1
|
König C, Ivanisenko NV, Hillert-Richter LK, Namjoshi D, Natu K, Espe J, Reinhold D, Kolchanov NA, Ivanisenko VA, Kähne T, Bose K, Lavrik IN. Targeting type I DED interactions at the DED filament serves as a sensitive switch for cell fate decisions. Cell Chem Biol 2024; 31:1969-1985.e6. [PMID: 39053461 DOI: 10.1016/j.chembiol.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Activation of procaspase-8 in the death effector domain (DED) filaments of the death-inducing signaling complex (DISC) is a key step in apoptosis. In this study, a rationally designed cell-penetrating peptide, DEDid, was engineered to mimic the h2b helical region of procaspase-8-DED2 containing a highly conservative FL motif. Furthermore, mutations were introduced into the DEDid binding site of the procaspase-8 type I interface. Additionally, our data suggest that DEDid targets other type I DED interactions such as those of FADD. Both approaches of blocking type I DED interactions inhibited CD95L-induced DISC assembly, caspase activation and apoptosis. We showed that inhibition of procaspase-8 type I interactions by mutations not only diminished procaspase-8 recruitment to the DISC but also destabilized the FADD core of DED filaments. Taken together, this study offers insights to develop strategies to target DED proteins, which may be considered in diseases associated with cell death and inflammation.
Collapse
Affiliation(s)
- Corinna König
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany
| | - Nikita V Ivanisenko
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany
| | - Laura K Hillert-Richter
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany
| | - Deepti Namjoshi
- Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Kalyani Natu
- Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, India
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical immunology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Nikolai A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; State Novosibirsk University, Novosibirsk, Russia
| | - Thilo Kähne
- Institute of Experimental and Internal Medicine (iEIM), Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, India
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
2
|
Gavade A, Nagraj AK, Patel R, Pais R, Dhanure P, Scheele J, Seiz W, Patil J. Understanding the Specific Implications of Amino Acids in the Antibody Development. Protein J 2024; 43:405-424. [PMID: 38724751 DOI: 10.1007/s10930-024-10201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 06/01/2024]
Abstract
As the demand for immunotherapy to treat and manage cancers, infectious diseases and other disorders grows, a comprehensive understanding of amino acids and their intricate role in antibody engineering has become a prime requirement. Naturally produced antibodies may not have the most suitable amino acids at the complementarity determining regions (CDR) and framework regions, for therapeutic purposes. Therefore, to enhance the binding affinity and therapeutic properties of an antibody, the specific impact of certain amino acids on the antibody's architecture must be thoroughly studied. In antibody engineering, it is crucial to identify the key amino acid residues that significantly contribute to improving antibody properties. Therapeutic antibodies with higher binding affinity and improved functionality can be achieved through modifications or substitutions with highly suitable amino acid residues. Here, we have indicated the frequency of amino acids and their association with the binding free energy in CDRs. The review also analyzes the experimental outcome of two studies that reveal the frequency of amino acids in CDRs and provides their significant correlation between the outcomes. Additionally, it discusses the various bond interactions within the antibody structure and antigen binding. A detailed understanding of these amino acid properties should assist in the analysis of antibody sequences and structures needed for designing and enhancing the overall performance of therapeutic antibodies.
Collapse
Affiliation(s)
- Akshata Gavade
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Anil Kumar Nagraj
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Riya Patel
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Roylan Pais
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Pratiksha Dhanure
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | | | | | - Jaspal Patil
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India.
| |
Collapse
|
3
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 PMCID: PMC10966358 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and BiotechnologyIndian Institute of TechnologyNew DelhiIndia
- Present address:
508/Block 3, Kirti Apartments, Mayur Vihar Phase 1 ExtensionDelhiIndia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
4
|
Kumari M, Khatoon N, Sharma R, Adusumilli S, Auerbach A, Kashyap HK, Nayak TK. Mechanism of hydrophobic gating in the acetylcholine receptor channel pore. J Gen Physiol 2024; 156:e202213189. [PMID: 38153395 PMCID: PMC10757554 DOI: 10.1085/jgp.202213189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
Neuromuscular acetylcholine receptors (AChRs) are hetero-pentameric, ligand-gated ion channels. The binding of the neurotransmitter acetylcholine (ACh) to two target sites promotes a global conformational change of the receptor that opens the channel and allows ion conduction through the channel pore. Here, by measuring free-energy changes from single-channel current recordings and using molecular dynamics simulations, we elucidate how a constricted hydrophobic region acts as a "gate" to regulate the channel opening in the pore of AChRs. Mutations of gate residues, including those implicated in congenital myasthenia syndrome, lower the permeation barrier of the channel substantially and increase the unliganded gating equilibrium constant (constitutive channel openings). Correlations between hydrophobicity and the observed free-energy changes, supported by calculations of water densities in the wild-type versus mutant channel pores, provide evidence for hydrophobic wetting-dewetting transition at the gate. The analysis of a coupled interaction network provides insight into the molecular mechanism of closed- versus open-state conformational changes at the gate. Studies of the transition state by "phi"(φ)-value analysis indicate that agonist binding serves to stabilize both the transition and the open state. Intersubunit interaction energy measurements and molecular dynamics simulations suggest that channel opening involves tilting of the pore-lining M2 helices, asymmetric outward rotation of amino acid side chains, and wetting transition of the gate region that lowers the barrier to ion permeation and stabilizes the channel open conformation. Our work provides new insight into the hydrophobic gate opening and shows why the gate mutations result in constitutive AChR channel activity.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Nadira Khatoon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Rachita Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Sushanth Adusumilli
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Anthony Auerbach
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Tapan K. Nayak
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
5
|
Wessén J, Das S, Pal T, Chan HS. Analytical Formulation and Field-Theoretic Simulation of Sequence-Specific Phase Separation of Protein-Like Heteropolymers with Short- and Long-Spatial-Range Interactions. J Phys Chem B 2022; 126:9222-9245. [PMID: 36343363 DOI: 10.1021/acs.jpcb.2c06181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A theory for sequence-dependent liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) in the study of biomolecular condensates is formulated by extending the random phase approximation (RPA) and field-theoretic simulation (FTS) of heteropolymers with spatially long-range Coulomb interactions to include the fundamental effects of short-range, hydrophobic-like interactions between amino acid residues. To this end, short-range effects are modeled by Yukawa interactions between multiple nonelectrostatic charges derived from an eigenvalue decomposition of pairwise residue-residue contact energies. Chain excluded volume is afforded by incompressibility constraints. A mean-field approximation leads to an effective Flory-Huggins χ parameter, which, in conjunction with RPA, accounts for the contact-interaction effects of amino acid composition and the sequence-pattern effects of long-range electrostatics in IDP LLPS, whereas FTS based on the formulation provides full sequence dependence for both short- and long-range interactions. This general approach is illustrated here by applications to variants of a natural IDP in the context of several different amino-acid interaction schemes as well as a set of different model hydrophobic-polar sequences sharing the same composition. Effectiveness of the methodology is verified by coarse-grained explicit-chain molecular dynamics simulations.
Collapse
Affiliation(s)
- Jonas Wessén
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tanmoy Pal
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
6
|
Engelberg Y, Ragonis-Bachar P, Landau M. Rare by Natural Selection: Disulfide-Bonded Supramolecular Antimicrobial Peptides. Biomacromolecules 2022; 23:926-936. [DOI: 10.1021/acs.biomac.1c01353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yizhaq Engelberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Peleg Ragonis-Bachar
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- European Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany
| |
Collapse
|
7
|
Moroz LL, Nikitin MA, Poličar PG, Kohn AB, Romanova DY. Evolution of glutamatergic signaling and synapses. Neuropharmacology 2021; 199:108740. [PMID: 34343611 PMCID: PMC9233959 DOI: 10.1016/j.neuropharm.2021.108740] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Glutamate (Glu) is the primary excitatory transmitter in the mammalian brain. But, we know little about the evolutionary history of this adaptation, including the selection of l-glutamate as a signaling molecule in the first place. Here, we used comparative metabolomics and genomic data to reconstruct the genealogy of glutamatergic signaling. The origin of Glu-mediated communications might be traced to primordial nitrogen and carbon metabolic pathways. The versatile chemistry of L-Glu placed this molecule at the crossroad of cellular biochemistry as one of the most abundant metabolites. From there, innovations multiplied. Many stress factors or injuries could increase extracellular glutamate concentration, which led to the development of modular molecular systems for its rapid sensing in bacteria and archaea. More than 20 evolutionarily distinct families of ionotropic glutamate receptors (iGluRs) have been identified in eukaryotes. The domain compositions of iGluRs correlate with the origins of multicellularity in eukaryotes. Although L-Glu was recruited as a neuro-muscular transmitter in the early-branching metazoans, it was predominantly a non-neuronal messenger, with a possibility that glutamatergic synapses evolved more than once. Furthermore, the molecular secretory complexity of glutamatergic synapses in invertebrates (e.g., Aplysia) can exceed their vertebrate counterparts. Comparative genomics also revealed 15+ subfamilies of iGluRs across Metazoa. However, most of this ancestral diversity had been lost in the vertebrate lineage, preserving AMPA, Kainate, Delta, and NMDA receptors. The widespread expansion of glutamate synapses in the cortical areas might be associated with the enhanced metabolic demands of the complex brain and compartmentalization of Glu signaling within modular neuronal ensembles.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Pavlin G Poličar
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Faculty of Computer and Information Science, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Andrea B Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA
| | - Daria Y Romanova
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia.
| |
Collapse
|
8
|
N-methylacetamide is a solvent better than water for amino acid side chains: A rationalization grounded in the solvent-excluded volume effect. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Das S, Lin YH, Vernon RM, Forman-Kay JD, Chan HS. Comparative roles of charge, π, and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins. Proc Natl Acad Sci U S A 2020; 117:28795-28805. [PMID: 33139563 PMCID: PMC7682375 DOI: 10.1073/pnas.2008122117] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endeavoring toward a transferable, predictive coarse-grained explicit-chain model for biomolecular condensates underlain by liquid-liquid phase separation (LLPS) of proteins, we conducted multiple-chain simulations of the N-terminal intrinsically disordered region (IDR) of DEAD-box helicase Ddx4, as a test case, to assess roles of electrostatic, hydrophobic, cation-π, and aromatic interactions in amino acid sequence-dependent LLPS. We evaluated three different residue-residue interaction schemes with a shared electrostatic potential. Neither a common hydrophobicity scheme nor one augmented with arginine/lysine-aromatic cation-π interactions consistently accounted for available experimental LLPS data on the wild-type, a charge-scrambled, a phenylalanine-to-alanine (FtoA), and an arginine-to-lysine (RtoK) mutant of Ddx4 IDR. In contrast, interactions based on contact statistics among folded globular protein structures reproduce the overall experimental trend, including that the RtoK mutant has a much diminished LLPS propensity. Consistency between simulation and experiment was also found for RtoK mutants of P-granule protein LAF-1, underscoring that, to a degree, important LLPS-driving π-related interactions are embodied in classical statistical potentials. Further elucidation is necessary, however, especially of phenylalanine's role in condensate assembly because experiments on FtoA and tyrosine-to-phenylalanine mutants suggest that LLPS-driving phenylalanine interactions are significantly weaker than posited by common statistical potentials. Protein-protein electrostatic interactions are modulated by relative permittivity, which in general depends on aqueous protein concentration. Analytical theory suggests that this dependence entails enhanced interprotein interactions in the condensed phase but more favorable protein-solvent interactions in the dilute phase. The opposing trends lead to only a modest overall impact on LLPS.
Collapse
Affiliation(s)
- Suman Das
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Robert M Vernon
- Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie D Forman-Kay
- Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| |
Collapse
|
10
|
Graziano G. WITHDRAWN: Solvent-excluded volume effect explains why N-methylacetamide is a solvent better than water for amino acid side chains. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Markgren J, Hedenqvist M, Rasheed F, Skepö M, Johansson E. Glutenin and Gliadin, a Piece in the Puzzle of their Structural Properties in the Cell Described through Monte Carlo Simulations. Biomolecules 2020; 10:E1095. [PMID: 32717949 PMCID: PMC7465137 DOI: 10.3390/biom10081095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Gluten protein crosslinking is a predetermined process where specific intra- and intermolecular disulfide bonds differ depending on the protein and cysteine motif. In this article, all-atom Monte Carlo simulations were used to understand the formation of disulfide bonds in gliadins and low molecular weight glutenin subunits (LMW-GS). The two intrinsically disordered proteins appeared to contain mostly turns and loops and showed "self-avoiding walk" behavior in water. Cysteine residues involved in intramolecular disulfide bonds were located next to hydrophobic peptide sections in the primary sequence. Hydrophobicity of neighboring peptide sections, synthesis chronology, and amino acid chain flexibility were identified as important factors in securing the specificity of intramolecular disulfide bonds formed directly after synthesis. The two LMW-GS cysteine residues that form intermolecular disulfide bonds were positioned next to peptide sections of lower hydrophobicity, and these cysteine residues are more exposed to the cytosolic conditions, which influence the crosslinking behavior. In addition, coarse-grained Monte Carlo simulations revealed that the protein folding is independent of ionic strength. The potential molecular behavior associated with disulfide bonds, as reported here, increases the biological understanding of seed storage protein function and provides opportunities to tailor their functional properties for different applications.
Collapse
Affiliation(s)
- Joel Markgren
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, SE-230 53 Alnarp, Sweden;
| | - Mikael Hedenqvist
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (M.H.); (F.R.)
| | - Faiza Rasheed
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (M.H.); (F.R.)
| | - Marie Skepö
- Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden;
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, SE-230 53 Alnarp, Sweden;
| |
Collapse
|
12
|
Pandurangan K, Roy B, Rajasekhar K, Suseela YV, Nagendra P, Chaturvedi A, Satwik UR, Murugan NA, Ramamurty U, Govindaraju T. Molecular Architectonics of Cyclic Dipeptide Amphiphiles and Their Application in Drug Delivery. ACS APPLIED BIO MATERIALS 2020; 3:3413-3422. [DOI: 10.1021/acsabm.0c00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Komala Pandurangan
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Bappaditya Roy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Kolla Rajasekhar
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Yelisetty Venkata Suseela
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Prachitha Nagendra
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Abhishek Chaturvedi
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Upadrasta R. Satwik
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - N. Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Upadrasta Ramamurty
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
13
|
Wong KC, Yan S, Lin Q, Li X, Peng C. Deleterious Non-Synonymous Single Nucleotide Polymorphism Predictions on Human Transcription Factors. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:327-333. [PMID: 30475727 DOI: 10.1109/tcbb.2018.2882548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transcription factors (TFs) are the major components of human gene regulation. In particular, they bind onto specific DNA sequences and regulate neighborhood genes in different tissues at different developmental stages. Non-synonymous single nucleotide polymorphisms on its protein-coding sequences could result in undesired consequences in human. Therefore, it is necessary to develop methods for predicting any abnormality among those non-synonymous single nucleotide polymorphisms. To address it, we have developed and compared different strategies to predict deleterious non-synonymous single nucleotide polymorphisms (also known as missense mutations) on the protein-coding sequences of human TFs. Taking advantage of evolutionary conservation signals, we have developed and compared different classifiers with different feature sets as computed from different evolutionarily related sequence collections. The results indicate that the classic ensemble algorithm, Adaboost with decision stumps, with orthologous sequence collection, has performed the best (namely, TFmedic). We have further compared TFmedic with other state-of-the-arts methods (i.e., PolyPhen-2 and SIFT) on PolyPhen-2's own datasets, demonstrating that TFmedic can outperform the others. As applications, we have further applied TFmedic to all possible missense mutations on all human transcription factors; the proteome-wide results reveal interesting insights, consistent with the existing physiochemical knowledge. A case study with the actual 3D structure is conducted, revealing how TFmedic can be contributed to protein-DNA binding complex studies.
Collapse
|
14
|
Weinstein JY, Elazar A, Fleishman SJ. A lipophilicity-based energy function for membrane-protein modelling and design. PLoS Comput Biol 2019; 15:e1007318. [PMID: 31461441 PMCID: PMC6736313 DOI: 10.1371/journal.pcbi.1007318] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/10/2019] [Accepted: 08/01/2019] [Indexed: 01/14/2023] Open
Abstract
Membrane-protein design is an exciting and increasingly successful research area which has led to landmarks including the design of stable and accurate membrane-integral proteins based on coiled-coil motifs. Design of topologically more complex proteins, such as most receptors, channels, and transporters, however, demands an energy function that balances contributions from intra-protein contacts and protein-membrane interactions. Recent advances in water-soluble all-atom energy functions have increased the accuracy in structure-prediction benchmarks. The plasma membrane, however, imposes different physical constraints on protein solvation. To understand these constraints, we recently developed a high-throughput experimental screen, called dsTβL, and inferred apparent insertion energies for each amino acid at dozens of positions across the bacterial plasma membrane. Here, we express these profiles as lipophilicity energy terms in Rosetta and demonstrate that the new energy function outperforms previous ones in modelling and design benchmarks. Rosetta ab initio simulations starting from an extended chain recapitulate two-thirds of the experimentally determined structures of membrane-spanning homo-oligomers with <2.5Å root-mean-square deviation within the top-predicted five models (available online: http://tmhop.weizmann.ac.il). Furthermore, in two sequence-design benchmarks, the energy function improves discrimination of stabilizing point mutations and recapitulates natural membrane-protein sequences of known structure, thereby recommending this new energy function for membrane-protein modelling and design.
Collapse
Affiliation(s)
| | - Assaf Elazar
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarel Jacob Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
15
|
Patil MD, Rathod VP, Bihade UR, Banerjee UC. Purification and characterization of arginine deiminase from Pseudomonas putida: Structural insights of the differential affinities of l-arginine analogues. J Biosci Bioeng 2019; 127:129-137. [DOI: 10.1016/j.jbiosc.2018.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/20/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
|
16
|
Setner B, Szewczuk Z. New ionization tags based on the structure of the 5-azoniaspiro[4.4]nonyl tag for a sensitive peptide sequencing by mass spectrometry. Anal Bioanal Chem 2017; 410:1311-1321. [PMID: 29214541 PMCID: PMC5775984 DOI: 10.1007/s00216-017-0771-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
Quaternary ammonium salts (QAS), both linear and bicyclic, are often utilized to improve the mass spectrometry (MS) analysis of peptides by fixing a permanent positive charge on the analyzed molecule. However, during collision-induced dissociation (CID) experiments, QAS undergo unwanted side reactions-Hofmann elimination as well as a tertiary amine loss- rendering the data interpretation complicated. In this work, we present 2-thia- and 2-oxa-5-azoniaspiro[4.4]nonyl groups as heterocyclic derivatives of the highly stable ionization group, 5-azoniaspiro[4.4]nonyl, for a sensitive peptide analysis by MS. Due to the permanent positive charge, labeled peptides are characterized by enhanced ionization efficiency during electrospray mass spectrometry (ESI-MS) conditions. Moreover, interpretation of the CID fragmentation of labeled peptides is facilitated since a series of generated fragmentation ions enable a complete sequence coverage. Introduction of a heteroatom into the 5-azoniaspiro[4.4]nonyl scaffold allows for liberation of a stable reporter ion which could be used in selected reaction monitoring (SRM)-targeted quantification experiments. Additionally, we synthesized a deuterated analog of the tag for LC-SRM-targeted quantitative analysis. The obtained results indicate the general usefulness of the proposed heterocyclic quaternary ammonium ionization tag for sequencing and quantification of peptides. Graphical abstract New reagents based on the structure of the 5-azoniaspiro[4.4]nonyl tag for peptide analysis by tandem mass spectrometry.
Collapse
Affiliation(s)
- Bartosz Setner
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383, Wrocław, Poland.
| | - Zbigniew Szewczuk
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383, Wrocław, Poland
| |
Collapse
|
17
|
Mason TO, Michaels TCT, Levin A, Dobson CM, Gazit E, Knowles TPJ, Buell AK. Thermodynamics of Polypeptide Supramolecular Assembly in the Short-Chain Limit. J Am Chem Soc 2017; 139:16134-16142. [DOI: 10.1021/jacs.7b00229] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas O. Mason
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Thomas C. T. Michaels
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Aviad Levin
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | | | - Ehud Gazit
- Department for Molecular Microbiology and Biotechnology, University of Tel Aviv, Tel Aviv 6997801, Israel
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Alexander K. Buell
- Institute of Physical Biology, University of Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
18
|
Bührmann M, Wiedemann BM, Müller MP, Hardick J, Ecke M, Rauh D. Structure-based design, synthesis and crystallization of 2-arylquinazolines as lipid pocket ligands of p38α MAPK. PLoS One 2017; 12:e0184627. [PMID: 28892510 PMCID: PMC5593189 DOI: 10.1371/journal.pone.0184627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/28/2017] [Indexed: 12/27/2022] Open
Abstract
In protein kinase research, identifying and addressing small molecule binding sites other than the highly conserved ATP-pocket are of intense interest because this line of investigation extends our understanding of kinase function beyond the catalytic phosphotransfer. Such alternative binding sites may be involved in altering the activation state through subtle conformational changes, control cellular enzyme localization, or in mediating and disrupting protein-protein interactions. Small organic molecules that target these less conserved regions might serve as tools for chemical biology research and to probe alternative strategies in targeting protein kinases in disease settings. Here, we present the structure-based design and synthesis of a focused library of 2-arylquinazoline derivatives to target the lipophilic C-terminal binding pocket in p38α MAPK, for which a clear biological function has yet to be identified. The interactions of the ligands with p38α MAPK was analyzed by SPR measurements and validated by protein X-ray crystallography.
Collapse
Affiliation(s)
- Mike Bührmann
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Bianca M. Wiedemann
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Matthias P. Müller
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Julia Hardick
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Maria Ecke
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- * E-mail:
| |
Collapse
|
19
|
Kittelmann J, Lang KM, Ottens M, Hubbuch J. An orientation sensitive approach in biomolecule interaction quantitative structure–activity relationship modeling and its application in ion-exchange chromatography. J Chromatogr A 2017; 1482:48-56. [DOI: 10.1016/j.chroma.2016.12.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/11/2016] [Accepted: 12/15/2016] [Indexed: 11/16/2022]
|
20
|
Merlino A, Pontillo N, Graziano G. A driving force for polypeptide and protein collapse. Phys Chem Chem Phys 2017; 19:751-756. [DOI: 10.1039/c6cp07397b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polypeptide collapse is driven by the solvent-excluded volume decrease, the presence of nonpolar side chains is not so important.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Scienze Chimiche
- Università degli Studi di Napoli Federico II
- Complesso Universitario di Monte Sant'Angelo
- 80126 Napoli
- Italy
| | - Nicola Pontillo
- Dipartimento di Scienze Chimiche
- Università degli Studi di Napoli Federico II
- Complesso Universitario di Monte Sant'Angelo
- 80126 Napoli
- Italy
| | - Giuseppe Graziano
- Dipartimento di Scienze e Tecnologie
- Università del Sannio
- 82100 Benevento
- Italy
| |
Collapse
|
21
|
Guo Z, Li B, Cheng LT, Zhou S, McCammon JA, Che J. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach. J Chem Theory Comput 2016; 11:753-65. [PMID: 25941465 PMCID: PMC4410907 DOI: 10.1021/ct500867u] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Indexed: 12/25/2022]
Abstract
![]()
Protein–ligand
binding is a key biological process at the
molecular level. The identification and characterization of small-molecule
binding sites on therapeutically relevant proteins have tremendous
implications for target evaluation and rational drug design. In this
work, we used the recently developed level-set variational implicit-solvent
model (VISM) with the Coulomb field approximation (CFA) to locate
and characterize potential protein–small-molecule binding sites.
We applied our method to a data set of 515 protein–ligand complexes
and found that 96.9% of the cocrystallized ligands bind to the VISM-CFA-identified
pockets and that 71.8% of the identified pockets are occupied by cocrystallized
ligands. For 228 tight-binding protein–ligand complexes (i.e,
complexes with experimental pKd values
larger than 6), 99.1% of the cocrystallized ligands are in the VISM-CFA-identified
pockets. In addition, it was found that the ligand binding orientations
are consistent with the hydrophilic and hydrophobic descriptions provided
by VISM. Quantitative characterization of binding pockets with topological
and physicochemical parameters was used to assess the “ligandability”
of the pockets. The results illustrate the key interactions between
ligands and receptors and can be very informative for rational drug
design.
Collapse
Affiliation(s)
- Zuojun Guo
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | | | | | | | | | | |
Collapse
|
22
|
Elazar A, Weinstein J, Biran I, Fridman Y, Bibi E, Fleishman SJ. Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane. eLife 2016; 5:e12125. [PMID: 26824389 PMCID: PMC4786438 DOI: 10.7554/elife.12125] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.
Collapse
Affiliation(s)
- Assaf Elazar
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Weinstein
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Biran
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yearit Fridman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Bibi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
23
|
An Intriguing Correlation Based on the Superimposition of Residue Pairs with Inhibitors that Target Protein-Protein Interfaces. Sci Rep 2016; 6:18543. [PMID: 26730437 PMCID: PMC4698585 DOI: 10.1038/srep18543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022] Open
Abstract
Druggable sites on protein-protein interfaces are difficult to predict. To survey inhibitor-binding sites onto which residues are superimposed at protein-protein interfaces, we analyzed publicly available information for 39 inhibitors that target the protein-protein interfaces of 8 drug targets. By focusing on the differences between residues that were superimposed with inhibitors and non-superimposed residues, we observed clear differences in the distances and changes in the solvent-accessible surface areas (∆SASA). Based on the observation that two or more residues were superimposed onto inhibitors in 37 (95%) of 39 protein-inhibitor complexes, we focused on the two-residue relationships. Application of a cross-validation procedure confirmed a linear negative correlation between the absolute value of the dihedral angle and the sum of the ∆SASAs of the residues. Finally, we applied the regression equation of this correlation to four inhibitors that bind to new sites not bound by the 39 inhibitors as well as additional inhibitors of different targets. Our results shed light on the two-residue correlation between the absolute value of the dihedral angle and the sum of the ∆SASA, which may be a useful relationship for identifying the key two-residues as potential targets of protein-protein interfaces.
Collapse
|
24
|
Melino S, Bellomaria A, Nepravishta R, Paci M, Melino G. p63 threonine phosphorylation signals the interaction with the WW domain of the E3 ligase Itch. Cell Cycle 2015; 13:3207-17. [PMID: 25485500 DOI: 10.4161/15384101.2014.951285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Both in epithelial development as well as in epithelial cancers, the p53 family member p63 plays a crucial role acting as a master transcriptional regulator. P63 steady state protein levels are regulated by the E3 ubiquitin ligase Itch, via a physical interaction between the PPxY consensus sequence (PY motif) of p63 and one of the 4 WW domains of Itch; this substrate recognition process leads to protein-ubiquitylation and p63 proteasomal degradation. The interaction of the WW domains, a highly compact protein-protein binding module, with the short proline-rich sequences is therefore a crucial regulatory event that may offer innovative potential therapeutic opportunity. Previous molecular studies on the Itch-p63 recognition have been performed in vitro using the Itch-WW2 domain and the peptide interacting fragment of p63 (pep63), which includes the PY motif. Itch-WW2-pep63 interaction is also stabilized in vitro by the conformational constriction of the S-S cyclization in the p63 peptide. The PY motif of p63, as also for other proteins, is characterized by the nearby presence of a (T/S)P motif, which is a potential recognition site of the WW domain of the IV group present in the prolyl-isomerase Pin1. In this study, we demonstrate, by in silico and spectroscopical studies using both the linear pep63 and its cyclic form, that the threonine phosphorylation of the (T/S)PPPxY motif may represent a crucial regulatory event of the Itch-mediated p63 ubiquitylation, increasing the Itch-WW domains-p63 recognition event and stabilizing in vivo the Itch-WW-p63 complex. Moreover, our studies confirm that the subsequently trans/cis proline isomerization of (T/S)P motif by the Pin1 prolyl-isomerase, could modulate the E3-ligase interaction, and that the (T/S)pPtransPPxY motif represent the best conformer for the ItchWW-(T/S)PPPxY motif recognition.
Collapse
Key Words
- CXCR4, chemokine receptor
- E3 ubiquitin ligases
- HECT, Homologous E6-AP Carboxyl Terminus
- IPTG, isopropyl-β-D-thiogalactoside
- Itch
- Pin1
- Ppep63, phosphorylated pep63
- RHS, Rapp-Hodgkin syndrome
- RP-HPLC, reverse phase high performance chromatography
- TFE, 2, 2, 2-trifluoroethanol
- TNF, tumor necrosis factor
- TRAF6, TNF receptor-associated factor 6
- cPpep63, cyclic phosphorylated pep63
- p53 family
- p63
- pep63, p63(534–551) peptide
- proline isomerization
- ubiquitynation
Collapse
Affiliation(s)
- Sonia Melino
- a Dipartimento di Scienze e Tecnologie Chimiche ; University of Rome "Tor Vergata" ; Rome , Italy
| | | | | | | | | |
Collapse
|
25
|
Chen T, Chan HS. Native contact density and nonnative hydrophobic effects in the folding of bacterial immunity proteins. PLoS Comput Biol 2015; 11:e1004260. [PMID: 26016652 PMCID: PMC4446218 DOI: 10.1371/journal.pcbi.1004260] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/29/2015] [Indexed: 11/18/2022] Open
Abstract
The bacterial colicin-immunity proteins Im7 and Im9 fold by different mechanisms. Experimentally, at pH 7.0 and 10°C, Im7 folds in a three-state manner via an intermediate but Im9 folding is two-state-like. Accordingly, Im7 exhibits a chevron rollover, whereas the chevron arm for Im9 folding is linear. Here we address the biophysical basis of their different behaviors by using native-centric models with and without additional transferrable, sequence-dependent energies. The Im7 chevron rollover is not captured by either a pure native-centric model or a model augmented by nonnative hydrophobic interactions with a uniform strength irrespective of residue type. By contrast, a more realistic nonnative interaction scheme that accounts for the difference in hydrophobicity among residues leads simultaneously to a chevron rollover for Im7 and an essentially linear folding chevron arm for Im9. Hydrophobic residues identified by published experiments to be involved in nonnative interactions during Im7 folding are found to participate in the strongest nonnative contacts in this model. Thus our observations support the experimental perspective that the Im7 folding intermediate is largely underpinned by nonnative interactions involving large hydrophobics. Our simulation suggests further that nonnative effects in Im7 are facilitated by a lower local native contact density relative to that of Im9. In a one-dimensional diffusion picture of Im7 folding with a coordinate- and stability-dependent diffusion coefficient, a significant chevron rollover is consistent with a diffusion coefficient that depends strongly on native stability at the conformational position of the folding intermediate. In order to fold correctly, a globular protein must avoid being trapped in wrong, i.e., nonnative conformations. Thus a biophysical account of how attractive nonnative interactions are bypassed by some amino acid sequences but not others is key to deciphering protein structure and function. We examine two closely related bacterial immunity proteins, Im7 and Im9, that are experimentally known to fold very differently: Whereas Im9 folds directly, Im7 folds through a mispacked conformational intermediate. A simple model we developed accounts for their intriguingly different folding kinetics in terms of a balance between the density of native-promoting contacts and the hydrophobicity of local amino acid sequences. This emergent principle is extensible to other biomolecular recognition processes.
Collapse
Affiliation(s)
- Tao Chen
- Departments of Biochemistry, of Molecular Genetics, and of Physics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hue Sun Chan
- Departments of Biochemistry, of Molecular Genetics, and of Physics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- * E-mail:
| |
Collapse
|
26
|
Uversky VN. The intrinsic disorder alphabet. III. Dual personality of serine. INTRINSICALLY DISORDERED PROTEINS 2015; 3:e1027032. [PMID: 28232888 DOI: 10.1080/21690707.2015.1027032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/16/2015] [Accepted: 03/02/2015] [Indexed: 12/23/2022]
Abstract
Proteins are natural polypeptides consisting of 20 major amino acid residues, content and order of which in a given amino acid sequence defines the ability of a related protein to fold into unique functional state or to stay intrinsically disordered. Amino acid sequences code for both foldable (ordered) proteins/domains and for intrinsically disordered proteins (IDPs) and IDP regions (IDPRs), but these sequence codes are dramatically different. This difference starts with a very general property of the corresponding amino acid sequences, namely, their compositions. IDPs/IDPRs are enriched in specific disorder-promoting residues, whereas amino acid sequences of ordered proteins/domains typically contain more order-promoting residues. Therefore, the relative abundances of various amino acids in ordered and disordered proteins can be used to scale amino acids according to their disorder promoting potentials. This review continues a series of publications on the roles of different amino acids in defining the phenomenon of protein intrinsic disorder and represents serine, which is the third most disorder-promoting residue. Similar to previous publications, this review represents some physico-chemical properties of serine and the roles of this residue in structures and functions of ordered proteins, describes major posttranslational modifications tailored to serine, and finally gives an overview of roles of serine in structure and functions of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute; Morsani College of Medicine, University of South Florida; Tampa, FL USA; Biology Department; Faculty of Science, King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia; Institute for Biological Instrumentation, Russian Academy of Sciences; Pushchino, Moscow Region, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins; Institute of Cytology, Russian Academy of Sciences; St. Petersburg, Russia
| |
Collapse
|
27
|
Nicolau Jr. DV, Paszek E, Fulga F, Nicolau DV. Mapping hydrophobicity on the protein molecular surface at atom-level resolution. PLoS One 2014; 9:e114042. [PMID: 25462574 PMCID: PMC4252106 DOI: 10.1371/journal.pone.0114042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/03/2014] [Indexed: 11/21/2022] Open
Abstract
A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced "leopard skin"-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions, can capture processes that are otherwise obscured to the amino acid-based formalism.
Collapse
Affiliation(s)
- Dan V. Nicolau Jr.
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Ewa Paszek
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Florin Fulga
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Dan V. Nicolau
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool, United Kingdom
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Tvrdonova V, Rokic MB, Stojilkovic SS, Zemkova H. Identification of functionally important residues of the rat P2X4 receptor by alanine scanning mutagenesis of the dorsal fin and left flipper domains. PLoS One 2014; 9:e112902. [PMID: 25398027 PMCID: PMC4232510 DOI: 10.1371/journal.pone.0112902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/16/2014] [Indexed: 12/01/2022] Open
Abstract
Crystallization of the zebrafish P2X4 receptor in both open and closed states revealed conformational differences in the ectodomain structures, including the dorsal fin and left flipper domains. Here, we focused on the role of these domains in receptor activation, responsiveness to orthosteric ATP analogue agonists, and desensitization. Alanine scanning mutagenesis of the R203-L214 (dorsal fin) and the D280-N293 (left flipper) sequences of the rat P2X4 receptor showed that ATP potency/efficacy was reduced in 15 out of 26 alanine mutants. The R203A, N204A, and N293A mutants were essentially non-functional, but receptor function was restored by ivermectin, an allosteric modulator. The I205A, T210A, L214A, P290A, G291A, and Y292A mutants exhibited significant changes in the responsiveness to orthosteric analog agonists 2-(methylthio)adenosine 5′-triphosphate, adenosine 5′-(γ-thio)triphosphate, 2′(3′-O-(4-benzoylbenzoyl)adenosine 5′-triphosphate, and α,β-methyleneadenosine 5′-triphosphate. In contrast, the responsiveness of L206A, N208A, D280A, T281A, R282A, and H286A mutants to analog agonists was comparable to that of the wild type receptor. Among these mutants, D280A, T281A, R282A, H286A, G291A, and Y292A also exhibited increased time-constant of the desensitizing current response. These experiments, together with homology modeling, indicate that residues located in the upper part of the dorsal fin and left flipper domains, relative to distance from the channel pore, contribute to the organization of the ATP binding pocket and to the initiation of signal transmission towards residues in the lower part of both domains. The R203 and N204 residues, deeply buried in the protein, may integrate the output signal from these two domains towards the gate. In addition, the left flipper residues predominantly account for the control of transition of channels from an open to a desensitized state.
Collapse
Affiliation(s)
- Vendula Tvrdonova
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Physiology of Animals, Faculty of Science, Charles University, Prague, Czech Republic
| | - Milos B. Rokic
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hana Zemkova
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
29
|
Copeland JC, Zehr LJ, Cerny RL, Powers R. The applicability of molecular descriptors for designing an electrospray ionization mass spectrometry compatible library for drug discovery. Comb Chem High Throughput Screen 2014; 15:806-15. [PMID: 22708878 DOI: 10.2174/138620712803901180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/25/2012] [Accepted: 06/08/2012] [Indexed: 11/22/2022]
Abstract
Detecting a small molecular-weight compound by electrospray ionization mass spectrometry (ESI-MS) requires the compound to obtain a charge. Factors such as gas-phase proton affinities and analyte surface activity are correlated with a positive ESI-MS response, but unfortunately it is extremely challenging to predict from a chemical structure alone if a compound is likely to yield an observable molecular-ion peak in an ESI-MS spectrum. Thus, the design of a chemical library for an ESI-MS ligand-affinity screen is particularly daunting. Only 56.9% of the compounds from our FAST-NMR functional library [1] were detectable by ESI-MS. An analysis of ~1,600 molecular descriptors did not identify any correlation with a positive ESI-MS response that cannot be attributed to a skewed population distribution. Unfortunately, our results suggest that molecular descriptors are not a valuable approach for designing a chemical library for an MS-based ligand affinity screen.
Collapse
Affiliation(s)
- Jennifer C Copeland
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | | | | | | |
Collapse
|
30
|
Human neutrophil peptide 1 variants bearing arginine modified cationic side chains: effects on membrane partitioning. Biophys Chem 2014; 190-191:32-40. [PMID: 24820901 DOI: 10.1016/j.bpc.2014.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 11/22/2022]
Abstract
α-Defensins (e.g. human neutrophil peptides, HNPs) have a broad spectrum bactericidal activity contributing to human innate immunity. The positive charge of amino acid side chains is responsible for the first interaction of cationic antimicrobial peptides with negatively charged bacterial membranes. α-Defensins contain a high content of Arg residues compared to Lys. In this paper, different peptide analogs including substitution of Arg-14 respectively with N(G)-N(G')-asymmetric dimethyl-l-arginine (ADMA), N(G)-N(G')-symmetric dimethyl-l-arginine (SDMA) and Lys (R14K and R15KR14KR15K) variants have been studied to test the role of Arg guanidino group and the localized cationic charge of Lys for interaction with lipid membranes. Our findings show that all the variants have a decreased disruptive activity against the bilayer. The methylated analogs show a reduction in membrane partitioning due to the lack of their ability to form hydrogen bonds. Comparison with the native HNP-1 peptide has been discussed.
Collapse
|
31
|
Mutations adjacent to the end of transmembrane helices 6 and 7 independently affect drug efflux capacity of yeast ABC transporter Pdr5p. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:932-9. [DOI: 10.1016/j.bbamem.2013.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 11/19/2013] [Accepted: 12/04/2013] [Indexed: 12/22/2022]
|
32
|
Wong KC, Zhang Z. SNPdryad: predicting deleterious non-synonymous human SNPs using only orthologous protein sequences. ACTA ACUST UNITED AC 2014; 30:1112-1119. [PMID: 24389653 DOI: 10.1093/bioinformatics/btt769] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/13/2013] [Indexed: 11/12/2022]
Abstract
MOTIVATION The recent advances in genome sequencing have revealed an abundance of non-synonymous polymorphisms among human individuals; subsequently, it is of immense interest and importance to predict whether such substitutions are functional neutral or have deleterious effects. The accuracy of such prediction algorithms depends on the quality of the multiple-sequence alignment, which is used to infer how an amino acid substitution is tolerated at a given position. Because of the scarcity of orthologous protein sequences in the past, the existing prediction algorithms all include sequences of protein paralogs in the alignment, which can dilute the conservation signal and affect prediction accuracy. However, we believe that, with the sequencing of a large number of mammalian genomes, it is now feasible to include only protein orthologs in the alignment and improve the prediction performance. RESULTS We have developed a novel prediction algorithm, named SNPdryad, which only includes protein orthologs in building a multiple sequence alignment. Among many other innovations, SNPdryad uses different conservation scoring schemes and uses Random Forest as a classifier. We have tested SNPdryad on several datasets. We found that SNPdryad consistently outperformed other methods in several performance metrics, which is attributed to the exclusion of paralogous sequence. We have run SNPdryad on the complete human proteome, generating prediction scores for all the possible amino acid substitutions. AVAILABILITY AND IMPLEMENTATION The algorithm and the prediction results can be accessed from the Web site: http://snps.ccbr.utoronto.ca:8080/SNPdryad/ CONTACT: Zhaolei.Zhang@utoronto.ca Supplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ka-Chun Wong
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 3G4 The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1 and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 3G4 The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1 and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Zhaolei Zhang
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 3G4 The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1 and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 3G4 The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1 and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 3G4 The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1 and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 3G4 The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1 and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
33
|
Abstract
Halogens are atypical elements in biology, but are common as substituents in ligands, including thyroid hormones and inhibitors, which bind specifically to proteins and nucleic acids. The short-range, stabilizing interactions of halogens - now seen as relatively common in biology - conform generally to halogen bonds characterized in small molecule systems and as described by the σ-hole model. The unique properties of biomolecular halogen bonds (BXBs), particularly in their geometric and energetic relationship to classic hydrogen bonds, make them potentially powerful tools for inhibitor design and molecular engineering. This chapter reviews the current research on BXBs, focusing on experimental studies on their structure-energy relationships, how these studies inform the development of computational methods to model BXBs, and considers how BXBs can be applied to the rational design of more effective inhibitors against therapeutic targets and of new biological-based materials.
Collapse
Affiliation(s)
- P Shing Ho
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA,
| |
Collapse
|
34
|
Pfaffinger PJ. A conserved pre-block interaction motif regulates potassium channel activation and N-type inactivation. PLoS One 2013; 8:e79891. [PMID: 24236164 PMCID: PMC3827413 DOI: 10.1371/journal.pone.0079891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/06/2013] [Indexed: 02/02/2023] Open
Abstract
N-type inactivation occurs when the N-terminus of a potassium channel binds into the open pore of the channel. This study examined the relationship between activation and steady state inactivation for mutations affecting the N-type inactivation properties of the Aplysia potassium channel AKv1 expressed in Xenopus oocytes. The results show that the traditional single-step model for N-type inactivation fails to properly account for the observed relationship between steady state channel activation and inactivation curves. We find that the midpoint of the steady state inactivation curve depends in part on a secondary interaction between the channel core and a region of the N-terminus just proximal to the pore blocking peptide that we call the Inactivation Proximal (IP) region. The IP interaction with the channel core produces a negative shift in the activation and inactivation curves, without blocking the pore. A tripeptide motif in the IP region was identified in a large number of different N-type inactivation domains most likely reflecting convergent evolution in addition to direct descent. Point mutating a conserved hydrophobic residue in this motif eliminates the gating voltage shift, accelerates recovery from inactivation and decreases the amount of pore block produced during inactivation. The IP interaction we have identified likely stabilizes the open state and positions the pore blocking region of the N-terminus at the internal opening to the transmembrane pore by forming a Pre-Block (P state) interaction with residues lining the side window vestibule of the channel.
Collapse
Affiliation(s)
- Paul J. Pfaffinger
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Borkar MR, Pissurlenkar RRS, Coutinho EC. HomoSAR: Bridging comparative protein modeling with quantitative structural activity relationship to design new peptides. J Comput Chem 2013; 34:2635-46. [DOI: 10.1002/jcc.23436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/17/2013] [Accepted: 08/21/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Mahesh R. Borkar
- Department of Pharmaceutical Chemistry; Bombay College of Pharmacy; Kalina, Santacruz (East) Mumbai 400098 India
| | - Raghuvir R. S. Pissurlenkar
- Department of Pharmaceutical Chemistry; Bombay College of Pharmacy; Kalina, Santacruz (East) Mumbai 400098 India
| | - Evans C. Coutinho
- Department of Pharmaceutical Chemistry; Bombay College of Pharmacy; Kalina, Santacruz (East) Mumbai 400098 India
| |
Collapse
|
36
|
Avinash MB, Sandeepa KV, Govindaraju T. Molecular assembly of amino acid interlinked, topologically symmetric, π-complementary donor-acceptor-donor triads. Beilstein J Org Chem 2013; 9:1565-71. [PMID: 23946856 PMCID: PMC3740681 DOI: 10.3762/bjoc.9.178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/08/2013] [Indexed: 12/15/2022] Open
Abstract
Amino acid interlinked pyrene and naphthalenediimide (NDI) based novel donor–acceptor–donor (D-A-D) triads are designed to exploit their topological symmetry and complementary π-character for facile charge-transfer complexation. Consequently, free-floating high-aspect-ratio supercoiled nanofibres and hierarchical helical bundles of triads are realized by modulating the chemical functionality of interlinking amino acids.
Collapse
Affiliation(s)
- M B Avinash
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India. ; Tel: +91 80 2208 2969
| | | | | |
Collapse
|
37
|
Avinash MB, Samanta PK, Sandeepa KV, Pati SK, Govindaraju T. Molecular Architectonics of Stereochemically Constrained π-Complementary Functional Modules. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300677] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Ahmad E, Rabbani G, Zaidi N, Khan MA, Qadeer A, Ishtikhar M, Singh S, Khan RH. Revisiting ligand-induced conformational changes in proteins: essence, advancements, implications and future challenges. J Biomol Struct Dyn 2013; 31:630-48. [DOI: 10.1080/07391102.2012.706081] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Uversky VN. The alphabet of intrinsic disorder: II. Various roles of glutamic acid in ordered and intrinsically disordered proteins. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e24684. [PMID: 28516010 PMCID: PMC5424795 DOI: 10.4161/idp.24684] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/27/2013] [Accepted: 04/12/2013] [Indexed: 11/19/2022]
Abstract
The ability of a protein to fold into unique functional state or to stay intrinsically disordered is encoded in its amino acid sequence. Both ordered and intrinsically disordered proteins (IDPs) are natural polypeptides that use the same arsenal of 20 proteinogenic amino acid residues as their major building blocks. The exceptional structural plasticity of IDPs, their capability to exist as heterogeneous structural ensembles and their wide array of important disorder-based biological functions that complements functional repertoire of ordered proteins are all rooted within the peculiar differential usage of these building blocks by ordered proteins and IDPs. In fact, some residues (so-called disorder-promoting residues) are noticeably more common in IDPs than in sequences of ordered proteins, which, in their turn, are enriched in several order-promoting residues. Furthermore, residues can be arranged according to their “disorder promoting potencies,” which are evaluated based on the relative abundances of various amino acids in ordered and disordered proteins. This review continues a series of publications on the roles of different amino acids in defining the phenomenon of protein intrinsic disorder and concerns glutamic acid, which is the second most disorder-promoting residue.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; College of Medicine; University of South Florida; Tampa, FL USA.,Institute for Biological Instrumentation; Russian Academy of Sciences; Moscow, Russia
| |
Collapse
|
40
|
Daubner SC, Avila A, Bailey JO, Barrera D, Bermudez JY, Giles DH, Khan CA, Shaheen N, Thompson JW, Vasquez J, Oxley SP, Fitzpatrick PF. Mutagenesis of a specificity-determining residue in tyrosine hydroxylase establishes that the enzyme is a robust phenylalanine hydroxylase but a fragile tyrosine hydroxylase. Biochemistry 2013; 52:1446-55. [PMID: 23368961 PMCID: PMC3584195 DOI: 10.1021/bi400031n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aromatic amino acid hydroxylases tyrosine hydroxylase (TyrH) and phenylalanine hydroxylase (PheH) have essentially identical active sites; however, PheH is nearly incapable of hydroxylating tyrosine, while TyrH can readily hydroxylate both tyrosine and phenylalanine. Previous studies have indicated that Asp425 of TyrH is important in determining the substrate specificity of that enzyme [Daubner, S. C., Melendez, J., and Fitzpatrick, P. F. (2000) Biochemistry 39, 9652-9661]. Alanine-scanning mutagenesis of amino acids 423-427, a mobile loop containing Asp425, shows that only mutagenesis of Asp425 alters the activity of the enzyme significantly. Saturation mutagenesis of Asp425 results in large (up to 10(4)) decreases in the V(max) and V(max)/K(tyr) values for tyrosine hydroxylation, but only small decreases or even increases in the V(max) and V(max)/K(phe) values for phenylalanine hydroxylation. The decrease in the tyrosine hydroxylation activity of the mutant proteins is due to an uncoupling of tetrahydropterin oxidation from amino acid hydroxylation with tyrosine as the amino acid substrate. In contrast, with the exception of the D425W mutant, the extent of coupling of tetrahydropterin oxidation and amino acid hydroxylation is unaffected or increases with phenylalanine as the amino acid substrate. The decrease in the V(max) value with tyrosine as the substrate shows a negative correlation with the hydrophobicity of the amino acid residue at position 425. The results are consistent with a critical role of Asp425 being to prevent a hydrophobic interaction that results in a restricted active site in which hydroxylation of tyrosine does not occur.
Collapse
Affiliation(s)
- S. Colette Daubner
- Department of Biological Sciences, St. Mary’s University, San Antonio TX 78228
| | - Audrey Avila
- Department of Biological Sciences, St. Mary’s University, San Antonio TX 78228
| | - Johnathan O. Bailey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX 77840
| | - Dimitrios Barrera
- Department of Chemistry and Biochemistry, St. Mary’s University, San Antonio TX 78228
| | - Jaclyn Y. Bermudez
- Department of Biological Sciences, St. Mary’s University, San Antonio TX 78228
| | - David H. Giles
- Department of Biochemistry, University of Texas Health Science Center San Antonio, San Antonio TX 78229
| | - Crystal A. Khan
- Department of Biochemistry, University of Texas Health Science Center San Antonio, San Antonio TX 78229
| | - Noel Shaheen
- Department of Biological Sciences, St. Mary’s University, San Antonio TX 78228
| | - Janie Womac Thompson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX 77840
| | - Jessica Vasquez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX 77840
| | - Susan P. Oxley
- Department of Chemistry and Biochemistry, St. Mary’s University, San Antonio TX 78228
| | - Paul F. Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center San Antonio, San Antonio TX 78229
| |
Collapse
|
41
|
König G, Bruckner S, Boresch S. Absolute hydration free energies of blocked amino acids: implications for protein solvation and stability. Biophys J 2013; 104:453-62. [PMID: 23442867 PMCID: PMC3552266 DOI: 10.1016/j.bpj.2012.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 11/15/2022] Open
Abstract
Most proteins perform their function in aqueous solution. The interactions with water determine the stability of proteins and the desolvation costs of ligand binding or membrane insertion. However, because of experimental restrictions, absolute solvation free energies of proteins or amino acids are not available. Instead, solvation free energies are estimated based on side chain analog data. This approach implies that the contributions to free energy differences are additive, and it has often been employed for estimating folding or binding free energies. However, it is not clear how much the additivity assumption affects the reliability of the resulting data. Here, we use molecular dynamics-based free energy simulations to calculate absolute hydration free energies for 15 N-acetyl-methylamide amino acids with neutral side chains. By comparing our results with solvation free energies for side chain analogs, we demonstrate that estimates of solvation free energies of full amino acids based on group-additive methods are systematically too negative and completely overestimate the hydrophobicity of glycine. The largest deviation of additive protocols using side chain analog data was 6.7 kcal/mol; on average, the deviation was 4 kcal/mol. We briefly discuss a simple way to alleviate the errors incurred by using side chain analog data and point out the implications of our findings for the field of biophysics and implicit solvent models. To support our results and conclusions, we calculate relative protein stabilities for selected point mutations, yielding a root-mean-square deviation from experimental results of 0.8 kcal/mol.
Collapse
Affiliation(s)
- Gerhard König
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
42
|
Lehrman JA, Cui H, Tsai WW, Moyer TJ, Stupp SI. Supramolecular control of self-assembling terthiophene-peptide conjugates through the amino acid side chain. Chem Commun (Camb) 2013; 48:9711-3. [PMID: 22914175 DOI: 10.1039/c2cc34375d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of oligothiophene-peptide conjugates can be directed through the systematic variation of the peptide sequence into different nanostructures, including flat spicules, nanotubes, spiral sheets, and giant, flat sheets. Furthermore, the assembly of these molecules is not controlled by steric interactions between the amino acid side chains.
Collapse
Affiliation(s)
- Jessica A Lehrman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
43
|
Druggability predictions: methods, limitations, and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
West D, Kim CU, Tu C, Robbins AH, Gruner SM, Silverman DN, McKenna R. Structural and kinetic effects on changes in the CO(2) binding pocket of human carbonic anhydrase II. Biochemistry 2012; 51:9156-63. [PMID: 23098192 DOI: 10.1021/bi301155z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work examines the effect of perturbing the position of bound CO(2) in the active site of human carbonic anhydrase II (HCA II) on catalysis. Variants of HCA II in which Val143 was replaced with hydrophobic residues Ile, Leu, and Ala were examined. The efficiency of catalysis in the hydration of CO(2) for these variants was characterized by (18)O exchange mass spectrometry, and their structures were determined by X-ray crystallography at 1.7-1.5 Å resolution. The most hydrophobic substitutions, V143I and V143L, showed decreases in the level of catalysis, as much as 20-fold, while the replacement by the smaller V143A mutation showed an only moderate 2-fold decrease in activity. Structural data for all three variants show no significant change in the overall position of amino acid side chains in the active site compared with the wild type. However, V143A HCA II showed additional ordered water molecules in the active site compared to the number for the wild type. To further investigate the decrease in the catalytic efficiency of V143I HCA II, an X-ray crystallographic CO(2) entrapment experiment was performed to 0.93 Å resolution. This structure revealed an unexpected shift in the CO(2) substrate toward the zinc-bound solvent, placing it ~0.3 Ǻ closer than previously observed in the wild type in conjunction with the observed dual occupancy of the product bicarbonate, presumably formed during the acquisition of data. These data suggest that the Ile substitution at position 143 reduced the catalytic efficiency, which is likely due to steric crowding resulting in destabilization of the transition state for conversion of CO(2) into bicarbonate and a decreased product dissociation rate.
Collapse
Affiliation(s)
- Dayne West
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, United States
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
We examine the relationship between binding affinity and interface size for reversible protein-protein interactions (PPIs), using cytokines from the tumor necrosis factor (TNF) superfamily and their receptors as a test case. Using surface plasmon resonance, we measured single-site binding affinities for binding of the large receptor TNFR1 to its ligands TNFα (K(D) = 1.4 ± 0.4 nM) and lymphotoxin-α (K(D) = 50 ± 10 nM), and also for binding of the small receptor Fn14 to TWEAK (K(D) = 70 ± 10 nM). We additionally assembled data for all other TNF-TNFR family complexes for which reliable single-site binding affinities have been reported. We used these values to calculate the binding efficiencies, defined as binding energy per square angstrom of surface area buried at the contact interface, for nine of these complexes for which cocrystal structures are available, and compared the results to those for a set of 144 protein-protein complexes with published affinities. The results show that the most efficient PPI complexes generate ~20 cal mol(-1) Å(-2) of binding energy. A minimal contact area of ~500 Å(2) is required for a stable complex, required to generate sufficient interaction energy to pay the entropic cost of colocalizing two proteins from 1 M solution. The most compact and efficient TNF-TNFR complex was the BAFF-BR3 complex, which achieved ~80% of the maximal achievable binding efficiency. Other small receptors also gave high binding efficiencies, while the larger receptors generated only 44-49% of this limit despite interacting primarily through just a single small domain. The results provide new insight into how much binding energy can be generated by a PPI interface of a given size, and establish a quantitative method for predicting how large a natural or engineered contact interface must be to achieve a given level of binding affinity.
Collapse
Affiliation(s)
- Eric S Day
- Biogen Idec, 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | | | | |
Collapse
|
46
|
Gounder AP, Wiens ME, Wilson SS, Lu W, Smith JG. Critical determinants of human α-defensin 5 activity against non-enveloped viruses. J Biol Chem 2012; 287:24554-62. [PMID: 22637473 DOI: 10.1074/jbc.m112.354068] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human α-defensins, such as human α-defensin 5 (HD5), block infection of non-enveloped viruses, including human adenoviruses (AdV), papillomaviruses (HPV), and polyomaviruses. Through mutational analysis of HD5, we have identified arginine residues that contribute to antiviral activity against AdV and HPV. Of two arginine residues paired on one face of HD5, Arg-28 is critical for both viruses, while Arg-9 is only important for AdV. Two arginine residues on the opposite face of the molecule (Arg-13 and Arg-32) and unpaired Arg-25 are less important for both. In addition, hydrophobicity at residue 29 is a major determinant of anti-adenoviral activity, and a chemical modification that prevents HD5 self-association was strongly attenuating. Although HD5 binds to the capsid of AdV, the molecular basis for this interaction is undefined. Capsid binding by HD5 is not purely charge-dependent, as substitution of lysine for Arg-9 and Arg-28 was deleterious. Analysis of HD5 analogs that retained varying levels of potency demonstrated that anti-adenoviral activity is directly correlated with HD5 binding to the virus, confirming that the viral capsid rather than the cell is the relevant target. Also, AdV aggregation induced by HD5 binding is not sufficient for neutralization. Rather, these studies confirm that the major mechanism of HD5-mediated neutralization of AdV depends upon specific binding to the viral capsid through interactions mediated in part by critical arginine residues, hydrophobicity at residue 29, and multimerization of HD5, which increases initial binding of virus to the cell but prevents subsequent viral uncoating and genome delivery to the nucleus.
Collapse
Affiliation(s)
- Anshu P Gounder
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
47
|
Nebot VJ, Armengol J, Smets J, Prieto SF, Escuder B, Miravet JF. Molecular hydrogels from bolaform amino acid derivatives: a structure-properties study based on the thermodynamics of gel solubilization. Chemistry 2012; 18:4063-72. [PMID: 22354848 DOI: 10.1002/chem.201103193] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Indexed: 11/07/2022]
Abstract
Insight is provided into the aggregation thermodynamics associated to hydrogel formation by molecular gelators derived from L-valine and L-isoleucine. Solubility data from NMR measurements are used to extract thermodynamic parameters for the aggregation in water. It is concluded that at room temperature and up to 55 °C, these systems form self-assembled fibrillar networks in water with quite low or zero enthalpic component, whereas the entropy of the aggregation is favorable. These results are explained by considering that the hydrophobic effect is dominant in the self-assembly. However, studies by NMR and IR spectroscopy reveal that intermolecular hydrogen bonding is also a key issue in the aggregation process of these molecules in water. The low enthalpy values measured for the self-assembly process are ascribed to the result of a compensation of the favorable intermolecular hydrogen-bond formation and the unfavorable enthalpy component of the hydrophobic effect. Additionally, it is shown that by using the hydrophobic character as a design parameter, enthalpy-controlled hydrogel formation, as opposed to entropy-controlled hydrogel formation, can be achieved in water if the gelator is polar enough. It is noteworthy that these two types of hydrogels, enthalpy-versus entropy-driven hydrogels, present quite different response to temperature changes in properties such as the minimum gelator concentration (mgc) or the rheological moduli. Finally, the presence of a polymorphic transition in a hydrogel upon heating above 70 °C is reported and ascribed to the weakening of the hydrophobic effect upon heating. The new soft polymorphic materials present dramatically different solubility and rheological properties. Altogether these results are aimed to contribute to the rational design of molecular hydrogelators, which could be used for the tailored preparation of this type of soft materials. The reported results could also provide ground for the rationale of different self-assembly processes in aqueous media.
Collapse
Affiliation(s)
- Vicent J Nebot
- Department de Química Inorgánica i Orgánica, Universitat Jaume I, 12071 Castelló, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Segura JJ, Verdaguer A, Sacha GM, Fraxedas J. Dipolar origin of water etching of amino acid surfaces. Phys Chem Chem Phys 2011; 13:21446-50. [PMID: 22048449 DOI: 10.1039/c1cp22277e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The etching induced by water on hydrophobic (001) surfaces of enantiomeric L-, D- and racemic DL-valine crystals has been characterized by means of atomic force microscopy (AFM) at ambient conditions. Well-defined chiral parallelepipedic shallow patterns, one bilayer deep, are observed for the enantiomeric crystals with sides (steps) oriented along low index crystallographic directions. Hence, chirality can be readily identified by visual inspection of an AFM image after etching. The formation of such regular patterns can be rationalized using basic concepts of electrical dipolar interactions. The key factor that determines the relative etching rate for each step and thus defines the shape of the etching patterns is the orientation of the molecular dipoles with respect to the step edge. The simplicity of the approach allows the prediction of the effect of water etching on other amino acid crystals as well as the effect of the interaction of water with amino acid molecules forming part of more complex structures.
Collapse
Affiliation(s)
- J J Segura
- Centre d' Investigació en Nanociència i Nanotecnologia, Edifici CM-7, Campus UAB, Esfera UAB, E-08193 Bellaterra, Catalunya, Spain
| | | | | | | |
Collapse
|
49
|
Apolar surface area determines the efficiency of translocon-mediated membrane-protein integration into the endoplasmic reticulum. Proc Natl Acad Sci U S A 2011; 108:E359-64. [PMID: 21606334 DOI: 10.1073/pnas.1100120108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Integral membrane proteins are integrated cotranslationally into the membrane of the endoplasmic reticulum in a process mediated by the Sec61 translocon. Transmembrane α-helices in a translocating polypeptide chain gain access to the surrounding membrane through a lateral gate in the wall of the translocon channel [van den Berg B, et al. (2004) Nature 427:36-44; Zimmer J, et al. (2008) Nature 455:936-943; Egea PF, Stroud RM (2010) Proc Natl Acad Sci USA 107:17182-17187]. To clarify the nature of the membrane-integration process, we have measured the insertion efficiency into the endoplasmic reticulum membrane of model hydrophobic segments containing nonproteinogenic aliphatic and aromatic amino acids. We find that an amino acid's contribution to the apparent free energy of membrane-insertion is directly proportional to the nonpolar accessible surface area of its side chain, as expected for thermodynamic partitioning between aqueous and nonpolar phases. But unlike bulk-phase partitioning, characterized by a nonpolar solvation parameter of 23 cal/(mol · Å(2)), the solvation parameter for transfer from translocon to bilayer is 6-10 cal/(mol · Å(2)), pointing to important differences between translocon-guided partitioning and simple water-to-membrane partitioning. Our results provide compelling evidence for a thermodynamic partitioning model and insights into the physical properties of the translocon.
Collapse
|
50
|
Lomize AL, Pogozheva I, Mosberg HI. Anisotropic solvent model of the lipid bilayer. 1. Parameterization of long-range electrostatics and first solvation shell effects. J Chem Inf Model 2011; 51:918-29. [PMID: 21438609 PMCID: PMC3089899 DOI: 10.1021/ci2000192] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new implicit solvation model was developed for calculating free energies of transfer of molecules from water to any solvent with defined bulk properties. The transfer energy was calculated as a sum of the first solvation shell energy and the long-range electrostatic contribution. The first term was proportional to solvent accessible surface area and solvation parameters (σ(i)) for different atom types. The electrostatic term was computed as a product of group dipole moments and dipolar solvation parameter (η) for neutral molecules or using a modified Born equation for ions. The regression coefficients in linear dependencies of solvation parameters σ(i) and η on dielectric constant, solvatochromic polarizability parameter π*, and hydrogen-bonding donor and acceptor capacities of solvents were optimized using 1269 experimental transfer energies from 19 organic solvents to water. The root-mean-square errors for neutral compounds and ions were 0.82 and 1.61 kcal/mol, respectively. Quantification of energy components demonstrates the dominant roles of hydrophobic effect for nonpolar atoms and of hydrogen-bonding for polar atoms. The estimated first solvation shell energy outweighs the long-range electrostatics for most compounds including ions. The simplicity and computational efficiency of the model allows its application for modeling of macromolecules in anisotropic environments, such as biological membranes.
Collapse
Affiliation(s)
- Andrei L. Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109-1065, USA
| | - Irina Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109-1065, USA
| | - Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI, 48109-1065, USA
| |
Collapse
|