1
|
An empirical pipeline for personalized diagnosis of Lafora disease mutations. iScience 2021; 24:103276. [PMID: 34755096 PMCID: PMC8564118 DOI: 10.1016/j.isci.2021.103276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Lafora disease (LD) is a fatal childhood dementia characterized by progressive myoclonic epilepsy manifesting in the teenage years, rapid neurological decline, and death typically within ten years of onset. Mutations in either EPM2A, encoding the glycogen phosphatase laforin, or EPM2B, encoding the E3 ligase malin, cause LD. Whole exome sequencing has revealed many EPM2A variants associated with late-onset or slower disease progression. We established an empirical pipeline for characterizing the functional consequences of laforin missense mutations in vitro using complementary biochemical approaches. Analysis of 26 mutations revealed distinct functional classes associated with different outcomes that were supported by clinical cases. For example, F321C and G279C mutations have attenuated functional defects and are associated with slow progression. This pipeline enabled rapid characterization and classification of newly identified EPM2A mutations, providing clinicians and researchers genetic information to guide treatment of LD patients. Lafora disease (LD) patients present with varying clinical progression LD missense mutations differentially affect laforin function An empirical in vitro pipeline is used to classify laforin missense mutations Patient progression can be predicted based on mutation class
Collapse
|
2
|
Chen Q, Shen Y, Zheng J. A review of cystic fibrosis: Basic and clinical aspects. Animal Model Exp Med 2021; 4:220-232. [PMID: 34557648 PMCID: PMC8446696 DOI: 10.1002/ame2.12180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/15/2022] Open
Abstract
Cystic fibrosis is an autosomal recessive disease caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). Here we summarize, at the basic descriptive level, clinical and genetic characteristics of cystic fibrosis gene mutations, while emphasizing differences between CF mutations found in Chinese pediatric CF patients compared to those found in Caucasian CF patients. In addition, we describe animal models used to study human cystic fibrosis disease and highlight unique features of each model that mimic specific human CF-associated signs and symptoms. At the clinical level, we summarize CF clinical manifestations and diagnostic, treatment, and prognostic methods to provide clinicians with information toward reducing CF misdiagnosis and missed diagnosis rates.
Collapse
Affiliation(s)
- Qionghua Chen
- Department No. 2 of Respiratory Medicine Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijing China
- Department of Respiratory Medicine Quanzhou Children's Hospital Fujian Province Quanzhou China
| | - Yuelin Shen
- Department No. 2 of Respiratory Medicine Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijing China
| | - Jingyang Zheng
- Department of Respiratory Medicine Quanzhou Children's Hospital Fujian Province Quanzhou China
| |
Collapse
|
3
|
Antisense oligonucleotide-based drug development for Cystic Fibrosis patients carrying the 3849+10 kb C-to-T splicing mutation. J Cyst Fibros 2021; 20:865-875. [PMID: 34226157 PMCID: PMC8464507 DOI: 10.1016/j.jcf.2021.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/24/2023]
Abstract
Background: Antisense oligonucleotide (ASO)-based drugs for splicing modulation were recently approved for various genetic diseases with unmet need. Here we aimed to develop an ASO-based splicing modulation therapy for Cystic Fibrosis (CF) patients carrying the 3849 + 10 kb C-to-T splicing mutation in the CFTR gene. Methods: We have screened, in FRT cells expressing the 3849 + 10 kb C-to-T splicing mutation, ~30 2ʹ-O-Methyl-modified phosphorothioate ASOs, targeted to prevent the recognition and inclusion of a cryptic exon generated due to the mutation. The effect of highly potent ASO candidates on the splicing pattern, protein maturation and CFTR function was further analyzed in well differentiated primary human nasal and bronchial epithelial cells, derived from patients carrying at least one 3849 + 10 kb C-to-T allele. Results: A highly potent lead ASO, efficiently delivered by free uptake, was able to significantly increase the level of correctly spliced mRNA and completely restore the CFTR function to wild type levels in cells from a homozygote patient. This ASO led to CFTR function with an average of 43% of wild type levels in cells from various heterozygote patients. Optimized efficiency of the lead ASO was further obtained with 2ʹ-Methoxy Ethyl modification (2ʹMOE). Conclusion: The highly efficient splicing modulation and functional correction, achieved by free uptake of the selected lead ASO in various patients, demonstrate the ASO therapeutic potential benefit for CF patients carrying splicing mutations and is aimed to serve as the basis for our current clinical development.
Collapse
|
4
|
Lee SE, Farzal Z, Daniels MLA, Thorp BD, Zanation AM, Senior BA, Ebert CS, Kimple AJ. Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapy: A Review for the Otolaryngologist. Am J Rhinol Allergy 2020; 34:573-580. [PMID: 32168995 PMCID: PMC7573678 DOI: 10.1177/1945892420912368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Cystic fibrosis (CF) is a genetic disease that may result in multiple systemic disorders and potentially fatal severe respiratory compromise. However, the advent of CF transmembrane conductance regulator (CFTR) modulators has changed the management of CF for patients with select mutations. Although clinical trials have highlighted increased pulmonary function and decreased exacerbations as a result of these novel therapies, their effect on the sinuses has not been well-described. Objective Our objective is to review the CFTR modulators to provide otolaryngologists, physicians who frequently care for patients with CF, a basic understanding of these drugs and their effects on chronic rhinosinusitis (CRS) in patients with CF. Methods The clinically approved and available CFTR modulators and specific indications for their use are reviewed. Additionally, a systematic review of these therapies and effects on CRS in CF was performed. Results Four Food and Drug Administration approved CFTR modulators are available for patients with CF. Current drugs are approved for gating, residual function, or F508del mutations. Multiple reports describe CFTR modulators’ increase in transepithelial ion transport in nasal epithelial cultures; however, clinical studies regarding effects of these modulators on sinonasal health are limited to 5 studies that present new data of the effects of CFTR modulators in CRS. Conclusions CFTR modulators have changed management of CF. Initial studies of these medications demonstrate promising results in CF; however, there is a paucity of literature describing the effect of CFTR modulators on CF-associated CRS, although initial results are encouraging.
Collapse
Affiliation(s)
- Saangyoung E Lee
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Zainab Farzal
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - M Leigh Anne Daniels
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brian D Thorp
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adam M Zanation
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brent A Senior
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Charles S Ebert
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adam J Kimple
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Fielbaum Ó. MANEJO ACTUAL DE LA FIBROSIS QUÍSTICA. REVISTA MÉDICA CLÍNICA LAS CONDES 2017. [DOI: 10.1016/j.rmclc.2017.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
The phospholipid flippase ATP8B1 mediates apical localization of the cystic fibrosis transmembrane regulator. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2280-8. [PMID: 27301931 DOI: 10.1016/j.bbamcr.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/10/2016] [Indexed: 11/23/2022]
Abstract
Progressive familial intrahepatic cholestasis type 1 (PFIC1) is caused by mutations in the gene encoding the phospholipid flippase ATP8B1. Apart from severe cholestatic liver disease, many PFIC1 patients develop extrahepatic symptoms characteristic of cystic fibrosis (CF), such as pulmonary infection, sweat gland dysfunction and failure to thrive. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel essential for epithelial fluid transport. Previously it was shown that CFTR transcript levels were strongly reduced in livers of PFIC1 patients. Here we have investigated the hypothesis that ATP8B1 is important for proper CFTR expression and function. We analyzed CFTR expression in ATP8B1-depleted intestinal and pulmonary epithelial cell lines and assessed CFTR function by measuring short-circuit currents across transwell-grown ATP8B1-depleted intestinal T84 cells and by a genetically-encoded fluorescent chloride sensor. In addition, we studied CFTR surface expression upon induction of CFTR transcription. We show that CFTR protein levels are strongly reduced in the apical membrane of human ATP8B1-depleted intestinal and pulmonary epithelial cell lines, a phenotype that coincided with reduced CFTR activity. Apical membrane insertion upon induction of ectopically-expressed CFTR was strongly impaired in ATP8B1-depleted cells. We conclude that ATP8B1 is essential for correct apical localization of CFTR in human intestinal and pulmonary epithelial cells, and that impaired CFTR localization underlies some of the extrahepatic phenotypes observed in ATP8B1 deficiency.
Collapse
|
7
|
Tildy BE, Rogers DF. Therapeutic options for hydrating airway mucus in cystic fibrosis. Pharmacology 2015; 95:117-32. [PMID: 25823699 DOI: 10.1159/000377638] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND In cystic fibrosis (CF), genetic mutations in the CF transmembrane conductance regulator (CFTR) gene cause reduced chloride efflux from ciliated airway epithelial cells. This results in a reduction in periciliary liquid (PCL) depth of the airway surface liquid due to associated reduced water efflux. PCL layer dehydration reduces mucociliary clearance (MCC), leading to airway obstruction (reduced airflow and inflammation due to pathogen invasion) with mucus plug formation. SUMMARY Rehydrating mucus increases MCC. Mucus hydration can be achieved by direct hydration (administering osmotic agents to set up an osmotic gradient), using CFTR modulators to correct dysfunctional CFTR, or it can be achieved pharmacologically (targeting other ion channels on airway epithelial cells). Key Messages: The molecular mechanisms of several therapies are discussed in the context of pre-clinical and clinical trial studies. Currently, only the osmotic agent 7% hypertonic saline and the CFTR 'potentiator' VX-770 (ivacaftor) are used clinically to hydrate mucus. Emerging therapies include the osmotic agent mannitol (Bronchitol), the intracellular Ca(2+)-raising agent Moli1901/lancovutide, the CFTR potentiator sildenafil [phosphodiesterase type 5 (PDE5) inhibitor] and the CFTR 'corrector' VX-809 (lumacaftor). Other CFTR correctors (e.g. 'chemical chaperones') are also showing pre-clinical promise.
Collapse
|
8
|
Conn PM, Smith E, Spicer T, Chase P, Scampavia L, Janovick JA. A phenotypic high throughput screening assay for the identification of pharmacoperones for the gonadotropin releasing hormone receptor. Assay Drug Dev Technol 2015; 12:238-46. [PMID: 24831790 DOI: 10.1089/adt.2014.576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe a phenotypic high throughput screening (HTS) calcium flux assay designed to identify pharmacoperones for the gonadotropin releasing hormone receptor (GnRHR). Pharmacoperones are target-specific, small molecules that diffuse into cells, rescue misfolded protein mutants, and restore them to function. Rescue is based on correcting the trafficking of mutants that would otherwise be retained in the endoplasmic reticulum and unable to function correctly. This approach identifies drugs with a significant degree of novelty, relying on cellular mechanisms that are not currently exploited. Development of such assays is important, since the extensive use of agonist/antagonist screens alone means that useful chemical structures may be present in existing libraries but have not been previously identified using existing methods. Our assay utilizes cell lines stably expressing a GnRHR mutant under the control of a tetracycline (OFF) transactivator. This allows us to quantitate the level of functional and properly trafficked G protein coupled receptors present in each test well. Furthermore, since we are able to turn receptor expression on and off, we can rapidly eliminate the majority of false positives from our screening results. Our data show that this approach is likely to be successful in identifying hits from large chemical libraries.
Collapse
Affiliation(s)
- P Michael Conn
- 1 Departments of Internal Medicine and Cell Biology/Biochemistry, Texas Tech University Health Sciences Center , Lubbock, Texas
| | | | | | | | | | | |
Collapse
|
9
|
Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial. PLoS One 2014. [PMID: 24586292 DOI: 10.1371/journal.pone.0087796.ecollection2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND & AIMS Intestinal inflammation is a hallmark of cystic fibrosis (CF). Administration of probiotics can reduce intestinal inflammation and the incidence of pulmonary exacerbations. We investigated the composition of intestinal microbiota in children with CF and analyzed its relationship with intestinal inflammation. We also investigated the microflora structure before and after Lactobacillus GG (LGG) administration in children with CF with and without antibiotic treatment. METHODS The intestinal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE), real-time polymerase chain reaction (RT-PCR), and fluorescence in situ hybridization (FISH). Intestinal inflammation was assessed by measuring fecal calprotectin (CLP) and rectal nitric oxide (rNO) production in children with CF as compared with healthy controls. We then carried out a small double-blind randomized clinical trial with LGG. RESULTS Twenty-two children with CF children were enrolled in the study (median age, 7 years; range, 2-9 years). Fecal CLP and rNO levels were higher in children with CF than in healthy controls (184±146 µg/g vs. 52±46 µg/g; 18±15 vs. 2.6±1.2 µmol/L NO2 (-), respectively; P<0.01). Compared with healthy controls, children with CF had significantly different intestinal microbial core structures. The levels of Eubacterium rectale, Bacteroides uniformis, Bacteroides vulgatus, Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Faecalibacterium prausnitzii were reduced in children with CF. A similar but more extreme pattern was observed in children with CF who were taking antibiotics. LGG administration reduced fecal CLP and partially restored intestinal microbiota. There was a significant correlation between reduced microbial richness and intestinal inflammation. CONCLUSIONS CF causes qualitative and quantitative changes in intestinal microbiota, which may represent a novel therapeutic target in the treatment of CF. Administration of probiotics restored gut microbiota, supporting the efficacy of probiotics in reducing intestinal inflammation and pulmonary exacerbations. TRIAL REGISTRATION ClinicalTrials.gov NCT 01961661.
Collapse
|
10
|
Bruzzese E, Callegari ML, Raia V, Viscovo S, Scotto R, Ferrari S, Morelli L, Buccigrossi V, Lo Vecchio A, Ruberto E, Guarino A. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial. PLoS One 2014; 9:e87796. [PMID: 24586292 PMCID: PMC3929570 DOI: 10.1371/journal.pone.0087796] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 12/24/2013] [Indexed: 12/14/2022] Open
Abstract
Background & Aims Intestinal inflammation is a hallmark of cystic fibrosis (CF). Administration of probiotics can reduce intestinal inflammation and the incidence of pulmonary exacerbations. We investigated the composition of intestinal microbiota in children with CF and analyzed its relationship with intestinal inflammation. We also investigated the microflora structure before and after Lactobacillus GG (LGG) administration in children with CF with and without antibiotic treatment. Methods The intestinal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE), real-time polymerase chain reaction (RT-PCR), and fluorescence in situ hybridization (FISH). Intestinal inflammation was assessed by measuring fecal calprotectin (CLP) and rectal nitric oxide (rNO) production in children with CF as compared with healthy controls. We then carried out a small double-blind randomized clinical trial with LGG. Results Twenty-two children with CF children were enrolled in the study (median age, 7 years; range, 2–9 years). Fecal CLP and rNO levels were higher in children with CF than in healthy controls (184±146 µg/g vs. 52±46 µg/g; 18±15 vs. 2.6±1.2 µmol/L NO2−, respectively; P<0.01). Compared with healthy controls, children with CF had significantly different intestinal microbial core structures. The levels of Eubacterium rectale, Bacteroides uniformis, Bacteroides vulgatus, Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Faecalibacterium prausnitzii were reduced in children with CF. A similar but more extreme pattern was observed in children with CF who were taking antibiotics. LGG administration reduced fecal CLP and partially restored intestinal microbiota. There was a significant correlation between reduced microbial richness and intestinal inflammation. Conclusions CF causes qualitative and quantitative changes in intestinal microbiota, which may represent a novel therapeutic target in the treatment of CF. Administration of probiotics restored gut microbiota, supporting the efficacy of probiotics in reducing intestinal inflammation and pulmonary exacerbations. Trial Registration ClinicalTrials.gov NCT 01961661
Collapse
Affiliation(s)
- Eugenia Bruzzese
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Naples, Italy
| | - Maria Luisa Callegari
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Italy
| | - Valeria Raia
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Naples, Italy
| | - Sara Viscovo
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Naples, Italy
| | - Riccardo Scotto
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Naples, Italy
| | - Susanna Ferrari
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Italy
| | - Lorenzo Morelli
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Italy
| | - Vittoria Buccigrossi
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Naples, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Naples, Italy
| | - Eliana Ruberto
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Naples, Italy
- * E-mail:
| |
Collapse
|
11
|
Conn PM, Smithson DC, Hodder PS, Stewart MD, Behringer RR, Smith E, Ulloa-Aguirre A, Janovick JA. Transitioning pharmacoperones to therapeutic use: in vivo proof-of-principle and design of high throughput screens. Pharmacol Res 2013; 83:38-51. [PMID: 24373832 DOI: 10.1016/j.phrs.2013.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 12/26/2022]
Abstract
A pharmacoperone (from "pharmacological chaperone") is a small molecule that enters cells and serves as molecular scaffolding in order to cause otherwise-misfolded mutant proteins to fold and route correctly within the cell. Pharmacoperones have broad therapeutic applicability since a large number of diseases have their genesis in the misfolding of proteins and resultant misrouting within the cell. Misrouting may result in loss-of-function and, potentially, the accumulation of defective mutants in cellular compartments. Most known pharmacoperones were initially derived from receptor antagonist screens and, for this reason, present a complex pharmacology, although these are highly target specific. In this summary, we describe efforts to produce high throughput screens that identify these molecules from chemical libraries as well as a mouse model which provides proof-of-principle for in vivo protein rescue using existing pharmacoperones.
Collapse
Affiliation(s)
- P Michael Conn
- Department of Internal Medicine, Texas Tech University Health Science Center, 3601 4th Street, Lubbock, TX 79430, United States; Department of Cell Biology, Texas Tech University Health Science Center, 3601 4th Street, Lubbock, TX 79430, United States.
| | - David C Smithson
- Oregon Translational Research and Drug Development Institute (OTRADI), Portland, OR 97201, United States
| | - Peter S Hodder
- Translational Research Institute, Scripps Research Institute, Jupiter, FL 33458, United States
| | - M David Stewart
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States; Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Richard R Behringer
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Emery Smith
- Translational Research Institute, Scripps Research Institute, Jupiter, FL 33458, United States
| | - Alfredo Ulloa-Aguirre
- Research Support Network, Instituto Nacional de Ciencias Medicas y Nutricion, S-Z Universidad Autonoma de Mexico, Mexico, D.F., Mexico
| | - Jo Ann Janovick
- Department of Internal Medicine, Texas Tech University Health Science Center, 3601 4th Street, Lubbock, TX 79430, United States; Department of Cell Biology, Texas Tech University Health Science Center, 3601 4th Street, Lubbock, TX 79430, United States
| |
Collapse
|
12
|
Defining the blanks--pharmacochaperoning of SLC6 transporters and ABC transporters. Pharmacol Res 2013; 83:63-73. [PMID: 24316454 PMCID: PMC4059943 DOI: 10.1016/j.phrs.2013.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 02/06/2023]
Abstract
SLC6 family members and ABC transporters represent two extremes: SLC6 transporters are confined to the membrane proper and only expose small segments to the hydrophilic milieu. In ABC transporters the hydrophobic core is connected to a large intracellular (eponymous) ATP binding domain that is comprised of two discontiguous repeats. Accordingly, their folding problem is fundamentally different. This can be gauged from mutations that impair the folding of the encoded protein and give rise to clinically relevant disease phenotypes: in SLC6 transporters, these cluster at the protein–lipid interface on the membrane exposed surface. Mutations in ABC-transporters map to the interface between nucleotide binding domains and the coupling helices, which provide the connection to the hydrophobic core. Folding of these mutated ABC-transporters can be corrected with ligands/substrates that bind to the hydrophobic core. This highlights a pivotal role of the coupling helices in the folding trajectory. In contrast, insights into pharmacochaperoning of SLC6 transporters are limited to monoamine transporters – in particular the serotonin transporter (SERT) – because of their rich pharmacology. Only ligands that stabilize the inward facing conformation act as effective pharmacochaperones. This indicates that the folding trajectory of SERT proceeds via the inward facing conformation. Mutations that impair folding of SLC6 family members can be transmitted as dominant or recessive alleles. The dominant phenotype of the mutation can be rationalized, because SLC6 transporters are exported in oligomeric form from the endoplasmic reticulum (ER). Recessive transmission requires shielding of the unaffected gene product from the mutated transporter in the ER. This can be accounted for by a chaperone-COPII (coatomer protein II) exchange model, where proteinaceous ER-resident chaperones engage various intermediates prior to formation of the oligomeric state and subsequent export from the ER. It is likely that the action of pharmacochaperones is contingent on and modulated by these chaperones.
Collapse
|
13
|
Besio R, Gioia R, Cossu F, Monzani E, Nicolis S, Cucca L, Profumo A, Casella L, Tenni R, Bolognesi M, Rossi A, Forlino A. Kinetic and structural evidences on human prolidase pathological mutants suggest strategies for enzyme functional rescue. PLoS One 2013; 8:e58792. [PMID: 23516557 PMCID: PMC3596340 DOI: 10.1371/journal.pone.0058792] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/06/2013] [Indexed: 12/17/2022] Open
Abstract
Prolidase is the only human enzyme responsible for the digestion of iminodipeptides containing proline or hydroxyproline at their C-terminal end, being a key player in extracellular matrix remodeling. Prolidase deficiency (PD) is an intractable loss of function disease, characterized by mutations in the prolidase gene. The exact causes of activity impairment in mutant prolidase are still unknown. We generated three recombinant prolidase forms, hRecProl-231delY, hRecProl-E412K and hRecProl-G448R, reproducing three mutations identified in homozygous PD patients. The enzymes showed very low catalytic efficiency, thermal instability and changes in protein conformation. No variation of Mn(II) cofactor affinity was detected for hRecProl-E412K; a compromised ability to bind the cofactor was found in hRecProl-231delY and Mn(II) was totally absent in hRecProl-G448R. Furthermore, local structure perturbations for all three mutants were predicted by in silico analysis. Our biochemical investigation of the three causative alleles identified in perturbed folding/instability, and in consequent partial prolidase degradation, the main reasons for enzyme inactivity. Based on the above considerations we were able to rescue part of the prolidase activity in patients’ fibroblasts through the induction of Heath Shock Proteins expression, hinting at new promising avenues for PD treatment.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Roberta Gioia
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Federica Cossu
- Department of BioSciences, CNR-IBF and CIMAINA, University of Milano, Milano, Italy
| | - Enrico Monzani
- Department of Chemistry, University of Pavia, Pavia, Italy
| | | | - Lucia Cucca
- Department of Chemistry, University of Pavia, Pavia, Italy
| | | | - Luigi Casella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Ruggero Tenni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Martino Bolognesi
- Department of BioSciences, CNR-IBF and CIMAINA, University of Milano, Milano, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
14
|
Leonard A, Leal T, Lebecque P. [Mucoviscidosis: CFTR mutation-specific therapy: a ray of sunshine in a cloudy sky]. Arch Pediatr 2012. [PMID: 23199563 DOI: 10.1016/j.arcped.2012.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is a need to find a cure for pulmonary disease in cystic fibrosis (CF), though full benefit of this approach will be restricted to those patients with well-preserved lungs. The most promising route is currently that of a pharmacological mutation-specific approach aiming at correcting the mechanism by which mutations lead to impairment of chloride conductance across respiratory epithelial cells. In the past 14years, 7 candidate drugs (CPX, 4PBA, gentamicin, PTC124, VX-770 or Ivacaftor, VX-809 or Lumacaftor, and Miglustat) have been investigated in CF patients. A postulate of 14 out of the 15 published studies has been that an effective agent had to improve total chloride secretion as assessed in vivo by nasal potential difference measurements. The present review casts a critical look at these studies. Apparent inconsistencies are discussed as well as possible limitations of nasal potential difference measurements as outcome parameters in these trials. Primarily targeting a mutation carried by less than 2% of French CF patients, the 2 Ivacaftor studies could well be a milestone on the long road toward a cure for CF. However, further data on safety and long-term efficacy are obviously needed and the current price of this medication in the US would make it unaffordable for European patients.
Collapse
Affiliation(s)
- A Leonard
- Unité de pneumologie pédiatrique et mucoviscidose, cliniques Saint-Luc, université de Louvain, Bruxelles, Belgique.
| | | | | |
Collapse
|
15
|
Barrett PM, Alagely A, Topol EJ. Cystic fibrosis in an era of genomically guided therapy. Hum Mol Genet 2012; 21:R66-71. [DOI: 10.1093/hmg/dds345] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Rogan MP, Stoltz DA, Hornick DB. Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking, and opportunities for mutation-specific treatment. Chest 2011; 139:1480-1490. [PMID: 21652558 DOI: 10.1378/chest.10-2077] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent advances in basic science have greatly expanded our understanding of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), the chloride and bicarbonate channel that is encoded by the gene, which is mutated in patients with CF. We review the structure, function, biosynthetic processing, and intracellular trafficking of CFTR and discuss the five classes of mutations and their impact on the CF phenotype. The therapeutic discussion is focused on the significant progress toward CFTR mutation-specific therapies. We review the results of encouraging clinical trials examining orally administered therapeutics, including agents that promote read-through of class I mutations (premature termination codons); correctors, which overcome the CFTR misfolding that characterizes the common class II mutation F508del; and potentiators, which enhance the function of class III or IV mutated CFTR at the plasma membrane. Long-term outcomes from successful mutation-specific treatments could finally answer the question that has been lingering since and even before the CFTR gene discovery: Will therapies that specifically restore CFTR-mediated chloride secretion slow or arrest the deleterious cascade of events leading to chronic infection, bronchiectasis, and end-stage lung disease?
Collapse
Affiliation(s)
- Mark P Rogan
- Department of Respiratory Medicine, Waterford Regional Hospital, Waterford, Ireland
| | - David A Stoltz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Douglas B Hornick
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA.
| |
Collapse
|
17
|
Grand T, L'Hoste S, Mordasini D, Defontaine N, Keck M, Pennaforte T, Genete M, Laghmani K, Teulon J, Lourdel S. Heterogeneity in the processing of CLCN5 mutants related to Dent disease. Hum Mutat 2011; 32:476-483. [PMID: 21305656 DOI: 10.1002/humu.21467] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mutations in the electrogenic Cl(-)/H(+) exchanger ClC-5 gene CLCN5 are frequently associated with Dent disease, an X-linked recessive disorder affecting the proximal tubules. Here, we investigate the consequences in Xenopus laevis oocytes and in HEK293 cells of nine previously reported, pathogenic, missense mutations of ClC-5, most of them which are located in regions forming the subunit interface. Two mutants trafficked normally to the cell surface and to early endosomes, and displayed complex glycosylation at the cell surface like wild-type ClC-5, but exhibited reduced currents. Three mutants displayed improper N-glycosylation, and were nonfunctional due to being retained and degraded at the endoplasmic reticulum. Functional characterization of four mutants allowed us to identify a novel mechanism leading to ClC-5 dysfunction in Dent disease. We report that these mutant proteins were delayed in their processing, and that the stability of their complex glycosylated form was reduced, causing lower cell surface expression. The early endosome distribution of these mutants was normal. Half of these mutants displayed reduced currents, whereas the other half showed abolished currents. Our study revealed distinct cellular mechanisms accounting for ClC-5 loss of function in Dent disease.
Collapse
Affiliation(s)
- Teddy Grand
- UPMC Univ Paris 06, UMR_S 872, Laboratoire de Génomique, Physiologie et Physiopathologie Rénales, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Picmonova V, Berger J. Genistein effects on haematoimmune cells in a newly developed alternative toxicological model. ACTA ACUST UNITED AC 2010; 64:411-5. [PMID: 21095109 DOI: 10.1016/j.etp.2010.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/24/2010] [Accepted: 10/06/2010] [Indexed: 11/27/2022]
Abstract
Unexpected, sometimes opposite effects of dietary isoflavonic phytoestrogens on immunity may suggest that classical mammalian toxicological assays are not entirely suitable for preclinical safety tests of these compounds. We evaluated a new alternative model of haemocytes of Egyptian cotton worm in vivo following genistein administration. Genistein induced significant changes in nucleolar morphology of haemocytes but did not influence their counts and nucleolar indices. The results indicate that genistein does not affect proliferation and differentiation of normal cells but potentiates their immuno-competence. Egyptian cotton worm larvae seem to be the new alternative biomodel for immunological screening.
Collapse
Affiliation(s)
- Veronika Picmonova
- Department of Clinical Studies, University of South Bohemia, Emy Destinove, 37005 Ceske Budejovice, Czech Republic
| | | |
Collapse
|
19
|
Engin F, Hotamisligil GS. Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseases. Diabetes Obes Metab 2010; 12 Suppl 2:108-15. [PMID: 21029307 DOI: 10.1111/j.1463-1326.2010.01282.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The endoplasmic reticulum (ER) is a eukaryotic organelle that plays important roles in protein synthesis, folding and trafficking, calcium homoeostasis and lipid and steroid synthesis. It is the major protein synthesis compartment for secreted, plasma membrane and organelle proteins. Perturbations of ER homeostasis such as the accumulation of unfolded or misfolded proteins cause ER stress. To alleviate this stress, ER triggers an evolutionarily conserved signalling cascade called the unfolded protein response (UPR). As an initial response, the UPR aims at adapting and restoring ER function by translational attenuation, upregulation of ER chaperones and degradation of unfolded proteins. However, if the ER function is severely impaired because of excessive or prolonged exposure to stress, then the inflicted cells may undergo programmed cell death. During ER stress, unstable or partially folded mutant proteins are prevented from trafficking to their proper subcellular localizations and usually rapidly degraded. The small molecules named chemical chaperones help to stabilize these mutant proteins and facilitate their folding and proper trafficking from the ER to their final destinations. Because increasing number of studies suggest that ER stress is involved in a number of disease pathogenesis including neurodegenerative diseases, cancer, obesity, diabetes and atherosclerosis, promoting ER folding capacity through chemical chaperones emerges as a novel therapeutic approach. In this review, we provide insight into the many important functions of chemical chaperones during ER stress, their impact on the ER-stress-related pathologies and their potential as a new drug targets, especially in the context of metabolic disorders.
Collapse
Affiliation(s)
- F Engin
- Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
20
|
Chae H, Park J, Kim M, Lim J, Kim Y, Han K, Lee J, Chung NG, Cho B, Kim HK. [Diamond-Blackfan anemia confirmed by RPS19 gene mutation analysis: a case study and literature review of Korean patients]. Korean J Lab Med 2010; 30:249-54. [PMID: 20603584 DOI: 10.3343/kjlm.2010.30.3.249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital erythroid hypoplastic anemia that usually presents early in infancy and is inherited in up to 45% of cases. It is characterized by red cell aplasia, congenital anomalies, and a predisposition to cancer. Corticosteroids and red blood cell transfusions are the mainstays of therapy. We describe a case of 3-month-old infant who presented with severe anemia, elevated levels of HbF and adenosine deaminase and bilateral hydronephrosis, who was later confirmed as DBA by mutation analysis using the direct sequencing method. Direct sequencing analysis of RPS19 gene was performed with both cDNA and genomic DNA extracted from peripheral blood and a c.3G>A point mutation of exon 2 resulting in p.Met1Ile was identified in this patient. The patient showed an inadequate response to steroid therapy and a partial response to RBC transfusion with a follow-up Hb level of 8.3 g/dL on her last visit to the outpatient clinic. DBA is a genetically and phenotypically heterogeneous disease, and we have reviewed the clinical characteristics of 25 Korean patients thus far reported in the literature. To our knowledge, this is the first case of DBA confirmed by mutation analysis in Korea, and mutation identification using molecular method is recommended for confirmation of this genetically and phenotypically heterogeneous disease.
Collapse
Affiliation(s)
- Hyojin Chae
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gomes-Alves P, Couto F, Pesquita C, Coelho AV, Penque D. Rescue of F508del-CFTR by RXR motif inactivation triggers proteome modulation associated with the unfolded protein response. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:856-65. [DOI: 10.1016/j.bbapap.2009.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 12/17/2022]
|
22
|
Defining DIOS and constipation in cystic fibrosis with a multicentre study on the incidence, characteristics, and treatment of DIOS. J Pediatr Gastroenterol Nutr 2010; 50:38-42. [PMID: 19525866 DOI: 10.1097/mpg.0b013e3181a6e01d] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Various definitions for distal intestinal obstruction syndrome (DIOS), meconium ileus equivalent, and constipation in patients with cystic fibrosis (CF) are used. However, an unequivocal definition for DIOS, meconium ileus equivalent, and constipation is preferred. The aims of this study were, therefore, to seek consensus on the definitions for DIOS and constipation in patients with CF and to determine the incidence, characteristics, and treatment of DIOS in a cohort of paediatric patients with CF. METHODS During the 2005 European Society for Paediatric Gastroenterology, Hepatology, and Nutrition meeting in Porto a group of paediatric gastroenterologists discussed the definition of DIOS and constipation in CF. Subsequently, all patients younger than or equal to 18 years with complete DIOS according to the definition agreed upon and diagnosed during the years 2001 to 2005 in 8 CF centres were studied. RESULTS Distal intestinal obstruction syndrome was defined as an acute complete or incomplete faecal obstruction in the ileocaecum, whereas constipation was defined as gradual faecal impaction of the total colon. Fifty-one episodes of DIOS in 39 patients were recorded, giving an overall incidence of 6.2 (95% confidence interval, 4.4-7.9) episodes per 1000 patient-years. Of the 39 patients with DIOS, 20% experienced a relapse, 92% were pancreatic insufficient, 44% had a history of meconium ileus at birth, and 82% had a severe genotype. Conservative treatment was effective in 49 of 51 DIOS episodes (96%). CONCLUSIONS The European Society for Paediatric Gastroenterology, Hepatology, and Nutrition CF Working Group definitions of DIOS and constipation in CF are specific and make a clear distinction between these 2 entities. The incidence of DIOS in the present study was considerably higher than reported previously.
Collapse
|
23
|
Aminoglycoside therapy against Pseudomonas aeruginosa in cystic fibrosis: A review. J Cyst Fibros 2009; 8:361-9. [DOI: 10.1016/j.jcf.2009.08.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/30/2009] [Accepted: 08/10/2009] [Indexed: 11/23/2022]
|
24
|
Measuring and improving respiratory outcomes in cystic fibrosis lung disease: opportunities and challenges to therapy. J Cyst Fibros 2009; 9:1-16. [PMID: 19833563 DOI: 10.1016/j.jcf.2009.09.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/20/2009] [Accepted: 09/22/2009] [Indexed: 12/22/2022]
Abstract
Cystic fibrosis (CF) is a life-shortening disease with significant morbidity. Despite overall improvements in survival, patients with CF experience frequent pulmonary exacerbations and declining lung function, which often accelerates during adolescence. New treatments target steps in the pathogenesis of lung disease, such as the basic defect in CF (CF Transmembrane Conductance Regulator [CFTR]), pulmonary infections, inflammation, and mucociliary clearance. These treatments offer hope but also present challenges to patients, clinicians, and researchers. Comprehensive assessment of efficacy is critical to identify potentially beneficial treatments. Lung function and pulmonary exacerbation are the most commonly used outcome measures in CF clinical research. Other outcome measures under investigation include measures of CFTR function; biomarkers of infection, inflammation, lung injury and repair; and patient-reported outcomes. Molecular diagnostics may help elucidate the complex CF airway microbiome. As new treatments are developed for patients with CF, efforts should be made to balance treatment burden with quality of life. This review highlights emerging treatments, obstacles to optimizing outcomes, and key future directions for research.
Collapse
|
25
|
Abstract
Cystic fibrosis transmembrane conductance regulator-related disorders encompass a disease spectrum from focal male reproductive tract involvement in congenital absence of the vas deferens to multiorgan involvement in classic cystic fibrosis. The reproductive, gastrointestinal, and exocrine manifestations of cystic fibrosis transmembrane conductance regulator deficiency are correlated with CFTR genotype, whereas the respiratory manifestations that are the main cause of morbidity and mortality in cystic fibrosis are less predictable. Molecular genetic testing of CFTR has led to new diagnostic strategies and will enable targeting of molecular therapies now in development. Older diagnostic methods that measure sweat chloride and nasal potential difference nonetheless remain important because of their sensitivity and specificity. In addition, the measurement of immunoreactive trypsinogen and the genotyping of CFTR alleles are key to newborn screening programs because of low cost. The multiorgan nature of cystic fibrosis leads to a heavy burden of care, thus therapeutic regimens are tailored to the specific manifestations present in each patient. The variability of cystic fibrosis lung disease and the variable expressivity of mild CFTR alleles complicate genetic counseling for this autosomal recessive disorder. Widespread implementation of newborn screening programs among populations with significant cystic fibrosis mutation carrier frequencies is expected to result in increasing demands on genetic counseling resources.
Collapse
|
26
|
Campagnoli MF, Ramenghi U, Armiraglio M, Quarello P, Garelli E, Carando A, Avondo F, Pavesi E, Fribourg S, Gleizes PE, Loreni F, Dianzani I. RPS19 mutations in patients with Diamond-Blackfan anemia. Hum Mutat 2008; 29:911-20. [PMID: 18412286 DOI: 10.1002/humu.20752] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diamond-Blackfan anemia (DBA) is an inherited disease characterized by pure erythroid aplasia. Thirty percent (30%) of patients display malformations, especially of the hands, face, heart, and urogenital tract. DBA has an autosomal dominant pattern of inheritance. De novo mutations are common and familial cases display wide clinical heterogeneity. Twenty-five percent (25%) of patients carry a mutation in the ribosomal protein (RP) S19 gene, whereas mutations in RPS24, RPS17, RPL35A, RPL11, and RPL5 are rare. These genes encode for structural proteins of the ribosome. A link between ribosomal functions and erythroid aplasia is apparent in DBA, but its etiology is not clear. Most authors agree that a defect in protein synthesis in a rapidly proliferating tissue, such as the erythroid bone marrow, may explain the defective erythropoiesis. A total of 77 RPS19 mutations have been described. Most are whole gene deletions, translocations, or truncating mutations (nonsense or frameshift), suggesting that haploinsufficiency is the basis of DBA pathology. A total of 22 missense mutations have also been described and several works have provided in vitro functional data for the mutant proteins. This review looks at the data on all these mutations, proposes a functional classification, and describes six new mutations. It is shown that patients with RPS19 mutations display a poorer response to steroids and a worse long-term prognosis compared to other DBA patients.
Collapse
|
27
|
Conn PM, Ulloa-Aguirre A, Ito J, Janovick JA. G protein-coupled receptor trafficking in health and disease: lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacol Rev 2007; 59:225-50. [PMID: 17878512 DOI: 10.1124/pr.59.3.2] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
G protein-coupled receptors (GPCR) comprise the largest family of drug targets. This is not surprising as many signaling systems rely on this class of receptor to convert external and internal stimuli to intracellular responses. As is the case with other membrane proteins, GPCRs are subjected to a stringent quality control mechanism at the endoplasmic reticulum, which ensures that only correctly folded proteins enter the secretory pathway. Because of this quality control system, point mutations resulting in protein sequence variations may result in the production of misfolded and disease-causing proteins that are unable to reach their functional destinations in the cell. There is now a wealth of information demonstrating the functional rescue of misfolded mutant receptors by small nonpeptide molecules originally designed to serve as receptor antagonists; these small molecules ("pharmacoperones") serve as molecular templates, promoting correct folding and allowing the mutants to pass the scrutiny of the cellular quality control system and be expressed at the cell surface membrane. Two of these systems are especially well characterized: the gonadotropin-releasing hormone and the vasopressin type 2 receptors, which play important roles in regulating reproduction and water homeostasis, respectively. Mutations in these receptors can lead to well defined diseases that are recognized as being caused by receptor misfolding that may potentially be amenable to treatment with pharmacoperones. This review is focused on protein misfolding and misrouting related to various disease states, with special emphasis on these two receptors, which have proved to be of value for development of drugs potentially useful in regulating GPCR trafficking in healthy and disease states.
Collapse
Affiliation(s)
- P Michael Conn
- Divisions of Neuroscience and Reproductive Biology, ONPRC/OHSU, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
28
|
Amaral MD, Kunzelmann K. Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol Sci 2007; 28:334-41. [PMID: 17573123 DOI: 10.1016/j.tips.2007.05.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/17/2007] [Accepted: 05/29/2007] [Indexed: 12/19/2022]
Abstract
One of the major challenges facing the pharmaceutical field is the identification of novel, 'druggable' targets common to distinct diseases that, despite their clinical diversity, share the same basic molecular defect(s) - thus, being termed 'horizontal diseases'. Membrane proteins constitute one of the largest families in the human genome and, given their major roles in cells and organisms, they are relevant to common human disorders such as cardiovascular disease and cancer, but also to rare genetic conditions such as cystic fibrosis (CF). Here, we review therapeutic approaches to correcting the basic defect in CF, which is caused mainly by the intracellular retention of a misfolded protein, and focus on various recent drug-discovery strategies for this important and paradigmatic disease. These strategies have possible applications in many membrane protein disorders, including other channelopathies. The mechanisms of action of potent and specific compounds, representing promising drug leads for CF pharmacotherapy, are explained and discussed.
Collapse
Affiliation(s)
- Margarida D Amaral
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal.
| | | |
Collapse
|
29
|
Döring G, Elborn JS, Johannesson M, de Jonge H, Griese M, Smyth A, Heijerman H. Clinical trials in cystic fibrosis. J Cyst Fibros 2007; 6:85-99. [PMID: 17350898 DOI: 10.1016/j.jcf.2007.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 02/07/2007] [Indexed: 12/20/2022]
Abstract
In patients with cystic fibrosis (CF), clinical trials are of paramount importance. Here, the current status of drug development in CF is discussed and future directions highlighted. Methods for pre-clinical testing of drugs with potential activity in CF patients including relevant animal models are described. Study design options for phase II and phase III studies involving CF patients are provided, including required patient numbers, safety issues and surrogate end point parameters for drugs, tested for different disease manifestations. Finally, regulatory issues for licensing new therapies for CF patients are discussed, including new directives of the European Union and the structure of a European clinical trial network for clinical studies involving CF patients is proposed.
Collapse
|
30
|
Sousa M, Ousingsawat J, Seitz R, Puntheeranurak S, Regalado A, Schmidt A, Grego T, Jansakul C, Amaral MD, Schreiber R, Kunzelmann K. An extract from the medicinal plant Phyllanthus acidus and its isolated compounds induce airway chloride secretion: A potential treatment for cystic fibrosis. Mol Pharmacol 2007; 71:366-76. [PMID: 17065237 DOI: 10.1124/mol.106.025262] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
According to previous reports, flavonoids and nutraceuticals correct defective electrolyte transport in cystic fibrosis (CF) airways. Traditional medicinal plants from China and Thailand contain phytoflavonoids and other bioactive compounds. We examined herbal extracts of the common Thai medicinal euphorbiaceous plant Phyllanthus acidus for their potential effects on epithelial transport. Functional assays by Ussing chamber, patch-clamping, double-electrode voltage-clamp and Ca2+ imaging demonstrate activation of Cl- secretion and inhibition of Na+ absorption by P. acidus. No cytotoxic effects of P. acidus could be detected. Mucosal application of P. acidus to native mouse trachea suggested transient and steady-state activation of Cl- secretion by increasing both intracellular Ca2+ and cAMP. These effects were mimicked by a mix of the isolated components adenosine, kaempferol, and hypogallic acid. Additional experiments in human airway cells and CF transmembrane conductance regulator (CFTR)-expressing BHK cells and Xenopus laevis oocytes confirm the results obtained in native tissues. Cl- secretion was also induced in tracheas of CF mice homozygous for Phe508del-CFTR and in Phe508del-CFTR homozygous human airway epithelial cells. Taken together, P. acidus corrects defective electrolyte transport in CF airways by parallel mechanisms including 1) increasing the intracellular levels of second messengers cAMP and Ca2+, thereby activating Ca2+-dependent Cl- channels and residual CFTR-Cl- conductance; 2) stimulating basolateral K+ channels; 3) redistributing cellular localization of CFTR; 4) directly activating CFTR; and 5) inhibiting ENaC through activation of CFTR. These combinatorial effects on epithelial transport may provide a novel complementary nutraceutical treatment for the CF lung disease.
Collapse
Affiliation(s)
- Marisa Sousa
- Institut für Physiologie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kern RM, Yang Z, Kim PS, Grody WW, Iyer RK, Cederbaum SD. Arginase induction by sodium phenylbutyrate in mouse tissues and human cell lines. Mol Genet Metab 2007; 90:37-41. [PMID: 16935537 DOI: 10.1016/j.ymgme.2006.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 07/06/2006] [Indexed: 11/19/2022]
Abstract
Hyperargininemia is a urea cycle disorder caused by mutations in the gene for arginase I (AI) resulting in elevated blood arginine and ammonia levels. Sodium phenylacetate and a precursor, sodium phenylbutyrate (NaPB) have been used to lower ammonia, conjugating glutamine to produce phenylacetylglutamine which is excreted in urine. The elevated arginine levels induce the second arginase (AII) in patient kidney and kidney tissue culture. It has been shown that NaPB increases expression of some target genes and we tested its effect on arginase induction. Eight 9-week old male mice fed on chow containing 7.5 g NaPB/kg rodent chow and drank water with 10 g NaPB/L, and four control mice had a normal diet. After one week all mice were sacrificed. The arginase specific activities for control and NaPB mice, respectively, were 38.2 and 59.4 U/mg in liver, 0.33 and 0.42 U/mg in kidney, and 0.29 and 1.19 U/mg in brain. Immunoprecipitation of arginase in each tissue with AI and AII antibodies showed the activity induced by NaPB is mostly AI. AII may also be induced in kidney. AI accounts for the fourfold increased activity in brain. In some cell lines, NaPB increased arginase activity up to fivefold depending on dose (1-5 mM) and exposure time (2-5 days); control and NaPB activities, respectively, are: erythroleukemia, HEL, 0.06 and 0.31 U/mg, and K562, 0.46 and 1.74 U/mg; embryonic kidney, HEK293, 1.98 and 3.58 U/mg; breast adenocarcinoma, MDA-MB-468, 1.11 and 4.06 U/mg; and prostate adenocarcinoma, PC-3, 0.55 and 3.20 U/mg. In MDA-MB-468 and HEK most, but not all, of the induced activity is AI. These studies suggest that NaPB may induce AI when used to treat urea cycle disorders. It is relatively less useful in AI deficiency, although it could have some effect in those patients with missense mutations.
Collapse
Affiliation(s)
- R M Kern
- The Mental Retardation Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
32
|
Lipecka J, Norez C, Bensalem N, Baudouin-Legros M, Planelles G, Becq F, Edelman A, Davezac N. Rescue of DeltaF508-CFTR (cystic fibrosis transmembrane conductance regulator) by curcumin: involvement of the keratin 18 network. J Pharmacol Exp Ther 2006; 317:500-5. [PMID: 16424149 DOI: 10.1124/jpet.105.097667] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, DeltaF508, causes retention of DeltaF508-CFTR in the endoplasmic reticulum and leads to the absence of CFTR Cl(-) channels in the plasma membrane. DeltaF508-CFTR retains some Cl(-) channel activity so increased expression of DeltaF508-CFTR in the plasma membrane can restore Cl(-) secretion deficiency. Recently, curcumin was shown to rescue DeltaF508-CFTR localization and function. In our previous work, the keratin 18 (K18) network was implicated in DeltaF508-CFTR trafficking. Here, we hypothesized that curcumin could restore a functional DeltaF508-CFTR to the plasma membrane acting via the K18 network. First, we analyzed the effects of curcumin on the localization of DeltaF508-CFTR in different cell lines (HeLa cells stably transfected with wild-type CFTR or DeltaF508-CFTR, CALU-3 cells, or cystic fibrosis pancreatic epithelial cells CFPAC-1) and found that it was significantly delocalized toward the plasma membrane in DeltaF508-CFTR-expressing cells. We also performed a functional assay for the CFTR chloride channel in CFPAC-1 cells treated or not with curcumin and detected an increase in a cAMP-dependent chloride efflux in treated DeltaF508-CFTR-expressing cells. The K18 network then was analyzed by immunocytochemistry and immunoblot exclusively in curcumin-treated or untreated CFPAC-1 cells because of their endogenic DeltaF508-CFTR expression. After curcumin treatment, we observed a remodeling of the K18 network and a significant increase in K18 Ser52 phosphorylation, a site directly implicated in the reorganization of intermediate filaments. With these results, we propose that K18 as a new therapeutic target and curcumin, and/or its analogs, might be considered as potential therapeutic agents for cystic fibrosis.
Collapse
Affiliation(s)
- Joanna Lipecka
- Institut National de la Sante et de la Recherche Medicale U467, Université René Descartes Paris 5, Faculté de Médecine Paris 5, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mateizel I, De Temmerman N, Ullmann U, Cauffman G, Sermon K, Van de Velde H, De Rycke M, Degreef E, Devroey P, Liebaers I, Van Steirteghem A. Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum Reprod 2005; 21:503-11. [PMID: 16284066 DOI: 10.1093/humrep/dei345] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Human embryonic stem (hES) cells are pluripotent cells usually derived from the inner cell mass (ICM) of blastocysts. Because of their ability to differentiate into all three embryonic germ layers, hES cells represent an important material for studying developmental biology and cell replacement therapy. hES cell lines derived from blastocysts diagnosed as carrying a genetic disorder after PGD represent in vitro disease models. METHODS ICMs isolated by immunosurgery from human blastocysts donated for research after IVF cycles and after PGD were plated in serum-free medium (except VUB01) on mouse feeder layers. RESULTS Five hES cell lines were isolated, two from IVF embryos and three from PGD embryos. All lines behave similarly in culture and present a normal karyotype. The lines express all the markers considered characteristic of undifferentiated hES cells and were proven to be pluripotent both in vitro and in vivo (ongoing for VUB05_HD). CONCLUSIONS We report here on the derivation of two hES cell lines presumed to be genetically normal (VUB01 and VUB02) and three hES cell lines carrying mutations for myotonic dystrophy type 1 (VUB03_DM1), cystic fibrosis (VUB04_CF) and Huntington disease (VUB05_HD).
Collapse
Affiliation(s)
- I Mateizel
- Research Centre for Reproduction and Genetics, University Hospital and Medical School of the Vrije Universiteit Brussel (Dutch-speaking Brussels Free University) Laarbeeklaan 101, 1090 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|