1
|
Schork A, Fritsche A, Schleicher ED, Peter A, Heni M, Stefan N, von Schwartzenberg RJ, Guthoff M, Mischak H, Siwy J, Birkenfeld AL, Wagner R. Differential risk assessment in persons at risk of type 2 diabetes using urinary peptidomics. Metabolism 2025; 167:156174. [PMID: 40023439 DOI: 10.1016/j.metabol.2025.156174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVE Individuals at increased risk of type 2 diabetes have recently been classified into six prediabetes clusters, which stratify the risk of progression to diabetes and diabetes complications. Clusters 1, 2 and 4 are low-risk clusters while clusters 3, 5 and 6 are high-risk clusters; individuals in cluster 6 have an elevated risk of nephropathy and all-cause mortality despite delayed onset of diabetes. The urinary peptidome classifiers CKD273 (chronic kidney disease, CKD), HF2 (heart failure, HF) and CAD238 (coronary artery disease, CAD) are based on unique urinary peptide patterns and have shown potential for identifying individuals at risk for CKD and cardiovascular pathologies. This observational study investigates whether peptidome classifiers can differentiate complication risks across the prediabetes clusters and if a novel combination of peptides can distinguish high-risk from low-risk prediabetes clusters. METHODS Urine peptidome analysis was performed on spot urine samples from individuals across 6 prediabetes clusters (n = 249) and 19 individuals with screen-detected diabetes (study cohorts at University Hospital Tübingen, Germany from 11/2004 to 11/2012). Predefined urinary classifiers were calculated for each participant. Lasso regression analysis was used to identify an optimal combination of peptides distinguishing low- Schlesinger et al. (2022), Wagner et al. (2021) [1,2,4] and high-risk (Rooney et al., 2021; Wagner, 2023; Latosinska et al., 2021 [3,5,6]) clusters. RESULTS The predefined urinary peptidome classifiers CKD273, HF2 and CAD238 differed significantly across prediabetes clusters, particularly with elevated values in cluster 6 compared to the healthiest cluster 2. CKD273, HF2 and CAD238 were inversely associated with insulin sensitivity indexes. Machine Learning identified a combination of 112 urinary peptides that differentiated low-risk from high-risk prediabetes clusters (AUC-ROC 0.868 (95 % CI 0.755-0.981)). CONCLUSIONS Urinary peptidome classifiers support the increased risk of CKD and suggest an elevated risk of heart failure and coronary artery disease in the high-risk prediabetes cluster 6. Urine peptidomics show promising potential as a tool for identifying high-risk prediabetes individuals and guiding early preventive interventions.
Collapse
Affiliation(s)
- Anja Schork
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Otfried-Müller-Strasse 10, 72076 Tübingen, Germany.
| | - Andreas Fritsche
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Erwin D Schleicher
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Martin Heni
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; Division of Endocrinology and Diabetology, Department of Internal Medicine I, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Norbert Stefan
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Reiner Jumpertz von Schwartzenberg
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Martina Guthoff
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | | | | | - Andreas L Birkenfeld
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Robert Wagner
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Mina IK, Iglesias-Martinez LF, Ley M, Fillinger L, Perco P, Siwy J, Mischak H, Jankowski V. Investigation of the Urinary Peptidome to Unravel Collagen Degradation in Health and Kidney Disease. Proteomics 2024:e202400279. [PMID: 39740102 DOI: 10.1002/pmic.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Naturally occurring fragments of collagen type I alpha 1 chain (COL1A1) have been previously associated with chronic kidney disease (CKD), with some fragments showing positive and others negative associations. Using urinary peptidome data from healthy individuals (n = 1131) and CKD patients (n = 5585) this aspect was investigated in detail. Based on the hypothesis that many collagen peptides are derived not from the full, mature collagen molecule, but from (larger) collagen degradation products, relationships between COL1A1 peptides containing identical sequences were investigated, with the smaller (offspring) peptide being a possible degradation product of the larger (parent) one. The strongest correlations were found for relationships where the parent differed by a maximum of three amino acids from the offspring, indicating an exopeptidase-regulated stepwise degradation process. Regression analysis indicated that CKD affects this degradation process. A comparison of matched CKD patients and control individuals (n = 612 each) showed that peptides at the start of the degradation process were consistently downregulated in CKD, indicating an attenuation of COL1A1 endopeptidase-mediated degradation. However, as these peptides undergo further degradation, likely mediated by exopeptidases, this downregulation can become less significant or even reverse, leading to an upregulation of later-stage fragments and potentially explaining the inconsistencies observed in previous studies.
Collapse
Affiliation(s)
- Ioanna K Mina
- Mosaiques Diagnostics GmbH, Hannover, Germany
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Germany
| | - Luis F Iglesias-Martinez
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Republic of Ireland
| | - Matthias Ley
- Computational Biology Department, Delta4 GmbH, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Vienna, Austria
| | - Lucas Fillinger
- Computational Biology Department, Delta4 GmbH, Vienna, Austria
| | - Paul Perco
- Computational Biology Department, Delta4 GmbH, Vienna, Austria
- Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
3
|
Pont L, Vergara-Barberán M, Carrasco-Correa EJ. A Comprehensive Review on Capillary Electrophoresis-Mass Spectrometry in Advancing Biomolecular Research. Electrophoresis 2024. [PMID: 39508247 DOI: 10.1002/elps.202400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
This review provides an in-depth exploration of capillary electrophoresis-mass spectrometry (CE-MS) in biomolecular research from 2020 to 2024. CE-MS emerges as a versatile and powerful tool due to its numerous advantages, facilitating the analysis of various biomolecules, including proteins, peptides, oligonucleotides, and other metabolites, such as lipids, carbohydrates, or amines, among others. The review extends to various CE modes and interfaces for the CE-MS coupling, offering comprehensive insights into their applications within biomolecular research. Furthermore, it effectively summarizes the conditions employed in CE-MS while also addressing critical aspects such as sample preparation requirements. Despite its advantages, the review highlights a gap between discovery and practical implementation, underscoring the need for large-scale validation and method standardization to fully realize the potential of CE-MS in biomolecular research.
Collapse
Affiliation(s)
- Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
- Serra Húnter Program, Generalitat de Catalunya, Barcelona, Spain
| | - María Vergara-Barberán
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, Valencia, Spain
| | | |
Collapse
|
4
|
Latosinska A, Frantzi M, Siwy J. Peptides as "better biomarkers"? Value, challenges, and potential solutions to facilitate implementation. MASS SPECTROMETRY REVIEWS 2024; 43:1195-1236. [PMID: 37357849 DOI: 10.1002/mas.21854] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/27/2023]
Abstract
Peptides carry important functions in normal physiological and pathophysiological processes and can serve as clinically useful biomarkers. Given the ability to diffuse passively across endothelial barriers, endogenous peptides can be examined in several body fluids, including among others urine, blood, and cerebrospinal fluid. This review article provides an update on the recently published literature that reports on investigating native peptides in body fluids using mass spectrometry-based platforms, specifically those studies that focus on the application of peptides as biomarkers to improve clinical management. We emphasize on the critical evaluation of their clinical value, how close they are to implementation, and the associated challenges and potential solutions to facilitate clinical implementation. During the last 5 years, numerous studies have been published, demonstrating the increased interest in mass spectrometry for the assessment of endogenous peptides as potential biomarkers. Importantly, the presence of few successful examples of implementation in patients' management and/or in the context of clinical trials indicates that the peptide biomarker field is evolving. Nevertheless, most studies still report evidence based on small sample size, while validation phases are frequently missing. Therefore, a gap between discovery and implementation still exists.
Collapse
Affiliation(s)
| | - Maria Frantzi
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, Hannover, Germany
| | - Justyna Siwy
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, Hannover, Germany
| |
Collapse
|
5
|
Asai TT, Miyauchi S, Wijanarti S, Sekino A, Suzuki A, Maruya S, Mannari T, Tsuji A, Toyama K, Nakata R, Ogura Y, Takamura H, Sato K, Takachi R, Matsuda S. Hydroxyprolyl-Glycine in 24 H Urine Shows Higher Correlation with Meat Consumption than Prolyl-Hydroxyproline, a Major Collagen Peptide in Urine and Blood. Nutrients 2024; 16:3574. [PMID: 39458568 PMCID: PMC11510011 DOI: 10.3390/nu16203574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Background. Urinary collagen peptides, the breakdown products of endogenous collagen, have been used as biomarkers for various diseases. These non-invasive biomarkers are easily measured via mass spectrometry, aiding in diagnostics and therapy effectiveness. Objectives. The objective of this study was to investigate the effects of consuming collagen-containing meat on collagen peptide composition in human blood and urine. Methods. Ten collagen peptides in 24 h urine were quantified. Results. Prolyl-hydroxyproline (Pro-Hyp) was the most abundant peptide. Except for hydroxyprolyl-glycine (Hyp-Gly), levels of other minor collagen peptides showed high correlation coefficients with Pro-Hyp (r = 0.42 vs. r > 0.8). Notably, 24 h urinary Hyp-Gly showed a correlation coefficient of r = 0.72 with meat consumption, significantly higher than the coefficient for Pro-Hyp (r = 0.37). Additionally, the levels of Pro-Hyp and Hyp-Gly in the blood of seven young women participants increased similarly after consuming fish meat, while before ingestion, only negligible amounts of Hyp-Gly were present. To examine which peptides are generated by the degradation of endogenous collagen, mouse skin was cultured. The amount of Pro-Hyp released from the skin was approximately 1000-fold higher than that of Hyp-Gly. Following consumption of collagen-containing meat, both Pro-Hyp and Hyp-Gly are released in blood and excreted into urine, although Pro-Hyp is primarily generated from endogenous collagen even under physiological conditions. Conclusions. Therefore, in 24 h urine samples, the non-negligible fraction of Pro-Hyp is contributed by endogenous collagen, making 24 h urine Hyp-Gly level a potential biomarker for evaluating meat consumption on the day.
Collapse
Affiliation(s)
- Tomoko T. Asai
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606 8502, Japan
| | - Satoshi Miyauchi
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606 8502, Japan
| | - Sri Wijanarti
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606 8502, Japan
| | - Ayaka Sekino
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Akiko Suzuki
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Sachiko Maruya
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Takayo Mannari
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
- Kyousei Science Center for Life and Nature, Nara Women’s University, Kitauoya-Nishimachi, Nara 630 8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Kenji Toyama
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Hitoshi Takamura
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
- Kyousei Science Center for Life and Nature, Nara Women’s University, Kitauoya-Nishimachi, Nara 630 8506, Japan
| | - Kenji Sato
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606 8502, Japan
| | - Ribeka Takachi
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| |
Collapse
|
6
|
Mavrogeorgis E, Kondyli M, Mischak H, Vlahou A, Siwy J, Rossing P, Campbell A, Mels CMC, Delles C, Staessen JA, Latosinska A, Persu A. Multiple urinary peptides are associated with hypertension: a link to molecular pathophysiology. J Hypertens 2024; 42:1331-1339. [PMID: 38690919 DOI: 10.1097/hjh.0000000000003726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
OBJECTIVES Hypertension is a common condition worldwide; however, its underlying mechanisms remain largely unknown. This study aimed to identify urinary peptides associated with hypertension to further explore the relevant molecular pathophysiology. METHODS Peptidome data from 2876 individuals without end-organ damage were retrieved from the Human Urinary Proteome Database, belonging to general population (discovery) or type 2 diabetic (validation) cohorts. Participants were divided based on systolic blood pressure (SBP) and diastolic BP (DBP) into hypertensive (SBP ≥140 mmHg and/or DBP ≥90 mmHg) and normotensive (SBP <120 mmHg and DBP <80 mmHg, without antihypertensive treatment) groups. Differences in peptide abundance between the two groups were confirmed using an external cohort ( n = 420) of participants without end-organ damage, matched for age, BMI, eGFR, sex, and the presence of diabetes. Furthermore, the association of the peptides with BP as a continuous variable was investigated. The findings were compared with peptide biomarkers of chronic diseases and bioinformatic analyses were conducted to highlight the underlying molecular mechanisms. RESULTS Between hypertensive and normotensive individuals, 96 (mostly COL1A1 and COL3A1) peptides were found to be significantly different in both the discovery (adjusted) and validation (nominal significance) cohorts, with consistent regulation. Of these, 83 were consistently regulated in the matched cohort. A weak, yet significant, association between their abundance and standardized BP was also observed. CONCLUSION Hypertension is associated with an altered urinary peptide profile with evident differential regulation of collagen-derived peptides. Peptides related to vascular calcification and sodium regulation were also affected. Whether these modifications reflect the pathophysiology of hypertension and/or early subclinical organ damage requires further investigation.
Collapse
Affiliation(s)
- Emmanouil Mavrogeorgis
- Mosaiques Diagnostics GmbH, Hannover
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, Aachen, Germany
| | | | | | - Antonia Vlahou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Carina M C Mels
- Hypertension in Africa Research Team (HART), Faculty of Health Sciences
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Jan A Staessen
- Research Institute Alliance for the Promotion of Preventive Medicine, Mechelen
| | | | - Alexandre Persu
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires Saint-Luc
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Lauder L, Siwy J, Mavrogeorgis E, Keller F, Kunz M, Wachter A, Emrich IE, Böhm M, Mischak H, Mahfoud F. Impact of Renal Denervation on Urinary Peptide-Based Biomarkers in Hypertension. Hypertension 2024; 81:1374-1382. [PMID: 38572643 DOI: 10.1161/hypertensionaha.124.22819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Catheter-based renal denervation (RDN) reduces blood pressure in hypertension. Urinary peptides are associated with cardiovascular and renal disease and provide prognostic information. We aimed to investigate the effect of RDN on urinary peptide-based classifiers associated with chronic kidney and heart disease and to identify urinary peptides affected by RDN. METHODS This single-arm, single-center study included patients undergoing catheter-based RDN. Urine samples were collected before and 24 months after RDN and were analyzed using capillary electrophoresis coupled with mass spectrometry. Predefined urinary peptide-based classifiers for chronic kidney disease (CKD273), coronary artery disease (CAD238), and heart failure (HF1) were applied. RESULTS This study included 48 patients (33% female) with uncontrolled hypertension. At 24 months after RDN, systolic blood pressure (165±17 versus 148±20 mm Hg; P<0.0001), diastolic blood pressure (90±17 versus 81±13 mm Hg; P<0.0001), and mean arterial pressure (115±15 versus 103±13 mm Hg; P<0.0001) decreased significantly. A total of 103 urinary peptides from 37 different proteins, mostly collagens, altered following RDN. CAD238, a 238 coronary artery-specific polypeptide-based classifier, significantly improved following RDN (Cohen's d, -0.632; P=0.0001). The classification scores of HF1 (P=0.8295) and CKD273 (P=0.6293) did not change significantly. CONCLUSIONS RDN beneficially affected urinary peptides associated with coronary artery disease. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT01888315.
Collapse
Affiliation(s)
- Lucas Lauder
- Klinik für Innere Medizin III - Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätskliniken des Saarlandes und Universität des Saarlandes, Homburg, Germany (L.L., M.K., A.W., I.E.E., M.B., F.M.)
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, Hannover, Germany (J.S., E.M., H.M.)
| | - Emmanouil Mavrogeorgis
- Mosaiques Diagnostics GmbH, Hannover, Germany (J.S., E.M., H.M.)
- Institute for Molecular Cardiovascular Research, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Germany (E.M.)
| | - Felix Keller
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Austria (F.K.)
| | - Michael Kunz
- Klinik für Innere Medizin III - Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätskliniken des Saarlandes und Universität des Saarlandes, Homburg, Germany (L.L., M.K., A.W., I.E.E., M.B., F.M.)
| | - Angelika Wachter
- Klinik für Innere Medizin III - Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätskliniken des Saarlandes und Universität des Saarlandes, Homburg, Germany (L.L., M.K., A.W., I.E.E., M.B., F.M.)
| | - Insa E Emrich
- Klinik für Innere Medizin III - Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätskliniken des Saarlandes und Universität des Saarlandes, Homburg, Germany (L.L., M.K., A.W., I.E.E., M.B., F.M.)
| | - Michael Böhm
- Klinik für Innere Medizin III - Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätskliniken des Saarlandes und Universität des Saarlandes, Homburg, Germany (L.L., M.K., A.W., I.E.E., M.B., F.M.)
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany (J.S., E.M., H.M.)
| | - Felix Mahfoud
- Klinik für Innere Medizin III - Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätskliniken des Saarlandes und Universität des Saarlandes, Homburg, Germany (L.L., M.K., A.W., I.E.E., M.B., F.M.)
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge (F.M.)
| |
Collapse
|
8
|
Carland C, Zhao L, Salman O, Cohen JB, Zamani P, Xiao Q, Dongre A, Wang Z, Ebert C, Greenawalt D, van Empel V, Richards AM, Doughty RN, Rietzschel E, Javaheri A, Wang Y, Schafer PH, Hersey S, Carayannopoulos LN, Seiffert D, Chang C, Gordon DA, Ramirez‐Valle F, Mann DL, Cappola TP, Chirinos JA. Urinary Proteomics and Outcomes in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2024; 13:e033410. [PMID: 38639358 PMCID: PMC11179922 DOI: 10.1161/jaha.123.033410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Although several studies have addressed plasma proteomics in heart failure with preserved ejection fraction, limited data are available on the prognostic value of urinary proteomics. The objective of our study was to identify urinary proteins/peptides associated with death and heart failure admission in patients with heart failure with preserved ejection fraction. METHODS AND RESULTS The study population included participants enrolled in TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial). The relationship between urine protein levels and the risk of death or heart failure admission was assessed using Cox regression, in both nonadjusted analyses and adjusting for urine creatinine levels, and the MAGGIC (Meta-Analysis Global Group in Chronic Heart Failure) score. A total of 426 (12.4%) TOPCAT participants had urinary protein data and were included. There were 40 urinary proteins/peptides significantly associated with death or heart failure admission in nonadjusted analyses, 21 of which were also significant adjusted analyses. Top proteins in the adjusted analysis included ANGPTL2 (angiopoietin-like protein 2) (hazard ratio [HR], 0.5731 [95% CI, 0.47-0.7]; P=3.13E-05), AMY2A (α amylase 2A) (HR, 0.5496 [95% CI, 0.44-0.69]; P=0.0001), and DNASE1 (deoxyribonuclease-1) (HR, 0.5704 [95% CI, 0.46-0.71]; P=0.0002). Higher urinary levels of proteins involved in fibrosis (collagen VI α-1, collagen XV α-1), metabolism (pancreatic α-amylase 2A/B, mannosidase α class 1A member 1), and inflammation (heat shock protein family D member 1, inducible T cell costimulatory ligand) were associated with a lower risk of death or heart failure admission. CONCLUSIONS Our study identifies several novel associations between urinary proteins/peptides and outcomes in heart failure with preserved ejection fraction. Many of these associations are independent of clinical risk scores and may aid in risk stratification in this patient population.
Collapse
Affiliation(s)
- Corinne Carland
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Lei Zhao
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | - Oday Salman
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Jordana B. Cohen
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Payman Zamani
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Qing Xiao
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | | | | | | | | | - Vanessa van Empel
- Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of SingaporeSingapore
- Christchurch Heart Institute, University of OtagoChristchurchNew Zealand
| | - Robert N. Doughty
- Christchurch Heart Institute, University of OtagoChristchurchNew Zealand
| | - Ernst Rietzschel
- Department of Cardiovascular DiseasesGhent University Hospital and Ghent UniversityGhentBelgium
| | - Ali Javaheri
- Washington University School of MedicineSt. LouisMOUSA
| | - Yixin Wang
- Bristol‐Myers Squibb CompanyLawrencevilleNJUSA
| | | | | | | | | | | | | | | | | | - Thomas P. Cappola
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Julio A. Chirinos
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
9
|
Jaimes Campos MA, Mavrogeorgis E, Latosinska A, Eder S, Buchwinkler L, Mischak H, Siwy J, Rossing P, Mayer G, Jankowski J. Urinary peptide analysis to predict the response to blood pressure medication. Nephrol Dial Transplant 2024; 39:873-883. [PMID: 37930730 PMCID: PMC11181870 DOI: 10.1093/ndt/gfad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The risk of diabetic kidney disease (DKD) progression is significant despite treatment with renin-angiotensin system (RAS) blocking agents. Current clinical tools cannot predict whether or not patients will respond to treatment with RAS inhibitors (RASi). We aimed to investigate whether proteome analysis could identify urinary peptides as biomarkers that could predict the response to angiotensin-converting enzyme inhibitor and angiotensin-receptor blockers treatment to avoid DKD progression. Furthermore, we investigated the comparability of the estimated glomerular filtration rate (eGFR), calculated using four different GFR equations, for DKD progression. METHODS We evaluated urine samples from a discovery cohort of 199 diabetic patients treated with RASi. DKD progression was defined based on eGFR percentage slope results between visits (∼1 year) and for the entire period (∼3 years) based on the eGFR values of each GFR equation. Urine samples were analysed using capillary electrophoresis-coupled mass spectrometry. Statistical analysis was performed between the uncontrolled (patients who did not respond to RASi treatment) and controlled kidney function groups (patients who responded to the RASi treatment). Peptides were combined in a support vector machine-based model. The area under the receiver operating characteristic curve was used to evaluate the risk prediction models in two independent validation cohorts treated with RASi. RESULTS The classification of patients into uncontrolled and controlled kidney function varies depending on the GFR equation used, despite the same sample set. We identified 227 peptides showing nominal significant difference and consistent fold changes between uncontrolled and controlled patients in at least three methods of eGFR calculation. These included fragments of collagens, alpha-1-antitrypsin, antithrombin-III, CD99 antigen and uromodulin. A model based on 189 of 227 peptides (DKDp189) showed a significant prediction of non-response to the treatment/DKD progression in two independent cohorts. CONCLUSIONS The DKDp189 model demonstrates potential as a predictive tool for guiding treatment with RASi in diabetic patients.
Collapse
Affiliation(s)
- Mayra Alejandra Jaimes Campos
- Mosaiques Diagnostics GmbH, Hannover, Germany
- University Hospital RWTH Aachen, Institute for Molecular Cardiovascular Research, Aachen, Germany
| | - Emmanouil Mavrogeorgis
- Mosaiques Diagnostics GmbH, Hannover, Germany
- University Hospital RWTH Aachen, Institute for Molecular Cardiovascular Research, Aachen, Germany
| | | | - Susanne Eder
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Lukas Buchwinkler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Complications Research, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Joachim Jankowski
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
10
|
Rupprecht H, Catanese L, Amann K, Hengel FE, Huber TB, Latosinska A, Lindenmeyer MT, Mischak H, Siwy J, Wendt R, Beige J. Assessment and Risk Prediction of Chronic Kidney Disease and Kidney Fibrosis Using Non-Invasive Biomarkers. Int J Mol Sci 2024; 25:3678. [PMID: 38612488 PMCID: PMC11011737 DOI: 10.3390/ijms25073678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Effective management of chronic kidney disease (CKD), a major health problem worldwide, requires accurate and timely diagnosis, prognosis of progression, assessment of therapeutic efficacy, and, ideally, prediction of drug response. Multiple biomarkers and algorithms for evaluating specific aspects of CKD have been proposed in the literature, many of which are based on a small number of samples. Based on the evidence presented in relevant studies, a comprehensive overview of the different biomarkers applicable for clinical implementation is lacking. This review aims to compile information on the non-invasive diagnostic, prognostic, and predictive biomarkers currently available for the management of CKD and provide guidance on the application of these biomarkers. We specifically focus on biomarkers that have demonstrated added value in prospective studies or those based on prospectively collected samples including at least 100 subjects. Published data demonstrate that several valid non-invasive biomarkers of potential value in the management of CKD are currently available.
Collapse
Affiliation(s)
- Harald Rupprecht
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95445 Bayreuth, Germany; (H.R.); (L.C.)
- Department of Nephrology, Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Kuratorium for Dialysis and Transplantation (KfH) Bayreuth, 95445 Bayreuth, Germany
| | - Lorenzo Catanese
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95445 Bayreuth, Germany; (H.R.); (L.C.)
- Department of Nephrology, Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Kuratorium for Dialysis and Transplantation (KfH) Bayreuth, 95445 Bayreuth, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Felicitas E. Hengel
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.E.H.); (T.B.H.); (M.T.L.)
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Tobias B. Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.E.H.); (T.B.H.); (M.T.L.)
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | | | - Maja T. Lindenmeyer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.E.H.); (T.B.H.); (M.T.L.)
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (A.L.); (H.M.); (J.S.)
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (A.L.); (H.M.); (J.S.)
| | - Ralph Wendt
- Department of Nephrology, Hospital St. Georg, 04129 Leipzig, Germany;
| | - Joachim Beige
- Department of Nephrology, Hospital St. Georg, 04129 Leipzig, Germany;
- Kuratorium for Dialysis and Transplantation (KfH) Renal Unit, Hospital St. Georg, 04129 Leipzig, Germany
- Department of Internal Medicine II, Martin-Luther-University Halle/Wittenberg, 06108 Halle (Saale), Germany
| |
Collapse
|
11
|
Mina IK, Mavrogeorgis E, Siwy J, Stojanov R, Mischak H, Latosinska A, Jankowski V. Multiple urinary peptides display distinct sex-specific distribution. Proteomics 2024; 24:e2300227. [PMID: 37750242 DOI: 10.1002/pmic.202300227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Previous studies have established the association of sex with gene and protein expression. This study investigated the association of sex with the abundance of endogenous urinary peptides, using capillary electrophoresis-coupled to mass spectrometry (CE-MS) datasets from 2008 healthy individuals and patients with type II diabetes, divided in one discovery and two validation cohorts. Statistical analysis using the Mann-Whitney test, adjusted for multiple testing, revealed 143 sex-associated peptides in the discovery cohort. Of these, 90 peptides were associated with sex in at least one of the validation cohorts and showed agreement in their regulation trends across all cohorts. The 90 sex-associated peptides were fragments of 29 parental proteins. Comparison with previously published transcriptomics data demonstrated that the genes encoding 16 of these parental proteins had sex-biased expression. The 143 sex-associated peptides were combined into a support vector machine-based classifier that could discriminate males from females in two independent sets of healthy individuals and patients with type II diabetes, with an AUC of 89% and 81%, respectively. Collectively, the urinary peptidome contains multiple sex-associated differences, which may enable a better understanding of sex-biased molecular mechanisms and the development of more accurate diagnostic, prognostic, or predictive classifiers for each individual sex.
Collapse
Affiliation(s)
- Ioanna K Mina
- Mosaiques Diagnostics GmbH, Hannover, Germany
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Germany
| | - Emmanouil Mavrogeorgis
- Mosaiques Diagnostics GmbH, Hannover, Germany
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Riste Stojanov
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | | | | | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
12
|
Brasseler M, Mischak H, Schanstra JP, Michel JM, Pape L, Felderhoff-Müser U. Gestational Age-Related Urinary Peptidome Changes in Preterm and Term Born Infants. Neonatology 2024; 121:305-313. [PMID: 38382482 DOI: 10.1159/000535355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/15/2023] [Indexed: 02/23/2024]
Abstract
INTRODUCTION Preterm infants are at risk for a variety of somatic and neurological disorders. In recent years, biofluid proteomics has emerged as a potential diagnostic tool for biomarker analysis. The aim of this study was to determine gestational age (GA)-related patterns of the urinary peptidome in preterm infants for researching potential novel prognostic biomarkers. METHODS We performed urinary peptidomics in longitudinal samples of 24 preterm (mean GA weeks 28 + 1 [24+1-31 + 6]) and 27 term born controls (mean GA weeks 39 + 2 [37+0-41 + 1]) using capillary electrophoresis combined with mass spectrometry (CE-MS). Peptides were sequenced using CE-MS/MS or LC-MS/MS analysis and were deposited, matched, and annotated in a Microsoft SQL database for statistical analysis. We compared their abundance in urine of preterm and term born infants and performed a validation analysis as well as correlations to GA and clinical risk scores. RESULTS Our results confirmed significant differences in the abundance of peptides and the hypothesis of age-dependent urinary peptidome changes in preterm and term infants. In preterm infants, SLC38A10 (solute carrier family 38 member 10) is one of the most abundant peptides. Combined urinary peptides correlated with clinical risk scores (p < 0.05). CONCLUSION This is the first study reporting GA-related urinary peptidome changes of preterm infants detected by CE-MS and a modulation of the peptidome with GA. Further research is required to locate peptidome clusters correlated with specific clinical complications and long-term outcome. This may identify preterm infants at higher risk for adverse outcome who would benefit from early intervention.
Collapse
Affiliation(s)
- Maire Brasseler
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care, Pediatric Infectiology, Pediatric Neurology and Centre for Translational and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany, BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Juliane Marie Michel
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care, Pediatric Infectiology, Pediatric Neurology and Centre for Translational and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Lars Pape
- Department of Pediatrics II, Nephrology, Gastroenterology, Hepatology, Transplantation, Endocrinology and Sonography, University Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care, Pediatric Infectiology, Pediatric Neurology and Centre for Translational and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024; 45:165-198. [PMID: 37670208 DOI: 10.1002/elps.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
14
|
Zakharova NV, Bugrova AE, Indeykina MI, Brzhozovskiy AG, Nikolaev EN, Kononikhin AS. The Strategy for Peptidomic LC-MS/MS Data Analysis: The Case of Urinary Peptidome Study. Methods Mol Biol 2024; 2758:389-399. [PMID: 38549026 DOI: 10.1007/978-1-0716-3646-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The study of urinary peptidome is an important area of research, which concerns the characterization of endogenous peptides, as well as the identification of biomarkers for a wide range of socially significant diseases. First of all, this relates to renal and genitourinary pathologies and/or pathologies associated with proteinuria, such as kidney diseases, bladder, prostate and ovarian cancers, diabetic nephropathy, and pre-eclampsia. Unlike proteins, peptides do not require proteolytic hydrolysis, can be analyzed in their native form and can provide certain information about occurring (patho)physiological processes. Mass spectrometry (MS)-based approaches are the most unbiased and sensitive instruments with high multiplexing capacity and provided most of the current information about endogenous urine peptides. However, despite the large number of urine peptidomic studies, there are certain issues related to the insufficient comparability of their results due to the lack of consistent approaches to their interpretation. Also the development of a custom project-specific protein library for endogenous peptides search and identification is another important point that should be noted in the context of high-throughput peptidomic analysis. Here we propose the custom-specific urinary protein database and the grouping of endogenous urinary peptides with overlapping sequences as useful tools, which can facilitate the acquisition and analysis of LC-MS peptidomic data, as well as the comparison of results of different studies, which should facilitate their more efficient further application.
Collapse
Affiliation(s)
- Natalia V Zakharova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Emanuel Institute for Biochemical Physics, Russian Academy of Science, Moscow, Russia
| | - Anna E Bugrova
- Emanuel Institute for Biochemical Physics, Russian Academy of Science, Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health, Moscow, Russia
| | - Maria I Indeykina
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Emanuel Institute for Biochemical Physics, Russian Academy of Science, Moscow, Russia
| | - Alexander G Brzhozovskiy
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health, Moscow, Russia
| | - Evgeny N Nikolaev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia.
| | - Alexey S Kononikhin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
15
|
Wei D, Melgarejo JD, Van Aelst L, Vanassche T, Verhamme P, Janssens S, Peter K, Zhang ZY. Prediction of coronary artery disease using urinary proteomics. Eur J Prev Cardiol 2023; 30:1537-1546. [PMID: 36943304 DOI: 10.1093/eurjpc/zwad087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/23/2023]
Abstract
AIMS Coronary artery disease (CAD) is multifactorial, caused by complex pathophysiology, and contributes to a high burden of mortality worldwide. Urinary proteomic analyses may help to identify predictive biomarkers and provide insights into the pathogenesis of CAD. METHODS AND RESULTS Urinary proteome was analysed in 965 participants using capillary electrophoresis coupled with mass spectrometry. A proteomic classifier was developed in a discovery cohort with 36 individuals with CAD and 36 matched controls using the support vector machine. The classifier was tested in a validation cohort with 115 individuals who progressed to CAD and 778 controls and compared with two previously developed CAD-associated classifiers, CAD238 and ACSP75. The Framingham and SCORE2 risk scores were available in 737 participants. Bioinformatic analysis was performed based on the CAD-associated peptides. The novel proteomic classifier was comprised of 160 urinary peptides, mainly related to collagen turnover, lipid metabolism, and inflammation. In the validation cohort, the classifier provided an area under the receiver operating characteristic curve (AUC) of 0.82 [95% confidence interval (CI): 0.78-0.87] for the CAD prediction in 8 years, superior to CAD238 (AUC: 0.71, 95% CI: 0.66-0.77) and ACSP75 (AUC: 0.53 and 95% CI: 0.47-0.60). On top of CAD238 and ACSP75, the addition of the novel classifier improved the AUC to 0.84 (95% CI: 0.80-0.89). In a multivariable Cox model, a 1-SD increment in the novel classifier was associated with a higher risk of CAD (HR: 1.54, 95% CI: 1.26-1.89, P < 0.0001). The new classifier further improved the risk reclassification of CAD on top of the Framingham or SCORE2 risk scores (net reclassification index: 0.61, 95% CI: 0.25-0.95, P = 0.001; 0.64, 95% CI: 0.28-0.98, P = 0.001, correspondingly). CONCLUSION A novel urinary proteomic classifier related to collagen metabolism, lipids, and inflammation showed potential for the risk prediction of CAD. Urinary proteome provides an alternative approach to personalized prevention.
Collapse
Affiliation(s)
- Dongmei Wei
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 7, Box 7001, BE-3000 Leuven, Belgium
| | - Jesus D Melgarejo
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 7, Box 7001, BE-3000 Leuven, Belgium
| | - Lucas Van Aelst
- Division of Cardiology, University Hospitals Leuven, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Thomas Vanassche
- Division of Cardiology, University Hospitals Leuven, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Peter Verhamme
- Division of Cardiology, University Hospitals Leuven, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Stefan Janssens
- Division of Cardiology, University Hospitals Leuven, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne VIC 3004, Australia
- Department of Cardiology, The Alfred Hospital, 55 Commercial Rd, Melbourne VIC 3004, Australia
| | - Zhen-Yu Zhang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 7, Box 7001, BE-3000 Leuven, Belgium
| |
Collapse
|
16
|
Maurer J, Grouzmann E, Eugster PJ. Tutorial review for peptide assays: An ounce of pre-analytics is worth a pound of cure. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123904. [PMID: 37832388 DOI: 10.1016/j.jchromb.2023.123904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
The recent increase in peptidomimetic-based medications and the growing interest in peptide hormones has brought new attention to the quantification of peptides for diagnostic purposes. Indeed, the circulating concentrations of peptide hormones in the blood provide a snapshot of the state of the body and could eventually lead to detecting a particular health condition. Although extremely useful, the quantification of such molecules, preferably by liquid chromatography coupled to mass spectrometry, might be quite tricky. First, peptides are subjected to hydrolysis, oxidation, and other post-translational modifications, and, most importantly, they are substrates of specific and nonspecific proteases in biological matrixes. All these events might continue after sampling, changing the peptide hormone concentrations. Second, because they include positively and negatively charged groups and hydrophilic and hydrophobic residues, they interact with their environment; these interactions might lead to a local change in the measured concentrations. A phenomenon such as nonspecific adsorption to lab glassware or materials has often a tremendous effect on the concentration and needs to be controlled with particular care. Finally, the circulating levels of peptides might be low (pico- or femtomolar range), increasing the impact of the aforementioned effects and inducing the need for highly sensitive instruments and well-optimized methods. Thus, despite the extreme diversity of these peptides and their matrixes, there is a common challenge for all the assays: the need to keep concentrations unchanged from sampling to analysis. While significant efforts are often placed on optimizing the analysis, few studies consider in depth the impact of pre-analytical steps on the results. By working through practical examples, this solution-oriented tutorial review addresses typical pre-analytical challenges encountered during the development of a peptide assay from the standpoint of a clinical laboratory. We provide tips and tricks to avoid pitfalls as well as strategies to guide all new developments. Our ultimate goal is to increase pre-analytical awareness to ensure that newly developed peptide assays produce robust and accurate results.
Collapse
Affiliation(s)
- Jonathan Maurer
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Grouzmann
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe J Eugster
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
17
|
Lohia S, Siwy J, Mavrogeorgis E, Eder S, Thöni S, Mayer G, Mischak H, Vlahou A, Jankowski V. Exploratory Study Analyzing the Urinary Peptidome of T2DM Patients Suggests Changes in ECM but Also Inflammatory and Metabolic Pathways Following GLP-1R Agonist Treatment. Int J Mol Sci 2023; 24:13540. [PMID: 37686344 PMCID: PMC10488289 DOI: 10.3390/ijms241713540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Type II diabetes mellitus (T2DM) accounts for approximately 90% of all diabetes mellitus cases in the world. Glucagon-like peptide-1 receptor (GLP-1R) agonists have established an increased capability to target directly or indirectly six core defects associated with T2DM, while the underlying molecular mechanisms of these pharmacological effects are not fully known. This exploratory study was conducted to analyze the effect of treatment with GLP-1R agonists on the urinary peptidome of T2DM patients. Urine samples of thirty-two T2DM patients from the PROVALID study ("A Prospective Cohort Study in Patients with T2DM for Validation of Biomarkers") collected pre- and post-treatment with GLP-1R agonist drugs were analyzed by CE-MS. In total, 70 urinary peptides were significantly affected by GLP-1R agonist treatment, generated from 26 different proteins. The downregulation of MMP proteases, based on the concordant downregulation of urinary collagen peptides, was highlighted. Treatment also resulted in the downregulation of peptides from SERPINA1, APOC3, CD99, CPSF6, CRNN, SERPINA6, HBA2, MB, VGF, PIGR, and TTR, many of which were previously found to be associated with increased insulin resistance and inflammation. The findings indicate potential molecular mechanisms of GLP-1R agonists in the context of the management of T2DM and the prevention or delaying of the progression of its associated diseases.
Collapse
Affiliation(s)
- Sonnal Lohia
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany
| | - Emmanouil Mavrogeorgis
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany
| | - Susanne Eder
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria (G.M.)
| | - Stefanie Thöni
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria (G.M.)
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria (G.M.)
| | | | - Antonia Vlahou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
18
|
De Beer D, Mels CMC, Schutte AE, Delles C, Mary S, Mullen W, Latosinska A, Mischak H, Kruger R. Identifying a urinary peptidomics profile for hypertension in young adults: The African-PREDICT study: Urinary peptidomics and hypertension: Urinary peptidomics and hypertension. Proteomics 2023; 23:e2200444. [PMID: 36943111 DOI: 10.1002/pmic.202200444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/27/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Hypertension is one of the most important and complex risk factors for cardiovascular diseases (CVDs). By using urinary peptidomics analyses, we aimed to identify peptides associated with hypertension, building a framework for future research towards improved prediction and prevention of premature development of CVD. We included 78 hypertensive and 79 normotensive participants from the African-PREDICT study (aged 20-30 years), matched for sex (51% male) and ethnicity (49% black and 51% white). Urinary peptidomics data were acquired using capillary-electrophoresis-time-of-flight-mass-spectrometry. Hypertension-associated peptides were identified and combined into a support vector machine-based multidimensional classifier. When comparing the peptide data between the normotensive and hypertensive groups, 129 peptides were nominally differentially abundant (Wilcoxon p < 0.05). Nonetheless, only three peptides, all derived from collagen alpha-1(III), remained significantly different after rigorous adjustments for multiple comparisons. The 37 most significant peptides (all p ≤ 0.001) served as basis for the development of a classifier, with 20 peptides being combined into a unifying score, resulting in an AUC of 0.85 in the ROC analysis (p < 0.001), with 83% sensitivity at 80% specificity. Our study suggests potential value of urinary peptides in the classification of hypertension, which could enable earlier diagnosis and better understanding of the pathophysiology of hypertension and premature cardiovascular disease development.
Collapse
Affiliation(s)
- Dalene De Beer
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Catharina M C Mels
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
- School of Population Health, The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sheon Mary
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
19
|
Catanese L, Siwy J, Mischak H, Wendt R, Beige J, Rupprecht H. Recent Advances in Urinary Peptide and Proteomic Biomarkers in Chronic Kidney Disease: A Systematic Review. Int J Mol Sci 2023; 24:ijms24119156. [PMID: 37298105 DOI: 10.3390/ijms24119156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Biomarker development, improvement, and clinical implementation in the context of kidney disease have been a central focus of biomedical research for decades. To this point, only serum creatinine and urinary albumin excretion are well-accepted biomarkers in kidney disease. With their known blind spot in the early stages of kidney impairment and their diagnostic limitations, there is a need for better and more specific biomarkers. With the rise in large-scale analyses of the thousands of peptides in serum or urine samples using mass spectrometry techniques, hopes for biomarker development are high. Advances in proteomic research have led to the discovery of an increasing amount of potential proteomic biomarkers and the identification of candidate biomarkers for clinical implementation in the context of kidney disease management. In this review that strictly follows the PRISMA guidelines, we focus on urinary peptide and especially peptidomic biomarkers emerging from recent research and underline the role of those with the highest potential for clinical implementation. The Web of Science database (all databases) was searched on 17 October 2022, using the search terms "marker *" OR biomarker * AND "renal disease" OR "kidney disease" AND "proteome *" OR "peptid *" AND "urin *". English, full-text, original articles on humans published within the last 5 years were included, which had been cited at least five times per year. Studies based on animal models, renal transplant studies, metabolite studies, studies on miRNA, and studies on exosomal vesicles were excluded, focusing on urinary peptide biomarkers. The described search led to the identification of 3668 articles and the application of inclusion and exclusion criteria, as well as abstract and consecutive full-text analyses of three independent authors to reach a final number of 62 studies for this manuscript. The 62 manuscripts encompassed eight established single peptide biomarkers and several proteomic classifiers, including CKD273 and IgAN237. This review provides a summary of the recent evidence on single peptide urinary biomarkers in CKD, while emphasizing the increasing role of proteomic biomarker research with new research on established and new proteomic biomarkers. Lessons learned from the last 5 years in this review might encourage future studies, hopefully resulting in the routine clinical applicability of new biomarkers.
Collapse
Affiliation(s)
- Lorenzo Catanese
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95447 Bayreuth, Germany
- Kuratorium for Dialysis and Transplantation (KfH), 95445 Bayreuth, Germany
- Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany
| | | | - Ralph Wendt
- Department of Nephrology, St. Georg Hospital Leipzig, 04129 Leipzig, Germany
| | - Joachim Beige
- Department of Nephrology, St. Georg Hospital Leipzig, 04129 Leipzig, Germany
- Department of Internal Medicine II, Martin-Luther-University Halle/Wittenberg, 06108 Halle/Saale, Germany
- Kuratorium for Dialysis and Transplantation (KfH), 04129 Leipzig, Germany
| | - Harald Rupprecht
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95447 Bayreuth, Germany
- Kuratorium for Dialysis and Transplantation (KfH), 95445 Bayreuth, Germany
- Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
20
|
Christou E, Iliodromiti Z, Pouliakis A, Loukatou E, Varela P, Panagoulia A, Chasiakou A, Zisimopoulos S, Iacovidou N, Boutsikou T. Urinary NT-proBNP: A Useful Biomarker for the Diagnosis of Respiratory Distress in the Neonatal Population. Cureus 2023; 15:e39019. [PMID: 37323310 PMCID: PMC10266900 DOI: 10.7759/cureus.39019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE To determine the diagnostic accuracy of urinary NT-proBNP levels in the detection and classification of the severity of respiratory distress in neonates after birth. METHODS We compared the urinary NT- proBNP levels between the respiratory distress (RD) group and the control group on the 1st, 3rd, and 5th day of life (DOL). RESULTS The RD group (55 neonates) showed higher levels of NT-proBNP compared to the control group (63 neonates) on DOL1 (585.4 pg/ml vs 396.1 pg/ml (p=0.014)), DOL3 (805.1 pg/ml vs 271.9 pg/ml (p<0.001)) and DOL5 (409.7 pg/ml vs 94.4 pg/ml (p<0.001)). Especially, on DOL5, the area under the ROC curve was 0.884 and the NT-proBNP cut-off value (221.8 pg/ml) showed a sensitivity of 71% and specificity of 79%. The RD group was subclassified into neonates with mild (21 neonates), moderate (19 neonates), and severe (15 neonates) disease. NT-proBNP cut-off point of 668 pg/ml for DOL5 can safely differentiate neonates with severe disease from those with mild and moderate disease (combined subgroups) since the sensitivity was 80% and specificity was 77.5% for DOL5. CONCLUSION Urinary NT-proBNP levels are a useful biomarker in detecting clinical signs of respiratory distress in neonates that are born within the first week of life; they can also detect neonates that are vulnerable to severe forms of the disease.
Collapse
Affiliation(s)
- Evangelos Christou
- Department of Pediatrics, Panagiotis & Aglaia Kyriakou Children's Hospital, Athens, GRC
- Department of Neonatology, Aretaieion University Hospital, Athens, GRC
| | - Zoi Iliodromiti
- Department of Neonatology, Aretaieion University Hospital, Athens, GRC
| | - Abraham Pouliakis
- Epidemiology and Public Health, 2nd Department of Pathology, National and Kapodistrian University of Athens, Athens, GRC
| | - Eirini Loukatou
- Department of Pediatrics, Alexandra General Hospital, Athens, GRC
| | - Pinelopi Varela
- Department of Pediatrics, Alexandra General Hospital, Athens, GRC
| | - Adamantia Panagoulia
- Department of Biochemistry, Panagiotis & Aglaia Kyriakou Children's Hospital, Athens, GRC
| | - Anthia Chasiakou
- Department of Biopathology, Aretaieion University Hospital, Athens, GRC
| | - Spyridon Zisimopoulos
- Department of Pediatrics, Elena Venizelou General and Maternity Hospital, Athens, GRC
| | | | | |
Collapse
|
21
|
Chen D, McCool EN, Yang Z, Shen X, Lubeckyj RA, Xu T, Wang Q, Sun L. Recent advances (2019-2021) of capillary electrophoresis-mass spectrometry for multilevel proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:617-642. [PMID: 34128246 PMCID: PMC8671558 DOI: 10.1002/mas.21714] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 05/06/2023]
Abstract
Multilevel proteomics aims to delineate proteins at the peptide (bottom-up proteomics), proteoform (top-down proteomics), and protein complex (native proteomics) levels. Capillary electrophoresis-mass spectrometry (CE-MS) can achieve highly efficient separation and highly sensitive detection of complex mixtures of peptides, proteoforms, and even protein complexes because of its substantial technical progress. CE-MS has become a valuable alternative to the routinely used liquid chromatography-mass spectrometry for multilevel proteomics. This review summarizes the most recent (2019-2021) advances of CE-MS for multilevel proteomics regarding technological progress and biological applications. We also provide brief perspectives on CE-MS for multilevel proteomics at the end, highlighting some future directions and potential challenges.
Collapse
Affiliation(s)
| | | | | | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Rachele A. Lubeckyj
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
22
|
Biomarker bei ureteropelviner Stenose. Monatsschr Kinderheilkd 2022. [DOI: 10.1007/s00112-022-01644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Jiang J, Zhan L, Dai L, Yao X, Qin Y, Zhu Z, Zhang M, Tong W, Wang G. Evaluation of the reliability of MS1-based approach to profile naturally occurring peptides with clinical relevance in urine samples. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022:e9369. [PMID: 35906701 DOI: 10.1002/rcm.9369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/02/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE The profiling of natural urinary peptides is a valuable indicator of kidney condition. While front-end separation limits the speed of peptidomic profiling, MS1-based results suffer from limited peptide coverage and specificity. Clinical studies on chronic kidney disease require an effective strategy to balance the trade-off between identification depth and throughput. METHODS CKD273, a urinary proteome classifier associated with chronic kidney disease, in samples from diabetic nephropathy patients was profiled in parallel using capillary electrophoresis-mass spectrometry (CE-MS), liquid chromatography with mass spectrometry (LC-MS), and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Through cross-comparison of results from MS1 of unfractionated peptides and elution-time-resolved MS1 as well as MS/MS in LC- and CE-MS approaches, we evaluated the contribution of false-positive identification to MS1-based identification and quantitation, and analyzed the benefit of front-end separation in terms of accuracy and efficiency. RESULTS In LC- and CE-MS, although MS1 data resulted in higher number of identifications than MS/MS, elution-time-dependent analysis revealed extensive interference by non-CKD273 peptides, which would contribute up to 50% to quantitation if they are not separated from genuine CKD273 peptides. In the absence of separation, MS1 data resulted in lower numbers of identifications and abundance pattern that significantly deviated from those by liquid chromatography with tandem mass spectrometry (LC-MS/MS) or capillary electrophoresis with tandem mass spectrometry (CE-MS/MS). CE showed higher identification efficiency even when less sample was used or achieved faster separation. CONCLUSIONS To ensure the reliability of MS1-based urinary peptide profiling, front-end separation should not be omitted, and elution time should be used in addition to intact mass for identification. Including MS/MS in data acquisition does not compromise the speed or identification number, while benefiting data reliability by providing real-time sequence verification.
Collapse
Affiliation(s)
- Jialu Jiang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Shenzhen Bay Laboratory, Institute for Cell Analysis, Shenzhen, China
| | - Lingpeng Zhan
- Shenzhen Bay Laboratory, Institute for Cell Analysis, Shenzhen, China
| | - Liuyan Dai
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaopeng Yao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Shenzhen Bay Laboratory, Institute for Cell Analysis, Shenzhen, China
| | - Yao Qin
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhongqin Zhu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Shenzhen Bay Laboratory, Institute for Cell Analysis, Shenzhen, China
| | - Mei Zhang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Wenjun Tong
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Guanbo Wang
- Shenzhen Bay Laboratory, Institute for Cell Analysis, Shenzhen, China
- Biomedical Pioneering Innovation Centre, Peking University, Beijing, China
| |
Collapse
|
24
|
Abstract
Stroke remains a leading cause of death and disability, with limited therapeutic options and suboptimal tools for diagnosis and prognosis. High throughput technologies such as proteomics generate large volumes of experimental data at once, thus providing an advanced opportunity to improve the status quo by facilitating identification of novel therapeutic targets and molecular biomarkers. Proteomics studies in animals are largely designed to decipher molecular pathways and targets altered in brain tissue after stroke, whereas studies in human patients primarily focus on biomarker discovery in biofluids and, more recently, in thrombi and extracellular vesicles. Here, we offer a comprehensive review of stroke proteomics studies conducted in both animal and human specimen and present our view on limitations, challenges, and future perspectives in the field. In addition, as a unique resource for the scientific community, we provide extensive lists of all proteins identified in proteomic studies as altered by stroke and perform postanalysis of animal data to reveal stroke-related cellular processes and pathways.
Collapse
Affiliation(s)
- Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (K.H.)
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University School of Medicine, Durham, NC (W.Y.)
| |
Collapse
|
25
|
Albreht A, Hussain H, Jiménez B, Yuen AHY, Whiley L, Witt M, Lewis MR, Chekmeneva E. Structure Elucidation and Mitigation of Endogenous Interferences in LC-MS-Based Metabolic Profiling of Urine. Anal Chem 2022; 94:1760-1768. [PMID: 35026111 DOI: 10.1021/acs.analchem.1c04378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) is the main workhorse of metabolomics owing to its high degree of analytical sensitivity and specificity when measuring diverse chemistry in complex biological samples. LC-MS-based metabolic profiling of human urine, a biofluid of primary interest for clinical and biobank studies, is not widely considered to be compromised by the presence of endogenous interferences and is often accomplished using a simple "dilute-and-shoot" approach. Yet, it is our experience that broad obscuring signals are routinely observed in LC-MS metabolic profiles and represent interferences that lack consideration in the relevant metabolomics literature. In this work, we chromatographically isolated the interfering metabolites from human urine and unambiguously identified them via de novo structure elucidation as two separate proline-containing dipeptides: N,N,N-trimethyl-l-alanine-l-proline betaine (l,l-TMAP) and N,N-dimethyl-l-proline-l-proline betaine (l,l-DMPP), the latter reported here for the first time. Offline LC-MS/MS, magnetic resonance mass spectrometry (MRMS), and nuclear magnetic resonance (NMR) spectroscopy were essential components of this workflow for the full chemical and spectroscopic characterization of these metabolites and for establishing the coexistence of cis and trans isomers of both dipeptides in solution. Analysis of these definitive structures highlighted intramolecular ionic interactions as responsible for slow interconversion between these isomeric forms resulting in their unusually broad elution profiles. Proposed mitigation strategies, aimed at increasing the quality of LC-MS-based urine metabolomics data, include modification of column temperature and mobile-phase pH to reduce the chromatographic footprint of these dipeptides, thereby reducing their interfering effect on the underlying metabolic profiles. Alternatively, sample dilution and internal standardization methods may be employed to reduce or account for the observed effects of ionization suppression on the metabolic profile.
Collapse
Affiliation(s)
- Alen Albreht
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom.,Laboratory for Food Chemistry, Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Humma Hussain
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Beatriz Jiménez
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ada H Y Yuen
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
| | - Luke Whiley
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - Matthias Witt
- MRMS Solutions, Bruker Daltonics GmbH & Co. KG, MRMS Solutions, 28359 Bremen, Germany
| | - Matthew R Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
| | - Elena Chekmeneva
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
26
|
Mavrogeorgis E, Mischak H, Latosinska A, Vlahou A, Schanstra JP, Siwy J, Jankowski V, Beige J, Jankowski J. Collagen-Derived Peptides in CKD: A Link to Fibrosis. Toxins (Basel) 2021; 14:10. [PMID: 35050988 PMCID: PMC8781252 DOI: 10.3390/toxins14010010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023] Open
Abstract
Collagen is a major component of the extracellular matrix (ECM) and has an imminent role in fibrosis, in, among others, chronic kidney disease (CKD). Collagen alpha-1(I) (col1a1) is the most abundant collagen type and has previously been underlined for its contribution to the disease phenotype. Here, we examined 5000 urinary peptidomic datasets randomly selected from healthy participants or patients with CKD to identify urinary col1a1 fragments and study their abundance, position in the main protein, as well as their correlation with renal function. We identified 707 col1a1 peptides that differed in their amino acid sequence and/or post-translational modifications (hydroxyprolines). Well-correlated peptides with the same amino acid sequence, but a different number of hydroxyprolines, were combined into a final list of 503 peptides. These 503 col1a1 peptides covered 69% of the full col1a1 sequence. Sixty-three col1a1 peptides were significantly and highly positively associated (rho > +0.3) with the estimated glomerular filtration rate (eGFR), while only six peptides showed a significant and strong, negative association (rho < -0.3). A similar tendency was observed for col1a1 peptides associated with ageing, where the abundance of most col1a1 peptides decreased with increasing age. Collectively the results show a strong association between collagen peptides and loss of kidney function and suggest that fibrosis, potentially also of other organs, may be the main consequence of an attenuation of collagen degradation, and not increased synthesis.
Collapse
Affiliation(s)
- Emmanouil Mavrogeorgis
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (H.M.); (A.L.); (J.S.)
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (H.M.); (A.L.); (J.S.)
| | - Agnieszka Latosinska
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (H.M.); (A.L.); (J.S.)
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Joost P. Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France;
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (H.M.); (A.L.); (J.S.)
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Joachim Beige
- Division of Nephrology and KfH Renal Unit, Hospital St Georg, 04129 Leipzig, Germany;
- Department of Internal Medicine 2 (Nephrology, Rheumatology, Endocrinology), Martin-Luther-University Halle/Wittenberg, 06108 Halle/Saale, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany;
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, 6229 Maastricht, The Netherlands
| |
Collapse
|
27
|
Wendt R, Siwy J, He T, Latosinska A, Wiech T, Zipfel PF, Tserga A, Vlahou A, Rupprecht H, Catanese L, Mischak H, Beige J. Molecular Mapping of Urinary Complement Peptides in Kidney Diseases. Proteomes 2021; 9:proteomes9040049. [PMID: 34941814 PMCID: PMC8709096 DOI: 10.3390/proteomes9040049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Defective complement activation has been associated with various types of kidney disease. This led to the hypothesis that specific urine complement fragments may be associated with kidney disease etiologies, and disease progression may be reflected by changes in these complement fragments. We investigated the occurrence of complement fragments in urine, their association with kidney function and disease etiology in 16,027 subjects, using mass spectrometry based peptidomics data from the Human Urinary Proteome/Peptidome Database. Twenty-three different urinary peptides originating from complement proteins C3, C4 and factor B (CFB) could be identified. Most C3-derived peptides showed inverse association with estimated glomerular filtration rate (eGFR), while the majority of peptides derived from CFB demonstrated positive association with eGFR. Several peptides derived from the complement proteins C3, C4 and CFB were found significantly associated with specific kidney disease etiologies. These peptides may depict disease-specific complement activation and could serve as non-invasive biomarkers to support development of complement interventions through assessing complement activity for patients’ stratification and monitoring of drug impact. Further investigation of these complement peptides may provide additional insight into disease pathophysiology and could possibly guide therapeutic decisions, especially when targeting complement factors.
Collapse
Affiliation(s)
- Ralph Wendt
- Department of Nephrology and Kuratorium for Dialysis and Transplantation (KfH) Renal Unit, Hospital St. Georg, 04129 Leipzig, Germany;
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (J.S.); (T.H.); (A.L.); (H.M.)
| | - Tianlin He
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (J.S.); (T.H.); (A.L.); (H.M.)
| | - Agnieszka Latosinska
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (J.S.); (T.H.); (A.L.); (H.M.)
| | - Thorsten Wiech
- Nephropathology Section, Institute of Pathology, University Medical Center, 20246 Hamburg, Germany;
| | - Peter F. Zipfel
- Institute of Microbiology, Friedrich-Schiller-University, 07743 Jena, Germany;
- Department of Infection Biology, Leibniz Institute for Natural Product Researach and Infection Biology, 07745 Jena, Germany
| | - Aggeliki Tserga
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, 11527 Athens, Greece; (A.T.); (A.V.)
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, 11527 Athens, Greece; (A.T.); (A.V.)
| | - Harald Rupprecht
- Department of Nephrology, Klinikum Bayreuth GmbH, 95447 Bayreuth, Germany; (H.R.); (L.C.)
| | - Lorenzo Catanese
- Department of Nephrology, Klinikum Bayreuth GmbH, 95447 Bayreuth, Germany; (H.R.); (L.C.)
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (J.S.); (T.H.); (A.L.); (H.M.)
| | - Joachim Beige
- Department of Nephrology and Kuratorium for Dialysis and Transplantation (KfH) Renal Unit, Hospital St. Georg, 04129 Leipzig, Germany;
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-341-909-4896
| |
Collapse
|
28
|
Glassock RJ. Precision medicine for the treatment of glomerulonephritis: A bold goal but not yet a transformative achievement. Clin Kidney J 2021; 15:657-662. [PMID: 35371458 PMCID: PMC8967540 DOI: 10.1093/ckj/sfab270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
The revolution in our ability to recognize the alterations in fundamental biology brought about by disease has fostered a renewed interest in precision or personalized medicine (“the right treatment, or diagnostic test, for the right patient at the right time”). This nascent field has been led by oncology, immune-hematology and infectious disease, but nephrology is catching up, and quickly. Specific forms of glomerulonephritis thought to represent specific “diseases” have been “downgraded” to “patterns of injury”. New entities have emerged through application of sophisticated molecular technologies; often embraced by the term “multi-omics”. Kidney biopsies are now interpreted by next generation imaging and machine learning. Many opportunities are manifest that will translate these remarkable developments into novel safe and effective treatment regimens for specific pathogenic pathways evoking glomerulonephritis and its progression to kidney failure. A few successes emboldens a positive look to the future. A sustained and highly collaborative engagement with this new paradigm will be required for this field, full of hope and high expectations, to realize its goal of transforming glomerular therapeutics from “one size fits all (or many)” to a true individualized management principle.
Collapse
Affiliation(s)
- Richard J Glassock
- Emeritus Professor, Department of Medicine, Geffen School of Medicine. Los Angeles, CA, USA
| |
Collapse
|
29
|
Latosinska A, Bruno RM, Pappaccogli M, Bacca A, Beauloye C, Boutouyrie P, Khettab H, Staessen JA, Taddei S, Toubiana L, Vikkula M, Mischak H, Persu A. Increased Collagen Turnover Is a Feature of Fibromuscular Dysplasia and Associated With Hypertrophic Radial Remodeling: A Pilot, Urine Proteomic Study. Hypertension 2021; 79:93-103. [PMID: 34788057 DOI: 10.1161/hypertensionaha.121.18146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fibromuscular dysplasia (FMD), a nonatherosclerotic, noninflammatory disease of medium-sized arteries, is an underdiagnosed disease. We investigated the urinary proteome and developed a classifier for discrimination of FMD from healthy controls and other diseases. We further hypothesized that urinary proteomics biomarkers may be associated with alterations in medium-sized, but not large artery geometry and mechanics. The study included 33 patients with mostly multifocal, renal FMD who underwent in depth arterial exploration using ultra-high frequency ultrasound. The cohort was separated in a training set of 23 patients with FMD from Belgium and an independent test set of 10 patients with FMD from Italy. For each set, controls matched 2:1 were selected from the Human Urinary Proteome Database. The specificity of the classifier was tested in 700 additional controls from general population studies, patients with chronic kidney disease (n=66) and coronary artery disease (n=31). Three hundred thirty-five urinary peptides, mostly related to collagen turnover, were identified in the training cohort and combined into a classifier. When applying in the test cohort, the area under the receiver operating characteristic curve was 1.00, 100% specificity at 100% sensitivity. The classifier maintained a high specificity in additional controls (98.3%), patients with chronic kidney (90.9%) and coronary artery (96.8%) diseases. Furthermore, in patients with FMD, the proteomic score was positively associated with radial wall thickness and wall cross-sectional area. In conclusion, a proteomic score has the potential to discriminate between patients with FMD and controls. If confirmed in a wider and more diverse cohort, these findings may pave the way for a noninvasive diagnostic test of FMD.
Collapse
Affiliation(s)
| | - Rosa Maria Bruno
- INSERM U970 Team 7, Paris Cardiovascular Research Centre - PARCC and Université de Paris, France (R.M.B., P.B.).,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Pharmacologie, France (R.M.B., P.B., H.K.)
| | - Marco Pappaccogli
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Turin, Italy (M.P.).,Division of Cardiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium (M.P.,C.B., A.P.)
| | | | - Christophe Beauloye
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium (M.P.,C.B., A.P.).,Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium (C.B., A.P.)
| | - Pierre Boutouyrie
- INSERM U970 Team 7, Paris Cardiovascular Research Centre - PARCC and Université de Paris, France (R.M.B., P.B.).,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Pharmacologie, France (R.M.B., P.B., H.K.)
| | - Hakim Khettab
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Pharmacologie, France (R.M.B., P.B., H.K.)
| | - Jan A Staessen
- Biomedical Sciences group, Faculty of Medicine, University of Leuven, Belgium (J.A.S.).,NPO Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium (J.A.S.)
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.T.)
| | - Laurent Toubiana
- Sorbonne Université, Université Paris 13, Sorbonne Paris Cité, INSERM, UMR_S1142, LIMICS, IRSAN, France (L.T.)
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium (M.V.)
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany (A.L., H.M.).,Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.M.)
| | - Alexandre Persu
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium (M.P.,C.B., A.P.).,Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium (C.B., A.P.)
| |
Collapse
|
30
|
Catanese L, Siwy J, Mavrogeorgis E, Amann K, Mischak H, Beige J, Rupprecht H. A Novel Urinary Proteomics Classifier for Non-Invasive Evaluation of Interstitial Fibrosis and Tubular Atrophy in Chronic Kidney Disease. Proteomes 2021; 9:32. [PMID: 34287333 PMCID: PMC8293473 DOI: 10.3390/proteomes9030032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
Non-invasive urinary peptide biomarkers are able to detect and predict chronic kidney disease (CKD). Moreover, specific urinary peptides enable discrimination of different CKD etiologies and offer an interesting alternative to invasive kidney biopsy, which cannot always be performed. The aim of this study was to define a urinary peptide classifier using mass spectrometry technology to predict the degree of renal interstitial fibrosis and tubular atrophy (IFTA) in CKD patients. The urinary peptide profiles of 435 patients enrolled in this study were analyzed using capillary electrophoresis coupled with mass spectrometry (CE-MS). Urine samples were collected on the day of the diagnostic kidney biopsy. The proteomics data were divided into a training (n = 200) and a test (n = 235) cohort. The fibrosis group was defined as IFTA ≥ 15% and no fibrosis as IFTA < 10%. Statistical comparison of the mass spectrometry data enabled identification of 29 urinary peptides with differential occurrence in samples with and without fibrosis. Several collagen fragments and peptide fragments of fetuin-A and others were combined into a peptidomic classifier. The classifier separated fibrosis from non-fibrosis patients in an independent test set (n = 186) with area under the curve (AUC) of 0.84 (95% CI: 0.779 to 0.889). A significant correlation of IFTA and FPP_BH29 scores could be observed Rho = 0.5, p < 0.0001. We identified a peptidomic classifier for renal fibrosis containing 29 peptide fragments corresponding to 13 different proteins. Urinary proteomics analysis can serve as a non-invasive tool to evaluate the degree of renal fibrosis, in contrast to kidney biopsy, which allows repeated measurements during the disease course.
Collapse
Affiliation(s)
- Lorenzo Catanese
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95447 Bayreuth, Germany; (L.C.); (H.R.)
- Kuratorium for Dialysis and Transplantation (KfH) Bayreuth, 95445 Bayreuth, Germany
- Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (H.M.)
| | - Emmanouil Mavrogeorgis
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (H.M.)
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (H.M.)
| | - Joachim Beige
- Department of Infectious Diseases/Tropical Medicine, Nephrology/KfH Renal Unit and Rheumatology, St. Georg Hospital Leipzig, 04129 Leipzig, Germany;
- Kuratorium for Dialysis and Transplantation (KfH) Renal Unit, Hospital St. Georg, 04129 Leipzig, Germany
- Department of Internal Medicine II, Martin-Luther-University Halle/Wittenberg, 06108 Halle/Saale, Germany
| | - Harald Rupprecht
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95447 Bayreuth, Germany; (L.C.); (H.R.)
- Kuratorium for Dialysis and Transplantation (KfH) Bayreuth, 95445 Bayreuth, Germany
- Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
31
|
Siwy J, Mischak H, Beige J, Rossing P, Stegmayr B. Biomarkers for early detection of kidney disease: a call for pathophysiological relevance. Kidney Int 2021; 99:1240-1241. [PMID: 33892861 DOI: 10.1016/j.kint.2021.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Joachim Beige
- Division of Nephrology and KfH Renal Unit, Hospital St Georg, Leipzig, Germany; Department of Internal Medicine 2 (Nephrology, Rheumatology, Endocrinology), Martin-Luther University Halle, Wittenberg, Germany
| | - Peter Rossing
- Steno Diabetes Center, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bernd Stegmayr
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
32
|
He T, Mischak M, Clark AL, Campbell RT, Delles C, Díez J, Filippatos G, Mebazaa A, McMurray JJV, González A, Raad J, Stroggilos R, Bosselmann HS, Campbell A, Kerr SM, Jackson CE, Cannon JA, Schou M, Girerd N, Rossignol P, McConnachie A, Rossing K, Schanstra JP, Zannad F, Vlahou A, Mullen W, Jankowski V, Mischak H, Zhang Z, Staessen JA, Latosinska A. Urinary peptides in heart failure: a link to molecular pathophysiology. Eur J Heart Fail 2021; 23:1875-1887. [PMID: 33881206 PMCID: PMC9291452 DOI: 10.1002/ejhf.2195] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
Aims Heart failure (HF) is a major public health concern worldwide. The diversity of HF makes it challenging to decipher the underlying complex pathological processes using single biomarkers. We examined the association between urinary peptides and HF with reduced (HFrEF), mid‐range (HFmrEF) and preserved (HFpEF) ejection fraction, defined based on the European Society of Cardiology guidelines, and the links between these peptide biomarkers and molecular pathophysiology. Methods and results Analysable data from 5608 participants were available in the Human Urinary Proteome database. The urinary peptide profiles from participants diagnosed with HFrEF, HFmrEF, HFpEF and controls matched for sex, age, estimated glomerular filtration rate, systolic and diastolic blood pressure, diabetes and hypertension were compared applying the Mann–Whitney test, followed by correction for multiple testing. Unsupervised learning algorithms were applied to investigate groups of similar urinary profiles. A total of 577 urinary peptides significantly associated with HF were sequenced, 447 of which (77%) were collagen fragments. In silico analysis suggested that urinary biomarker abnormalities in HF principally reflect changes in collagen turnover and immune response, both associated with fibrosis. Unsupervised clustering separated study participants into two clusters, with 83% of non‐HF controls allocated to cluster 1, while 65% of patients with HF were allocated to cluster 2 (P < 0.0001). No separation based on HF subtype was detectable. Conclusions Heart failure, irrespective of ejection fraction subtype, was associated with differences in abundance of urinary peptides reflecting collagen turnover and inflammation. These peptides should be studied as tools in early detection, prognostication, and prediction of therapeutic response.
Collapse
Affiliation(s)
- Tianlin He
- Mosaiques Diagnostics GmbH, Hannover, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, Aachen, Germany
| | | | - Andrew L Clark
- Academic Cardiology Department, Hull York Medical School in the University of Hull, Kingston upon Hull, UK
| | - Ross T Campbell
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, IdiSNA and CIBERCV, Pamplona, Spain.,Departments of Nephrology and Cardiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gerasimos Filippatos
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon, Athens, Greece
| | - Alexandre Mebazaa
- Université de Paris, Unité Inserm MASCOT, Department of Anaesthesiology and Intensive Care, Saint Louis-Lariboisière - Fernand Widal University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.,F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - John J V McMurray
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, IdiSNA and CIBERCV, Pamplona, Spain
| | - Julia Raad
- Mosaiques Diagnostics GmbH, Hannover, Germany
| | - Rafael Stroggilos
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Helle S Bosselmann
- Department of Cardiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Shona M Kerr
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | | | - Morten Schou
- Herlev-Gentofte Hospital, Department of Cardiology, Herlev, Denmark
| | - Nicolas Girerd
- Université de Lorraine, Inserm, Centre d'Investigations Cliniques- Plurithématique 1433, and Inserm 1116 DCAC, CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Patrick Rossignol
- Université de Lorraine, Inserm, Centre d'Investigations Cliniques- Plurithématique 1433, and Inserm 1116 DCAC, CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Alex McConnachie
- Robertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Kasper Rossing
- Department of Cardiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale, U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
| | - Faiez Zannad
- Université de Lorraine, Inserm, Centre d'Investigations Cliniques- Plurithématique 1433, and Inserm 1116 DCAC, CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, Aachen, Germany
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Zhenyu Zhang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jan A Staessen
- Non-Profit Research Institution Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium.,Biomedical Sciences Group, Faculty of Medicine, University of Leuven, Leuven, Belgium
| | | |
Collapse
|
33
|
Jankowski J. Proteomic Biomarkers to Guide Stratification for Covid-19 Treatment: Exemplifying a Path Forward Toward Implementation? Proteomics 2020; 20:e2000229. [PMID: 33141520 DOI: 10.1002/pmic.202000229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 01/13/2023]
Abstract
Proteins and peptides serve as biomarkers in the context of multiple pathologies. The hypothesis that protein or peptide biomarkers may also be of value in the context of the Covid-19 pandemic appears self-evident. Proteome based biomarkers are not expected to display significant added value in the detection of viral infection but appear well suited to address a major unmet need: the prognosis of the course of disease, to guide appropriate, timely intervention. Based on similar approaches in the context of other diseases and using a CE-MS platform, urinary peptides are investigated for their value as biomarkers to assess disease progression after SARS-CoV-2 infection. The manuscript presented in this issue of Proteomics reports first results, indicating that urine peptides may be of substantial value in the assessment and prediction of severity of the Covid-19 disease course on an individual level. While the findings are not entirely surprising, the report does stand out from all others by a well-defined context-of-use, and, what is more, by presenting an already initiated validation study that may, if successful, result in immediate implementation of this proteomics-based diagnostic test. This approach should serve as positive example for the planning and execution of clinical proteomics studies.
Collapse
Affiliation(s)
- Joachim Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
- School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Maastricht, The Netherlands
| |
Collapse
|