1
|
Oseni SO, Naar C, Pavlović M, Asghar W, Hartmann JX, Fields GB, Esiobu N, Kumi-Diaka J. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers (Basel) 2023; 15:3110. [PMID: 37370720 DOI: 10.3390/cancers15123110] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation is now recognized as one of the major risk factors and molecular hallmarks of chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate tumorigenesis. However, the molecular mechanisms by which chronic inflammation signaling contributes to the pathogenesis of these prostate diseases are poorly understood. Previous efforts to therapeutically target the upstream (e.g., TLRs and IL1-Rs) and downstream (e.g., NF-κB subunits and cytokines) inflammatory signaling molecules in people with these conditions have been clinically ambiguous and unsatisfactory, hence fostering the recent paradigm shift towards unraveling and understanding the functional roles and clinical significance of the novel and relatively underexplored inflammatory molecules and pathways that could become potential therapeutic targets in managing prostatic diseases. In this review article, we exclusively discuss the causal and molecular drivers of prostatitis, BPH, and prostate tumorigenesis, as well as the potential impacts of microbiome dysbiosis and chronic inflammation in promoting prostate pathologies. We specifically focus on the importance of some of the underexplored druggable inflammatory molecules, by discussing how their aberrant signaling could promote prostate cancer (PCa) stemness, neuroendocrine differentiation, castration resistance, metabolic reprogramming, and immunosuppression. The potential contribution of the IL1R-TLR-IRAK-NF-κBs signaling molecules and NLR/inflammasomes in prostate pathologies, as well as the prospective benefits of selectively targeting the midstream molecules in the various inflammatory cascades, are also discussed. Though this review concentrates more on PCa, we envision that the information could be applied to other prostate diseases. In conclusion, we have underlined the molecular mechanisms and signaling pathways that may need to be targeted and/or further investigated to better understand the association between chronic inflammation and prostate diseases.
Collapse
Affiliation(s)
- Saheed Oluwasina Oseni
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Corey Naar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlović
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James X Hartmann
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, and I-HEALTH, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James Kumi-Diaka
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
2
|
Chang KS, Chen ST, Sung HC, Hsu SY, Lin WY, Hou CP, Lin YH, Feng TH, Tsui KH, Juang HH. Androgen Receptor Upregulates Mucosa-Associated Lymphoid Tissue 1 to Induce NF-κB Activity via Androgen-Dependent and -Independent Pathways in Prostate Carcinoma Cells. Int J Mol Sci 2023; 24:ijms24076245. [PMID: 37047218 PMCID: PMC10093854 DOI: 10.3390/ijms24076245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The androgen-dependent or -independent pathways are regarded as primary therapeutic targets for the neoplasm of the prostate. Mucosa-associated lymphoid tissue 1 (MALT1) acting as a paracaspase in the regulation of nuclear factor κB (NF-κB) signal transduction plays a central role in inflammation and oncogenesis in cancers. This study confirmed the potential linkages between androgen and NF-κB activation by inducing MALT1 in the androgen receptor-full length (ARFL)-positive LNCaP and 22Rv1 prostate cancer cells. Although androgen did not stimulate MALT1 expression in AR-null or ectopic ARFL-overexpressed PC-3 cells, the ectopic overexpression of the AR splicing variant 7 (ARv7) upregulated MALT1 to activate NF-κB activities in 22Rv1 and PC-3 cells. Since the nuclear translocation of p50 and p65 was facilitated by ARv7 to motivate NF-κB activity, the expressions of MALT1, prostate-specific antigen (PSA), and N-myc downstream regulated 1 (NDRG1) were therefore induced in ectopic ARv7-overexpressed prostate cancer cells. Ectopic ARv7 overexpression not only enhanced 22Rv1 or PC-3 cell growth and invasion in vitro but also the tumor growth of PC-3 cells in vivo. These results indicate that an androgen receptor induces MALT1 expression androgen-dependently and -independently in ARFL- or ARv7-overexpressed prostate cancer cells, suggesting a novel ARv7/MALT1/NF-κB-signaling pathway may exist in the cells of prostate cancer.
Collapse
|
3
|
Zhang J, He G, Jin X, Alenezi BT, Naeem AA, Abdulsamad SA, Ke Y. Molecular mechanisms on how FABP5 inhibitors promote apoptosis-induction sensitivity of prostate cancer cells. Cell Biol Int 2023; 47:929-942. [PMID: 36651331 DOI: 10.1002/cbin.11989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Previous work showed that FABP5 inhibitors suppressed the malignant progression of prostate cancer cells, and this suppression might be achieved partially by promoting apoptosis. But the mechanisms involved were not known. Here, we investigated the effect of inhibitors on apoptosis and studied the relevant mechanisms. WtrFABP5 significantly reduced apoptotic cells in 22Rv1 and PC3 by 18% and 42%, respectively. In contrast, the chemical inhibitor SB-FI-26 produced significant increases in percentages of apoptotic cells in 22Rv1 and PC3 by 18.8% (±4.1) and 4.6% (±1.1), respectively. The bio- inhibitor dmrFABP5 also did so by 23.1% (±2.4) and 15.8% (±3.0), respectively, in these cell lines. Both FABP5 inhibitors significantly reduced the levels of the phosphorylated nuclear fatty acid receptor PPARγ, indicating that these inhibitors promoted apoptosis-induction sensitivity of the cancer cells by suppressing the biological activity of PPARγ. Thus, the phosphorylated PPARγ levels were reduced by FABP5 inhibitors, the levels of the phosphorylated AKT and activated nuclear factor kapper B (NFκB) were coordinately altered by additions of the inhibitors. These changes eventually led to the increased levels of cleaved caspase-9 and cleaved caspase-3; and thus, increase in the percentage of cells undergoing apoptosis. In untreated prostate cancer cells, increased FABP5 suppressed the apoptosis by increasing the biological activity of PPARγ, which, in turn, led to a reduced apoptosis by interfering with the AKT or NFκB signaling pathway. Our results suggested that the FABP5 inhibitors enhanced the apoptosis-induction of prostate cancer cells by reversing the biological effect of FABP5 and its related pathway.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, UK
| | - Gang He
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Xi Jin
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bandar T Alenezi
- Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, UK
| | - Abdulghani A Naeem
- Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, UK
| | - Saud A Abdulsamad
- Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, UK
| | - Youqiang Ke
- Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, UK.,Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China.,Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Vecchiotti D, Verzella D, Di Vito Nolfi M, D’Andrea D, Flati I, Di Francesco B, Cornice J, Alesse E, Capece D, Zazzeroni F. Elevated NF-κB/SHh/GLI1 Signature Denotes a Worse Prognosis and Represent a Novel Potential Therapeutic Target in Advanced Prostate Cancer. Cells 2022; 11:2118. [PMID: 35805202 PMCID: PMC9266159 DOI: 10.3390/cells11132118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequent cancer in men worldwide. NF-κB seems to play a key role in cell survival, proliferation and invasion, sustaining the heterogeneous multifocal nature of PCa. In recent years, the Hedgehog (Hh) signaling pathway has attracted attention as a therapeutic target due to its implication in tumorigenesis and metastasis in several types of cancer, including PCa. Although it is well-known that Sonic Hedgehog (SHh) is a transcriptional target of NF-κB(p65), and that GLI1 is the effector of this crosstalk, the precise role played by this axis in PCa is still not completely clear. Here, we set out to explore the correlation between NF-κB activation and SHh pathways in PCa, investigating if the interplay between NF-κB(p65) and SHh-GLI1 in advanced PCa could be a prospective therapeutic target. Our findings demonstrate that a NF-κB-SHh-GLI1 gene signature is enriched in PCa patients featuring a higher Gleason score. Moreover, elevated levels of this signature are associated with worse prognosis, thus suggesting that this axis could provide a route to treat aggressive PCa.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Daniel D’Andrea
- Interdisciplinary Biomedical Research Centre, College of Science and Technology, Nottingham Trent University, Clifton NG11 8NS, UK;
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Barbara Di Francesco
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Jessica Cornice
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.V.); (M.D.V.N.); (I.F.); (B.D.F.); (J.C.); (E.A.); (F.Z.)
| |
Collapse
|
5
|
Urinary microRNAs and Their Significance in Prostate Cancer Diagnosis: A 5-Year Update. Cancers (Basel) 2022; 14:cancers14133157. [PMID: 35804929 PMCID: PMC9265126 DOI: 10.3390/cancers14133157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Current diagnostics of prostate cancer often show unsatisfactory results, leading to delayed detection or overtreatment. Urinary microRNAs are a class of promising non-invasive biomarkers. Although many studies have been conducted on this topic in the last five years, there is little agreement on the data obtained. This review aims to discuss new knowledge but also focuses on technical aspects affecting urinary miRNA analysis. Abstract Current routine screening methods for the diagnosis of prostate cancer (PCa) have significantly increased early detection of the disease but often show unsatisfactory analytical parameters. A class of promising markers represents urinary microRNAs (miRNAs). In the last five years, there has been an extensive increase in the number of studies on this topic. Thus, this review aims to update knowledge and point out technical aspects affecting urinary miRNA analysis. The review of relevant literature was carried out by searching the PubMed database for the keywords: microRNA, miRNA, urine, urinary, prostate cancer, and diagnosis. Papers discussed in this review were retrieved using PubMed, and the search strategy was as follows: (urine OR urinary) WITH (microRNA OR miRNA) AND prostate cancer. The search was limited to the last 5 years, January 2017 to December 2021. Based on the defined search strategy, 31 original publications corresponding to the research topic were identified, read and reviewed to present the latest findings and to assess possible translation of urinary miRNAs into clinical practice. Reviews or older publications were read and cited if they valuably extended the context and contributed to a better understanding. Urinary miRNAs are potentially valuable markers for the diagnosis of prostate cancer. Despite promising results, there is still a need for independent validation of exploratory data, which follows a strict widely accepted methodology taking into account the shortcomings and factors influencing the analysis.
Collapse
|
6
|
The Antitumor Effect of Caffeic Acid Phenethyl Ester by Downregulating Mucosa-Associated Lymphoid Tissue 1 via AR/p53/NF-κB Signaling in Prostate Carcinoma Cells. Cancers (Basel) 2022; 14:cancers14020274. [PMID: 35053438 PMCID: PMC8773797 DOI: 10.3390/cancers14020274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE), a honeybee propolis-derived bioactive ingredient, has not been extensively elucidated regarding its effect on prostate cancer and associated mechanisms. The mucosa-associated lymphoid tissue 1 gene (MALT1) modulates NF-κB signal transduction in lymphoma and non-lymphoma cells. We investigated the functions and regulatory mechanisms of CAPE in relation to MALT1 in prostate carcinoma cells. In p53- and androgen receptor (AR)-positive prostate carcinoma cells, CAPE downregulated AR and MALT1 expression but enhanced that of p53, thus decreasing androgen-induced activation of MALT1 and prostate-specific antigen expressions. p53 downregulated the expression of MALT in prostate carcinoma cells through the putative consensus and nonconsensus p53 response elements. CAPE downregulated MALT1 expression and thus inhibited NF-κB activity in p53- and AR-negative prostate carcinoma PC-3 cells, eventually reducing cell proliferation, invasion, and tumor growth in vitro and in vivo. CAPE induced the ERK/JNK/p38/AMPKα1/2 signaling pathways; however, pretreatment with the corresponding inhibitors of MAPK or AMPK1/2 did not inhibit the CAPE effect on MALT1 blocking in PC-3 cells. Our findings verify that CAPE is an effective antitumor agent for human androgen-dependent and -independent prostate carcinoma cells in vitro and in vivo through the inhibition of MALT1 expression via the AR/p53/NF-κB signaling pathways.
Collapse
|
7
|
Radioresistance in Prostate Cancer: Focus on the Interplay between NF-κB and SOD. Antioxidants (Basel) 2021; 10:antiox10121925. [PMID: 34943029 PMCID: PMC8750009 DOI: 10.3390/antiox10121925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer occurs frequently in men and can often lead to death. Many cancers, including prostate cancer, can be initiated by oxidative insult caused by free radicals and reactive oxygen species. The superoxide dismutase family removes the oxygen-derived reactive oxygen species, and increased superoxide dismutase activity can often be protective against prostate cancer. Prostate cancer can be treated in a variety of ways, including surgery, androgen deprivation therapy, radiation therapy, and chemotherapy. The clinical trajectory of prostate cancer varies from patient to patient, but more aggressive tumors often tend to be radioresistant. This is often due to the free-radical and reactive-oxygen-species-neutralizing effects of the superoxide dismutase family. Superoxide dismutase 2, which is especially important in this regard, can be induced by the NF-κB pathway, which is an important mechanism in radioresistance. This information has enabled the development of interventions that manipulate the NF-κB mechanism to treat prostate cancer.
Collapse
|
8
|
Non-apoptotic function of caspase-8 confers prostate cancer enzalutamide resistance via NF-κB activation. Cell Death Dis 2021; 12:833. [PMID: 34482382 PMCID: PMC8418603 DOI: 10.1038/s41419-021-04126-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/01/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Caspase-8 is a unique member of caspases with a dual role in cell death and survival. Caspase-8 expression is often lost in some tumors, but increased in others, indicating a potential pro-survival function in cancer. By analyzing transcriptome of enzalutamide-resistant prostate cancer cells, we found that resistance was conferred by a mild caspase-8 upregulation that in turn led to NF-κB activation and the subsequent upregulation of the downstream IL-8. Mechanistically, we found that the pro-survival and enzalutamide-resistance-promoting features of caspase-8 were independent of its proteolytic activity, using a catalytically-inactive caspase-8 mutant. We further demonstrated that caspase-8 pro-apoptotic function was inhibited via cFLIP binding. Moreover, high caspase-8 expression was correlated with a worse prognosis in prostate cancer patients. Collectively, our work demonstrates that enzalutamide-resistance is mediated by caspase-8 upregulation and the consequent increase in NF-κB/IL-8 mediated survival signaling, highlighting caspase-8 and NF-κB as potential therapeutic targets to overcome enzalutamide-resistance in CRPC.
Collapse
|
9
|
Prostate Apoptotic Induction and NFκB Suppression by Dammarolic Acid: Mechanistic Insight into Onco-Therapeutic Action of an Aglycone Asiaticoside. Curr Issues Mol Biol 2021; 43:932-940. [PMID: 34449548 PMCID: PMC8928952 DOI: 10.3390/cimb43020066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is addressed as the second most common form of onco-threat worldwide and is usually considered as the major cause of mortality in men. Recent times have seen a surge in exploration of plant-derived components for alternative therapeutical interventions against different oncological malignancies. Dammarolic acid or Asiatic acid (AsA) is an aglycone asiaticoside that has been reported for its efficacy in several ailments including cancer. The current study aimed to investigate the anti-proliferative potency of AsA against human prostate cancer PC-3 cells. Purified AsA was diluted and PC-3 cells were exposed to 20, 40, and 80 µM concentration and incubated for 24 h. Post-exposure, PC-3 cells showcased a substantial loss of their viability at 20 µM (p < 0.05), moreover, this reduction in cell viability escalated proportionally with an increase in AsA at concentrations of 40 and 80 µM (p < 0.01; p < 0.001) respectively. AsA-impelled loss of cellular viability was also evident from the acridine orange-stained photomicrographs, which was also used to quantify the viable and apoptotic cells using Image J software. Additionally, quantification of ROS within PC-3 cells also exhibited an increase in DCF-DA-mediated fluorescence intensity post-exposure to AsA in a dose-dependent manner. AsA-induced apoptosis in PC-3 cells was shown to be associated with augmented activity of caspase-3 proportionally to the AsA concentrations. Thus, initially, this exploratory study explicated that AsA treatment leads to anti-proliferative effects in PC-3 cells by enhancing oxidative stress and inciting apoptosis en route to onset of nuclear fragmentation.
Collapse
|
10
|
Tsui KH, Chang KS, Sung HC, Hsu SY, Lin YH, Hou CP, Yang PS, Chen CL, Feng TH, Juang HH. Mucosa-Associated Lymphoid Tissue 1 Is an Oncogene Inducing Cell Proliferation, Invasion, and Tumor Growth via the Upregulation of NF-κB Activity in Human Prostate Carcinoma Cells. Biomedicines 2021; 9:biomedicines9030250. [PMID: 33802402 PMCID: PMC8000469 DOI: 10.3390/biomedicines9030250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is one of the most common seen malignancies and the leading cause of cancer-related death among men. Given the importance of early diagnosis and treatment, it is worth to identify a potential novel therapeutic target for prostate cancer. Mucosa-associated lymphoid tissue 1 (MALT1) is a novel gene involved in nuclear factor κB (NF-κB) signal transduction by acting as an adaptor protein and paracaspase, with an essential role in inflammation and tumorigenesis in many cancers. This study investigated the functions and the potential regulatory mechanisms of MALT1 in the human prostate cancer cells. We found that MALT1 is abundant in prostate cancer tissues. MALT1 facilitated NF-κB subunits (p50 and p65) nuclear translocation to induce gene expression of interleukin 6 (IL-6) and C-X-C motif chemokine 5 (CXCL5) in prostate carcinoma cells. MALT1 promoted cell proliferation, invasion, and tumor growth in vitro and in vivo. MALT1 enhanced NF-κB activity in prostate carcinoma cells; moreover, NF-κB induced MALT1 expression determined by reporter and immunoblot assays, implying there is a positive feedback loop between MALT1 and NF-κB. In conclusion, MALT1 is a NF-κB-induced oncogene in the human prostate carcinoma cells.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Pei-Shan Yang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118112
| |
Collapse
|
11
|
Lambrou GI, Hatziagapiou K, Vlahopoulos S. Inflammation and tissue homeostasis: the NF-κB system in physiology and malignant progression. Mol Biol Rep 2020; 47:4047-4063. [PMID: 32239468 DOI: 10.1007/s11033-020-05410-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Disruption of tissue function activates cellular stress which triggers a number of mechanisms that protect the tissue from further damage. These mechanisms involve a number of homeostatic modules, which are regulated at the level of gene expression by the transactivator NF-κB. This transcription factor shifts between activation and repression of discrete, cell-dependent gene expression clusters. Some of its target genes provide feedback to NF-κB itself, thereby strengthening the inflammatory response of the tissue and later terminating inflammation to facilitate restoration of tissue homeostasis. Disruption of key feedback modules for NF-κB in certain cell types facilitates the survival of clones with genomic aberrations, and protects them from being recognized and eliminated by the immune system, to enable thereby carcinogenesis.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece.
| |
Collapse
|
12
|
NF-κB signaling promotes castration-resistant prostate cancer initiation and progression. Pharmacol Ther 2020; 211:107538. [PMID: 32201312 DOI: 10.1016/j.pharmthera.2020.107538] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Prostate Cancer (PCa) is the second leading cause of cancer-related death in men. Adenocarcinoma of the prostate is primarily composed of Androgen Receptor-positive (AR+) luminal cells that require AR transcriptional activity for survival and proliferation. As a consequence, androgen deprivation and anti-androgens are used to treat PCa patients whose disease progresses following attempted surgical or radiation interventions. Unfortunately, patients with advanced PCa can develop incurable castration-resistant PCa (CRPCa) due to mutated, variant, or overexpressed AR. Conversely, low or no AR accumulation or activity can also underlie castration resistance. Whether CRPCa is due to aberrant AR activity or AR independence, NF-κB signaling is also implicated in the initiation and maintenance of CRPCa and, thus, the NF-κB pathway may be a promising alternative therapeutic target. In this review, we present evidence that NF-κB signaling promotes CRPCa initiation and progression, describe the dichotomic role of NF-κB in the regulation of AR expression and activity and outline studies that explore NF-κB inhibitors as PCa therapies.
Collapse
|
13
|
Ballar Kirmizibayrak P, Erbaykent-Tepedelen B, Gozen O, Erzurumlu Y. Divergent Modulation of Proteostasis in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:117-151. [PMID: 32274755 DOI: 10.1007/978-3-030-38266-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteostasis regulates key cellular processes such as cell proliferation, differentiation, transcription, and apoptosis. The mechanisms by which proteostasis is regulated are crucial and the deterioration of cellular proteostasis has been significantly associated with tumorigenesis since it specifically targets key oncoproteins and tumor suppressors. Prostate cancer (PCa) is the second most common cause of cancer death in men worldwide. Androgens mediate one of the most central signaling pathways in all stages of PCa via the androgen receptor (AR). In addition to their regulation by hormones, PCa cells are also known to be highly secretory and are particularly prone to ER stress as proper ER function is essential. Alterations in various complex signaling pathways and cellular processes including cell cycle control, transcription, DNA repair, apoptosis, cell adhesion, epithelial-mesenchymal transition (EMT), and angiogenesis are critical factors influencing PCa development through key molecular changes mainly by posttranslational modifications in PCa-related proteins, including AR, NKX3.1, PTEN, p53, cyclin D1, and p27. Several ubiquitin ligases like MDM2, Siah2, RNF6, CHIP, and substrate-binding adaptor SPOP; deubiquitinases such as USP7, USP10, USP26, and USP12 are just some of the modifiers involved in the regulation of these key proteins via ubiquitin-proteasome system (UPS). Some ubiquitin-like modifiers, especially SUMOs, have been also closely associated with PCa. On the other hand, the proteotoxicity resulting from misfolded proteins and failure of ER adaptive capacity induce unfolded protein response (UPR) that is an indispensable signaling mechanism for PCa development. Lastly, ER-associated degradation (ERAD) also plays a crucial role in prostate tumorigenesis. In this section, the relationship between prostate cancer and proteostasis will be discussed in terms of UPS, UPR, SUMOylation, ERAD, and autophagy.
Collapse
Affiliation(s)
| | | | - Oguz Gozen
- Faculty of Medicine, Department of Physiology, Ege University, Izmir, Turkey
| | - Yalcin Erzurumlu
- Faculty of Pharmacy, Department of Biochemistry, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
14
|
van Eijk M, Boosman RJ, Schinkel AH, Huitema ADR, Beijnen JH. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: relevance for resistance to taxanes. Cancer Chemother Pharmacol 2019; 84:487-499. [PMID: 31309254 PMCID: PMC6682574 DOI: 10.1007/s00280-019-03905-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Enzymes of the cytochrome P450 (CYP) subfamily 3A and 2C play a major role in the metabolism of taxane anticancer agents. While their function in hepatic metabolism of taxanes is well established, expression of these enzymes in solid tumors may play a role in the in situ metabolism of drugs as well, potentially affecting the intrinsic taxane susceptibility of these tumors. This article reviews the available literature on intratumoral expression of docetaxel- and paclitaxel-metabolizing enzymes in mammary, prostate, lung, endometrial, and ovarian tumors. Furthermore, the clinical implications of the intratumoral expression of these enzymes are reviewed and the potential of concomitant treatment with protease inhibitors (PIs) as a method to inhibit CYP3A4-mediated metabolism is discussed.
Collapse
Affiliation(s)
- Maarten van Eijk
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - René J Boosman
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
15
|
Tunçel D, Bayol NÜ. Pankreas duktal adenokarsinomunda NF-Kappa B ekspresyonu. CUKUROVA MEDICAL JOURNAL 2019. [DOI: 10.17826/cumj.481396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev 2019; 34:56-66. [DOI: 10.1016/j.blre.2018.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
|
17
|
Complex Systems Biology Approach in Connecting PI3K-Akt and NF-κB Pathways in Prostate Cancer. Cells 2019; 8:cells8030201. [PMID: 30813597 PMCID: PMC6468646 DOI: 10.3390/cells8030201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/05/2019] [Accepted: 02/24/2019] [Indexed: 12/24/2022] Open
Abstract
Phosphatidylinositol 3′-OH kinase (PI3K)-Akt and transcription factor NF-κB are important molecules involved in the regulation of cell proliferation, apoptosis, and oncogenesis. Both PI3K-Akt and Nuclear Factor-kappaB (NF-κB) are involved in the development and progression of prostate cancer, however, the crosstalk and molecules connecting these pathway remains unclear. A multilevel system representation of the PI3K-Akt and NF-κB pathways was constructed to determine which signaling components contribute to adaptive behavior and coordination. In silico experiments conducted using PI3K-Akt and NF-κB, mathematical models were modularized using biological functionality and were validated using a cell culture system. Our analysis demonstrates that a component representing the IκB kinase (IKK) complex can coordinate these two pathways. It is expected that interruption of this molecule could represent a potential therapeutic target for prostate cancer.
Collapse
|
18
|
Inoue S, Ide H, Mizushima T, Jiang G, Netto GJ, Gotoh M, Miyamoto H. Nuclear Factor-κB Promotes Urothelial Tumorigenesis and Cancer Progression via Cooperation with Androgen Receptor Signaling. Mol Cancer Ther 2018; 17:1303-1314. [PMID: 29592878 DOI: 10.1158/1535-7163.mct-17-0786] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/13/2017] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
We investigated the role of NF-κB in the development and progression of urothelial cancer as well as cross-talk between NF-κB and androgen receptor (AR) signals in urothelial cells. Immunohistochemistry in surgical specimens showed that the expression levels of NF-κB/p65 (P = 0.015)/phospho-NF-κB/p65 (P < 0.001) were significantly elevated in bladder tumors, compared with those in nonneoplastic urothelial tissues. The rates of phospho-NF-κB/p65 positivity were also significantly higher in high-grade (P = 0.015)/muscle-invasive (P = 0.033) tumors than in lower grade/non-muscle-invasive tumors. Additionally, patients with phospho-NF-κB/p65-positive muscle-invasive bladder cancer had significantly higher risks of disease progression (P < 0.001) and cancer-specific mortality (P = 0.002). In immortalized human normal urothelial SVHUC cells stably expressing AR, NF-κB activators and inhibitors accelerated and prevented, respectively, their neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene. Bladder tumors were identified in 56% (mock), 89% (betulinic acid), and 22% (parthenolide) of N-butyl-N-(4-hydroxybutyl)nitrosamine-treated male C57BL/6 mice at 22 weeks of age. NF-κB activators and inhibitors also significantly induced and reduced, respectively, cell proliferation/migration/invasion of AR-positive bladder cancer lines, but not AR-knockdown or AR-negative lines, and their growth in xenograft-bearing mice. In both nonneoplastic and neoplastic urothelial cells, NF-κB activators/inhibitors upregulated/downregulated, respectively, AR expression, whereas AR overexpression was associated with increases in the expression levels of NF-κB/p65 and phospho-NF-κB/p65. Thus, NF-κB appeared to be activated in bladder cancer, which was associated with tumor progression. NF-κB activators/inhibitors were also found to modulate tumorigenesis and tumor outgrowth in AR-activated urothelial cells. Accordingly, NF-κB inhibition, together with AR inactivation, has the potential of being an effective chemopreventive and/or therapeutic approach for urothelial carcinoma. Mol Cancer Ther; 17(6); 1303-14. ©2018 AACR.
Collapse
Affiliation(s)
- Satoshi Inoue
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Ide
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Taichi Mizushima
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guiyang Jiang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - George J Netto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Momokazu Gotoh
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
19
|
SUMOylation of TBL1 and TBLR1 promotes androgen-independent prostate cancer cell growth. Oncotarget 2018; 7:41110-41122. [PMID: 27129164 PMCID: PMC5173046 DOI: 10.18632/oncotarget.9002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/29/2016] [Indexed: 11/25/2022] Open
Abstract
Chronic inflammation is strongly associated with prostate cancer pathogenesis. Transducin β-like protein (TBL1) and Transducin β-like 1X-linked receptor 1 (TBLR1) have been identified recently as a coactivator for NF-κB-mediated transcription; however, the underlying mechanism by which TBL1 and TBLR1 activate NF-κB function during inflammation remains unknown. Here, we demonstrate that cytokine production is significantly elevated in androgen-independent PC-3 prostate cancer cells compared with androgen-dependent LNCaP prostate cancer cells. Elevated cytokine production positively correlates with the TBL1 and TBLR1 SUMOylation level in PC-3 cells. We show that both TBL1 and TBLR1 are SUMOylated in response to TNF-α treatment, and this increases formation of the TBL1-TBLR1-NF-κB complex, which leads to NF-κB-mediated transcriptional activation of cytokine gene expression. Conversely, SENP1-mediated deSUMOylation of TBL1 and TBLR1 inhibits NF-κB-target gene expression by dissociating TBL1 and TBLR1 from the nuclear hormone receptor corepressor (NCoR) complex. TBL1 knockdown substantially suppresses inflammatory signaling and PC-3 cell proliferation. Collectively, these results suggest that targeted SUMOylation of TBL1 and TBLR1 may be a useful strategy for therapeutic treatment of androgen-independent prostate cancer.
Collapse
|
20
|
Tewari AK, Stockert JA, Yadav SS, Yadav KK, Khan I. Inflammation and Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1095:41-65. [PMID: 30229548 DOI: 10.1007/978-3-319-95693-0_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic inflammation resulting from infections, altered metabolism, inflammatory diseases or other environmental factors can be a major contributor to the development of several types of cancer. In fact around 20% of all cancers are linked to some form of inflammation. Evidence gathered from genetic, epidemiological and molecular pathological studies suggest that inflammation plays a crucial role at various stages of prostatic carcinogenesis and tumor progression. These include initiation, promotion, malignant conversion, invasion, and metastasis. Detailed basic and clinical research in these areas, focused towards understanding the etiology of prostatic inflammation, as well as the exact roles that various signaling pathways play in promoting tumor growth, is critical for understanding this complex process. The information gained would be useful in developing novel therapeutic strategies such as molecular targeting of inflammatory mediators and immunotherapy-based approaches.
Collapse
Affiliation(s)
- Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Jennifer A Stockert
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Shalini S Yadav
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kamlesh K Yadav
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Irtaza Khan
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
21
|
Chen S, Nimick M, Cridge AG, Hawkins BC, Rosengren RJ. Anticancer potential of novel curcumin analogs towards castrate-resistant prostate cancer. Int J Oncol 2017; 52:579-588. [PMID: 29207190 DOI: 10.3892/ijo.2017.4207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/14/2017] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer is initially sensitive to hormone therapy; however, over time the majority of patients progress to a hormone-insensitive form classified as castration-resistant prostate cancer (CRPC). CRPC is highly metastatic and patients have a poor prognosis. Thus, new drugs for the treatment of this disease are required. In this study, we therefore examined the cytotoxic effects and anticancer mechanism(s) of action of second generation curcumin analogs towards CRPC cells. For this purpose, PC3 and DU145 cells were treated with a series of curcumin analogs at 0-10 µM for 72 h and cytotoxicity was determined by the sulforhodamine B (SRB) assay. Two compounds, 1-isopropyl-3,5-bis(pyridin-3-ylmethylene)-4-piperidone (RL118) and 1-methyl-3,5-[(6-methoxynaphthalen-2-yl)methylene]-4-piperidone (RL121), were found to have the most potent cytotoxic effect with EC50 values of 0.50 and 0.58 µM in the PC3 cells and EC50 values of 0.76 and 0.69 µM in the DU145 cells, respectively. Thus, further experiments were performed focusing on these two compounds. Flow cytometry was performed to determine their effects on the cell cycle and apoptosis. Both analogs increased the number of cells in the G2/M phase of the cell cycle and induced apoptosis. Specifically, in the PC3 cells, RL121 increased the number of cells in the G2/M phase by 86% compared to the control, while RL118 increased the number of cells in the G2/M phase by 42% compared to the control after 24 h. Moreover, both RL118 and RL121 induced the apoptosis of both cell lines. In the DU145 cells, a 38-fold increase in the number of apoptotic cells was elicited by RL118 and a 78-fold increase by RL121 compared to the control. Furthermore, the effects of both analogs on the expression of key proteins involved in cell proliferation were also determined by western blot analysis. The results revealed that both analogs inhibited the expression of nuclear factor (NF)-κB (p65/RelA), eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), p-4E-BP1, mammalian target of rapamycin (mTOR), p-mTOR, AKT and p-AKT. Thus, the findings of this study provide evidence that RL118 and RL121 have potent anticancer activity against CPRC cells, and both analogs warrant further investigation in vivo.
Collapse
Affiliation(s)
- Shuli Chen
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Mhairi Nimick
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Andrew G Cridge
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Bill C Hawkins
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
22
|
Mitrakas L, Gravas S, Papandreou C, Koukoulis G, Karasavvidou F, Dimakopoulos G, Weingärtner K, Karatzas A, Zachos I, Tzortzis V. Primary High-Grade Non-Muscle-Invasive Bladder Cancer: High NFκB Expression in Tumor Specimens Distinguishes Patients Who are at Risk for Disease Progression. Pathol Oncol Res 2017; 25:225-231. [DOI: 10.1007/s12253-017-0340-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 10/20/2017] [Indexed: 11/24/2022]
|
23
|
Egan SM, Karasik E, Ellis L, Gollnick SO. miR-30e* is overexpressed in prostate cancer and promotes NF-κB-mediated proliferation and tumor growth. Oncotarget 2017; 8:67626-67638. [PMID: 28978058 PMCID: PMC5620198 DOI: 10.18632/oncotarget.18795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/02/2017] [Indexed: 12/30/2022] Open
Abstract
According to the CDC prostate cancer (CaP) has the highest incidence and second highest mortality rate amongst cancers in American men. Constitutive NF-κB activation is a hallmark of CaP and this pathway drives many pro-tumorigenic characteristics of CaP cells, including cell proliferation and survival. An activated NF-κB gene signature is predictive of CaP progression and biochemical recurrence following therapeutic intervention. However, the mechanisms that perpetuate NF-κB activation are incompletely understood. Genes that control NF-κB activity are rarely mutated in CaP suggesting that epigenetic mechanisms may contribute to constitutive NF-κB activation. microRNAs (miRs) epigenetically regulate many genes involved with NF-κB activation. IκBα is a direct inhibitor of NF-κB; it binds to and sequesters NF-κB in the cytoplasm resulting in functional inhibition. IκBα is a target gene of miR-30e* yet the expression and oncological impact of miR-30e* in CaP is unknown. We report that miR-30e* expression is elevated in multiple murine models of CaP and is most pronounced in late stage disease. miR-30e* drives CaP proliferation and tumor growth through inhibition of IκBα, which results in chronic activation of NF-κB. Additionally, we show that inhibition of miR-30e* improves chemotherapeutic control of CaP. Thus, miR-30e* may prove to be a novel clinical target whose inhibition leads to decreased CaP cell proliferation and sensitization of CaP cells to chemotherapeutics.
Collapse
Affiliation(s)
- Shawn M. Egan
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Leigh Ellis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sandra O. Gollnick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| |
Collapse
|
24
|
Expression of PIM kinases in Reed-Sternberg cells fosters immune privilege and tumor cell survival in Hodgkin lymphoma. Blood 2017; 130:1418-1429. [PMID: 28698206 DOI: 10.1182/blood-2017-01-760702] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/02/2017] [Indexed: 12/26/2022] Open
Abstract
Reed-Sternberg (RS) cells of classical Hodgkin lymphoma (cHL) express multiple immunoregulatory proteins that shape the cHL microenvironment and allow tumor cells to evade immune surveillance. Expression of certain immunoregulatory proteins is modulated by prosurvival transcription factors, such as NFκB and STATs. Because these factors also induce expression of the oncogenic PIM1/2/3 serine/threonine kinases, and as PIMs modulate transcriptional activity of NFκB and STATs, we hypothesized that these kinases support RS cell survival and foster their immune privilege. Here, we investigated PIM1/2/3 expression in cHL and assessed their role in developing RS cell immune privilege and survival. PIM1/2/3 were ubiquitously expressed in primary and cultured RS cells, and their expression was driven by JAK-STAT and NFκB activity. Genetic or chemical PIM inhibition with a newly developed pan-PIM inhibitor, SEL24-B489, induced RS cell apoptosis. PIM inhibition decreased cap-dependent protein translation, blocked JAK-STAT signaling, and markedly attenuated NFκB-dependent gene expression. In a cHL xenograft model, SEL24-B489 delayed tumor growth by 95.8% (P = .0002). Furthermore, SEL24-B489 decreased the expression of multiple molecules engaged in developing the immunosuppressive microenvironment, including galectin-1 and PD-L1/2. In coculture experiments, T cells incubated with SEL24-B489-treated RS cells exhibited higher expression of activation markers than T cells coincubated with control RS cells. Taken together, our data indicate that PIM kinases in cHL exhibit pleiotropic effects, orchestrating tumor immune escape and supporting RS cell survival. Inhibition of PIM kinases decreases RS cell viability and disrupts signaling circuits that link these cells with their niches. Thus, PIM kinases are promising therapeutic targets in cHL.
Collapse
|
25
|
Dasari C, Yaghnam DP, Walther R, Ummanni R. Tumor protein D52 (isoform 3) contributes to prostate cancer cell growth via targeting nuclear factor-κB transactivation in LNCaP cells. Tumour Biol 2017; 39:1010428317698382. [PMID: 28466782 DOI: 10.1177/1010428317698382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Our previous study showed that TPD52 overexpression could increase migration and proliferation of LNCaP cells contributing to the development of prostate cancer. However, mechanism of TPD52 in prostate cancer initiation and progression remains elusive. In this study, we investigated the possible underlying mechanism of TPD52 in prostate cancer progression. In LNCaP cells, TPD52 expression was altered by transfecting with either EGFP-TPD52 or specific short hairpin RNA. Overexpression of TPD52 protected LNCaP cells from apoptosis through elevated anti-apoptotic proteins XIAP, Bcl-2, and Cyclin D1, whereas Bax was downregulated. Mechanistically, we found that TPD52 confers transactivation of nuclear factor-κB, thereby enhancing its target gene expression in LNCaP cells. TPD52 promotes LNCaP cell invasion probably via increased matrix metalloproteinase 9 expression and its activity while tissue inhibitor of metalloproteinase expression is significantly downregulated. Notably, TPD52 might be involved in cell adhesion, promoting tumor metastasis by inducing loss of E-cadherin, expression of vimentin and vascular cell adhesion molecule, and additionally activation of focal adhesion kinase. Furthermore, TPD52 directly interacts with nuclear factor-κB p65 (RelA) and promotes accumulation of phosphorylated nuclear factor-κB (p65)S536 that is directly linked with nuclear factor-κB transactivation. Indeed, depletion of TPD52 or inhibition of nuclear factor-κB in TPD52-positive cells inhibited secretion of tumor-related cytokines and contributes to the activation of STAT3, nuclear factor-κB, and Akt. Interestingly, in TPD52 overexpressing LNCaP cells, nuclear factor-κB inhibition prevented the autocrine/paracrine activation of STAT3. TPD52 activates STAT3 through ascertaining a cross talk between the nuclear factor-κB and the STAT3 signaling systems. Collectively, these results reveal mechanism by which TPD52 is associated with prostate cancer progression and highlight the approach for therapeutic targeting of TPD52 in prostate cancer.
Collapse
Affiliation(s)
- Chandrashekhar Dasari
- 1 Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,2 Centre for Academy of Scientific & Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Dattu Prasad Yaghnam
- 1 Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Reinhard Walther
- 3 Department of Medical Biochemistry and Molecular Biology, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - Ramesh Ummanni
- 1 Center for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| |
Collapse
|
26
|
Domińska K, Kowalska K, Matysiak ZE, Płuciennik E, Ochędalski T, Piastowska-Ciesielska AW. Regulation of mRNA gene expression of members of the NF-κB transcription factor gene family by angiotensin II and relaxin 2 in normal and cancer prostate cell lines. Mol Med Rep 2017; 15:4352-4359. [PMID: 28487955 DOI: 10.3892/mmr.2017.6514] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/24/2017] [Indexed: 11/06/2022] Open
Abstract
An increasing number of researchers are focusing on the influence of local peptide hormones such as angiotensin II (Ang II) and relaxin 2 (RLN2) in the regulation of inflammation and carcinogenesis. The interaction between the renin‑angiotensin system (RAS) and relaxin family peptide system (RFPS) is known to influence the proliferation, adhesion and migration of normal and cancer prostate cell lines. The aim of the present study was to evaluate changes in the expression of nuclear factor‑κB subunit 1 (NFKB1), nuclear factor‑κB subunit 2 (NFKB2), REL proto‑oncogene nuclear factor‑κB p65 subunit (REL), RELA proto‑oncogene nuclear factor‑κB subunit (RELA) and RELB proto‑oncogene nuclear factor‑κB subunit (RELB) mRNA caused by Ang II and RLN2. The members of NF‑kB family are involved in many processes associated with cancer development and metastasis. Reverse transcription‑quantitative polymerase chain reaction analysis identified that both peptide hormones have an influence on the relative expression of nuclear factor‑κB. Following treatment with either peptide, NFKB1 expression was downregulated in all prostate cancer cell lines (LNCaP, DU‑145 and PC3), but not in normal epithelial cells (PNT1A). Conversely, RELB mRNA was enhanced only in non‑cancerous prostate cells. RELA expression was strongly stimulated in the most aggressive cell line, whereas REL mRNA was unchanged. In many cases, the effect was strictly dependent on the cell line and/or the type of peptide: Ang II increased expression of both RELA and REL genes in the androgen‑dependent cell line while RLN2 enhanced NFKB2 and RELA mRNA in androgen‑independent cells (DU‑145). Further research is needed to understand the regulation of NF‑κB family members by key renin‑angiotensin system and RFPS peptides in prostate cancer cells; however, prostate carcinogenesis appears to be influenced by the balance between the cross‑regulation of nuclear factor‑κB (NF‑κB) and androgen receptor pathways by Ang II and relaxin 2.
Collapse
Affiliation(s)
- Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz 90‑752, Poland
| | - Karolina Kowalska
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz 90‑752, Poland
| | | | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90‑752, Poland
| | - Tomasz Ochędalski
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz 90‑752, Poland
| | | |
Collapse
|
27
|
Gottardo MF, Moreno Ayala M, Ferraris J, Zárate S, Pisera D, Candolfi M, Jaita G, Seilicovich A. Humanin inhibits apoptosis in pituitary tumor cells through several signaling pathways including NF-κB activation. J Cell Commun Signal 2017; 11:329-340. [PMID: 28378125 DOI: 10.1007/s12079-017-0388-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/20/2017] [Indexed: 02/04/2023] Open
Abstract
Humanin (HN) and Rattin (HNr), its homologous in the rat, are peptides with cytoprotective action in several cell types such as neurons, lymphocytes and testicular germ cells. Previously, we have shown that HNr is expressed in pituitary cells and that HN inhibited the apoptotic effect of TNF-α in both normal and tumor pituitary cells. The aim of the present study was to identify signaling pathways that mediate the antiapoptotic effect of HN in anterior pituitary cells from ovariectomized rats and in GH3 cells, a somatolactotrope cell line. We assessed the role of STAT3, JNK, Akt and MAPKs as well as proteins of the Bcl-2 family, previously implicated in the antiapoptotic effect of HN. We also evaluated the participation of NF-κB in the antiapoptotic action of HN. STAT3 inhibition reversed the inhibitory effect of HN on TNF-α-induced apoptosis in normal and pituitary tumor cells, indicating that STAT3 signaling pathway mediates the antiapoptotic effect of HN on pituitary cells. Inhibition of NF-κB pathway did not affect action of HN on normal anterior pituitary cells but blocked the cytoprotective effect of HN on TNF-α-induced apoptosis of GH3 cells, suggesting that the NF-κB pathway is involved in HN action in tumor pituitary cells. HN also induced NF-κB-p65 nuclear translocation in these cells. In pituitary tumor cells, JNK and MEK inhibitors also impaired HN cytoprotective action. In addition, HN increased Bcl-2 expression and decreased Bax mitochondrial translocation. Since HN expression in GH3 cells is higher than in normal pituitary cells, we may suggest that through multiple pathways HN could be involved in pituitary tumorigenesis.
Collapse
Affiliation(s)
- María Florencia Gottardo
- Facultad de Medicina, Departamento de Biología Celular e Histología, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.,CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Mariela Moreno Ayala
- CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Jimena Ferraris
- Facultad de Medicina, Departamento de Biología Celular e Histología, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.,CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Sandra Zárate
- Facultad de Medicina, Departamento de Biología Celular e Histología, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.,CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Daniel Pisera
- CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Marianela Candolfi
- CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Gabriela Jaita
- Facultad de Medicina, Departamento de Biología Celular e Histología, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.,CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Facultad de Medicina, Departamento de Biología Celular e Histología, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina. .,CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Ramalingam S, Ramamurthy VP, Njar VCO. Dissecting major signaling pathways in prostate cancer development and progression: Mechanisms and novel therapeutic targets. J Steroid Biochem Mol Biol 2017; 166:16-27. [PMID: 27481707 PMCID: PMC7371258 DOI: 10.1016/j.jsbmb.2016.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed non-cutaneous malignancy and leading cause of cancer mortality in men. At the initial stages, prostate cancer is dependent upon androgens for their growth and hence effectively combated by androgen deprivation therapy (ADT). However, most patients eventually recur with an androgen deprivation-resistant phenotype, referred to as castration-resistant prostate cancer (CRPC), a more aggressive form for which there is no effective therapy presently available. The current review is an attempt to cover and establish an understanding of some major signaling pathways implicated in prostate cancer development and castration-resistance, besides addressing therapeutic strategies that targets the key signaling mechanisms.
Collapse
Affiliation(s)
- Senthilmurugan Ramalingam
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Vidya P Ramamurthy
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Vincent C O Njar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA.
| |
Collapse
|
29
|
Sun W, Guo L, Shao G, Liu X, Guan Y, Su L, Zhao S. Suppression of LASP-1 attenuates the carcinogenesis of prostatic cancer cell lines: Key role of the NF-κB pathway. Oncol Rep 2016; 37:341-347. [PMID: 27840958 DOI: 10.3892/or.2016.5223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/11/2016] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed cancers among males worldwide and causes a considerable number of deaths each year. One of the newly explored targets for the development of therapies against PCa is LIM and SH3 protein 1 (LASP-1). In the present study, the function of LASP-1 in the oncogenesis and metastasis of PCa was investigated using a series of in vitro experiments. Moreover, the mechanism through which LASP-1 exerted its effect on the carcinogenesis of PCa was also explored. The expression levels of LASP-1 in clinical PCa specimens were determined both at the mRNA and protein levels. Afterwards, the activity of LASP-1 in human PCa cell lines PC3 and DU145 was inhibited using a short hairpin RNA (shRNA) interfering method. The effects of LASP-1 knockdown on the cell growth, apoptosis, cell cycle distribution, migration and invasion were assessed. It was demonstrated that the expression of LASP-1 was significantly higher in the clinical PCa tissues than the level in the corresponding para-carcinoma tissues. Following the knockdown of the LASP-1 gene in human PCa cell lines, the viability, migration and invasion of the cancer cells were decreased. It was also demonstrated that the change in the cell viability and motile ability were associated with an induction of cell apoptosis and G1 phase cell cycle arrest. Based on the results of the detection of the expression of NF-κB-related factors, it was indicated that LASP-1 may affect the carcinogenesis of PCa through a NF-κB inhibition-dependent manner. Although the detailed explanation of the mechanism of LASP-1 in the carcinogenesis of PCa requires further elucidation, the present study highlights the potential of LASP-1 as a promising therapeutic target to ameliorate the oncogenesis and metastasis of PCa.
Collapse
Affiliation(s)
- Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Liqiang Guo
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guangfeng Shao
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiangguo Liu
- Shandong University School of Life Sciences, Jinan, Shandong 250100, P.R. China
| | - Yong Guan
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ling Su
- Shandong University School of Life Sciences, Jinan, Shandong 250100, P.R. China
| | - Shengtian Zhao
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
30
|
Qaiser F, Trembley JH, Sadiq S, Muhammad I, Younis R, Hashmi SN, Murtaza B, Rector TS, Naveed AK, Ahmed K. Examination of CK2α and NF-κB p65 expression in human benign prostatic hyperplasia and prostate cancer tissues. Mol Cell Biochem 2016; 420:43-51. [PMID: 27435858 PMCID: PMC6668611 DOI: 10.1007/s11010-016-2765-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/09/2016] [Indexed: 02/08/2023]
Abstract
Protein kinase CK2 plays a critical role in cell growth, proliferation, and suppression of cell death. CK2 is overexpressed, especially in the nuclear compartment, in the majority of cancers, including prostate cancer (PCa). CK2-mediated activation of transcription factor nuclear factor kappa B (NF-κB) p65 is a key step in cellular proliferation, resulting in translocation of NF-κB p65 from the cytoplasm to the nucleus. As CK2 expression and activity are also elevated in benign prostatic hyperplasia (BPH), we sought to increase the knowledge of CK2 function in benign and malignant prostate by examination of the relationships between nuclear CK2 and nuclear NF-κB p65 protein expression. The expression level and localization of CK2α and NF-κB p65 proteins in PCa and BPH tissue specimens was determined. Nuclear CK2α and NF-κB p65 protein levels are significantly higher in PCa compared with BPH, and these proteins are positively correlated with each other in both diseases. Nuclear NF-κB p65 levels correlated with Ki-67 or with cytoplasmic NF-κB p65 expression in BPH, but not in PCa. The findings provide information that combined analysis of CK2α and NF-κB p65 expression in prostate specimens relates to the disease status. Increased nuclear NF-κB p65 expression levels in PCa specifically related to nuclear CK2α levels, indicating a possible CK2-dependent relationship in malignancy. In contrast, nuclear NF-κB p65 protein levels related to both Ki-67 and cytoplasmic NF-κB p65 levels exclusively in BPH, suggesting a potential separate impact for NF-κB p65 function in proliferation for benign disease as opposed to malignant disease.
Collapse
Affiliation(s)
- Fatima Qaiser
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen H Trembley
- Department of Veterans Affairs, Cellular and Molecular Biochemistry Research Laboratory (151) Research Service, Minneapolis VA Health Care System, One Veterans Drive, Minneapolis, MN, 55417, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sarah Sadiq
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Sciences and Technology, Islamabad, Pakistan
| | - Iqbal Muhammad
- Department of Histopathology, Army Medical College, Rawalpindi, Pakistan
| | - Rubina Younis
- Department of Histopathology, Army Medical College, Rawalpindi, Pakistan
| | - Shoaib Naiyar Hashmi
- Department of Histopathology, Armed Forces Institute of Pathology, Combined Military Hospital, Rawalpindi, Pakistan
| | - Badar Murtaza
- Armed Forces Institute of Urology, Combined Military Hospital, Rawalpindi, Pakistan
| | - Thomas S Rector
- Department of Veterans Affairs, Cellular and Molecular Biochemistry Research Laboratory (151) Research Service, Minneapolis VA Health Care System, One Veterans Drive, Minneapolis, MN, 55417, USA
| | - Abdul Khaliq Naveed
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Sciences and Technology, Islamabad, Pakistan
- Al-Mizan Campus, Riphah International University, 274 Peshawar Road, Rawalpindi, Pakistan
| | - Khalil Ahmed
- Department of Veterans Affairs, Cellular and Molecular Biochemistry Research Laboratory (151) Research Service, Minneapolis VA Health Care System, One Veterans Drive, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
31
|
Shukla S, Kanwal R, Shankar E, Datt M, Chance MR, Fu P, MacLennan GT, Gupta S. Apigenin blocks IKKα activation and suppresses prostate cancer progression. Oncotarget 2016; 6:31216-32. [PMID: 26435478 PMCID: PMC4741599 DOI: 10.18632/oncotarget.5157] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/24/2015] [Indexed: 12/27/2022] Open
Abstract
IKKα has been implicated as a key regulator of oncogenesis and driver of the metastatic process; therefore is regarded as a promising therapeutic target in anticancer drug development. In spite of the progress made in the development of IKK inhibitors, no potent IKKα inhibitor(s) have been identified. Our multistep approach of molecular modeling and direct binding has led to the identification of plant flavone apigenin as a specific IKKα inhibitor. Here we report apigenin, in micro molar range, inhibits IKKα kinase activity, demonstrates anti-proliferative and anti-invasive activities in functional cell based assays and exhibits anticancer efficacy in experimental tumor model. We found that apigenin directly binds with IKKα, attenuates IKKα kinase activity and suppresses NF-ĸB/p65 activation in human prostate cancer PC-3 and 22Rv1 cells much more effectively than IKK inhibitor, PS1145. We also showed that apigenin caused cell cycle arrest similar to knockdown of IKKα in prostate cancer cells. Studies in xenograft mouse model indicate that apigenin feeding suppresses tumor growth, lowers proliferation and enhances apoptosis. These effects correlated with inhibition of p-IKKα, NF-ĸB/p65, proliferating cell nuclear antigen and increase in cleaved caspase 3 expression in a dose-dependent manner. Overall, our results suggest that inhibition of cell proliferation, invasiveness and decrease in tumor growth by apigenin are mediated by its ability to suppress IKKα and downstream targets affecting NF-ĸB signaling pathways.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Rajnee Kanwal
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Eswar Shankar
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Manish Datt
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Mark R Chance
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Pingfu Fu
- Department of Epidemiology & Biostatistics, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Gregory T MacLennan
- Department of Pathology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,Department of Nutrition, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.,Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA.,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| |
Collapse
|
32
|
Chemopreventive effect of 18β-glycyrrhetinic acid via modulation of inflammatory markers and induction of apoptosis in human hepatoma cell line (HepG2). Mol Cell Biochem 2016; 416:169-77. [PMID: 27116616 DOI: 10.1007/s11010-016-2705-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/13/2016] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is one of the most common lethal diseases worldwide and there is no effective treatment till date. Natural products derived from the plants play an important role in chemoprevention and act as therapeutic antitumor agents. Licorice is a plant that has been used in food and medicine for the treatment of various diseases. 18β-Glycyrrhetinic acid (18β-GA), a pentacyclic triterpenoid obtained from the roots of licorice plant, is reported to possess various pharmacological properties such as antitumor and antiinflammatory activities. The present study was designed to elucidate the chemopreventive effect of 18β-GA through antiinflammation, antiproliferation, and induction of apoptosis in human hepatoma cell line HepG2. 18β-GA significantly inhibits the proliferation of HepG2 cell without affecting the normal liver cell line (Chang's). In the present study, 18β-GA increased the formation of reactive oxygen species, nitric oxide production, and loss of mitochondrial membrane potential, suggesting the involvement of 18β-GA in apoptosis which was also confirmed by assessing the markers involved in apoptosis like caspase-3, caspase-9, Bax:Bcl-2 ratio, and cleaved PARP. 18β-GA also downregulated the expression of inflammatory proteins such as NF-κB, iNOS, and COX-2. Keeping these data into consideration, our results suggest that 18β-GA may be used as a chemopreventive agent in liver cancer.
Collapse
|
33
|
Zhang Y, Lapidus RG, Liu P, Choi EY, Adediran S, Hussain A, Wang X, Liu X, Dan HC. Targeting IκB Kinase β/NF-κB Signaling in Human Prostate Cancer by a Novel IκB Kinase β Inhibitor CmpdA. Mol Cancer Ther 2016; 15:1504-14. [PMID: 27196761 DOI: 10.1158/1535-7163.mct-15-0999] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/28/2016] [Indexed: 12/13/2022]
Abstract
NF-κB plays an important role in many types of cancer, including prostate cancer, but the role of the upstream kinase of NF-κB, IKKβ, in prostate cancer has neither been fully documented nor are there any effective IKKβ inhibitors used in clinical settings. Here, we have shown that IKKβ activity is mediated by multiple kinases including IKKα in human prostate cancer cell lines that express activated IKKβ. IHC analysis (IHC) of human prostate cancer tissue microarrays (TMA) demonstrates that phosphorylation of IKKα/β within its activation loop gradually increases in low to higher stage tumors as compared with normal tissue. The expression of cell proliferation and survival markers (Ki-67, Survivin) and epithelial-to-mesenchymal transition (EMT) markers (Slug, Snail), as well as cancer stem cell (CSC)-related transcription factors (Nanog, Sox2, Oct-4), also increase in parallel among the respective TMA samples analyzed. IKKβ, but not NF-κB, is found to regulate Nanog, which, in turn, modulates the levels of Oct4, Sox2, Snail, and Slug, indicating an essential role of IKKβ in regulating CSCs and EMT. The novel IKKβ inhibitor CmpdA inhibits constitutively activated IKKβ/NF-κB signaling, leading to induction of apoptosis and inhibition of proliferation, migration, and stemness in these cells. CmpdA also significantly inhibits tumor growth in xenografts without causing apparent in vivo toxicity. Furthermore, CmpdA and docetaxel act synergistically to inhibit proliferation of prostate cancer cells. These results indicate that IKKβ plays a pivotal role in prostate cancer, and targeting IKKβ, including in combination with docetaxel, may be a potentially useful strategy for treating advanced prostate cancer. Mol Cancer Ther; 15(7); 1504-14. ©2016 AACR.
Collapse
Affiliation(s)
- Yanting Zhang
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rena G Lapidus
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peiyan Liu
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Eun Yong Choi
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Samusi Adediran
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Arif Hussain
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland. Baltimore VA Medical Center, Baltimore, Maryland
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Xuefeng Liu
- Department of Pathology, Georgetown University Medical Center, Washington, DC
| | - Han C Dan
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland. Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
34
|
E. Livermore K, Munkley J, J. Elliott D. Androgen receptor and prostate cancer. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.2.280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
35
|
Jiang Y, Lu H, Dag A, Hart-Smith G, Stenzel MH. Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. J Mater Chem B 2016; 4:2017-2027. [DOI: 10.1039/c5tb02576a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Using proteins as the hydrophilic moiety can dramatically improve the biodegradability and biocompatibility of self-assembled amphiphilic nanoparticles in the field of nanomedicine.
Collapse
Affiliation(s)
- Yanyan Jiang
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering and School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering and School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Aydan Dag
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
- Bezmialem Vakif University
- 34093 Fatih
- Turkey
| | - Gene Hart-Smith
- Systems Biology Initiative
- School of Biotechnology and Biomolecular Sciences
- University of New South Wales
- Sydney 2052
- Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering and School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
36
|
Kolberg M, Pedersen S, Mitake M, Holm KL, Bøhn SK, Blomhoff HK, Carlsen H, Blomhoff R, Paur I. Coffee inhibits nuclear factor-kappa B in prostate cancer cells and xenografts. J Nutr Biochem 2016; 27:153-63. [DOI: 10.1016/j.jnutbio.2015.08.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/11/2015] [Accepted: 08/25/2015] [Indexed: 12/21/2022]
|
37
|
Chappell WH, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Terrian D, Steelman LS, McCubrey JA. Novel roles of androgen receptor, epidermal growth factor receptor, TP53, regulatory RNAs, NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, and matrix metalloproteinase-9 in prostate cancer and prostate cancer stem cells. Adv Biol Regul 2015; 60:64-87. [PMID: 26525204 DOI: 10.1016/j.jbior.2015.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022]
Abstract
Approximately one in six men will be diagnosed with some form of prostate cancer in their lifetime. Over 250,000 men worldwide die annually due to complications from prostate cancer. While advancements in prostate cancer screening and therapies have helped in lowering this statistic, better tests and more effective therapies are still needed. This review will summarize the novel roles of the androgen receptor (AR), epidermal growth factor receptor (EGFR), the EGFRvIII variant, TP53, long-non-coding RNAs (lncRNAs), microRNAs (miRs), NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, (NGAL), matrix metalloproteinase-9 (MMP-9), the tumor microenvironment and cancer stem cells (CSC) have on the diagnosis, development and treatment of prostate cancer.
Collapse
Affiliation(s)
- William H Chappell
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - David Terrian
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
38
|
Shukla S, Shankar E, Fu P, MacLennan GT, Gupta S. Suppression of NF-κB and NF-κB-Regulated Gene Expression by Apigenin through IκBα and IKK Pathway in TRAMP Mice. PLoS One 2015; 10:e0138710. [PMID: 26379052 PMCID: PMC4574560 DOI: 10.1371/journal.pone.0138710] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/02/2015] [Indexed: 01/15/2023] Open
Abstract
Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it's phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, United States of America
- The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Eswar Shankar
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, United States of America
- The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Pingfu Fu
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
| | - Gregory T. MacLennan
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, United States of America
- The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio, United States of America
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
39
|
Pantuck AJ, Pettaway CA, Dreicer R, Corman J, Katz A, Ho A, Aronson W, Clark W, Simmons G, Heber D. A randomized, double-blind, placebo-controlled study of the effects of pomegranate extract on rising PSA levels in men following primary therapy for prostate cancer. Prostate Cancer Prostatic Dis 2015; 18:242-8. [PMID: 26169045 DOI: 10.1038/pcan.2015.32] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND The primary objective of this study was to compare the effects of pomegranate juice on PSA doubling times (PSADT) in subjects with rising PSA levels after primary therapy for prostate cancer. METHODS Double-blind, placebo-controlled multi-institutional study, evaluated the effects of pomegranate liquid extract on serum PSA levels. The primary end point of this study was change in serum PSADT. Additional secondary and exploratory objectives were to evaluate the safety of pomegranate juice and to determine the interaction of manganese superoxide dismutase (MnSOD) AA genotype and pomegranate treatment on PSADT. RESULTS One-hundred eighty-three eligible subjects were randomly assigned to the active and placebo groups with a ratio of 2:1 (extract N=102; placebo N=64; juice N=17). The majority of adverse events were of moderate or mild grade. Median PSADT increased from 11.1 months at baseline to 15.6 months in the placebo group (P<0.001) compared with an increase from 12.9 months at baseline to 14.5 months in the extract group (P=0.13) and an increase from 12.7 at baseline to 20.3 in the juice group (P=0.004). However, none of these changes were statistically significant between the three groups (P>0.05). Placebo AA patients experienced a 1.8 month change in median PSADT from 10.9 months at baseline to 12.7 months (P=0.22), while extract patients experienced a 12 month change in median PSADT from 13.6 at baseline to 25.6 months (P=0.03). CONCLUSIONS Compared with placebo, pomegranate extract did not significantly prolong PSADT in prostate cancer patients with rising PSA after primary therapy. A significant prolongation in PSADT was observed in both the treatment and placebo arms. Men with the MnSOD AA genotype may represent a group that is more sensitive to the antiproliferative effects of pomegranate on PSADT; however, this finding requires prospective hypothesis testing and validation.
Collapse
Affiliation(s)
- A J Pantuck
- Department of Urology, Institute of Urologic Oncology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - C A Pettaway
- The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - R Dreicer
- Cleveland Clinic Foundation, Cleveland, OH, USA
| | - J Corman
- Virginia Mason Medical Center, Seattle, WA, USA
| | - A Katz
- Winthrop University Hospital, Garden City, NY, USA
| | - A Ho
- Winthrop University Hospital, Garden City, NY, USA
| | - W Aronson
- 1] Department of Urology, Institute of Urologic Oncology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA [2] VA Medical Center Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - W Clark
- Alaska Clinical Research Center, Anchorage, AL, USA
| | - G Simmons
- Five Valleys Urology, Missoula, MT, USA
| | - D Heber
- 1] Department of Urology, Institute of Urologic Oncology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA [2] Department of Medicine and Clinical Nutrition, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
40
|
Li D, Du Z, Li C, Liu Y, Goodin S, Huang H, He Y, Zhang Y, Wang H, Zheng X, Zhang K. Potent inhibitory effect of terpenoids from Acanthopanax trifoliatus on growth of PC-3 prostate cancer cells in vitro and in vivo is associated with suppression of NF-κB and STAT3 signalling. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
41
|
Henning SM, Wang P, Said JW, Huang M, Grogan T, Elashoff D, Carpenter CL, Heber D, Aronson WJ. Randomized clinical trial of brewed green and black tea in men with prostate cancer prior to prostatectomy. Prostate 2015; 75:550-9. [PMID: 25545744 PMCID: PMC4334734 DOI: 10.1002/pros.22943] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Preclinical and epidemiologic studies suggest chemopreventive effects of green tea (GT) and black tea (BT) in prostate cancer. In the current study we determined the effect of GT and BT consumption on biomarkers related to prostate cancer development and progression. METHODS In this exploratory, open label, phase II trial 113 men diagnosed with prostate cancer were randomized to consume six cups daily of brewed GT, BT or water (control) prior to radical prostatectomy (RP). The primary endpoint was prostate tumor markers of cancer development and progression determined by tissue immunostaining of proliferation (Ki67), apoptosis (Bcl-2, Bax, Tunel), inflammation (nuclear and cytoplasmic nuclear factor kappa B [NFκB]) and oxidation (8-hydroxydeoxy-guanosine [8OHdG]). Secondary endpoints of urinary oxidation, tea polyphenol uptake in prostate tissue, and serum prostate specific antigen (PSA) were evaluated by high performance liquid chromatography and ELISA analysis. RESULTS Ninety three patients completed the intervention. There was no significant difference in markers of proliferation, apoptosis and oxidation in RP tissue comparing GT and BT to water control. Nuclear staining of NFκB was significantly decreased in RP tissue of men consuming GT (P = 0.013) but not BT (P = 0.931) compared to water control. Tea polyphenols were detected in prostate tissue from 32 of 34 men consuming GT but not in the other groups. Evidence of a systemic antioxidant effect was observed (reduced urinary 8OHdG) only with GT consumption (P = 0.03). GT, but not BT or water, also led to a small but statistically significant decrease in serum prostate-specific antigen (PSA) levels (P = 0.04). CONCLUSION Given the GT-induced changes in NFκB and systemic oxidation, and uptake of GT polyphenols in prostate tissue, future longer-term studies are warranted to further examine the role of GT for prostate cancer prevention and treatment, and possibly for other prostate conditions such as prostatitis.
Collapse
Affiliation(s)
| | - Piwen Wang
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | | | - Min Huang
- VA Medical Center Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Tristan Grogan
- Department of Medicine Statistics Core, University of California Los Angeles
| | - David Elashoff
- Department of Medicine Statistics Core, University of California Los Angeles
| | | | - David Heber
- Center for Human Nutrition, University of California Los Angeles
| | - William J. Aronson
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles
- VA Medical Center Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
42
|
Atwell LL, Beaver LM, Shannon J, Williams DE, Dashwood RH, Ho E. Epigenetic Regulation by Sulforaphane: Opportunities for Breast and Prostate Cancer Chemoprevention. ACTA ACUST UNITED AC 2015; 1:102-111. [PMID: 26042194 DOI: 10.1007/s40495-014-0002-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sulforaphane (SFN) is a phytochemical derived from cruciferous vegetables that has multiple molecular targets and anti-cancer properties. Researchers have demonstrated several chemopreventive benefits of SFN consumption, such as reductions in tumor growth, increases in cancer cell apoptosis, and disruption of signaling within tumor microenvironments both in vitro and in vivo. Emerging evidence indicates that SFN exerts several of its chemopreventive effects by altering epigenetic mechanisms. This review summarizes evidence of the impact of SFN on epigenetic events and how they relate to the chemopreventive effects of SFN observed in preclinical and clinical studies of breast and prostate cancers. Specific areas of focus include the role of SFN in the regulation of cell cycle, apoptosis, inflammation, antioxidant defense, and cancer cell signaling and their relationships to epigenetic mechanisms. Finally, remaining challenges and research needs for translating mechanistic work with SFN into human studies and clinical intervention trials are discussed.
Collapse
Affiliation(s)
- Lauren L Atwell
- 103 Milam Hall, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Laura M Beaver
- 103 Milam Hall, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA ; 307 Linus Pauling Science Center, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Jackilen Shannon
- 3181 SW Sam Jackson Park Road, Mail Code CB L606, Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - David E Williams
- 307 Linus Pauling Science Center, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA ; 1007 Agriculture & Life Sciences Building, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Roderick H Dashwood
- 2121 West Holcombe Boulevard, Center for Epigenetics & Disease Prevention, Houston, TX 77030
| | - Emily Ho
- 103 Milam Hall, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA ; 307 Linus Pauling Science Center, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA ; 212 Milam Hall, Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
43
|
Li F, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G. NF-κB in cancer therapy. Arch Toxicol 2015; 89:711-31. [PMID: 25690730 DOI: 10.1007/s00204-015-1470-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor kappa B (NF-κB) has attracted increasing attention in the field of cancer research from last few decades. Aberrant activation of this transcription factor is frequently encountered in a variety of solid tumors and hematological malignancies. NF-κB family members and their regulated genes have been linked to malignant transformation, tumor cell proliferation, survival, angiogenesis, invasion/metastasis, and therapeutic resistance. In this review, we highlight the diverse molecular mechanism(s) by which the NF-κB pathway is constitutively activated in different types of human cancers, and the potential role of various oncogenic genes regulated by this transcription factor in cancer development and progression. Additionally, various pharmacological approaches employed to target the deregulated NF-κB signaling pathway, and their possible therapeutic potential in cancer therapy is also discussed briefly.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, Cancer Science Institute, National University of Singapore, Singapore, 117597, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pazarentzos E, Mahul-Mellier AL, Datler C, Chaisaklert W, Hwang MS, Kroon J, Qize D, Osborne F, Al-Rubaish A, Al-Ali A, Mazarakis ND, Aboagye EO, Grimm S. IκΒα inhibits apoptosis at the outer mitochondrial membrane independently of NF-κB retention. EMBO J 2014; 33:2814-28. [PMID: 25361605 PMCID: PMC4282558 DOI: 10.15252/embj.201488183] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 09/15/2014] [Accepted: 10/08/2014] [Indexed: 02/06/2023] Open
Abstract
IκBα resides in the cytosol where it retains the inducible transcription factor NF-κB. We show that IκBα also localises to the outer mitochondrial membrane (OMM) to inhibit apoptosis. This effect is especially pronounced in tumour cells with constitutively active NF-κB that accumulate high amounts of mitochondrial IκBα as a NF-κB target gene. 3T3 IκBα(-/-) cells also become protected from apoptosis when IκBα is specifically reconstituted at the OMM. Using various IκBα mutants, we demonstrate that apoptosis inhibition and NF-κB inhibition can be functionally and structurally separated. At mitochondria, IκBα stabilises the complex of VDAC1 and hexokinase II (HKII), thereby preventing Bax recruitment to VDAC1 and the release of cytochrome c for apoptosis induction. When IκBα is reduced in tumour cells with constitutively active NF-κB, they show an enhanced response to anticancer treatment in an in vivo xenograft tumour model. Our results reveal the unexpected activity of IκBα in guarding the integrity of the OMM against apoptosis induction and open possibilities for more specific interference in tumours with deregulated NF-κB.
Collapse
Affiliation(s)
| | | | - Christoph Datler
- Division of Experimental Medicine, Imperial College London, London, UK
| | | | - Ming-Shih Hwang
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Jan Kroon
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Ding Qize
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Foy Osborne
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Abdullah Al-Rubaish
- Prince Mohammed Center for Research & Consultation Studies, College of Medicine, University of Dammam, Dammam, Saudi Arabia
| | - Amein Al-Ali
- Prince Mohammed Center for Research & Consultation Studies, College of Medicine, University of Dammam, Dammam, Saudi Arabia
| | | | - Eric O Aboagye
- MRC Clinical Sciences Centre, Imperial College London, London, UK
| | - Stefan Grimm
- Division of Experimental Medicine, Imperial College London, London, UK
| |
Collapse
|
45
|
Fernández-Martínez AB, Carmena MJ, Bajo AM, Vacas E, Sánchez-Chapado M, Prieto JC. VIP induces NF-κB1-nuclear localisation through different signalling pathways in human tumour and non-tumour prostate cells. Cell Signal 2014; 27:236-44. [PMID: 25446255 DOI: 10.1016/j.cellsig.2014.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/16/2014] [Accepted: 11/08/2014] [Indexed: 01/19/2023]
Abstract
The nuclear factor κB (NF-κB) is a powerful activator of angiogenesis, invasion and metastasis. Transactivation and nuclear localisation of NF-κB is an index of recurrence in prostate cancer. Vasoactive intestinal peptide (VIP) exerts similar effects in prostate cancer models involving increased expression of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) which are related to NF-κB transactivation. Here we studied differential mechanisms of VIP-induced NF-κB transactivation in non-tumour RWPE-1 and tumour LNCaP and PC3 human prostate epithelial cells. Immunofluorescence studies showed that VIP increases translocation of the p50 subunit of NF-κB1 to the nucleus, an effect that was inhibited by curcumin. The signalling transduction pathways involved are different depending on cell transformation degree. In control cells (RWPE1), the effect is mediated by protein kinase A (PKA) activation and does not implicate extracellular signal-regulated kinase (ERK) or phosphoinositide 3-kinase (PI3-K) pathways whereas the opposite is true in tumour LNCaP and PC3 cells. Exchange protein directly activated by cAMP (EPAC) pathway is involved in transformed cells but not in control cells. Curcumin blocks the activating effect of VIP on COX-2 promoter/prostaglandin E2 (PGE2) production and VEGF expression and secretion. The study incorporates direct observation on COX-2 promoter and suggests that VIP effect on VEGF may be indirectly mediated by PGE2 after being synthesised by COX-2, thus amplifying the initial signal. We show that the signalling involved in VIP effects on VEGF is cAMP/PKA in non-tumour cells and cAMP/EPAC/ERK/PI3K in tumour cells which coincides with pathways mediating p50 nuclear translocation. Thus, VIP appears to use different pathways for NF-κB1 (p50) transactivation in prostate epithelial cells depending on whether they are transformed or not. Transformed cells depend on pro-survival and pro-proliferative signalling pathways involving ERK, PI3-K and cAMP/EPAC which supports the potential therapeutic value of these targets in prostate cancer.
Collapse
Affiliation(s)
- Ana B Fernández-Martínez
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - María J Carmena
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Ana M Bajo
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Eva Vacas
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Manuel Sánchez-Chapado
- Department of Surgery and Medical and Social Sciences, University of Alcalá, 28871 Alcalá de Henares, Spain; Department of Urology, Príncipe de Asturias Hospital, 28871 Alcalá de Henares, Spain
| | - Juan C Prieto
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain.
| |
Collapse
|
46
|
Gopalakrishnan N, Sivasithamparam ND, Devaraj H. Synergistic association of Notch and NFκB signaling and role of Notch signaling in modulating epithelial to mesenchymal transition in colorectal adenocarcinoma. Biochimie 2014; 107 Pt B:310-8. [PMID: 25257945 DOI: 10.1016/j.biochi.2014.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/16/2014] [Indexed: 01/05/2023]
Abstract
Notch1 signaling plays a key role in normal developmental processes and in cancer. The association between Notch activation and development of cancer has been well documented. Notch activation and outcome of the disease depend upon the crosstalk with other regulatory pathways including Nuclear Factor kappa B (NFκB) pathway. In this study, we have investigated the interaction of Notch intracellular domain (NICD) with NFκBp65 in colorectal cancer which resulted in the upregulation of Bcl-xL resulting in the inhibition of apoptosis. Mesenchymal marker Slug expression and down regulation of E-cadherin, an epithelial phenotypic marker were demonstrated in colon cancer tissues. The study was also illustrated by using the gamma secretase inhibitor, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) in HT29 cells. Immunohistochemistry (NICD, NFκBp65, and Slug) and double immunofluorescence analysis (NICD, NFκBp65) revealed that NICD and NFκBp65 were highly expressed in HT29 cells and in tumor tissue compared to normal tissue. Slug and Bcl-xL protein expressions were significantly reduced in DAPT treated HT 29 cells. Immunoprecipitation and dual staining emphasized the strong interaction of NICD with NFκBp65 in adenocarcinoma than in normal tissue. It appeared that Notch1 and NFκB could independently contribute to tumor progression. However, their interaction and synergism might be the determinants that would affect the outcome of the disease and therapeutic interventions.
Collapse
Affiliation(s)
- Natarajan Gopalakrishnan
- Unit of Biochemistry, Department of Zoology, University of Madras, School of Life Sciences, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | | | - Halagowder Devaraj
- Unit of Biochemistry, Department of Zoology, University of Madras, School of Life Sciences, Guindy Campus, Chennai 600 025, Tamil Nadu, India.
| |
Collapse
|
47
|
PSGR promotes prostatic intraepithelial neoplasia and prostate cancer xenograft growth through NF-κB. Oncogenesis 2014; 3:e114. [PMID: 25111863 PMCID: PMC5189964 DOI: 10.1038/oncsis.2014.29] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/22/2014] [Accepted: 07/02/2014] [Indexed: 12/16/2022] Open
Abstract
Prostate-specific G-protein-coupled receptor (PSGR), a member of the olfactory subfamily of G-protein-coupled receptors, is specifically expressed in human prostate tissue and overexpressed in prostate cancer (PCa). This expression pattern suggests a possible role in PCa initiation and progression. We developed a PSGR transgenic mouse model driven by a probasin promoter and investigated the role of PSGR in prostate malignancy. Overexpression of PSGR induced a chronic inflammatory response that ultimately gave rise to premalignant mouse prostate intraepithelial neoplasia lesions in later stages of life. PSGR-overexpressing LnCaP cells in prostate xenografts formed larger tumors compared with normal LnCaP cancer cells, suggesting a role of PSGR in the promotion of tumor development. Furthermore, we identified nuclear factor-κB (NF-κB) or RELA as a key downstream target activated by PSGR signaling. We also show that this regulation was mediated in part by the phosphatidylinositol-3-kinase/Akt (PI3K/AKT) pathway, highlighting a collaborative role between PI3K/AKT and NF-κB during tumor inflammation downstream of PSGR in the initial phases of prostate disease.Oncogenesis (2014) 3, e114; doi:10.1038/oncsis.2014.29; published online 11 August 2014.
Collapse
|
48
|
Antognelli C, Palumbo I, Aristei C, Talesa VN. Glyoxalase I inhibition induces apoptosis in irradiated MCF-7 cells via a novel mechanism involving Hsp27, p53 and NF-κB. Br J Cancer 2014; 111:395-406. [PMID: 24918814 PMCID: PMC4102940 DOI: 10.1038/bjc.2014.280] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/24/2014] [Accepted: 04/30/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Glyoxalase I (GI) is a cellular defence enzyme involved in the detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis, and MG-derived advanced glycation end products (AGEs). Argpyrimidine (AP), one of the major AGEs coming from MG modifications of proteins arginines, is a pro-apoptotic agent. Radiotherapy is an important modality widely used in cancer treatment. Exposure of cells to ionising radiation (IR) results in a number of complex biological responses, including apoptosis. The present study was aimed at investigating whether, and through which mechanism, GI was involved in IR-induced apoptosis. METHODS Apoptosis, by TUNEL assay, transcript and protein levels or enzymatic activity, by RT-PCR, western blot and spectrophotometric methods, respectively, were evaluated in irradiated MCF-7 breast cancer cells, also in experiments with appropriate inhibitors or using small interfering RNA. RESULTS Ionising radiation induced a dramatic reactive oxygen species (ROS)-mediated inhibition of GI, leading to AP-modified Hsp27 protein accumulation that, in a mechanism involving p53 and NF-κB, triggered an apoptotic mitochondrial pathway. Inhibition of GI occurred at both functional and transcriptional levels, the latter occurring via ERK1/2 MAPK and ERα modulation. CONCLUSIONS Glyoxalase I is involved in the IR-induced MCF-7 cell mitochondrial apoptotic pathway via a novel mechanism involving Hsp27, p53 and NF-κB.
Collapse
Affiliation(s)
- C Antognelli
- Department of Experimental Medicine, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - I Palumbo
- Radiation Oncology Section, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - C Aristei
- Radiation Oncology Section, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - V N Talesa
- Department of Experimental Medicine, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
49
|
Sun X, Fu X, Li J, Xing C, Frierson HF, Wu H, Ding X, Ju T, Cummings RD, Dong JT. Deletion of atbf1/zfhx3 in mouse prostate causes neoplastic lesions, likely by attenuation of membrane and secretory proteins and multiple signaling pathways. Neoplasia 2014; 16:377-89. [PMID: 24934715 PMCID: PMC4198693 DOI: 10.1016/j.neo.2014.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 01/14/2023] Open
Abstract
The ATBF1/ZFHX3 gene at 16q22 is the second most frequently mutated gene in human prostate cancer and has reduced expression or mislocalization in several types of human tumors. Nonetheless, the hypothesis that ATBF1 has a tumor suppressor function in prostate cancer has not been tested. In this study, we examined the role of ATBF1 in prostatic carcinogenesis by specifically deleting Atbf1 in mouse prostatic epithelial cells. We also examined the effect of Atbf1 deletion on gene expression and signaling pathways in mouse prostates. Histopathologic analyses showed that Atbf1 deficiency caused hyperplasia and mouse prostatic intraepithelial neoplasia (mPIN) primarily in the dorsal prostate but also in other lobes. Hemizygous deletion of Atbf1 also increased the development of hyperplasia and mPIN, indicating a haploinsufficiency of Atbf1. The mPIN lesions expressed luminal cell markers and harbored molecular changes similar to those in human PIN and prostate cancer, including weaker expression of basal cell marker cytokeratin 5 (Ck5), cell adhesion protein E-cadherin, and the smooth muscle layer marker Sma; elevated expression of the oncoproteins phospho-Erk1/2, phospho-Akt and Muc1; and aberrant protein glycosylation. Gene expression profiling revealed a large number of genes that were dysregulated by Atbf1 deletion, particularly those that encode for secretory and cell membrane proteins. The four signaling networks that were most affected by Atbf1 deletion included those centered on Erk1/2 and IGF1, Akt and FSH, NF-κB and progesterone and β-estradiol. These findings provide in vivo evidence that ATBF1 is a tumor suppressor in the prostate, suggest that loss of Atbf1 contributes to tumorigenesis by dysregulating membrane and secretory proteins and multiple signaling pathways, and provide a new animal model for prostate cancer.
Collapse
Affiliation(s)
- Xiaodong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322
| | - Xiaoying Fu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322; Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jie Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322
| | - Changsheng Xing
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322
| | - Henry F Frierson
- Department of Pathology, University of Virginia Health System, Charlottesville, VA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322
| | - Xiaokun Ding
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | - Tongzhong Ju
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | | | - Jin-Tang Dong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322.
| |
Collapse
|
50
|
Greer AH, Yong T, Fennell K, Moustafa YW, Fowler M, Galiano F, Ng SW, Berkowitz RS, Cardelli J, Meyers S, Davis JN. Knockdown of core binding factorβ alters sphingolipid metabolism. J Cell Physiol 2014; 228:2350-64. [PMID: 23813439 DOI: 10.1002/jcp.24406] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 05/10/2013] [Indexed: 12/13/2022]
Abstract
Core binding factor (CBF) is a heterodimeric transcription factor containing one of three DNA-binding proteins of the Runt-related transcription factor family (RUNX1-3) and the non-DNA-binding protein, CBFβ. RUNX1 and CBFβ are the most common targets of chromosomal rearrangements in leukemia. CBF has been implicated in other cancer types; for example RUNX1 and RUNX2 are implicated in cancers of epithelial origin, including prostate, breast, and ovarian cancers. In these tumors, CBF is involved in maintaining the malignant phenotype and, when highly over-expressed, contributes to metastatic growth in bone. Herein, lentiviral delivery of CBFβ-specific shRNAs was used to achieve a 95% reduction of CBFβ in an ovarian cancer cell line. This drastic reduction in CBFβ expression resulted in growth inhibition that was not associated with a cell cycle block or an increase in apoptosis. However, CBFβ silencing resulted in increased autophagy and production of reactive oxygen species (ROS). Since sphingolipid and ceramide metabolism regulates non-apoptotic cell death, autophagy, and ROS production, fumonsin B1 (FB1), an inhibitor of ceramide synthase, was used to alter ceramide production in the CBFβ-silenced cells. FB1 treatment inhibited the CBFβ-dependent increase in autophagy and provided a modest increase in cell survival. To document alterations to sphingolipids in the CBFβ-silenced cells, ceramide, and lactosylceramide levels were directly examined by mass spectrometry. Substantial increases in ceramide species and decreases in lactosylceramides were identified. Altogether, this report provides evidence that CBF transcriptional pathways control cellular survival, at least in part, through sphingolipid metabolism.
Collapse
Affiliation(s)
- Adam H Greer
- Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, LSUHSC School of Medicine in Shreveport, Shreveport, Louisiana
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|