1
|
Parsons M, O'Connell K, Szklanna P, Weiss L, Kenny M, Donnelly A, Norris J, Babyuk Y, O'Donoghue L, Ní Áinle F, McGuigan C, Maguire PB. Characterisation of Platelet Releasate Proteome in Relapsing-Remitting Multiple Sclerosis Reveals Dysregulation of Inflammatory Signalling and Extracellular Vesicle Dynamics. Proteomics Clin Appl 2025; 19:e202400019. [PMID: 39831369 DOI: 10.1002/prca.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
PURPOSE Multiple Sclerosis is an inflammatory neurodegenerative disease characterised by blood-brain barrier dysfunction and leukocyte infiltration into the CNS. Platelets are best known for their contributions to haemostasis, however, upon activation, platelets release an abundance of soluble and vesicular-associated proteins, termed the platelet releasate (PR). This milieu contains numerous inflammatory and vasoactive proteins, that can attract leukocytes and alter endothelial permeability. EXPERIMENTAL DESIGN We aimed to characterise the PR of Relapsing-Remitting multiple sclerosis (RRMS) patients, previously characterized regarding thrombin generation dynamics compared to healthy controls. We carried out LFQ proteomic profiling of the PR from 15 RRMS and 19 aged-matched healthy controls. RESULTS We identified 9 proteins increased and 16 proteins decreased in the PR of RRMS patients. Platelet/endothelial cell-adhesion molecule-1 (PECAM-1) was uniquely found in healthy control PR and circulating levels of PECAM-1 were significantly lower in RRMS patient samples. GO analysis revealed a strong link between altered proteins and extracellular vesicles (EVs). Small EV levels were significantly reduced in RRMS PR compared to healthy PR and showed a negative correlation with PECAM-1 levels in RRMS plasma. CONCLUSIONS AND CLINICAL RELEVANCE Our findings suggest that platelet reactivity may be linked to disease activity, even in periods of disease remission.
Collapse
Affiliation(s)
- Martin Parsons
- SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Karen O'Connell
- Department of Neurology, Tallaght, University Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Paulina Szklanna
- SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Luisa Weiss
- SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Martin Kenny
- SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Aisling Donnelly
- SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Jessica Norris
- SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Yuri Babyuk
- SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Lorna O'Donoghue
- SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Fionnuala Ní Áinle
- SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- Department of Haematology, Rotunda Hospital, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Christopher McGuigan
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| | - Patricia B Maguire
- SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Institute for Discovery, O'Brien Centre for Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Korobkin JJD, Deordieva EA, Tesakov IP, Adamanskaya EIA, Boldova AE, Boldyreva AA, Galkina SV, Lazutova DP, Martyanov AA, Pustovalov VA, Novichkova GA, Shcherbina A, Panteleev MA, Sveshnikova AN. Dissecting thrombus-directed chemotaxis and random movement in neutrophil near-thrombus motion in flow chambers. BMC Biol 2024; 22:115. [PMID: 38764040 PMCID: PMC11552338 DOI: 10.1186/s12915-024-01912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Thromboinflammation is caused by mutual activation of platelets and neutrophils. The site of thromboinflammation is determined by chemoattracting agents release by endothelium, immune cells, and platelets. Impaired neutrophil chemotaxis contributes to the pathogenesis of Shwachman-Diamond syndrome (SDS). In this hereditary disorder, neutrophils are known to have aberrant chemoattractant-induced F-actin properties. Here, we aim to determine whether neutrophil chemotaxis could be analyzed using our previously developed ex vivo assay of the neutrophils crawling among the growing thrombi. METHODS Adult and pediatric healthy donors, alongside with pediatric patients with SDS, were recruited for the study. Thrombus formation and granulocyte movement in hirudinated whole blood were visualized by fluorescent microscopy in fibrillar collagen-coated parallel-plate flow chambers. Alternatively, fibrinogen, fibronectin, vWF, or single tumor cells immobilized on coverslips were used. A computational model of chemokine distribution in flow chamber with a virtual neutrophil moving in it was used to analyze the observed data. RESULTS The movement of healthy donor neutrophils predominantly occurred in the direction and vicinity of thrombi grown on collagen or around tumor cells. For SDS patients or on coatings other than collagen, the movement was characterized by randomness and significantly reduced velocities. Increase in wall shear rates to 300-500 1/s led to an increase in the proportion of rolling neutrophils. A stochastic algorithm simulating leucocyte chemotaxis movement in the calculated chemoattractant field could reproduce the experimental trajectories of moving neutrophils for 72% of cells. CONCLUSIONS In samples from healthy donors, but not SDS patients, neutrophils move in the direction of large, chemoattractant-releasing platelet thrombi growing on collagen.
Collapse
Affiliation(s)
- Julia-Jessica D Korobkin
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Deordieva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ivan P Tesakov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Ekaterina-Iva A Adamanskaya
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna E Boldova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Antonina A Boldyreva
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sofia V Galkina
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Daria P Lazutova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Martyanov
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | | | - Galina A Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia N Sveshnikova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
- Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
3
|
O'Reilly D, Murphy CA, Moore CM, Ní Áinle F, Gormley IC, Morrell CN, Curley A, Mc Callion N, Maguire P. Markers of platelet activation foR identification of late onset sEpsis in infaNTs: PARENT study protocol. Pediatr Res 2024; 95:852-856. [PMID: 37758864 DOI: 10.1038/s41390-023-02812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Newborns are at high risk of sepsis. At present there is no definitive "rule in" blood test for sepsis at the point of clinical concern. A positive blood culture remains the gold standard test for neonatal sepsis, however laboratory markers that correlate prospectively with culture positive sepsis could aid clinicians in making decisions regarding administration of empiric antibiotic therapies. METHODS This multi-site, prospective observational study will take place in two neonatal intensive care units (National Maternity Hospital and Rotunda Hospital, Dublin). Neonates born at less than 34 weeks will be enroled and informed consent obtained prior to late onset sepsis work up. If at any point subsequently during their neonatal intensive care stay they develop signs and symptoms of possible sepsis requiring blood culture, an additional sodium citrate sample will be obtained. Infants will be categorised into three groups as follows: (i) culture positive sepsis, (ii) culture negative sepsis where an infant receives 5 days of antibiotics (iii) non sepsis. Our primary outcome is to establish if differential platelet/endothelial activation can prospectively identify neonatal culture positive late onset sepsis. TRIAL REGISTRATION NUMBER NCT05530330 IMPACT: Preterm infants are a high risk group for the development of sepsis which is a major cause of mortality in this population. Platelets have been associated with host response to invasive bacterial infections both in animal models and translational work. A positive blood culture is the gold standard test for neonatal sepsis but can be unreliable due to limited blood sampling in the very low birth weight population. This study hopes to establish if platelet/endothelial associated plasma proteins can prospectively identify late onset neonatal sepsis.
Collapse
Affiliation(s)
- Daniel O'Reilly
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, 4, Ireland.
- Department of Neonatology, Rotunda Hospital, Dublin, 1, Ireland.
- Department of Neonatology, National Maternity Hospital, Dublin, 2, Ireland.
| | - Claire Anne Murphy
- Department of Neonatology, National Maternity Hospital, Dublin, 2, Ireland
| | - Carmel Maria Moore
- Department of Neonatology, National Maternity Hospital, Dublin, 2, Ireland
- School of Medicine, University College Dublin, Dublin, 4, Ireland
| | - Fionnuala Ní Áinle
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, 4, Ireland
- Department of Haematology, Rotunda Hospital, Dublin, 1, Ireland
- Department of Haematology, Mater Hospital, Dublin, 7, Ireland
| | | | | | - Anna Curley
- Department of Neonatology, National Maternity Hospital, Dublin, 2, Ireland
| | - Naomi Mc Callion
- Department of Neonatology, Rotunda Hospital, Dublin, 1, Ireland
- Department of Paediatrics, Royal College of Surgeons in Ireland, Dublin, 2, Ireland
| | - Patricia Maguire
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, 4, Ireland
| |
Collapse
|
4
|
Bruzek S, Betensky M, Di Paola J, Diacovo T, Goldenberg N, Ignjatovic V. What can the plasma proteome tell us about platelets and (vice versa)? Platelets 2023; 34:2186707. [PMID: 36894508 DOI: 10.1080/09537104.2023.2186707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Multi-omics approaches are being used increasingly to study physiological and pathophysiologic processes. Proteomics specifically focuses on the study of proteins as functional elements and key contributors to, and markers of the phenotype, as well as targets for diagnostic and therapeutic approaches. Depending on the condition, the plasma proteome can mirror the platelet proteome, and hence play an important role in elucidating both physiologic and pathologic processes. In fact, both plasma and platelet protein signatures have been shown to be important in the setting of thrombosis-prone disease states such as atherosclerosis and cancer. Plasma and platelet proteomes are increasingly being studied as a part of a single entity, as is the case with patient-centric sample collection approaches such as capillary blood. Future studies should cut across the plasma and platelet proteome silos, taking advantage of the vast knowledge available when they are considered as part of the same studies, rather than studied as distinct entities.
Collapse
Affiliation(s)
- Steven Bruzek
- Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Marisol Betensky
- Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Division of Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Johns Hopkins All Children's Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jorge Di Paola
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas Diacovo
- Departments of Pediatrics and Pharmacology, University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Neil Goldenberg
- Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Pediatrics and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Vera Ignjatovic
- Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Pediatrics, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
5
|
Abstract
Proteomics tools provide a powerful means to identify, detect, and quantify protein-related details in studies of platelet phenotype and function. Here, we consider how historical and recent advances in proteomics approaches have informed our understanding of platelet biology, and, how proteomics tools can be used going forward to advance studies of platelets. It is now apparent that the platelet proteome is comprised of thousands of different proteins, where specific changes in platelet protein systems can accompany alterations in platelet function in health and disease. Going forward, many challenges remain in how to best carry out, validate and interpret platelet proteomics experiments. Future studies of platelet protein post-translational modifications such as glycosylation, or studies that take advantage of single cell proteomics and top-down proteomics methods all represent areas of interest to profiling and more richly understanding platelets in human wellness and disease.
Collapse
Affiliation(s)
- Joseph E. Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
6
|
Graca FA, Minden-Birkenmaier BA, Stephan A, Demontis F, Labelle M. Signaling roles of platelets in skeletal muscle regeneration. Bioessays 2023; 45:e2300134. [PMID: 37712935 PMCID: PMC10840841 DOI: 10.1002/bies.202300134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Platelets have important hemostatic functions in repairing blood vessels upon tissue injury. Cytokines, growth factors, and metabolites stored in platelet α-granules and dense granules are released upon platelet activation and clotting. Emerging evidence indicates that such platelet-derived signaling factors are instrumental in guiding tissue regeneration. Here, we discuss the important roles of platelet-secreted signaling factors in skeletal muscle regeneration. Chemokines secreted by platelets in the early phase after injury are needed to recruit neutrophils to injured muscles, and impeding this early step of muscle regeneration exacerbates inflammation at later stages, compromises neo-angiogenesis and the growth of newly formed myofibers, and reduces post-injury muscle force production. Platelets also contribute to the recruitment of pro-regenerative stromal cells from the adipose tissue, and the platelet releasate may also regulate the metabolism and proliferation of muscle satellite cells, which sustain myogenesis. Therefore, harnessing the signaling functions of platelets and the platelet secretome may provide new avenues for promoting skeletal muscle regeneration in health and disease.
Collapse
Affiliation(s)
- Flavia A. Graca
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Myriam Labelle
- Department of Oncology, Division of Molecular Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
7
|
Kelliher S, Gamba S, Weiss L, Shen Z, Marchetti M, Schieppati F, Scaife C, Madden S, Bennett K, Fortune A, Maung S, Fay M, Ní Áinle F, Maguire P, Falanga A, Kevane B, Krishnan A. Platelet proteo-transcriptomic profiling validates mediators of thrombosis and proteostasis in patients with myeloproliferative neoplasms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563619. [PMID: 37961700 PMCID: PMC10634751 DOI: 10.1101/2023.10.23.563619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Patients with chronic Myeloproliferative Neoplasms (MPN) including polycythemia vera (PV) and essential thrombocythemia (ET) exhibit unique clinical features, such as a tendency toward thrombosis and hemorrhage, and risk of disease progression to secondary bone marrow fibrosis and/or acute leukemia. Although an increase in blood cell lineage counts (quantitative features) contribute to these morbid sequelae, the significant qualitative abnormalities of myeloid cells that contribute to vascular risk are not well understood. Here, we address this critical knowledge gap via a comprehensive and untargeted profiling of the platelet proteome in a large (n= 140) cohort of patients (from two independent sites) with an established diagnosis of PV and ET (and complement prior work on the MPN platelet transcriptome from a third site). We discover distinct MPN platelet protein expression and confirm key molecular impairments associated with proteostasis and thrombosis mechanisms of potential relevance to MPN pathology. Specifically, we validate expression of high-priority candidate markers from the platelet transcriptome at the platelet proteome (e.g., calreticulin (CALR), Fc gamma receptor (FcγRIIA) and galectin-1 (LGALS1) pointing to their likely significance in the proinflammatory, prothrombotic and profibrotic phenotypes in patients with MPN. Together, our proteo-transcriptomic study identifies the peripherally-derived platelet molecular profile as a potential window into MPN pathophysiology and demonstrates the value of integrative multi-omic approaches in gaining a better understanding of the complex molecular dynamics of disease.
Collapse
Affiliation(s)
- Sarah Kelliher
- School of Medicine, University College Dublin, Dublin, Ireland
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Sara Gamba
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Luisa Weiss
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Zhu Shen
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Marina Marchetti
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Francesca Schieppati
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Caitriona Scaife
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kathleen Bennett
- School of Population Health, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Anne Fortune
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Su Maung
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michael Fay
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Fionnuala Ní Áinle
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Medicine, Royal College of Surgeons in Ireland
| | - Patricia Maguire
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Institute for Discovery, University College Dublin, Dublin, Ireland
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
- University of Milano-Bicocca, Department of Medicine and Surgery, Monza, Italy
| | - Barry Kevane
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Anandi Krishnan
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Rutgers University, Piscataway, NJ
- Stanford Cancer Institute, Stanford, CA, USA
| |
Collapse
|
8
|
Akbari P, Vuckovic D, Stefanucci L, Jiang T, Kundu K, Kreuzhuber R, Bao EL, Collins JH, Downes K, Grassi L, Guerrero JA, Kaptoge S, Knight JC, Meacham S, Sambrook J, Seyres D, Stegle O, Verboon JM, Walter K, Watkins NA, Danesh J, Roberts DJ, Di Angelantonio E, Sankaran VG, Frontini M, Burgess S, Kuijpers T, Peters JE, Butterworth AS, Ouwehand WH, Soranzo N, Astle WJ. A genome-wide association study of blood cell morphology identifies cellular proteins implicated in disease aetiology. Nat Commun 2023; 14:5023. [PMID: 37596262 PMCID: PMC10439125 DOI: 10.1038/s41467-023-40679-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
Blood cells contain functionally important intracellular structures, such as granules, critical to immunity and thrombosis. Quantitative variation in these structures has not been subjected previously to large-scale genetic analysis. We perform genome-wide association studies of 63 flow-cytometry derived cellular phenotypes-including cell-type specific measures of granularity, nucleic acid content and reactivity-in 41,515 participants in the INTERVAL study. We identify 2172 distinct variant-trait associations, including associations near genes coding for proteins in organelles implicated in inflammatory and thrombotic diseases. By integrating with epigenetic data we show that many intracellular structures are likely to be determined in immature precursor cells. By integrating with proteomic data we identify the transcription factor FOG2 as an early regulator of platelet formation and α-granularity. Finally, we show that colocalisation of our associations with disease risk signals can suggest aetiological cell-types-variants in IL2RA and ITGA4 respectively mirror the known effects of daclizumab in multiple sclerosis and vedolizumab in inflammatory bowel disease.
Collapse
Affiliation(s)
- Parsa Akbari
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, East Forvie Building, Cambridge Biomedical Campus, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Dragana Vuckovic
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Luca Stefanucci
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Tao Jiang
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, CB2 0BB, UK
| | - Kousik Kundu
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
| | - Roman Kreuzhuber
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
| | - Erik L Bao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 1 Blackfan Circle, Boston, MA, 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Janine H Collins
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- Department of Haematology, Barts Health National Health Service Trust, London, E1 1BB, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Institute for Health and Care Research Cambridge BioResource, Box 229, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jose A Guerrero
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
| | - Stephen Kaptoge
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, CB2 0BB, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Stuart Meacham
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jennifer Sambrook
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Institute for Health and Care Research Cambridge BioResource, Box 229, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Denis Seyres
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Institute for Health and Care Research Cambridge BioResource, Box 229, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- European Molecular Biology Laboratory, Genome Biology Unit, 69117, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jeffrey M Verboon
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 1 Blackfan Circle, Boston, MA, 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Klaudia Walter
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | - Nicholas A Watkins
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, CB2 0BB, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - David J Roberts
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Headley Way, Headington, Oxford, OX3 9DU, UK
- National Institute for Health Research Oxford Biomedical Research Centre-Haematology Theme, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
- National Health Service Blood and Transplant, Oxford Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, CB2 0BB, UK
- Health Data Science Research Centre, Fondazione Human Technopole, Viale Rita Levi Montalcini 1, Milan, 20157, Italy
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 1 Blackfan Circle, Boston, MA, 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Stephen Burgess
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, East Forvie Building, Cambridge Biomedical Campus, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, CB2 0BB, UK
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, CB2 0PT, UK
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Sanquin, University of Amsterdam, Amsterdam, Netherlands
| | - James E Peters
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Immunology and Inflammation, Imperial College London, Commonwealth Building, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK.
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, CB2 0BB, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK.
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK.
- Department of Haematology, University College London Hospitals, WC1E 6AS, London, UK.
| | - Nicole Soranzo
- Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1HH, UK.
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK.
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Genomics Research Centre, Fondazione Human Technopole, Viale Rita Levi Montalcini 1, Milan, 20157, Italy.
| | - William J Astle
- Medical Research Council Biostatistics Unit, University of Cambridge, East Forvie Building, Cambridge Biomedical Campus, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK.
- The National Institute for Health and Care Research Blood and Transplant Unit in Donor Health and Genomics, Strangeways Research Laboratory, Strangeways Research Laboratory, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK.
- National Health Service Blood and Transplant, Cambridge Centre, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK.
| |
Collapse
|
9
|
Graca FA, Stephan A, Minden-Birkenmaier BA, Shirinifard A, Wang YD, Demontis F, Labelle M. Platelet-derived chemokines promote skeletal muscle regeneration by guiding neutrophil recruitment to injured muscles. Nat Commun 2023; 14:2900. [PMID: 37217480 DOI: 10.1038/s41467-023-38624-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Skeletal muscle regeneration involves coordinated interactions between different cell types. Injection of platelet-rich plasma is circumstantially considered an aid to muscle repair but whether platelets promote regeneration beyond their role in hemostasis remains unexplored. Here, we find that signaling via platelet-released chemokines is an early event necessary for muscle repair in mice. Platelet depletion reduces the levels of the platelet-secreted neutrophil chemoattractants CXCL5 and CXCL7/PPBP. Consequently, early-phase neutrophil infiltration to injured muscles is impaired whereas later inflammation is exacerbated. Consistent with this model, neutrophil infiltration to injured muscles is compromised in male mice with Cxcl7-knockout platelets. Moreover, neo-angiogenesis and the re-establishment of myofiber size and muscle strength occurs optimally in control mice post-injury but not in Cxcl7ko mice and in neutrophil-depleted mice. Altogether, these findings indicate that platelet-secreted CXCL7 promotes regeneration by recruiting neutrophils to injured muscles, and that this signaling axis could be utilized therapeutically to boost muscle regeneration.
Collapse
Affiliation(s)
- Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Benjamin A Minden-Birkenmaier
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Oncology, Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
10
|
Cacic D, Hervig T, Reikvam H. Platelets for advanced drug delivery in cancer. Expert Opin Drug Deliv 2023; 20:673-688. [PMID: 37212640 DOI: 10.1080/17425247.2023.2217378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Cancer-related drug expenses are rising with the increasing cancer incidence and cost may represent a severe challenge for drug access for patients with cancer. Consequently, strategies for increasing therapeutic efficacy of already available drugs may be essential for the future health-care system. AREAS COVERED In this review, we have investigated the potential for the use of platelets as drug-delivery systems. We searched PubMed and Google Scholar to identify relevant papers written in English and published up to January 2023. Papers were included at the authors' discretion to reflect an overview of state of the art. EXPERT OPINION It is known that cancer cells interact with platelets to gain functional advantages including immune evasion and metastasis development. This platelet-cancer interaction has been the inspiration for numerous platelet-based drug delivery systems using either drug-loaded or drug-bound platelets, or platelet membrane-containing hybrid vesicles combining platelet membranes with synthetic nanocarriers. Compared to treatment with free drug or synthetic drug vectors, these strategies may improve pharmacokinetics and selective cancer cell targeting. There are multiple studies showing improved therapeutic efficacy using animal models, however, no platelet-based drug delivery systems have been tested in humans, meaning the clinical relevance of this technology remains uncertain.
Collapse
Affiliation(s)
- Daniel Cacic
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Tor Hervig
- Irish Blood Transfusion Service, Dublin, Ireland
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
11
|
Polzin A, Dannenberg L, Benkhoff M, Barcik M, Helten C, Mourikis P, Ahlbrecht S, Wildeis L, Ziese J, Zikeli D, Metzen D, Hu H, Baensch L, Schröder NH, Keul P, Weske S, Wollnitzke P, Duse D, Saffak S, Cramer M, Bönner F, Müller T, Gräler MH, Zeus T, Kelm M, Levkau B. Revealing concealed cardioprotection by platelet Mfsd2b-released S1P in human and murine myocardial infarction. Nat Commun 2023; 14:2404. [PMID: 37100836 PMCID: PMC10133218 DOI: 10.1038/s41467-023-38069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Antiplatelet medication is standard of care in acute myocardial infarction (AMI). However, it may have obscured beneficial properties of the activated platelet secretome. We identify platelets as major source of a sphingosine-1-phosphate (S1P) burst during AMI, and find its magnitude to favorably associate with cardiovascular mortality and infarct size in STEMI patients over 12 months. Experimentally, administration of supernatant from activated platelets reduces infarct size in murine AMI, which is blunted in platelets deficient for S1P export (Mfsd2b) or production (Sphk1) and in mice deficient for cardiomyocyte S1P receptor 1 (S1P1). Our study reveals an exploitable therapeutic window in antiplatelet therapy in AMI as the GPIIb/IIIa antagonist tirofiban preserves S1P release and cardioprotection, whereas the P2Y12 antagonist cangrelor does not. Here, we report that platelet-mediated intrinsic cardioprotection is an exciting therapeutic paradigm reaching beyond AMI, the benefits of which may need to be considered in all antiplatelet therapies.
Collapse
Affiliation(s)
- Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital, Düsseldorf, Germany
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Lisa Dannenberg
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maike Barcik
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Carolin Helten
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Mourikis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Samantha Ahlbrecht
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Laura Wildeis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Justus Ziese
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dorothee Zikeli
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Metzen
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hao Hu
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Leonard Baensch
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nathalie H Schröder
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Petra Keul
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Weske
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dragos Duse
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Süreyya Saffak
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mareike Cramer
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Florian Bönner
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital, Düsseldorf, Germany
| | - Tina Müller
- Department of Anesthesiology and Intensive Care, University Hospital Jena, Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care, University Hospital Jena, Jena, Germany
| | - Tobias Zeus
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital, Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital, Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
12
|
Sparrow RL, Simpson RJ, Greening DW. Protocols for the Isolation of Platelets for Research and Contrast to Production of Platelet Concentrates for Transfusion. Methods Mol Biol 2023; 2628:3-18. [PMID: 36781775 DOI: 10.1007/978-1-0716-2978-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Platelets are specialized cellular elements of blood and play a central role in maintaining normal hemostasis, wound healing, and host defense but also are implicated in pathologic processes of thrombosis, inflammation, and tumor progression and dissemination. Transfusion of platelet concentrates is an important treatment for thrombocytopenia (low platelet count) due to disease or significant blood loss, with the goal being to prevent bleeding or to arrest active bleeding. In blood circulation, platelets are in a resting state; however, when triggered by a stimulus, such as blood vessel injury, become activated (also termed procoagulant). Platelet activation is the basis of their biological function to arrest active bleeding, comprising a complex interplay of morphological phenotype/shape change, adhesion, expression of signaling molecules, and release of bioactive factors, including extracellular vesicles/microparticles. Advances in high-throughput mRNA and protein profiling techniques have brought new understanding of platelet biological functions, including identification of novel platelet proteins and secreted molecules, analysis of functional changes between normal and pathologic states, and determining the effects of processing and storage on platelet concentrates for transfusion. However, because platelets are very easily activated, it is important to understand the different in vitro methods for platelet isolation commonly used and how they differ from the perspective for use as research samples in clinical chemistry. Two simple methods are described here for the preparation of research-scale platelet samples from human whole blood, and detailed notes are provided about the methods used for the preparation of platelet concentrates for transfusion.
Collapse
Affiliation(s)
- Rosemary L Sparrow
- Transfusion Science, Melbourne, VIC, Australia. .,School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
| | - Richard J Simpson
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia. .,Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Tumor-Educated Platelet Extracellular Vesicles: Proteomic Profiling and Crosstalk with Colorectal Cancer Cells. Cancers (Basel) 2023; 15:cancers15020350. [PMID: 36672299 PMCID: PMC9856452 DOI: 10.3390/cancers15020350] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Platelet-cancer cell interactions modulate tumor metastasis and thrombosis in cancer. Platelet-derived extracellular vesicles (EVs) can contribute to these outcomes. METHODS We characterized the medium-sized EVs (mEVs) released by thrombin-stimulated platelets of colorectal cancer (CRC) patients and healthy subjects (HS) on the capacity to induce epithelial-mesenchymal transition (EMT)-related genes and cyclooxygenase (COX)-2(PTGS2), and thromboxane (TX)B2 production in cocultures with four colorectal cancer cell lines. Platelet-derived mEVs were assessed for their size distribution and proteomics signature. RESULTS The mEV population released from thrombin-activated platelets of CRC patients had a different size distribution vs. HS. Platelet-derived mEVs from CRC patients, but not from HS, upregulated EMT marker genes, such as TWIST1 and VIM, and downregulated CDH1. PTGS2 was also upregulated. In cocultures of platelet-derived mEVs with cancer cells, TXB2 generation was enhanced. The proteomics profile of mEVs released from activated platelets of CRC patients revealed that 119 proteins were downregulated and 89 upregulated vs. HS. CONCLUSIONS We show that mEVs released from thrombin-activated platelets of CRC patients have distinct features (size distribution and proteomics cargo) vs. HS and promote prometastatic and prothrombotic phenotypes in cancer cells. The analysis of platelet-derived mEVs from CRC patients could provide valuable information for developing an appropriate treatment plan.
Collapse
|
14
|
La Manna MP, Orlando V, Badami GD, Tamburini B, Azgomi MS, Presti EL, Del Nonno F, Petrone L, Belmonte B, Falasca L, Carlo PD, Dieli F, Goletti D, Caccamo N. Platelets accumulate in lung lesions of tuberculosis patients and inhibit T-cell responses and Mycobacterium tuberculosis replication in macrophages. Eur J Immunol 2022; 52:784-799. [PMID: 35338775 PMCID: PMC9325462 DOI: 10.1002/eji.202149549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/24/2021] [Accepted: 03/23/2022] [Indexed: 12/05/2022]
Abstract
Platelets regulate human inflammatory responses that lead to disease. However, the role of platelets in tuberculosis (TB) pathogenesis is still unclear. Here, we show that patients with active TB have a high number of platelets in peripheral blood and a low number of lymphocytes leading to a high platelets to lymphocytes ratio (PL ratio). Moreover, the serum concentration of different mediators promoting platelet differentiation or associated with platelet activation is increased in active TB. Immunohistochemistry analysis shows that platelets localise around the lung granuloma lesions in close contact with T lymphocytes and macrophages. Transcriptomic analysis of caseous tissue of human pulmonary TB granulomas, followed by Gene Ontology analysis, shows that 53 platelet activation‐associated genes are highly expressed compared to the normal lung tissue. In vitro activated platelets (or their supernatants) inhibit BCG‐induced T‐ lymphocyte proliferation and IFN‐γ production. Likewise, platelets inhibit the growth of intracellular macrophages of Mycobacterium (M.) tuberculosis. Soluble factors released by activated platelets mediate both immunological and M. tuberculosis replication activities. Furthermore, proteomic and neutralisation studies (by mAbs) identify TGF‐β and PF4 as the factors responsible for inhibiting T‐cell response and enhancing the mycobactericidal activity of macrophages, respectively. Altogether these results highlight the importance of platelets in TB pathogenesis.
Collapse
Affiliation(s)
- Marco P La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR).,Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, 90127, Italy
| | - Valentina Orlando
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR).,Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, 90127, Italy
| | - Giusto D Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR).,Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, 90127, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR).,Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, 90127, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR).,Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, 90127, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Franca Del Nonno
- Pathology Unit, National Institute for Infectious Diseases L. Spallanzani-IRCCS, Rome, Italy
| | - Linda Petrone
- Translational research Unit, National Institute for Infectious Diseases L. Spallanzani-IRCCS, Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Laura Falasca
- Pathology Unit, National Institute for Infectious Diseases L. Spallanzani-IRCCS, Rome, Italy
| | - Paola Di Carlo
- Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR).,Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, 90127, Italy
| | - Delia Goletti
- Translational research Unit, National Institute for Infectious Diseases L. Spallanzani-IRCCS, Rome, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR).,Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, 90127, Italy
| |
Collapse
|
15
|
Arnason NA, Johannsson F, Landrö R, Hardarsson B, Gudmundsson S, Lian AM, Reseland J, Rolfsson O, Sigurjonsson OE. Protein Concentrations in Stored Pooled Platelet Concentrates Treated with Pathogen Inactivation by Amotosalen Plus Ultraviolet a Illumination. Pathogens 2022; 11:pathogens11030350. [PMID: 35335674 PMCID: PMC8954553 DOI: 10.3390/pathogens11030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Platelet granules contain a diverse group of proteins. Upon activation and during storage, platelets release a number of proteins into the circulation or supernatant of stored platelet concentrate (PC). The aim of this work was to investigate the effect of pathogen inactivation (PI) on a selection of proteins released in stored platelets. Materials and Methods: PCs in platelet additive solution (PAS) were produced from whole blood donations using the buffy coat (BC) method. PCs in the treatment arm were pathogen inactivated with amotosalen and UVA, while PCs in the second arm were used as an untreated platelet control. Concentrations of 36 proteins were monitored in the PCs during storage. Results: The majority of proteins increased in concentration over the storage period. In addition, 10 of the 29 proteins that showed change had significantly different concentrations between the PI treatment and the control at one or more timepoints. A subset of six proteins displayed a PI-related drop in concentration. Conclusions: PI has limited effect on protein concentration stored PC supernatant. The protein’s changes related to PI treatment with elevated concentration implicate accelerated Platelet storage lesion (PSL); in contrast, there are potential novel benefits to PI related decrease in protein concentration that need further investigation.
Collapse
Affiliation(s)
- Niels Arni Arnason
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
- School of Engineering, Reykjavik University, 105 Reykjavik, Iceland
| | - Freyr Johannsson
- Department of Medicine, University of Iceland, 105 Reykjavik, Iceland; (F.J.); (O.R.)
| | - Ragna Landrö
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
| | - Björn Hardarsson
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
| | - Sveinn Gudmundsson
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
| | - Aina-Mari Lian
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (A.-M.L.); (J.R.)
| | - Janne Reseland
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (A.-M.L.); (J.R.)
| | - Ottar Rolfsson
- Department of Medicine, University of Iceland, 105 Reykjavik, Iceland; (F.J.); (O.R.)
| | - Olafur E. Sigurjonsson
- The Blood Bank, Landspitali-The National University Hospital of Iceland, 105 Reykjavik, Iceland; (N.A.A.); (R.L.); (B.H.); (S.G.)
- School of Engineering, Reykjavik University, 105 Reykjavik, Iceland
- Correspondence: ; Tel.: +354-543-5523 or +354-694-9427; Fax: +354-543-5532
| |
Collapse
|
16
|
O’Reilly D, Murphy CA, Drew R, El-Khuffash A, Maguire PB, Ainle FN, Mc Callion N. Platelets in pediatric and neonatal sepsis: novel mediators of the inflammatory cascade. Pediatr Res 2022; 91:359-367. [PMID: 34711945 PMCID: PMC8816726 DOI: 10.1038/s41390-021-01715-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Sepsis, a dysregulated host response to infection, has been difficult to accurately define in children. Despite a higher incidence, especially in neonates, a non-specific clinical presentation alongside a lack of verified biomarkers has prevented a common understanding of this condition. Platelets, traditionally regarded as mediators of haemostasis and thrombosis, are increasingly associated with functions in the immune system with involvement across the spectrum of innate and adaptive immunity. The large number of circulating platelets (approx. 150,000 cells per microlitre) mean they outnumber traditional immune cells and are often the first to encounter a pathogen at a site of injury. There are also well-described physiological differences between platelets in children and adults. The purpose of this review is to place into context the platelet and its role in immunology and examine the evidence where available for its role as an immune cell in childhood sepsis. It will examine how the platelet interacts with both humoral and cellular components of the immune system and finally discuss the role the platelet proteome, releasate and extracellular vesicles may play in childhood sepsis. This review also examines how platelet transfusions may interfere with the complex relationships between immune cells in infection. IMPACT: Platelets are increasingly being recognised as important "first responders" to immune threats. Differences in adult and paediatric platelets may contribute to differing immune response to infections. Adult platelet transfusions may affect infant immune responses to inflammatory/infectious stimuli.
Collapse
Affiliation(s)
- Daniel O’Reilly
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
| | - Claire A. Murphy
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| | - Richard Drew
- grid.416068.d0000 0004 0617 7587Clinical Innovation Unit, Rotunda Hospital, Dublin, Ireland ,Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland at Temple Street, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Afif El-Khuffash
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| | - Patricia B. Maguire
- grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland
| | - Fionnuala Ni Ainle
- grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland ,grid.411596.e0000 0004 0488 8430Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland ,grid.416068.d0000 0004 0617 7587Department of Haematology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Medicine, University College Dublin, Dublin, Ireland
| | - Naomi Mc Callion
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| |
Collapse
|
17
|
Forstner D, Guettler J, Gauster M. Changes in Maternal Platelet Physiology during Gestation and Their Interaction with Trophoblasts. Int J Mol Sci 2021; 22:10732. [PMID: 34639070 PMCID: PMC8509324 DOI: 10.3390/ijms221910732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/06/2023] Open
Abstract
Upon activation, maternal platelets provide a source of proinflammatory mediators in the intervillous space of the placenta. Therefore, platelet-derived factors may interfere with different trophoblast subtypes of the developing human placenta and might cause altered hormone secretion and placental dysfunction later on in pregnancy. Increased platelet activation, and the subsequent occurrence of placental fibrinoid deposition, are linked to placenta pathologies such as preeclampsia. The composition and release of platelet-derived factors change over gestation and provide a potential source of predicting biomarkers for the developing fetus and the mother. This review indicates possible mechanisms of platelet-trophoblast interactions and discusses the effect of increased platelet activation on placenta development.
Collapse
Affiliation(s)
- Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.G.); (M.G.)
| | | | | |
Collapse
|
18
|
Abstract
Upon activation, platelets release a plethora of factors which help to mediate their dynamic functions in hemostasis, inflammation, wound healing, tumor metastasis and angiogenesis. The majority of these bioactive molecules are released from α-granules, which are unique to platelets, and contain an incredibly diverse repertoire of cargo including; integral membrane proteins, pro-coagulant molecules, chemokines, mitogenic, growth and angiogenic factors, adhesion proteins, and microbicidal proteins. Clinically, activation of circulating platelets has increasingly been associated with various disease states. Biomarkers indicating the level of platelet activation in patients can therefore be useful tools to evaluate risk factors to predict future complications and determine treatment strategies or evaluate antiplatelet therapy. The irreversible nature of α-granule secretion makes it ideally suited as a marker of platelet activation. This review outlines the release and contents of platelet α-granules, as well as the membrane bound, and soluble α-granule cargo proteins that can be used as biomarkers of platelet activation.
Collapse
Affiliation(s)
- Christopher W Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| |
Collapse
|
19
|
Molecular Proteomics and Signalling of Human Platelets in Health and Disease. Int J Mol Sci 2021; 22:ijms22189860. [PMID: 34576024 PMCID: PMC8468031 DOI: 10.3390/ijms22189860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Platelets are small anucleate blood cells that play vital roles in haemostasis and thrombosis, besides other physiological and pathophysiological processes. These roles are tightly regulated by a complex network of signalling pathways. Mass spectrometry-based proteomic techniques are contributing not only to the identification and quantification of new platelet proteins, but also reveal post-translational modifications of these molecules, such as acetylation, glycosylation and phosphorylation. Moreover, target proteomic analysis of platelets can provide molecular biomarkers for genetic aberrations with established or non-established links to platelet dysfunctions. In this report, we review 67 reports regarding platelet proteomic analysis and signalling on a molecular base. Collectively, these provide detailed insight into the: (i) technical developments and limitations of the assessment of platelet (sub)proteomes; (ii) molecular protein changes upon ageing of platelets; (iii) complexity of platelet signalling pathways and functions in response to collagen, rhodocytin, thrombin, thromboxane A2 and ADP; (iv) proteomic effects of endothelial-derived mediators such as prostacyclin and the anti-platelet drug aspirin; and (v) molecular protein changes in platelets from patients with congenital disorders or cardiovascular disease. However, sample sizes are still low and the roles of differentially expressed proteins are often unknown. Based on the practical and technical possibilities and limitations, we provide a perspective for further improvements of the platelet proteomic field.
Collapse
|
20
|
Atkinson L, Martin F, Sturmey RG. Intraovarian injection of platelet-rich plasma in assisted reproduction: too much too soon? Hum Reprod 2021; 36:1737-1750. [PMID: 33963408 PMCID: PMC8366566 DOI: 10.1093/humrep/deab106] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
The prospect of ovarian rejuvenation offers the tantalising prospect of treating age-related declines in fertility or in pathological conditions such as premature ovarian failure. The concept of ovarian rejuvenation was invigorated by the indication of the existence of oogonial stem cells (OSCs), which have been shown experimentally to have the ability to differentiate into functional follicles and generate oocytes; however, their clinical potential remains unknown. Furthermore, there is now growing interest in performing ovarian rejuvenation in situ. One proposed approach involves injecting the ovary with platelet rich plasma (PRP). PRP is a component of blood that remains after the in vitro removal of red and white blood cells. It contains blood platelets, tiny anucleate cells of the blood, which are responsible for forming athrombus to prevent bleeding. In addition, PRP contains an array of cytokines and growth factors, as well as a number of small molecules.The utility ofPRP has been investigatedin a range of regenerative medicine approaches and has been shown to induce differentiation of a range of cell types, presumably through the action of cytokines. A handful ofcasereports have described the use of PRP injections into the ovaryin the human, and while these clinical data report promising results, knowledge on the mechanisms and safety of PRP injections into the ovary remain limited.In this article, we summarise some of the physiological detail of platelets and PRP, before reviewing the existing emerging literature in this area. We then propose potential mechanisms by which PRP may be eliciting any effects before reflecting on some considerations for future studies in the area. Importantly, on the basis of our existing knowledge, we suggest that immediate use of PRP in clinical applications is perhaps premature and further fundamental and clinical research on the nature of ovarian insufficiency, as well as the mechanism by which PRP may act on the ovary, is needed to fully understand this promising development.
Collapse
Affiliation(s)
- Lloyd Atkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Francesca Martin
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Roger G Sturmey
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK.,Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, St Mary's Hospital, Manchester, UK
| |
Collapse
|
21
|
Cacic D, Nordgård O, Meyer P, Hervig T. Platelet Microparticles Decrease Daunorubicin-Induced DNA Damage and Modulate Intrinsic Apoptosis in THP-1 Cells. Int J Mol Sci 2021; 22:ijms22147264. [PMID: 34298882 PMCID: PMC8304976 DOI: 10.3390/ijms22147264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Platelets can modulate cancer through budding of platelet microparticles (PMPs) that can transfer a plethora of bioactive molecules to cancer cells upon internalization. In acute myelogenous leukemia (AML) this can induce chemoresistance, partially through a decrease in cell activity. Here we investigated if the internalization of PMPs protected the monocytic AML cell line, THP-1, from apoptosis by decreasing the initial cellular damage inflicted by treatment with daunorubicin, or via direct modulation of the apoptotic response. We examined whether PMPs could protect against apoptosis after treatment with a selection of inducers, primarily associated with either the intrinsic or the extrinsic apoptotic pathway, and protection was restricted to the agents targeting intrinsic apoptosis. Furthermore, levels of daunorubicin-induced DNA damage, assessed by measuring gH2AX, were reduced in both 2N and 4N cells after PMP co-incubation. Measuring different BCL2-family proteins before and after treatment with daunorubicin revealed that PMPs downregulated the pro-apoptotic PUMA protein. Thus, our findings indicated that PMPs may protect AML cells against apoptosis by reducing DNA damage both dependent and independent of cell cycle phase, and via direct modulation of the intrinsic apoptotic pathway by downregulating PUMA. These findings further support the clinical relevance of platelets and PMPs in AML.
Collapse
Affiliation(s)
- Daniel Cacic
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
- Correspondence:
| | - Oddmund Nordgård
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
| | - Peter Meyer
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
| | - Tor Hervig
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
- Laboratory of Immunology and Transfusion Medicine, Haugesund Hospital, 5528 Haugesund, Norway
| |
Collapse
|
22
|
Cacic D, Reikvam H, Nordgård O, Meyer P, Hervig T. Platelet Microparticles Protect Acute Myelogenous Leukemia Cells against Daunorubicin-Induced Apoptosis. Cancers (Basel) 2021; 13:cancers13081870. [PMID: 33919720 PMCID: PMC8070730 DOI: 10.3390/cancers13081870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/21/2022] Open
Abstract
The role of platelets in cancer development and progression is increasingly evident, and several platelet-cancer interactions have been discovered, including the uptake of platelet microparticles (PMPs) by cancer cells. PMPs inherit a myriad of proteins and small RNAs from the parental platelets, which in turn can be transferred to cancer cells following internalization. However, the exact effect this may have in acute myelogenous leukemia (AML) is unknown. In this study, we sought to investigate whether PMPs could transfer their contents to the THP-1 cell line and if this could change the biological behavior of the recipient cells. Using acridine orange stained PMPs, we demonstrated that PMPs were internalized by THP-1 cells, which resulted in increased levels of miR-125a, miR-125b, and miR-199. In addition, co-incubation with PMPs protected THP-1 and primary AML cells against daunorubicin-induced cell death. We also showed that PMPs impaired cell growth, partially inhibited cell cycle progression, decreased mitochondrial membrane potential, and induced differentiation toward macrophages in THP-1 cells. Our results suggest that this altering of cell phenotype, in combination with decrease in cell activity may offer resistance to daunorubicin-induced apoptosis, as serum starvation also yielded a lower frequency of dead and apoptotic cells when treated with daunorubicin.
Collapse
Affiliation(s)
- Daniel Cacic
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
- Correspondence:
| | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (H.R.); (T.H.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Oddmund Nordgård
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036 Stavanger, Norway
| | - Peter Meyer
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
| | - Tor Hervig
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (H.R.); (T.H.)
- Laboratory of Immunology and Transfusion Medicine, Haugesund Hospital, 5528 Haugesund, Norway
| |
Collapse
|
23
|
Aslan JE. Platelet Proteomes, Pathways, and Phenotypes as Informants of Vascular Wellness and Disease. Arterioscler Thromb Vasc Biol 2021; 41:999-1011. [PMID: 33441027 PMCID: PMC7980774 DOI: 10.1161/atvbaha.120.314647] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets rapidly undergo responsive transitions in form and function to repair vascular endothelium and mediate hemostasis. In contrast, heterogeneous platelet subpopulations with a range of primed or refractory phenotypes gradually arise in chronic inflammatory and other conditions in a manner that may indicate or support disease. Qualitatively distinguishable platelet phenotypes are increasingly associated with a variety of physiological and pathological circumstances; however, the origins and significance of platelet phenotypic variation remain unclear and conceptually vague. As changes in platelet function in disease exhibit many similarities to platelets following the activation of platelet agonist receptors, the intracellular responses of platelets common to hemostasis and inflammation may provide insights to the molecular basis of platelet phenotype. Here, we review concepts around how protein-level relations-from platelet receptors through intracellular signaling events-may help to define platelet phenotypes in inflammation, immune responses, aging, and other conditions. We further discuss how representing systems-wide platelet proteomics data profiles as circuit-like networks of causally related intracellular events, or, pathway maps, may inform molecular definitions of platelet phenotype. In addition to offering insights into platelets as druggable targets, maps of causally arranged intracellular relations underlying platelet function can also advance precision and interceptive medicine efforts by leveraging platelets as accessible, dynamic, endogenous, circulating biomarkers of vascular wellness and disease. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Joseph E. Aslan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry and School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
24
|
Barlow J, Sfyri PP, Mitchell R, Verpoorten S, Scully D, Andreou C, Papadopoulos P, Patel K, Matsakas A. Platelet releasate normalises the compromised muscle regeneration in a mouse model of hyperlipidaemia. Exp Physiol 2021; 106:700-713. [PMID: 33450106 DOI: 10.1113/ep088937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the impact of obesity-independent hyperlipidaemia on skeletal muscle stem cell function of ApoE-deficient (ApoE-/- ) mice? What is the main finding and its importance? Compromised muscle stem cell function accounts for the impaired muscle regeneration in hyperlipidaemic ApoE-/- mice. Importantly, impaired muscle regeneration is normalised by administration of platelet releasate. ABSTRACT Muscle satellite cells are important stem cells for skeletal muscle regeneration and repair after injury. ApoE-deficient mice, an established mouse model of hyperlipidaemia and atherosclerosis, show evidence of oxidative stress-induced lesions and fat infiltration in skeletal muscle followed by impaired repair after injury. However, the mechanisms underpinning attenuated muscle regeneration remain to be fully defined. Key to addressing the latter is to understand the properties of muscle stem cells from ApoE-deficient mice and their myogenic potential. Muscle stem cells from ApoE-deficient mice were cultured both ex vivo (on single fibres) and in vitro (primary myoblasts) and their myogenic capacity was determined. Skeletal muscle regeneration was studied on days 5 and 10 after cardiotoxin injury. ApoE-deficient muscle stem cells showed delayed activation and differentiation on single muscle fibres ex vivo. Impaired proliferation and differentiation profiles were also evident on isolated primary muscle stem cells in culture. ApoE-deficient mice displayed impaired skeletal muscle regeneration after acute injury in vivo. Administration of platelet releasate in ApoE-deficient mice reversed the deficits of muscle regeneration after acute injury to wild-type levels. These findings indicate that muscle stem cell myogenic potential is perturbed in skeletal muscle of a mouse model of hyperlipidaemia. We propose that platelet releasate could be a therapeutic intervention for conditions with associated myopathy such as peripheral arterial disease.
Collapse
Affiliation(s)
- Joseph Barlow
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - Pagona Panagiota Sfyri
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - Rob Mitchell
- School of Biological Sciences, University of Reading, Reading, UK
| | - Sandrine Verpoorten
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - David Scully
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - Charalampos Andreou
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| | - Petros Papadopoulos
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Hull York Medical School, Centre for Atherothrombosis & Metabolic Disease, University of Hull, Hull, UK
| |
Collapse
|
25
|
Cremer SE, Catalfamo JL, Goggs R, Seemann SE, Kristensen AT, Szklanna PB, Maguire PB, Brooks MB. The canine activated platelet secretome (CAPS): A translational model of thrombin-evoked platelet activation response. Res Pract Thromb Haemost 2021; 5:55-68. [PMID: 33537530 PMCID: PMC7845059 DOI: 10.1002/rth2.12450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/20/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Domestic dogs represent a translational animal model to study naturally occurring human disease. Proteomics has emerged as a promising tool for characterizing human platelet pathophysiology; thus a detailed characterization of the core canine activated platelet secretome (CAPS) will enhance utilization of the canine model. The objectives of this study were development of a robust, high throughput, label-free approach for proteomic identification and quantification of the canine platelet (i) thrombin releasate proteins, and (ii) the protein subgroup that constitutes CAPS. METHODS Platelets were isolated from 10 healthy dogs and stimulated with 50 nmol/L of γ-thrombin or saline. Proteins were in-solution trypsin-digested and analyzed by nano-liquid chromatography-tandem spectrometry. Core releasate proteins were defined as those present in 10 of 10 dogs, and CAPS defined as releasate proteins with a significantly higher abundance in stimulated versus saline controls (corrected P < .05). RESULTS A total of 2865 proteins were identified; 1126 releasate proteins were present in all dogs, 650 were defined as CAPS. Among the differences from human platelets were a canine lack of platelet factor 4 and vascular endothelial growth factor C, and a 10- to 20-fold lower concentration of proteins such as haptoglobin, alpha-2 macroglobulin, von Willebrand factor, and amyloid-beta A4. Twenty-eight CAPS proteins, including cytokines, adhesion molecules, granule proteins, and calcium regulatory proteins have not previously been attributed to human platelets. CONCLUSIONS CAPS proteins represent a robust characterization of a large animal platelet secretome and a novel tool to model platelet physiology, pathophysiology, and to identify translational biomarkers of platelet-mediated disease.
Collapse
Affiliation(s)
- Signe E. Cremer
- Department of Veterinary Clinical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Population Medicine and Diagnostic SciencesCornell UniversityIthacaNYUSA
| | - James L. Catalfamo
- Department of Population Medicine and Diagnostic SciencesCornell UniversityIthacaNYUSA
| | - Robert Goggs
- Department of Clinical SciencesCornell UniversityIthacaNYUSA
| | - Stefan E. Seemann
- Department of Veterinary and Animal SciencesCenter for Non‐coding RNA in Technology and HealthUniversity of CopenhagenCopenhagenDenmark
| | | | - Paulina B. Szklanna
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Patricia B. Maguire
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Marjory B. Brooks
- Department of Population Medicine and Diagnostic SciencesCornell UniversityIthacaNYUSA
| |
Collapse
|
26
|
Platelets in Healthy and Disease States: From Biomarkers Discovery to Drug Targets Identification by Proteomics. Int J Mol Sci 2020; 21:ijms21124541. [PMID: 32630608 PMCID: PMC7352998 DOI: 10.3390/ijms21124541] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Platelets are a heterogeneous small anucleate blood cell population with a central role both in physiological haemostasis and in pathological states, spanning from thrombosis to inflammation, and cancer. Recent advances in proteomic studies provided additional important information concerning the platelet biology and the response of platelets to several pathophysiological pathways. Platelets circulate systemically and can be easily isolated from human samples, making proteomic application very interesting for characterizing the complexity of platelet functions in health and disease as well as for identifying and quantifying potential platelet proteins as biomarkers and novel antiplatelet therapeutic targets. To date, the highly dynamic protein content of platelets has been studied in resting and activated platelets, and several subproteomes have been characterized including platelet-derived microparticles, platelet granules, platelet releasates, platelet membrane proteins, and specific platelet post-translational modifications. In this review, a critical overview is provided on principal platelet proteomic studies focused on platelet biology from signaling to granules content, platelet proteome changes in several diseases, and the impact of drugs on platelet functions. Moreover, recent advances in quantitative platelet proteomics are discussed, emphasizing the importance of targeted quantification methods for more precise, robust and accurate quantification of selected proteins, which might be used as biomarkers for disease diagnosis, prognosis and therapy, and their strong clinical impact in the near future.
Collapse
|
27
|
Maguire PB, Parsons ME, Szklanna PB, Zdanyte M, Münzer P, Chatterjee M, Wynne K, Rath D, Comer SP, Hayden M, Ní Áinle F, Gawaz M. Comparative Platelet Releasate Proteomic Profiling of Acute Coronary Syndrome versus Stable Coronary Artery Disease. Front Cardiovasc Med 2020; 7:101. [PMID: 32671099 PMCID: PMC7328343 DOI: 10.3389/fcvm.2020.00101] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/12/2020] [Indexed: 01/23/2023] Open
Abstract
Upon activation, platelets release a host of soluble and vesicular signals, collectively termed the “platelet releasate” (PR). The contents of this PR play a significant role in haemostasis, inflammation, and pathologic sequelae. Despite this, proteomic studies investigating the PR in coronary artery disease have not been performed. Here, we undertook a comparative label-free quantitative (LFQ) proteomic profiling of the 1 U/ml thrombin-induced PR from 13 acute coronary syndrome vs. 14 stable angina pectoris patients using a tandem mass spectrometry approach. Data are available via ProteomeXchange with identifier PXD009356. 318 PR proteins were identified across both cohorts with 9 proteins found to be differentially released, including tetranectin (CLEC3B), protein disulfide-isomerase-A3 (PDIA3), coagulation factor V (F5), and fibronectin (FN1). Strikingly, these 9 differential proteins were all associated with the gene ontology cellular component term “extracellular vesicle” and reduced levels of EVs were detected in the corresponding plasma of ST-segment elevation myocardial infarction (STEMI) patients. Network analysis revealed 3 proteins either reduced (F5; FN1) or absent (CLEC3B) in the PR of STEMI patients that are strongly connected to both the clotting cascade and major druggable targets on platelets. This moderated proteomic signature may prove useful for non-invasive risk assessment of the progression of coronary artery disease. These data further contribute to the growing evidence-base of using the platelet releasate as a predictor of pathological state and disease severity.
Collapse
Affiliation(s)
- Patricia B Maguire
- Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Institute for Discovery, University College Dublin, Dublin, Ireland.,Irish Centre for Vascular Biology, Dublin, Ireland
| | - Martin E Parsons
- Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Paulina B Szklanna
- Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,Irish Centre for Vascular Biology, Dublin, Ireland
| | - Monika Zdanyte
- Universitätsklinikum Tübingen, Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Tübingen, Germany
| | - Patrick Münzer
- Universitätsklinikum Tübingen, Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Tübingen, Germany
| | - Madhumita Chatterjee
- Universitätsklinikum Tübingen, Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Tübingen, Germany
| | - Kieran Wynne
- Proteomics Core, Conway Institute, University College Dublin, Dublin, Ireland
| | - Dominik Rath
- Universitätsklinikum Tübingen, Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Tübingen, Germany
| | - Shane P Comer
- Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Melanie Hayden
- Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Fionnuala Ní Áinle
- Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland.,Irish Centre for Vascular Biology, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland.,Department of Haematology, Rotunda Hospital, Dublin, Ireland.,Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Meinrad Gawaz
- Universitätsklinikum Tübingen, Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Tübingen, Germany
| |
Collapse
|
28
|
Proteomic profiling of the thrombin-activated canine platelet secretome (CAPS). PLoS One 2019; 14:e0224891. [PMID: 31721811 PMCID: PMC6853320 DOI: 10.1371/journal.pone.0224891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/23/2019] [Indexed: 11/27/2022] Open
Abstract
Domestic dogs share the same environment as humans, and they represent a valuable animal model to study naturally-occurring human disease. Platelet proteomics holds promise for the discovery of biomarkers that capture the contribution of platelets to the pathophysiology of many disease states, however, canine platelet proteomic studies are lacking. Our study objectives were to establish a protocol for proteomic identification and quantification of the thrombin-activated canine platelet secretome (CAPS), and to compare the CAPS proteins to human and murine platelet proteomic data. Washed platelets were isolated from healthy dogs, and stimulated with saline (control) or gamma-thrombin (releasate). Proteins were separated by SDS-page, trypsin-digested and analyzed by liquid chromatography and tandem mass spectrometry (MS). CAPS proteins were defined as those with a MS1-abundance ratio of two or more for releasate vs. unstimulated saline control. A total of 1,918 proteins were identified, with 908 proteins common to all dogs and 693 characterized as CAPS proteins. CAPS proteins were similar to human and murine platelet secretomes and were highly represented in hemostatic pathways. Differences unique to CAPS included replacement of platelet factor 4 with other cleavage products of platelet basic protein (e.g. interleukin-8), novel proteins (e.g. C-C motif chemokine 14), and proteins in relatively high (e.g. protease nexin-1) or low (e.g. von Willebrand factor) abundance. This study establishes the first in-depth platelet releasate proteome from healthy dogs with a reference database of 693 CAPS proteins. Similarities between CAPS and the human secretome confirm the utility of dogs as translational models of human disease, but we also identify differences unique to canine platelets. Our findings provide a resource for further investigations into disease-related CAPS profiles, and for comparative pathway analyses of platelet activation among species.
Collapse
|
29
|
Eriksson O, Mohlin C, Nilsson B, Ekdahl KN. The Human Platelet as an Innate Immune Cell: Interactions Between Activated Platelets and the Complement System. Front Immunol 2019; 10:1590. [PMID: 31354729 PMCID: PMC6635567 DOI: 10.3389/fimmu.2019.01590] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets play an essential role in maintaining homeostasis in the circulatory system after an injury by forming a platelet thrombus, but they also occupy a central node in the intravascular innate immune system. This concept is supported by their extensive interactions with immune cells and the cascade systems of the blood. In this review we discuss the close relationship between platelets and the complement system and the role of these interactions during thromboinflammation. Platelets are protected from complement-mediated damage by soluble and membrane-expressed complement regulators, but they bind several complement components on their surfaces and trigger complement activation in the fluid phase. Furthermore, localized complement activation may enhance the procoagulant responses of platelets through the generation of procoagulant microparticles by insertion of sublytic amounts of C5b9 into the platelet membrane. We also highlight the role of post-translational protein modifications in regulating the complement system and the critical role of platelets in driving these reactions. In particular, modification of disulfide bonds by thiol isomerases and protein phosphorylation by extracellular kinases have emerged as important mechanisms to fine-tune complement activity in the platelet microenvironment. Lastly, we describe disorders with perturbed complement activation where part of the clinical presentation includes uncontrolled platelet activation that results in thrombocytopenia, and illustrate how complement-targeting drugs are alleviating the prothrombotic phenotype in these patients. Based on these clinical observations, we discuss the role of limited complement activation in enhancing platelet activation and consider how these drugs may provide opportunities for further dissecting the complex interactions between complement and platelets.
Collapse
Affiliation(s)
- Oskar Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Camilla Mohlin
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina N. Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
30
|
Grande R, Dovizio M, Marcone S, Szklanna PB, Bruno A, Ebhardt HA, Cassidy H, Ní Áinle F, Caprodossi A, Lanuti P, Marchisio M, Mingrone G, Maguire PB, Patrignani P. Platelet-Derived Microparticles From Obese Individuals: Characterization of Number, Size, Proteomics, and Crosstalk With Cancer and Endothelial Cells. Front Pharmacol 2019; 10:7. [PMID: 30723407 PMCID: PMC6349702 DOI: 10.3389/fphar.2019.00007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
Rationale: Obesity is a risk factor for atherothrombosis and various cancers. However, the mechanisms are not yet completely clarified. Objectives: We aimed to verify whether the microparticles (MPs) released from thrombin-activated platelets differed in obese and non-obese women for number, size, and proteomics cargo and the capacity to modulate in vitro the expression of (i) genes related to the epithelial to mesenchymal transition (EMT) and the endothelial to mesenchymal transition (EndMT), and (ii) cyclooxygenase (COX)-2 involved in the production of angiogenic and inflammatory mediators. Methods and Results: MPs were obtained from thrombin activated platelets of four obese and their matched non-obese women. MPs were analyzed by cytofluorimeter and protein content by liquid chromatography-mass spectrometry. MPs from obese women were not different in number but showed increased heterogeneity in size. In obese individuals, MPs containing mitochondria (mitoMPs) expressed lower CD41 levels and increased phosphatidylserine associated with enhanced Factor V representing a signature of a prothrombotic state. Proteomics analysis identified 44 proteins downregulated and three upregulated in MPs obtained from obese vs. non-obese women. A reduction in the proteins of the α-granular membrane and those involved in mitophagy and antioxidant defenses-granular membrane was detected in the MPs of obese individuals. MPs released from platelets of obese individuals were more prone to induce the expression of marker genes of EMT and EndMT when incubated with human colorectal cancer cells (HT29) and human cardiac microvascular endothelial cells (HCMEC), respectively. A protein, highly enhanced in obese MPs, was the pro-platelet basic protein with pro-inflammatory and tumorigenic actions. Exclusively MPs from obese women induced COX-2 in HCMEC. Conclusion: Platelet-derived MPs of obese women showed higher heterogeneity in size and contained different levels of proteins relevant to thrombosis and tumorigenesis. MPs from obese individuals presented enhanced capacity to cause changes in the expression of EMT and EndMT marker genes and to induce COX-2. These effects might contribute to the increased risk for the development of thrombosis and multiple malignancies in obesity. Clinical Trial Registration:www.ClinicalTrials.gov, identifier NCT01581801.
Collapse
Affiliation(s)
- Rosalia Grande
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi "G. d'Annunzio", Chieti, Italy.,Center of Research on Aging and Translational Medicine (CeSI-MeT), Università degli Studi "G. d'Annunzio", Chieti, Italy
| | - Melania Dovizio
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi "G. d'Annunzio", Chieti, Italy.,Center of Research on Aging and Translational Medicine (CeSI-MeT), Università degli Studi "G. d'Annunzio", Chieti, Italy
| | - Simone Marcone
- Systems Biology Ireland, Conway SPHERE Research Group Ireland, University College Dublin, Dublin, Ireland
| | - Paulina B Szklanna
- Conway SPHERE Research Group Ireland, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Annalisa Bruno
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi "G. d'Annunzio", Chieti, Italy.,Center of Research on Aging and Translational Medicine (CeSI-MeT), Università degli Studi "G. d'Annunzio", Chieti, Italy
| | - H Alexander Ebhardt
- Systems Biology Ireland, Conway SPHERE Research Group Ireland, University College Dublin, Dublin, Ireland
| | - Hilary Cassidy
- Systems Biology Ireland, Conway SPHERE Research Group Ireland, University College Dublin, Dublin, Ireland
| | - Fionnuala Ní Áinle
- Conway SPHERE Research Group Ireland, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Anna Caprodossi
- Department of Internal Medicine, Catholic University, Rome, Italy
| | - Paola Lanuti
- Center of Research on Aging and Translational Medicine (CeSI-MeT), Università degli Studi "G. d'Annunzio", Chieti, Italy.,Department of Medicine and Aging Sciences, Università degli Studi "G. d'Annunzio", Chieti, Italy
| | - Marco Marchisio
- Center of Research on Aging and Translational Medicine (CeSI-MeT), Università degli Studi "G. d'Annunzio", Chieti, Italy.,Department of Medicine and Aging Sciences, Università degli Studi "G. d'Annunzio", Chieti, Italy
| | | | - Patricia B Maguire
- Conway SPHERE Research Group Ireland, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Paola Patrignani
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi "G. d'Annunzio", Chieti, Italy.,Center of Research on Aging and Translational Medicine (CeSI-MeT), Università degli Studi "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
31
|
Szklanna PB, Parsons ME, Wynne K, O'Connor H, Egan K, Allen S, Ní Áinle F, Maguire PB. The Platelet Releasate is Altered in Human Pregnancy. Proteomics Clin Appl 2018; 13:e1800162. [PMID: 30318839 DOI: 10.1002/prca.201800162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 09/28/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE Healthy pregnancy is characterized by an increase in platelet activation and a decrease in the number of circulating platelets with gestation. Despite this recognized importance, proteomic studies investigating platelets in healthy pregnancy have not been performed. As platelet cargo can be altered in different conditions, it is hypothesized that platelets may store a relevant and bespoke collection of molecules during pregnancy. EXPERIMENTAL DESIGN Comparative label-free quantitative proteomic profiling of platelet releasates (PRs) is performed from 18 healthy pregnant and 13 non-pregnant women using an MS/MS approach. RESULTS Of the 723 proteins identified, 69 PR proteins are found to be differentially released from platelets in pregnancy, including proteins only expressed during pregnancy such as pregnancy-specific glycoproteins and human placental lactogen. Moreover, the population of exosomal vesicles present in the PR is also modified in pregnancy. Receiver operating characteristic analysis shows the predictive ability of 11 PR proteins to distinctly classify pregnant and nonpregnant women with an area under the curve of 0.876, a sensitivity of 88.9%, and a specificity of 84.6%. CONCLUSIONS AND CLINICAL RELEVANCE Taken together this demonstrates that platelets and their released cargo are 'educated' in physiologic stressful conditions such as pregnancy and may represent a promising platform to study pregnancy complications.
Collapse
Affiliation(s)
- Paulina B Szklanna
- UCD Conway SPHERE research group, University College Dublin, Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Martin E Parsons
- UCD Conway SPHERE research group, University College Dublin, Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Kieran Wynne
- Proteomics Core, Conway Institute, University College Dublin, Dublin, Ireland
| | - Hugh O'Connor
- Department of Haematology, Rotunda Hospital, Dublin, Ireland
| | - Karl Egan
- UCD Conway SPHERE research group, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Ireland
| | - Seamus Allen
- UCD Conway SPHERE research group, University College Dublin, Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Ireland
| | - Fionnuala Ní Áinle
- UCD Conway SPHERE research group, University College Dublin, Dublin, Ireland.,Department of Haematology, Rotunda Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Ireland.,Departament of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Patricia B Maguire
- UCD Conway SPHERE research group, University College Dublin, Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Institute for Discovery, O'Brien Centre for Science, University College Dublin, Ireland
| |
Collapse
|