: PMC9029284 DOI: 10.3390/ijms23084273] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/25/2022] Open
Abstract
Plant cell wall proteins (CWPs) play critical roles during plant development and in response to stresses. Proteomics has revealed their great diversity. With nearly 1000 identified CWPs, the Arabidopsis thaliana cell wall proteome is the best described to date and it covers the main plant organs and cell suspension cultures. Other monocot and dicot plants have been studied as well as bryophytes, such as Physcomitrella patens and Marchantia polymorpha. Although these proteomes were obtained using various flowcharts, they can be searched for the presence of members of a given protein family. Thereby, a core cell wall proteome which does not pretend to be exhaustive, yet could be defined. It comprises: (i) glycoside hydrolases and pectin methyl esterases, (ii) class III peroxidases, (iii) Asp, Ser and Cys proteases, (iv) non-specific lipid transfer proteins, (v) fasciclin arabinogalactan proteins, (vi) purple acid phosphatases and (vii) thaumatins. All the conserved CWP families could represent a set of house-keeping CWPs critical for either the maintenance of the basic cell wall functions, allowing immediate response to environmental stresses or both. Besides, the presence of non-canonical proteins devoid of a predicted signal peptide in cell wall proteomes is discussed in relation to the possible existence of alternative secretion pathways.
Collapse
Affiliation(s)
| | | | | | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (H.S.C.); (H.K.); (H.C.)
| |
Collapse
|
5
|
Shim SH, Mahong B, Lee SK, Kongdin M, Lee C, Kim YJ, Qu G, Zhang D, Ketudat Cairns JR, Jeon JS. Rice β-glucosidase Os12BGlu38 is required for synthesis of intine cell wall and pollen fertility. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:784-800. [PMID: 34570888 DOI: 10.1093/jxb/erab439] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Glycoside hydrolase family1 β-glucosidases play a variety of roles in plants, but their in planta functions are largely unknown in rice (Oryza sativa). In this study, the biological function of Os12BGlu38, a rice β-glucosidase, expressed in bicellular to mature pollen, was examined. Genotype analysis of progeny of the self-fertilized heterozygous Os12BGlu38 T-DNA mutant, os12bglu38-1, found no homozygotes and a 1:1 ratio of wild type to heterozygotes. Reciprocal cross analysis demonstrated that Os12BGlu38 deficiency cannot be inherited through the male gamete. In cytological analysis, the mature mutant pollen appeared shrunken and empty. Histochemical staining and TEM showed that mutant pollen lacked intine cell wall, which was rescued by introduction of wild-type Os12BGlu38 genomic DNA. Metabolite profiling analysis revealed that cutin monomers and waxes, the components of the pollen exine layer, were increased in anthers carrying pollen of os12bglu38-1 compared with wild type and complemented lines. Os12BGlu38 fused with green fluorescent protein was localized to the plasma membrane in rice and tobacco. Recombinant Os12BGlu38 exhibited β-glucosidase activity on the universal substrate p-nitrophenyl β-d-glucoside and some oligosaccharides and glycosides. These findings provide evidence that function of a plasma membrane-associated β-glucosidase is necessary for proper intine development.
Collapse
Affiliation(s)
- Su-Hyeon Shim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Korea
| | - Bancha Mahong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Korea
| | - Manatchanok Kongdin
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chanhui Lee
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin, Korea
| | - Yu-Jin Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Korea
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, Korea
| | - Guorun Qu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Korea
| |
Collapse
|
6
|
Kolkas H, Balliau T, Chourré J, Zivy M, Canut H, Jamet E. The Cell Wall Proteome of Marchantia polymorpha Reveals Specificities Compared to Those of Flowering Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:765846. [PMID: 35095945 PMCID: PMC8792609 DOI: 10.3389/fpls.2021.765846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/16/2021] [Indexed: 05/30/2023]
Abstract
Primary plant cell walls are composite extracellular structures composed of three major classes of polysaccharides (pectins, hemicelluloses, and cellulose) and of proteins. The cell wall proteins (CWPs) play multiple roles during plant development and in response to environmental stresses by remodeling the polysaccharide and protein networks and acting in signaling processes. To date, the cell wall proteome has been mostly described in flowering plants and has revealed the diversity of the CWP families. In this article, we describe the cell wall proteome of an early divergent plant, Marchantia polymorpha, a Bryophyte which belong to one of the first plant species colonizing lands. It has been possible to identify 410 different CWPs from three development stages of the haploid gametophyte and they could be classified in the same functional classes as the CWPs of flowering plants. This result underlied the ability of M. polymorpha to sustain cell wall dynamics. However, some specificities of the M. polymorpha cell wall proteome could be highlighted, in particular the importance of oxido-reductases such as class III peroxidases and polyphenol oxidases, D-mannose binding lectins, and dirigent-like proteins. These proteins families could be related to the presence of specific compounds in the M. polymorpha cell walls, like mannans or phenolics. This work paves the way for functional studies to unravel the role of CWPs during M. polymorpha development and in response to environmental cues.
Collapse
Affiliation(s)
- Hasan Kolkas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Thierry Balliau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, Gif-sur-Yvette, France
| | - Josiane Chourré
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Michel Zivy
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, Gif-sur-Yvette, France
| | - Hervé Canut
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| |
Collapse
|
7
|
Pinski A, Roujol D, Pouzet C, Bordes L, San Clemente H, Hoffmann L, Jamet E. Comparison of mass spectrometry data and bioinformatics predictions to assess the bona fide localization of proteins identified in cell wall proteomics studies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110979. [PMID: 34315595 DOI: 10.1016/j.plantsci.2021.110979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/18/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Plant cell walls have complex architectures made of polysaccharides among which cellulose, hemicelluloses, pectins and cell wall proteins (CWPs). Some CWPs are anchored in the plasma membrane through a glycosylphosphatidylinositol (GPI)-anchor. The secretion pathway is the classical route to reach the extracellular space. Based on experimental data, a canonical signal peptide (SP) has been defined, and bioinformatics tools allowing the prediction of the sub-cellular localization of proteins have been designed. In the same way, the presence of GPI-anchor attachment sites can be predicted using bioinformatics programs. This article aims at comparing the bioinformatics predictions of the sub-cellular localization of proteins assumed to be CWPs to mass spectrometry (MS) data. The sub-cellular localization of a few CWPs exhibiting particular features has been checked by cell biology approaches. Although the prediction of SP length is confirmed in most cases, it is less conclusive for GPI-anchors. Three main observations were done: (i) the variability observed at the N-terminus of a few mature CWPs could play a role in the regulation of their biological activity; (ii) one protein was shown to have a double sub-cellular localization in the cell wall and the chloroplasts; and (iii) peptides were found to be located at the C-terminus of several CWPs previously identified in GPI-anchored proteomes, thus raising the issue of their actual anchoring to the plasma membrane.
Collapse
Affiliation(s)
- Artur Pinski
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France; Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - David Roujol
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France
| | - Cécile Pouzet
- FR AIB-TRI Imaging Platform Facilities, Université de Toulouse, CNRS, Auzeville Tolosane, France
| | - Luc Bordes
- FR AIB-TRI Imaging Platform Facilities, Université de Toulouse, CNRS, Auzeville Tolosane, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France
| | - Laurent Hoffmann
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France.
| |
Collapse
|
8
|
Liu Y, Ma L, Cao D, Gong Z, Fan J, Hu H, Jin X. Investigation of cell wall proteins of C. sinensis leaves by combining cell wall proteomics and N-glycoproteomics. BMC PLANT BIOLOGY 2021; 21:384. [PMID: 34416854 PMCID: PMC8377857 DOI: 10.1186/s12870-021-03166-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/10/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND C. sinensis is an important economic crop with fluoride over-accumulation in its leaves, which poses a serious threat to human health due to its leaf consumption as tea. Recently, our study has indicated that cell wall proteins (CWPs) probably play a vital role in fluoride accumulation/detoxification in C. sinensis. However, there has been a lack in CWP identification and characterization up to now. This study is aimed to characterize cell wall proteome of C. sinensis leaves and to develop more CWPs related to stress response. A strategy of combined cell wall proteomics and N-glycoproteomics was employed to investigate CWPs. CWPs were extracted by sequential salt buffers, while N-glycoproteins were enriched by hydrophilic interaction chromatography method using C. sinensis leaves as a material. Afterwards all the proteins were subjected to UPLC-MS/MS analysis. RESULTS A total of 501 CWPs and 195 CWPs were identified respectively by cell wall proteomics and N-glycoproteomics profiling with 118 CWPs in common. Notably, N-glycoproteomics is a feasible method for CWP identification, and it can enhance CWP coverage. Among identified CWPs, proteins acting on cell wall polysaccharides constitute the largest functional class, most of which might be involved in cell wall structure remodeling. The second largest functional class mainly encompass various proteases related to CWP turnover and maturation. Oxidoreductases represent the third largest functional class, most of which (especially Class III peroxidases) participate in defense response. As expected, identified CWPs are mainly related to plant cell wall formation and defense response. CONCLUSION This was the first large-scale investigation of CWPs in C. sinensis through cell wall proteomics and N-glycoproteomics. Our results not only provide a database for further research on CWPs, but also an insight into cell wall formation and defense response in C. sinensis.
Collapse
Affiliation(s)
- Yanli Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Linlong Ma
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Dan Cao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Ziming Gong
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Jing Fan
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Hongju Hu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China
| | - Xiaofang Jin
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, No. 10 Nanhu Road, Wuhan, 430064, Hubei, People's Republic of China.
| |
Collapse
|
9
|
Pinski A, Betekhtin A, Skupien-Rabian B, Jankowska U, Jamet E, Hasterok R. Changes in the Cell Wall Proteome of Leaves in Response to High Temperature Stress in Brachypodium distachyon. Int J Mol Sci 2021; 22:6750. [PMID: 34201710 PMCID: PMC8267952 DOI: 10.3390/ijms22136750] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
High temperature stress leads to complex changes to plant functionality, which affects, i.a., the cell wall structure and the cell wall protein composition. In this study, the qualitative and quantitative changes in the cell wall proteome of Brachypodium distachyon leaves in response to high (40 °C) temperature stress were characterised. Using a proteomic analysis, 1533 non-redundant proteins were identified from which 338 cell wall proteins were distinguished. At a high temperature, we identified 46 differentially abundant proteins, and of these, 4 were over-accumulated and 42 were under-accumulated. The most significant changes were observed in the proteins acting on the cell wall polysaccharides, specifically, 2 over- and 12 under-accumulated proteins. Based on the qualitative analysis, one cell wall protein was identified that was uniquely present at 40 °C but was absent in the control and 24 proteins that were present in the control but were absent at 40 °C. Overall, the changes in the cell wall proteome at 40 °C suggest a lower protease activity, lignification and an expansion of the cell wall. These results offer a new insight into the changes in the cell wall proteome in response to high temperature.
Collapse
Affiliation(s)
- Artur Pinski
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland;
| | - Alexander Betekhtin
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland;
| | - Bozena Skupien-Rabian
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Krakow, Poland; (B.S.-R.); (U.J.)
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Krakow, Poland; (B.S.-R.); (U.J.)
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Auzeville Tolosane, France;
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland;
| |
Collapse
|
10
|
Douché T, Valot B, Balliau T, San Clemente H, Zivy M, Jamet E. Cell wall proteomic datasets of stems and leaves of Brachypodium distachyon. Data Brief 2021; 35:106818. [PMID: 33604433 PMCID: PMC7875812 DOI: 10.1016/j.dib.2021.106818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 10/28/2022] Open
Abstract
This article provides experimental data describing the cell wall protein profiles of stems and leaves of Brachypodium distachyon at two different stages of development. The cell wall proteomics data have been obtained from (i) stem internodes at young and mature stages of development, and (ii) leaves at young and mature stages of development. The proteins have been extracted from purified cell walls using buffers containing calcium chloride (0.2 M) or lithium chloride (2 M). They have been identified by LC-MS/MS and bioinformatics. These data allow deepening our knowledge of these cell wall proteomes. They are a valuable resource for people interested in plant cell wall biology to understand the roles of cell wall proteins during the growth of vegetative organs.
Collapse
Affiliation(s)
- Thibaut Douché
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Benoît Valot
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, 91190 Gif-sur-Yvette, France
| | - Thierry Balliau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, 91190 Gif-sur-Yvette, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Michel Zivy
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, 91190 Gif-sur-Yvette, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| |
Collapse
|
11
|
Talukder SK, Islam MS, Krom N, Chang J, Saha MC. Drought Responsive Putative Marker-Trait Association in Tall Fescue as Influenced by the Presence of a Novel Endophyte. FRONTIERS IN PLANT SCIENCE 2021; 12:729797. [PMID: 34745162 PMCID: PMC8565914 DOI: 10.3389/fpls.2021.729797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/22/2021] [Indexed: 05/04/2023]
Abstract
Tall fescue (Festuca arundinacea Schreb.) is one of the most important cool-season perennial obligatory outcrossing forage grasses in the United States. The production and persistence of tall fescue is significantly affected by drought in the south-central United States. Shoot-specific endophyte (Epichloë coenophiala)-infected tall fescue showed superior performance under both biotic and abiotic stress conditions. We performed a genome-wide association analysis using clonal pairs of novel endophyte AR584-positive (EP) and endophyte-free (EF) tall fescue populations consisting of 205 genotypes to identify marker-trait associations (MTAs) that contribute to drought tolerance. The experiment was performed through November 2014 to June 2018 in the field, and phenotypic data were taken on plant height, plant spread, plant vigor, and dry biomass weight under natural summer conditions of sporadic drought. Genotyping-by-sequencing of the population generated 3,597 high quality single nucleotide polymorphisms (SNPs) for further analysis. We identified 26 putative drought responsive MTAs (17 specific to EP, eight specific to EF, and one in both EP and EF populations) and nine of them (i.e., V.ep_10, S.ef_12, V.ep_27, HSV.ef_31, S.ep_30, SV.ef_32, V.ep_68, V.ef_56, and H.ef_57) were identified within 0.5 Mb region in the tall fescue genome (44.5-44.7, 75.3-75.8, 77.5-77.9 and 143.7-144.2 Mb). Using 26 MTAs, 11 tall fescue genotypes were selected for subsequent study to develop EP and EF drought tolerant tall fescue populations. Ten orthologous genes (six for EP and four for EF population) were identified in Brachypodium genome as potential candidates for drought tolerance in tall fescue, which were also earlier reported for their involvement in abiotic stress tolerance. The MTAs and candidate genes identified in this study will be useful for marker-assisted selection in improving drought tolerance of tall fescue as well opening avenue for further drought study in tall fescue.
Collapse
Affiliation(s)
- Shyamal K. Talukder
- Grass Genomics, Noble Research Institute LLC, Ardmore, OK, United States
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| | - Md. Shofiqul Islam
- Grass Genomics, Noble Research Institute LLC, Ardmore, OK, United States
| | - Nick Krom
- Scientific Computing, Noble Research Institute LLC, Ardmore, OK, United States
| | - Junil Chang
- Scientific Computing, Noble Research Institute LLC, Ardmore, OK, United States
| | - Malay C. Saha
- Grass Genomics, Noble Research Institute LLC, Ardmore, OK, United States
- *Correspondence: Malay C. Saha,
| |
Collapse
|
12
|
Plant Cell Wall Proteomes: Bioinformatics and Cell Biology Tools to Assess the Bona Fide Cell Wall Localization of Proteins. Methods Mol Biol 2020. [PMID: 32617950 DOI: 10.1007/978-1-0716-0621-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The purification of plant cell walls is challenging because they constitute an open compartment which is not limited by a membrane like the cell organelles. Different strategies have been established to limit the contamination by proteins of other compartments in cell wall proteomics studies. Non-destructive methods rely on washing intact cells with various types of solutions without disrupting the plasma membrane in order to elute cell wall proteins. In contrast, destructive protocols involve the purification of cell walls prior to the extraction of proteins with salt solutions. In both cases, proteins known to be intracellular have been identified by mass spectrometry in cell wall proteomes. The aim of this chapter is to provide tools to assess the subcellular localization of the proteins identified in cell wall proteomics studies, including: (1) bioinformatic predictions, (2) immunocytolocalization of proteins of interest on tissue sections and (3) in muro observation of proteins of interest fused to reporter fluorescent proteins by confocal microscopy. Finally, a qualitative assessment of the work can be performed and the strategy used to prepare the samples can be optimized if necessary.
Collapse
|
13
|
Liu W, Huang L, Komorek R, Handakumbura PP, Zhou Y, Hu D, Engelhard MH, Jiang H, Yu XY, Jansson C, Zhu Z. Correlative surface imaging reveals chemical signatures for bacterial hotspots on plant roots. Analyst 2020; 145:393-401. [DOI: 10.1039/c9an01954e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A universal sample holder allows correlative imaging analysis of plant roots to reveal chemical signatures for bacterial hotspots.
Collapse
|
14
|
Mehdi C, Virginie L, Audrey G, Axelle B, Colette L, Hélène R, Elisabeth J, Fabienne G, Mathilde FA. Cell Wall Proteome of Wheat Grain Endosperm and Outer Layers at Two Key Stages of Early Development. Int J Mol Sci 2019; 21:ijms21010239. [PMID: 31905787 PMCID: PMC6981528 DOI: 10.3390/ijms21010239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
The cell wall is an important compartment in grain cells that fulfills both structural and functional roles. It has a dynamic structure that is constantly modified during development and in response to biotic and abiotic stresses. Non-structural cell wall proteins (CWPs) are key players in the remodeling of the cell wall during events that punctuate the plant life. Here, a subcellular and quantitative proteomic approach was carried out to identify CWPs possibly involved in changes in cell wall metabolism at two key stages of wheat grain development: the end of the cellularization step and the beginning of storage accumulation. Endosperm and outer layers of wheat grain were analyzed separately as they have different origins (maternal and seed) and functions in grains. Altogether, 734 proteins with predicted signal peptides were identified (CWPs). Functional annotation of CWPs pointed out a large number of proteins potentially involved in cell wall polysaccharide remodeling. In the grain outer layers, numerous proteins involved in cutin formation or lignin polymerization were found, while an unexpected abundance of proteins annotated as plant invertase/pectin methyl esterase inhibitors were identified in the endosperm. In addition, numerous CWPs were accumulating in the endosperm at the grain filling stage, thus revealing strong metabolic activities in the cell wall during endosperm cell differentiation, while protein accumulation was more intense at the earlier stage of development in outer layers. Altogether, our work gives important information on cell wall metabolism during early grain development in both parts of the grain, namely the endosperm and outer layers. The wheat cell wall proteome is the largest cell wall proteome of a monocot species found so far.
Collapse
Affiliation(s)
- Cherkaoui Mehdi
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Lollier Virginie
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Geairon Audrey
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Bouder Axelle
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Larré Colette
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Rogniaux Hélène
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Jamet Elisabeth
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Castanet Tolosan, France;
| | - Guillon Fabienne
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Francin-Allami Mathilde
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
- Correspondence:
| |
Collapse
|
15
|
Sergeant K, Printz B, Guerriero G, Renaut J, Lutts S, Hausman JF. The Dynamics of the Cell Wall Proteome of Developing Alfalfa Stems. BIOLOGY 2019; 8:E60. [PMID: 31430995 PMCID: PMC6784106 DOI: 10.3390/biology8030060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Abstract
In this study, the cell-wall-enriched subproteomes at three different heights of alfalfa stems were compared. Since these three heights correspond to different states in stem development, a view on the dynamics of the cell wall proteome during cell maturation is obtained. This study of cell wall protein-enriched fractions forms the basis for a description of the development process of the cell wall and the linking cell wall localized proteins with the evolution of cell wall composition and structure. The sequential extraction of cell wall proteins with CaCl2, EGTA, and LiCl-complemented buffers was combined with a gel-based proteome approach and multivariate analysis. Although the highest similarities were observed between the apical and intermediate stem regions, the proteome patterns are characteristic for each region. Proteins that bind carbohydrates and have proteolytic activity, as well as enzymes involved in glycan remobilization, accumulate in the basal stem region. Beta-amylase and ferritin likewise accumulate more in the basal stem segment. Therefore, remobilization of nutrients appears to be an important process in the oldest stem segment. The intermediate and apical regions are sites of cell wall polymer remodeling, as suggested by the high abundance of proteins involved in the remodeling of the cell wall, such as xyloglucan endoglucosylase, beta-galactosidase, or the BURP-domain containing polygalacturonase non-catalytic subunit. However, the most striking change between the different stem parts is the strong accumulation of a DUF642-conserved domain containing protein in the apical region of the stem, which suggests a particular role of this protein during the early development of stem tissues.
Collapse
Affiliation(s)
- Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg.
| | - Bruno Printz
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg
- Groupe de Recherche en Physiologie végétale (GRPV), Université catholique de Louvain, Earth and Life Institute Agronomy (ELI-A), 1348 Louvain-la-Neuve, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Université catholique de Louvain, Earth and Life Institute Agronomy (ELI-A), 1348 Louvain-la-Neuve, Belgium
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4362 Esch/Alzette, Luxembourg
| |
Collapse
|
16
|
Pinski A, Betekhtin A, Sala K, Godel-Jedrychowska K, Kurczynska E, Hasterok R. Hydroxyproline-Rich Glycoproteins as Markers of Temperature Stress in the Leaves of Brachypodium distachyon. Int J Mol Sci 2019; 20:ijms20102571. [PMID: 31130622 PMCID: PMC6567261 DOI: 10.3390/ijms20102571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 01/28/2023] Open
Abstract
Plants frequently encounter diverse abiotic stresses, one of which is environmental thermal stress. To cope with these stresses, plants have developed a range of mechanisms, including altering the cell wall architecture, which is facilitated by the arabinogalactan proteins (AGP) and extensins (EXT). In order to characterise the localisation of the epitopes of the AGP and EXT, which are induced by the stress connected with a low (4 °C) or a high (40 °C) temperature, in the leaves of Brachypodium distachyon, we performed immunohistochemical analyses using the antibodies that bind to selected AGP (JIM8, JIM13, JIM16, LM2 and MAC207), pectin/AGP (LM6) as well as EXT (JIM11, JIM12 and JIM20). The analyses of the epitopes of the AGP indicated their presence in the phloem and in the inner bundle sheath (JIM8, JIM13, JIM16 and LM2). The JIM16 epitope was less abundant in the leaves from the low or high temperature compared to the control leaves. The LM2 epitope was more abundant in the leaves that had been subjected to the high temperatures. In the case of JIM13 and MAC207, no changes were observed at the different temperatures. The epitopes of the EXT were primarily observed in the mesophyll and xylem cells of the major vascular bundle (JIM11, JIM12 and JIM20) and no correlation was observed between the presence of the epitopes and the temperature stress. We also analysed changes in the level of transcript accumulation of some of the genes encoding EXT, EXT-like receptor kinases and AGP in the response to the temperature stress. In both cases, although we observed the upregulation of the genes encoding AGP in stressed plants, the changes were more pronounced at the high temperature. Similar changes were observed in the expression profiles of the EXT and EXT-like receptor kinase genes. Our findings may be relevant for genetic engineering of plants with increased resistance to the temperature stress.
Collapse
Affiliation(s)
- Artur Pinski
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Katarzyna Sala
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Kamila Godel-Jedrychowska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Ewa Kurczynska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| |
Collapse
|
17
|
Alves LC, Llerena JPP, Mazzafera P, Vicentini R. Diel oscillations in cell wall components and soluble sugars as a response to short-day in sugarcane (Saccharum sp.). BMC PLANT BIOLOGY 2019; 19:215. [PMID: 31122198 PMCID: PMC6533765 DOI: 10.1186/s12870-019-1837-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 05/17/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Sugarcane is a tropical crop that can accumulate high concentration of sucrose in the stem as a storage carbohydrate. For that reason, sugarcane accounts for approximately 75% of all the sugar produced in the world and has become the main sugar source to produce first-generation bioethanol in Brazil. Daily rhythms cause plants to adapt and coordinate their metabolism to achieve maximum photosynthesis and carbohydrate production throughout the day. Circadian rhythms arise from the interaction of an internal oscillator and external stimuli, whereas diel rhythms occur in response to a light-dark cycle. Diel signalling contributes to synchronizing circadian rhythms to photoperiods, and levels of carbohydrates oscillate in a diel fashion. Under regular photoperiods, they are synthesized during the daytime and consumed throughout the night as an energy reserve. However, short days can induce higher rates of synthesis during daytime and lower rates of consumption in the dark. Cell wall carbohydrates are also diurnally regulated, and it has been shown that celluloses, hemicelluloses and pectin are deposited/degraded at different times of the day. To assess the diel carbohydrate profile in young sugarcane plants, we measured soluble sugars and cell wall components along a time course in plants subjected either to a regular day or short day. RESULTS Short-day influenced sucrose synthesis and cell wall components. In short-day a 44% increase in sucrose concentration was detected in the dark, but was stable during the day. Cellulose, hemicellulose and pectin also fluctuate within a 24 h interval when subjected to a short day. A 38% increase in leaf sheath cellulose was observed from the middle of the day to the first hour of the night. Leaf sheath pectin and hemicellulose also increased from the day to the night, while it decreased in leaves. CONCLUSIONS The presented data show diurnal patterns of soluble sugar metabolism together with temporal regulation of cell wall metabolism for a short day, suggesting that diel signalling has a role in how sugarcane manages sugar accumulation and partitioning. Understanding cell wall synthesis/degradation dynamics may help to improve the yield of sugarcane.
Collapse
Affiliation(s)
- Leonardo Cardoso Alves
- Bioinformatics and Systems Biology Laboratory, Department of Genetics and Evolution and Bioagents, University of Campinas, Campinas, SP Brazil
| | | | - Paulo Mazzafera
- Department of Plant Biology, University of Campinas, Campinas, SP Brazil
- Crop Science Department, College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
| | - Renato Vicentini
- Bioinformatics and Systems Biology Laboratory, Department of Genetics and Evolution and Bioagents, University of Campinas, Campinas, SP Brazil
| |
Collapse
|
18
|
Calderan-Rodrigues MJ, Guimarães Fonseca J, de Moraes FE, Vaz Setem L, Carmanhanis Begossi A, Labate CA. Plant Cell Wall Proteomics: A Focus on Monocot Species, Brachypodium distachyon, Saccharum spp. and Oryza sativa. Int J Mol Sci 2019; 20:E1975. [PMID: 31018495 PMCID: PMC6514655 DOI: 10.3390/ijms20081975] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Plant cell walls mostly comprise polysaccharides and proteins. The composition of monocots' primary cell walls differs from that of dicots walls with respect to the type of hemicelluloses, the reduction of pectin abundance and the presence of aromatic molecules. Cell wall proteins (CWPs) differ among plant species, and their distribution within functional classes varies according to cell types, organs, developmental stages and/or environmental conditions. In this review, we go deeper into the findings of cell wall proteomics in monocot species and make a comparative analysis of the CWPs identified, considering their predicted functions, the organs analyzed, the plant developmental stage and their possible use as targets for biofuel production. Arabidopsis thaliana CWPs were considered as a reference to allow comparisons among different monocots, i.e., Brachypodium distachyon, Saccharum spp. and Oryza sativa. Altogether, 1159 CWPs have been acknowledged, and specificities and similarities are discussed. In particular, a search for A. thaliana homologs of CWPs identified so far in monocots allows the definition of monocot CWPs characteristics. Finally, the analysis of monocot CWPs appears to be a powerful tool for identifying candidate proteins of interest for tailoring cell walls to increase biomass yield of transformation for second-generation biofuels production.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Juliana Guimarães Fonseca
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Fabrício Edgar de Moraes
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Laís Vaz Setem
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Amanda Carmanhanis Begossi
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Carlos Alberto Labate
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| |
Collapse
|
19
|
Fonseca JG, Calderan-Rodrigues MJ, de Moraes FE, Cataldi TR, Jamet E, Labate CA. Cell Wall Proteome of Sugarcane Young and Mature Leaves and Stems. Proteomics 2019; 18. [PMID: 29274249 DOI: 10.1002/pmic.201700129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 10/25/2017] [Indexed: 11/07/2022]
Abstract
By characterizing the cell wall proteomes of different sugarcane organs (leaves and stems) at two developmental stages (young vs mature/apical vs basal), it is possible to address unique characteristics in each of them. Four-month-old leaves show a higher proportion of oxido-reductases and proteins related to lipid metabolism (LM), besides a lower proportion of proteins acting on polysaccharides, in comparison to 4-month-old internodes. It is possible to note that sugarcane leaves and young stems have the highest LM rate than all species, which is assumed to be linked to cuticle formation. The data generated enrich the number of cell wall proteins (CWPs) identified in sugarcane, reaching 277. To our knowledge, sugarcane has now the second higher coverage of monocot CWP in plants.
Collapse
Affiliation(s)
- Juliana G Fonseca
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Maria J Calderan-Rodrigues
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Fabrício E de Moraes
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Thaís R Cataldi
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville, Castanet Tolosan, France
| | - Carlos A Labate
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
20
|
Kouzai Y, Noutoshi Y, Inoue K, Shimizu M, Onda Y, Mochida K. Benzothiadiazole, a plant defense inducer, negatively regulates sheath blight resistance in Brachypodium distachyon. Sci Rep 2018; 8:17358. [PMID: 30478396 PMCID: PMC6255916 DOI: 10.1038/s41598-018-35790-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/05/2018] [Indexed: 01/01/2023] Open
Abstract
Plant defense inducers that mimic functions of the plant immune hormone salicylic acid (SA) often affect plant growth. Although benzothiadiazole (BTH), a synthetic analog of SA, has been widely used to protect crops from diseases by inducing plant defense responses, we recently demonstrated that SA, but not BTH, confers resistance against Rhizoctonia solani, the causal agent of sheath blight disease, in Brachypodium distachyon. Here, we demonstrated that BTH compromised the resistance of Bd3-1 and Gaz4, the two sheath blight-resistant accessions of B. distachyon, which activate SA-dependent signaling following challenge by R. solani. Moreover, upon analyzing our published RNA-seq data from B. distachyon treated with SA or BTH, we found that BTH specifically induces expression of genes related to chloroplast function and jasmonic acid (JA) signaling, suggesting that BTH attenuates R. solani resistance by perturbing growth-defense trade-offs and/or by inducing a JA response that may increase susceptibility to R. solani. Our findings demonstrated that BTH does not work as a simple mimic of SA in B. distachyon, and consequently may presumably cause unfavorable side effects through the transcriptional alteration, particularly with respect to R. solani resistance.
Collapse
Affiliation(s)
- Yusuke Kouzai
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka, Yokohama, 244-0813, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Komaki Inoue
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Minami Shimizu
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka, Yokohama, 244-0813, Japan
| | - Yoshihiko Onda
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka, Yokohama, 244-0813, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan. .,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka, Yokohama, 244-0813, Japan. .,Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046, Japan. .,Microalgae Production Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. .,Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan.
| |
Collapse
|
21
|
Cherkaoui M, Geairon A, Lollier V, Clemente HS, Larré C, Rogniaux H, Jamet E, Guillon F, Francin-Allami M. Cell Wall Proteome Investigation of Bread Wheat (Triticum Aestivum) Developing Grain in Endosperm and Outer Layers. Proteomics 2018; 18:e1800286. [PMID: 30288912 DOI: 10.1002/pmic.201800286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/13/2018] [Indexed: 12/29/2022]
Abstract
The remodeling of cell wall polysaccharides is controlled by cell wall proteins (CWPs) during the development of wheat grain. This work describes for the first time the cell wall proteomes of the endosperm and outer layers of the wheat developing grain, which have distinct physiological functions and technological uses. Altogether 636 nonredundant predicted CWPs are identified with 337 proteins in the endosperm and 594 proteins in the outer layers, among which 295 proteins are present in both tissues, suggesting both common and tissue specific remodeling activities. These proteins are distributed into eight functional classes. Approximatively a quarter of them were predicted to act on cell wall polysaccharides, with many glycosylhydrolases and also expansin, lyases, and carbohydrate esterases. Therefore, these results provide crucial data to go further in the understanding of relationship between tissue-specific morphogenesis and cell wall remodeling in cereals. Data are available via ProteomeXchange with identifier PXD010367.
Collapse
Affiliation(s)
| | - Audrey Geairon
- INRA, Biopolymères Interactions Assemblages, Nantes, France
| | | | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, Auzeville, Castanet Tolosan, France
| | - Colette Larré
- INRA, Biopolymères Interactions Assemblages, Nantes, France
| | | | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, Auzeville, Castanet Tolosan, France
| | | | | |
Collapse
|
22
|
Lin F, Williams BJ, Thangella PAV, Ladak A, Schepmoes AA, Olivos HJ, Zhao K, Callister SJ, Bartley LE. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode. FRONTIERS IN PLANT SCIENCE 2017; 8:1134. [PMID: 28751896 PMCID: PMC5507963 DOI: 10.3389/fpls.2017.01134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/13/2017] [Indexed: 05/27/2023]
Abstract
Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic, and metabolite analyses of the rice elongating internode. Cellulose, lignin, and xylose increase as a percentage of cell wall material along eight segments of the second rice internode (internode II) at booting stage, from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested proteins from this internode at booting reveals 2,547 proteins with at least two unique peptides in two biological replicates. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including a leucine rich repeat-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS/MS of hot methanol-extracted secondary metabolites from internode II at four stages (booting/elongation, early mature, mature, and post mature) indicates that internode secondary metabolites are distinct from those of roots and leaves, and differ across stem maturation. This work fills a void of in-depth proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes characteristic of internode development, toward improving grass agronomic properties.
Collapse
Affiliation(s)
- Fan Lin
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | | | | | - Adam Ladak
- Waters CorporationBeverly, MA, United States
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | | | - Kangmei Zhao
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | - Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | - Laura E. Bartley
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| |
Collapse
|
23
|
Duruflé H, Clemente HS, Balliau T, Zivy M, Dunand C, Jamet E. Cell wall proteome analysis of Arabidopsis thaliana
mature stems. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600449] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/18/2017] [Accepted: 01/31/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Harold Duruflé
- Laboratoire de Recherche en Sciences Végétales; CNRS, UPS; Université de Toulouse; Auzeville, Castanet Tolosan France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales; CNRS, UPS; Université de Toulouse; Auzeville, Castanet Tolosan France
| | - Thierry Balliau
- PAPPSO; GQE - Le Moulon; INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay; Gif-sur-Yvette France
| | - Michel Zivy
- PAPPSO; GQE - Le Moulon; INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay; Gif-sur-Yvette France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales; CNRS, UPS; Université de Toulouse; Auzeville, Castanet Tolosan France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales; CNRS, UPS; Université de Toulouse; Auzeville, Castanet Tolosan France
| |
Collapse
|
24
|
Abstract
This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90-95 % in mass) and of proteins (5-10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.
Collapse
Affiliation(s)
- Hervé Canut
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP 42617, 31326 Castanet, Tolosan, France
| | - Cécile Albenne
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP 42617, 31326 Castanet, Tolosan, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP 42617, 31326 Castanet, Tolosan, France.
| |
Collapse
|
25
|
Hervé V, Duruflé H, San Clemente H, Albenne C, Balliau T, Zivy M, Dunand C, Jamet E. An enlarged cell wall proteome ofArabidopsis thalianarosettes. Proteomics 2016; 16:3183-3187. [DOI: 10.1002/pmic.201600290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/28/2016] [Accepted: 10/21/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Vincent Hervé
- Laboratoire de Recherche en Sciences Végétales; Université de Toulouse; CNRS, UPS Castanet Tolosan France
- INRS-Institut Armand Frappier; Laval Canada
| | - Harold Duruflé
- Laboratoire de Recherche en Sciences Végétales; Université de Toulouse; CNRS, UPS Castanet Tolosan France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales; Université de Toulouse; CNRS, UPS Castanet Tolosan France
| | - Cécile Albenne
- Laboratoire de Recherche en Sciences Végétales; Université de Toulouse; CNRS, UPS Castanet Tolosan France
| | - Thierry Balliau
- CNRS; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Gif sur Yvette France
- INRA; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Gif sur Yvette France
| | - Michel Zivy
- CNRS; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Gif sur Yvette France
- INRA; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Gif sur Yvette France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales; Université de Toulouse; CNRS, UPS Castanet Tolosan France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales; Université de Toulouse; CNRS, UPS Castanet Tolosan France
| |
Collapse
|
26
|
Missihoun TD, Kotchoni SO, Bartels D. Active Sites of Reduced Epidermal Fluorescence1 (REF1) Isoforms Contain Amino Acid Substitutions That Are Different between Monocots and Dicots. PLoS One 2016; 11:e0165867. [PMID: 27798665 PMCID: PMC5087895 DOI: 10.1371/journal.pone.0165867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022] Open
Abstract
Plant aldehyde dehydrogenases (ALDHs) play important roles in cell wall biosynthesis, growth, development, and tolerance to biotic and abiotic stresses. The Reduced Epidermal Fluorescence1 is encoded by the subfamily 2C of ALDHs and was shown to oxidise coniferaldehyde and sinapaldehyde to ferulic acid and sinapic acid in the phenylpropanoid pathway, respectively. This knowledge has been gained from works in the dicotyledon model species Arabidopsis thaliana then used to functionally annotate ALDH2C isoforms in other species, based on the orthology principle. However, the extent to which the ALDH isoforms differ between monocotyledons and dicotyledons has rarely been accessed side-by-side. In this study, we used a phylogenetic approach to address this question. We have analysed the ALDH genes in Brachypodium distachyon, alongside those of other sequenced monocotyledon and dicotyledon species to examine traits supporting either a convergent or divergent evolution of the ALDH2C/REF1-type proteins. We found that B. distachyon, like other grasses, contains more ALDH2C/REF1 isoforms than A. thaliana and other dicotyledon species. Some amino acid residues in ALDH2C/REF1 isoforms were found as being conserved in dicotyledons but substituted by non-equivalent residues in monocotyledons. One example of those substitutions concerns a conserved phenylalanine and a conserved tyrosine in monocotyledons and dicotyledons, respectively. Protein structure modelling suggests that the presence of tyrosine would widen the substrate-binding pocket in the dicotyledons, and thereby influence substrate specificity. We discussed the importance of these findings as new hints to investigate why ferulic acid contents and cell wall digestibility differ between the dicotyledon and monocotyledon species.
Collapse
Affiliation(s)
- Tagnon D. Missihoun
- Department of Biology, Rutgers University, Camden, New Jersey, United States of America
- * E-mail: (SOK); (TDM)
| | - Simeon O. Kotchoni
- Department of Biology, Rutgers University, Camden, New Jersey, United States of America
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
- * E-mail: (SOK); (TDM)
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| |
Collapse
|
27
|
Yuan LL, Zhang M, Yan X, Bian YW, Zhen SM, Yan YM. Dynamic Phosphoproteome Analysis of Seedling Leaves in Brachypodium distachyon L. Reveals Central Phosphorylated Proteins Involved in the Drought Stress Response. Sci Rep 2016; 6:35280. [PMID: 27748408 PMCID: PMC5066223 DOI: 10.1038/srep35280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/16/2016] [Indexed: 01/18/2023] Open
Abstract
Drought stress is a major abiotic stress affecting plant growth and development. In this study, we performed the first dynamic phosphoproteome analysis of Brachypodium distachyon L. seedling leaves under drought stress for different times. A total of 4924 phosphopeptides, contained 6362 phosphosites belonging to 2748 phosphoproteins. Rigorous standards were imposed to screen 484 phosphorylation sites, representing 442 unique phosphoproteins. Comparative analyses revealed significant changes in phosphorylation levels at 0, 6, and 24 h under drought stress. The most phosphorylated proteins and the highest phosphorylation level occurred at 6 h. Venn analysis showed that the up-regulated phosphopeptides at 6 h were almost two-fold those at 24 h. Motif-X analysis identified the six motifs: [sP], [Rxxs], [LxRxxs], [sxD], [sF], and [TP], among which [LxRxxs] was also previously identified in B. distachyon. Results from molecular function and protein-protein interaction analyses suggested that phosphoproteins mainly participate in signal transduction, gene expression, drought response and defense, photosynthesis and energy metabolism, and material transmembrane transport. These phosphoproteins, which showed significant changes in phosphorylation levels, play important roles in signal transduction and material transmembrane transport in response to drought conditions. Our results provide new insights into the molecular mechanism of this plant’s abiotic stress response through phosphorylation modification.
Collapse
Affiliation(s)
- Lin-Lin Yuan
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Ming Zhang
- College of Life Science, Capital Normal University, 100048 Beijing, China.,College of Life Science, Heze University, 274015 Shandong, China
| | - Xing Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yan-Wei Bian
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Shou-Min Zhen
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yue-Ming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China
| |
Collapse
|
28
|
Liang Y, Yu Y, Cui J, Lyu M, Xu L, Cao J. A comparative analysis of the evolution, expression, and cis-regulatory element of polygalacturonase genes in grasses and dicots. Funct Integr Genomics 2016; 16:641-656. [DOI: 10.1007/s10142-016-0503-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 06/19/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
|
29
|
Francin-Allami M, Lollier V, Pavlovic M, San Clemente H, Rogniaux H, Jamet E, Guillon F, Larré C. Understanding the Remodelling of Cell Walls during Brachypodium distachyon Grain Development through a Sub-Cellular Quantitative Proteomic Approach. Proteomes 2016; 4:E21. [PMID: 28248231 PMCID: PMC5217356 DOI: 10.3390/proteomes4030021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022] Open
Abstract
Brachypodiumdistachyon is a suitable plant model for studying temperate cereal crops, such as wheat, barley or rice, and helpful in the study of the grain cell wall. Indeed, the most abundant hemicelluloses that are in the B. distachyon cell wall of grain are (1-3)(1-4)-β-glucans and arabinoxylans, in a ratio similar to those of cereals such as barley or oat. Conversely, these cell walls contain few pectins and xyloglucans. Cell walls play an important role in grain physiology. The modifications of cell wall polysaccharides that occur during grain development and filling are key in the determination of the size and weight of the cereal grains. The mechanisms required for cell wall assembly and remodelling are poorly understood, especially in cereals. To provide a better understanding of these processes, we purified the cell wall at three developmental stages of the B. distachyon grain. The proteins were then extracted, and a quantitative and comparative LC-MS/MS analysis was performed to investigate the protein profile changes during grain development. Over 466 cell wall proteins (CWPs) were identified and classified according to their predicted functions. This work highlights the different proteome profiles that we could relate to the main phases of grain development and to the reorganization of cell wall polysaccharides that occurs during these different developmental stages. These results provide a good springboard to pursue functional validation to better understand the role of CWPs in the assembly and remodelling of the grain cell wall of cereals.
Collapse
Affiliation(s)
| | - Virginie Lollier
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| | - Marija Pavlovic
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borderouge-Auzeville, BP42617, Castanet-Tolosan 31326, France.
| | - Hélène Rogniaux
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borderouge-Auzeville, BP42617, Castanet-Tolosan 31326, France.
| | - Fabienne Guillon
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| | - Colette Larré
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| |
Collapse
|
30
|
Complementarity of medium-throughput in situ RNA hybridization and tissue-specific transcriptomics: case study of Arabidopsis seed development kinetics. Sci Rep 2016; 6:24644. [PMID: 27095274 PMCID: PMC4837347 DOI: 10.1038/srep24644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
The rationale of this study is to compare and integrate two heterologous datasets intended to unravel the spatiotemporal specificities of gene expression in a rapidly growing and complex organ. We implemented medium-throughput RNA in situ hybridization (ISH) for 39 genes mainly corresponding to cell wall proteins for which we have particular interest, selected (i) on their sequence identity (24 class III peroxidase multigenic family members and 15 additional genes used as positive controls) and (ii) on their expression levels in a publicly available Arabidopsis thaliana seed tissue-specific transcriptomics study. The specificity of the hybridization signals was carefully studied, and ISH results obtained for the 39 selected genes were systematically compared with tissue-specific transcriptomics for 5 seed developmental stages. Integration of results illustrates the complementarity of both datasets. The tissue-specific transcriptomics provides high-throughput possibilities whereas ISH provides high spatial resolution. Moreover, depending on the tissues and the developmental stages considered, one or the other technique appears more sensitive than the other. For each tissue/developmental stage, we finally determined tissue-specific transcriptomic threshold values compatible with the spatiotemporally-specific detection limits of ISH for lists of hundreds to tens-of-thousands of genes.
Collapse
|
31
|
Canut H, Albenne C, Jamet E. Post-translational modifications of plant cell wall proteins and peptides: A survey from a proteomics point of view. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:983-90. [PMID: 26945515 DOI: 10.1016/j.bbapap.2016.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
Plant cell wall proteins (CWPs) and peptides are important players in cell walls contributing to their assembly and their remodeling during development and in response to environmental constraints. Since the rise of proteomics technologies at the beginning of the 2000's, the knowledge of CWPs has greatly increased leading to the discovery of new CWP families and to the description of the cell wall proteomes of different organs of many plants. Conversely, cell wall peptidomics data are still lacking. In addition to the identification of CWPs and peptides by mass spectrometry (MS) and bioinformatics, proteomics has allowed to describe their post-translational modifications (PTMs). At present, the best known PTMs consist in proteolytic cleavage, N-glycosylation, hydroxylation of P residues into hydroxyproline residues (O), O-glycosylation and glypiation. In this review, the methods allowing the capture of the modified proteins based on the specific properties of their PTMs as well as the MS technologies used for their characterization are briefly described. A focus is done on proteolytic cleavage leading to protein maturation or release of signaling peptides and on O-glycosylation. Some new technologies, like top-down proteomics and terminomics, are described. They aim at a finer description of proteoforms resulting from PTMs or degradation mechanisms. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Hervé Canut
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Cécile Albenne
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Elisabeth Jamet
- Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France.
| |
Collapse
|
32
|
Nguyen-Kim H, San Clemente H, Balliau T, Zivy M, Dunand C, Albenne C, Jamet E. Arabidopsis thaliana
root cell wall proteomics: Increasing the proteome coverage using a combinatorial peptide ligand library and description of unexpected Hyp in peroxidase amino acid sequences. Proteomics 2016; 16:491-503. [DOI: 10.1002/pmic.201500129] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/07/2015] [Accepted: 11/10/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Huan Nguyen-Kim
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Thierry Balliau
- CNRS; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
- INRA; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
| | - Michel Zivy
- CNRS; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
- INRA; PAPPSO; UMR 0320/UMR 8120 Génétique Végétale Quantitative et Evolution; Le Moulon Gif sur Yvette France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Cécile Albenne
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, UPS, Université de Toulouse; BP 42617 Castanet-Tolosan France
- UMR 5546; CNRS; BP 42617 Castanet-Tolosan France
| |
Collapse
|
33
|
Calderan-Rodrigues MJ, Jamet E, Douché T, Bonassi MBR, Cataldi TR, Fonseca JG, San Clemente H, Pont-Lezica R, Labate CA. Cell wall proteome of sugarcane stems: comparison of a destructive and a non-destructive extraction method showed differences in glycoside hydrolases and peroxidases. BMC PLANT BIOLOGY 2016; 16:14. [PMID: 26754199 PMCID: PMC4709929 DOI: 10.1186/s12870-015-0677-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/05/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Sugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil. Recently, the production of bioethanol from bagasse and straw, also called second generation (2G) ethanol, became a reality with the first commercial plants started in the USA and Brazil. However, the industrial processes still need to be improved to generate a low cost fuel. One possibility is the remodeling of cell walls, by means of genetic improvement or transgenesis, in order to make the bagasse more accessible to hydrolytic enzymes. We aimed at characterizing the cell wall proteome of young sugarcane culms, to identify proteins involved in cell wall biogenesis. Proteins were extracted from the cell walls of 2-month-old culms using two protocols, non-destructive by vacuum infiltration vs destructive. The proteins were identified by mass spectrometry and bioinformatics. RESULTS A predicted signal peptide was found in 84 different proteins, called cell wall proteins (CWPs). As expected, the non-destructive method showed a lower percentage of proteins predicted to be intracellular than the destructive one (33% vs 44%). About 19% of CWPs were identified with both methods, whilst the infiltration protocol could lead to the identification of 75% more CWPs. In both cases, the most populated protein functional classes were those of proteins related to lipid metabolism and oxido-reductases. Curiously, a single glycoside hydrolase (GH) was identified using the non-destructive method whereas 10 GHs were found with the destructive one. Quantitative data analysis allowed the identification of the most abundant proteins. CONCLUSIONS The results highlighted the importance of using different protocols to extract proteins from cell walls to expand the coverage of the cell wall proteome. Ten GHs were indicated as possible targets for further studies in order to obtain cell walls less recalcitrant to deconstruction. Therefore, this work contributed to two goals: enlarge the coverage of the sugarcane cell wall proteome, and provide target proteins that could be used in future research to facilitate 2G ethanol production.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| | - Elisabeth Jamet
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France.
- CNRS; UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France.
| | - Thibaut Douché
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France.
- CNRS; UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France.
| | - Maria Beatriz Rodrigues Bonassi
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| | - Thaís Regiani Cataldi
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| | - Juliana Guimarães Fonseca
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| | - Hélène San Clemente
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France.
- CNRS; UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France.
| | - Rafael Pont-Lezica
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
- CNRS; UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
| | - Carlos Alberto Labate
- Departamento de Genética, Laboratório Max Feffer de Genética de Plantas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, CP 83, 13400-970, Piracicaba, SP, Brazil.
| |
Collapse
|
34
|
Chateigner-Boutin AL, Suliman M, Bouchet B, Alvarado C, Lollier V, Rogniaux H, Guillon F, Larré C. Endomembrane proteomics reveals putative enzymes involved in cell wall metabolism in wheat grain outer layers. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2649-58. [PMID: 25769308 PMCID: PMC4986875 DOI: 10.1093/jxb/erv075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called 'the bran' is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel).
Collapse
Affiliation(s)
| | - Muhtadi Suliman
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Brigitte Bouchet
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Camille Alvarado
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Virginie Lollier
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Hélène Rogniaux
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Fabienne Guillon
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Colette Larré
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| |
Collapse
|
35
|
Francin-Allami M, Merah K, Albenne C, Rogniaux H, Pavlovic M, Lollier V, Sibout R, Guillon F, Jamet E, Larré C. Cell wall proteomic of Brachypodium distachyon grains: A focus on cell wall remodeling proteins. Proteomics 2015; 15:2296-306. [PMID: 25787258 DOI: 10.1002/pmic.201400485] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/23/2015] [Accepted: 03/13/2015] [Indexed: 01/12/2023]
Abstract
Cell walls play key roles during plant development. Following their deposition into the cell wall, polysaccharides are continually remodeled according to the growth stage and stress environment to accommodate cell growth and differentiation. To date, little is known concerning the enzymes involved in cell wall remodeling, especially in gramineous and particularly in the grain during development. Here, we investigated the cell wall proteome of the grain of Brachypodium distachyon. This plant is a suitable model for temperate cereal crops. Among the 601 proteins identified, 299 were predicted to be secreted. These proteins were distributed into eight functional classes; the class of proteins that act on carbohydrates was the most highly represented. Among these proteins, numerous glycoside hydrolases were found. Expansins and peroxidases, which are assumed to be involved in cell wall polysaccharide remodeling, were also identified. Approximately half of the proteins identified in this study were newly discovered in grain and were not identified in the previous proteome analysis conducted using the culms and leaves of B. distachyon. Therefore, the data obtained from all organs of B. distachyon infer a global cell wall proteome consisting of 460 proteins. At present, this is the most extensive cell wall proteome of a monocot species.
Collapse
Affiliation(s)
| | - Kahina Merah
- INRA, Biopolymères Interactions Assemblages, Nantes, France.,Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Castanet-Tolosan, France.,CNRS, Castanet-Tolosan, France
| | - Cécile Albenne
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Castanet-Tolosan, France.,CNRS, Castanet-Tolosan, France
| | | | | | | | - Richard Sibout
- INRA, Institut Jean-Pierre Bourgin (IJPB), Saclay Plant Science, Versailles, France
| | | | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Castanet-Tolosan, France.,CNRS, Castanet-Tolosan, France
| | - Colette Larré
- INRA, Biopolymères Interactions Assemblages, Nantes, France
| |
Collapse
|
36
|
Zhang M, Chen GX, Lv DW, Li XH, Yan YM. N-linked glycoproteome profiling of seedling leaf in Brachypodium distachyon L. J Proteome Res 2015; 14:1727-38. [PMID: 25652041 DOI: 10.1021/pr501080r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Brachypodium distachyon L., a model plant for cereal crops, has become important as an alternative and potential biofuel grass. In plants, N-glycosylation is one of the most common and important protein modifications, playing important roles in signal recognition, increase in protein activity, stability of protein structure, and formation of tissues and organs. In this study, we performed the first glycoproteome analysis in the seedling leaves of B. distachyon. Using lectin affinity chromatography enrichment and mass-spectrometry-based analysis, we identified 47 glycosylation sites representing 46 N-linked glycoproteins. Motif-X analysis showed that two conserved motifs, N-X-T/S (X is any amino acid, except Pro), were significantly enriched. Further functional analysis suggested that some of these identified glycoproteins are involved in signal transduction, protein trafficking, and quality control and the modification and remodeling of cell-wall components such as receptor-like kinases, protein disulfide isomerase, and polygalacturonase. Moreover, transmembrane helices and signal peptide prediction showed that most of these glycoproteins could participate in typical protein secretory pathways in eukaryotes. The results provide a general overview of protein N-glycosylation modifications during the early growth of seedling leaves in B. distachyon and supplement the glycoproteome databases of plants.
Collapse
Affiliation(s)
- Ming Zhang
- †College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, China.,‡College of Life Science, Heze University, University Road No. 2269, 274015 Shandong, China
| | - Guan-Xing Chen
- †College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, China
| | - Dong-Wen Lv
- †College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, China
| | - Xiao-Hui Li
- †College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, China
| | - Yue-Ming Yan
- †College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, China.,§Hubei Collaborative Innovation Center for Grain Industry, Jing Secret Road No. 88, 434025 Jingzhou, China
| |
Collapse
|
37
|
Wei H, Brunecky R, Donohoe BS, Ding SY, Ciesielski PN, Yang S, Tucker MP, Himmel ME. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops. FRONTIERS IN PLANT SCIENCE 2015; 6:315. [PMID: 26029221 PMCID: PMC4429552 DOI: 10.3389/fpls.2015.00315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/21/2015] [Indexed: 05/07/2023]
Abstract
Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.
Collapse
Affiliation(s)
- Hui Wei
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
- *Correspondence: Hui Wei and Michael E. Himmel, Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA ;
| | - Roman Brunecky
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Shi-You Ding
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
| | | | - Shihui Yang
- National Bioenergy Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Melvin P. Tucker
- National Bioenergy Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
- *Correspondence: Hui Wei and Michael E. Himmel, Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA ;
| |
Collapse
|
38
|
Girin T, David LC, Chardin C, Sibout R, Krapp A, Ferrario-Méry S, Daniel-Vedele F. Brachypodium: a promising hub between model species and cereals. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5683-96. [PMID: 25262566 DOI: 10.1093/jxb/eru376] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Brachypodium distachyon was proposed as a model species for genetics and molecular genomics in cereals less than 10 years ago. It is now established as a standard for research on C3 cereals on a variety of topics, due to its close phylogenetic relationship with Triticeae crops such as wheat and barley, and to its simple genome, its minimal growth requirement, and its short life cycle. In this review, we first highlight the tools and resources for Brachypodium that are currently being developed and made available by the international community. We subsequently describe how this species has been used for comparative genomic studies together with cereal crops, before illustrating major research fields in which Brachypodium has been successfully used as a model: cell wall synthesis, plant-pathogen interactions, root architecture, and seed development. Finally, we discuss the usefulness of research on Brachypodium in order to improve nitrogen use efficiency in cereals, with the aim of reducing the amount of applied fertilizer while increasing the grain yield. Several paths are considered, namely an improvement of either nitrogen remobilization from the vegetative organs, nitrate uptake from the soil, or nitrate assimilation by the plant. Altogether, these examples position the research on Brachypodium as at an intermediate stage between basic research, carried out mainly in Arabidopsis, and applied research carried out on wheat and barley, enabling a complementarity of the studies and reciprocal benefits.
Collapse
Affiliation(s)
- Thomas Girin
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Laure C David
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Camille Chardin
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Richard Sibout
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Anne Krapp
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Sylvie Ferrario-Méry
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Françoise Daniel-Vedele
- Institut National de la Recherche Agronomique (INRA), UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, RD10, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| |
Collapse
|
39
|
Lv DW, Li X, Zhang M, Gu AQ, Zhen SM, Wang C, Li XH, Yan YM. Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. BMC Genomics 2014; 15:375. [PMID: 24885693 PMCID: PMC4079959 DOI: 10.1186/1471-2164-15-375] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/06/2014] [Indexed: 01/03/2023] Open
Abstract
Background Protein phosphorylation is one of the most important post-translational modifications involved in the regulation of plant growth and development as well as diverse stress response. As a member of the Poaceae, Brachypodium distachyon L. is a new model plant for wheat and barley as well as several potential biofuel grasses such as switchgrass. Vegetative growth is vital for biomass accumulation of plants, but knowledge regarding the role of protein phosphorylation modification during vegetative growth, especially in biofuel plants, is far from comprehensive. Results In this study, we carried out the first large-scale phosphoproteome analysis of seedling leaves in Brachypodium accession Bd21 using TiO2 microcolumns combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MaxQuant software. A total of 1470 phosphorylation sites in 950 phosphoproteins were identified, and these phosphoproteins were implicated in various molecular functions and basic cellular processes by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Among the 950 phosphoproteins identified, 127 contained 3 to 8 phosphorylation sites. Conservation analysis showed that 93.4% of the 950 phosphoproteins had phosphorylation orthologs in other plant species. Motif-X analysis of the phosphorylation sites identified 13 significantly enriched phosphorylation motifs, of which 3 were novel phosphorylation motifs. Meanwhile, there were 91 phosphoproteins with both multiple phosphorylation sites and multiple phosphorylation motifs. In addition, we identified 58 phosphorylated transcription factors across 21 families and found out 6 significantly over-represented transcription factor families (C3H, Trihelix, CAMTA, TALE, MYB_related and CPP). Eighty-four protein kinases (PKs), 8 protein phosphatases (PPs) and 6 CESAs were recognized as phosphoproteins. Conclusions Through a large-scale bioinformatics analysis of the phosphorylation data in seedling leaves, a complicated PKs- and PPs- centered network related to rapid vegetative growth was deciphered in B. distachyon. We revealed a MAPK cascade network that might play the crucial roles during the phosphorylation signal transduction in leaf growth and development. The phosphoproteins and phosphosites identified from our study expanded our knowledge of protein phosphorylation modification in plants, especially in monocots. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-375) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yue-Ming Yan
- College of Life Science, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
40
|
Albenne C, Canut H, Hoffmann L, Jamet E. Plant Cell Wall Proteins: A Large Body of Data, but What about Runaways? Proteomes 2014; 2:224-242. [PMID: 28250379 PMCID: PMC5302738 DOI: 10.3390/proteomes2020224] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 11/16/2022] Open
Abstract
Plant cell wall proteomics has been a very dynamic field of research for about fifteen years. A full range of strategies has been proposed to increase the number of identified proteins and to characterize their post-translational modifications. The protocols are still improving to enlarge the coverage of cell wall proteomes. Comparisons between these proteomes have been done based on various working strategies or different physiological stages. In this review, two points are highlighted. The first point is related to data analysis with an overview of the cell wall proteomes already described. A large body of data is now available with the description of cell wall proteomes of seventeen plant species. CWP contents exhibit particularities in relation to the major differences in cell wall composition and structure between these plants and between plant organs. The second point is related to methodology and concerns the present limitations of the coverage of cell wall proteomes. Because of the variety of cell wall structures and of the diversity of protein/polysaccharide and protein/protein interactions in cell walls, some CWPs can be missing either because they are washed out during the purification of cell walls or because they are covalently linked to cell wall components.
Collapse
Affiliation(s)
- Cécile Albenne
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France.
- CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France.
| | - Hervé Canut
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France.
- CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France.
| | - Laurent Hoffmann
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France.
- CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France.
| | - Elisabeth Jamet
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France.
- CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France.
| |
Collapse
|