1
|
Altieri F, Buono L, Lanzilli M, Mirabelli P, Cianflone A, Beneduce G, De Matteo A, Parasole R, Salvatore M, Smaldone G. LINC00958 as new diagnostic and prognostic biomarker of childhood acute lymphoblastic leukaemia of B cells. Front Oncol 2024; 14:1388154. [PMID: 38884090 PMCID: PMC11176504 DOI: 10.3389/fonc.2024.1388154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Background Paediatric acute B-cell lymphoblastic leukaemia is the most common cancer of the paediatric age. Although the advancement of scientific and technological knowledge has ensured a huge step forward in the management of this disease, there are 15%-20% cases of recurrence leading to serious complications for the patient and sometimes even death. It is therefore necessary to identify new and increasingly personalised biomarkers capable of predicting the degree of risk of B-ALL in order to allow the correct management of paediatric leukaemia patients. Methods Starting from our previously published results, we validate the expression level of LINC00958 in a cohort of 33 B-ALL and 9 T-ALL childhood patients, using in-silico public datasets as support. Expression levels of LINC00958 in B-ALL patients stratified by risk (high risk vs. standard/medium risk) and who relapsed 3 years after the first leukaemia diagnosis were also evaluated. Results We identified the lncRNA LINC00958 as a biomarker of B-ALL, capable of discriminating B-ALL from T-ALL and healthy subjects. Furthermore, we associated LINC00958 expression levels with the disease risk classification (high risk and standard risk). Finally, we show that LINC00958 can be used as a predictor of relapses in patients who are usually stratified as standard risk and thus not always targeted for marrow transplantation. Conclusions Our results open the way to new diagnostic perspectives that can be directly used in clinical practice for a better management of B-ALL paediatric patients.
Collapse
Affiliation(s)
| | | | | | - Peppino Mirabelli
- Department of Paediatric Haemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | - Alessandra Cianflone
- Department of Paediatric Haemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | - Giuliana Beneduce
- Department of Paediatric Haemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | - Antonia De Matteo
- Department of Paediatric Haemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | - Rosanna Parasole
- Department of Paediatric Haemato-Oncology, Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | | | | |
Collapse
|
2
|
Siddiqui S, Libertini SJ, Lucas CA, Lombard AP, Baek HB, Nakagawa RM, Nishida KS, Steele TM, Melgoza FU, Borowsky AD, Durbin-Johnson BP, Qi L, Ghosh PM, Mudryj M. The p14ARF tumor suppressor restrains androgen receptor activity and prevents apoptosis in prostate cancer cells. Cancer Lett 2020; 483:12-21. [PMID: 32330514 DOI: 10.1016/j.canlet.2020.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/29/2020] [Accepted: 03/28/2020] [Indexed: 02/08/2023]
Abstract
Prostate cancer (PCa) is characterized by a unique dependence on optimal androgen receptor (AR) activity where physiological androgen concentrations induce proliferation but castrate and supraphysiological levels suppress growth. This feature has been exploited in bipolar androgen therapy (BAT) for castrate resistant malignancies. Here, we investigated the role of the tumor suppressor protein p14ARF in maintaining optimal AR activity and the function of the AR itself in regulating p14ARF levels. We used a tumor tissue array of differing stages and grades to define the relationships between these components and identified a strong positive correlation between p14ARF and AR expression. Mechanistic studies utilizing CWR22 xenograft and cell culture models revealed that a decrease in AR reduced p14ARF expression and deregulated E2F factors, which are linked to p14ARF and AR regulation. Chromatin immunoprecipitation studies identified AR binding sites upstream of p14ARF. p14ARF depletion enhanced AR-dependent PSA and TMPRSS2 transcription, hence p14ARF constrains AR activity. However, p14ARF depletion ultimately results in apoptosis. In PCa cells, AR co-ops p14ARF as part of a feedback mechanism to ensure optimal AR activity for maximal prostate cancer cell survival and proliferation.
Collapse
Affiliation(s)
- Salma Siddiqui
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA
| | - Stephen J Libertini
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | - Christopher A Lucas
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | - Alan P Lombard
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | - Han Bit Baek
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | | | | | - Thomas M Steele
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Urologic Surgery, USA
| | - Frank U Melgoza
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA
| | | | | | - LiHong Qi
- Department of Public Health Sciences, University of California Davis, California, USA
| | - Paramita M Ghosh
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Urologic Surgery, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA.
| |
Collapse
|
3
|
Fonteyne V, Ost P. Current Insights in the Management of High-risk Prostate Cancer: Still More Questions than Answers. Eur Urol 2019; 75:61-62. [DOI: 10.1016/j.eururo.2018.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
|
4
|
Al‐Bakheit A, Traka M, Saha S, Mithen R, Melchini A. Accumulation of Palmitoylcarnitine and Its Effect on Pro-Inflammatory Pathways and Calcium Influx in Prostate Cancer. Prostate 2016; 76:1326-37. [PMID: 27403764 PMCID: PMC4996340 DOI: 10.1002/pros.23222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/07/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Acylcarnitines are intermediates of fatty acid oxidation and accumulate as a consequence of the metabolic dysfunction resulting from the insufficient integration between β-oxidation and the tricarboxylic acid (TCA) cycle. The aim of this study was to investigate whether acylcarnitines accumulate in prostate cancer tissue, and whether their biological actions could be similar to those of dihydrotestosterone (DHT), a structurally related compound associated with cancer development. METHODS Levels of palmitoylcarnitine (palcar), a C16:00 acylcarnitine, were measured in prostate tissue using LC-MS/MS. The effect of palcar on inflammatory cytokines and calcium (Ca(2+) ) influx was investigated in in vitro models of prostate cancer. RESULTS We observed a significantly higher level of palcar in prostate cancerous tissue compared to benign tissue. High levels of palcar have been associated with increased gene expression and secretion of the pro-inflammatory cytokine IL-6 in cancerous PC3 cells, compared to normal PNT1A cells. Furthermore, we found that high levels of palcar induced a rapid Ca(2+) influx in PC3 cells, but not in DU145, BPH-1, or PNT1A cells. This pattern of Ca(2+) influx was also observed in response to DHT. Through the use of whole genome arrays we demonstrated that PNT1A cells exposed to palcar or DHT have a similar biological response. CONCLUSIONS This study suggests that palcar might act as a potential mediator for prostate cancer progression through its effect on (i) pro-inflammatory pathways, (ii) Ca(2+) influx, and (iii) DHT-like effects. Further studies need to be undertaken to explore whether this class of compounds has different biological functions at physiological and pathological levels. Prostate 76:1326-1337, 2016. © 2016 The Authors. The Prostate published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ala'a Al‐Bakheit
- Department of Nutrition and Food SciencesAl‐Balqa’ Applied UniversityAl‐SaltJordan
| | - Maria Traka
- Food and Health ProgrammeInstitute of Food ResearchNorwichUnited Kingdom
| | - Shikha Saha
- Food and Health ProgrammeInstitute of Food ResearchNorwichUnited Kingdom
| | - Richard Mithen
- Food and Health ProgrammeInstitute of Food ResearchNorwichUnited Kingdom
| | | |
Collapse
|
5
|
Murthy KNC, Jayaprakasha GK, Patil BS. Cytotoxicity of obacunone and obacunone glucoside in human prostate cancer cells involves Akt-mediated programmed cell death. Toxicology 2015; 329:88-97. [PMID: 25592883 DOI: 10.1016/j.tox.2015.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 12/24/2014] [Accepted: 01/10/2015] [Indexed: 10/24/2022]
Abstract
Obacunone and obacunone glucoside (OG) are naturally occurring triterpenoids commonly found in citrus and other plants of the Rutaceae family. The current study reports the mechanism of cytotoxicity of citrus-derived obacunone and OG on human androgen-dependent prostate cancer LNCaP cells. Both limonoids exhibited time- and dose-dependent inhibition of cell proliferation, with more than 60% inhibition of cell viability at 100 μM, after 24 and 48 h. Analysis of fragmentation of DNA, activity of caspase-3, and cytosolic cytochrome-c in the cells treated with limonoids provided evidence for activation of programmed cell death by limonoids. Treatment of LNCaP cells with obacunone and OG resulted in dose-dependent changes in expression of proteins responsible for the induction of programmed cell death through the intrinsic pathway and down-regulation of Akt, a key molecule in cell signaling pathways. In addition, obacunone and OG also negatively regulated an inflammation-associated transcription factor, androgen receptor, and prostate-specific antigen, and activated proteins related to the cell cycle, confirming the ability of limonoids to induce cytotoxicity through multiple pathways. The results of this study provided, for the first time, an evidence of the cytotoxicity of obacunone and OG in androgen-dependent human prostate cancer cells.
Collapse
Affiliation(s)
- Kotamballi N Chidambara Murthy
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, United States
| | | | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, United States.
| |
Collapse
|
6
|
Kwak DH, Moussavou G, Lee JH, Heo SY, Ko K, Hwang KA, Jekal SJ, Choo YK. Growth suppression of colorectal cancer by plant-derived multiple mAb CO17-1A × BR55 via inhibition of ERK1/2 phosphorylation. Int J Mol Sci 2014; 15:21105-19. [PMID: 25405740 PMCID: PMC4264215 DOI: 10.3390/ijms151121105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/31/2014] [Accepted: 11/06/2014] [Indexed: 11/16/2022] Open
Abstract
We have generated the transgenic Tabaco plants expressing multiple monoclonal antibody (mAb) CO7-1A × BR55 by cross-pollinating with mAb CO17-1A and mAb BR55. We have demonstrated the anti-cancer effect of plant-derived multiple mAb CO17-1A × BR55. We find that co-treatment of colorectal mAbs (anti-epithelial cellular adhesion molecule (EpCAM), plant-derived monoclonal antibody (mAb(P)) CO17-1A and mAb(P) CO17-1A × BR55) with RAW264.7 cells significantly inhibited the cell growth in SW620 cancer cells. In particular, multi mAb(P) CO17-1A × BR55 significantly and efficiently suppressed the growth of SW620 cancer cells compared to another mAbs. Apoptotic death-positive cells were significantly increased in the mAb(P) CO17-1A × BR55-treated. The mAb(P) CO17-1A × BR55 treatment significantly decreased the expression of B-Cell lymphoma-2 (BCl-2), but the expression of Bcl-2-associated X protein (Bax), and cleaved caspase-3 were markedly increased. In vivo, the mAb(P) CO17-1A × BR55 significantly and efficiently inhibited the growth of colon tumors compared to another mAbs. The apoptotic cell death and inhibition of pro-apoptotic proteins expression were highest by treatment with mAb(P) CO17-1A × BR55. In addition, the mAb(P) CO17-1A × BR55 significantly inhibited the extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation in cancer cells and tumors. Therefore, this study results suggest that multiple mAb(P) CO17-1A × BR55 has a significant effect on apoptosis-mediated anticancer by suppression of ERK1/2 phosphorylation in colon cancer compared to another mAbs. In light of these results, further clinical investigation should be conducted on mAb(P) CO17-1A × BR55 to determine its possible chemopreventive and/or therapeutic efficacy against human colon cancer.
Collapse
Affiliation(s)
- Dong Hoon Kwak
- Institute of Glycoscience, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | - Ghislain Moussavou
- Department of Biological Science, College of Natural Sciences, Institute of Biotechnology Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | - Ju Hyoung Lee
- Department of Biological Science, College of Natural Sciences, Institute of Biotechnology Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | - Sung Youn Heo
- Department of Biological Science, College of Natural Sciences, Institute of Biotechnology Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | - Kisung Ko
- Department of Medicine, Medical Research Institute, College of Medicine Chung-Ang University, Heukseok-ro 84, Seoul 156-756, Korea.
| | - Kyung-A Hwang
- Department of Agrofood Resources, National Academy of Agricultural Science, RDA, Suwon 441-853, Korea.
| | - Seung-Joo Jekal
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan zipcode, Korea.
| | - Young-Kug Choo
- Institute of Glycoscience, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| |
Collapse
|
7
|
Plant-derived mAbs have effective anti-cancer activities by increasing ganglioside expression in colon cancers. Biotechnol Lett 2013; 35:2031-8. [PMID: 24078119 DOI: 10.1007/s10529-013-1318-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
An epithelial cell adhesion molecule (EpCAM) was selectively expressed in human colorectal carcinoma. Treatment with plant-derived anti-EpCAM mAb (mAbP CO17-1A) and RAW264.7 cells inhibited cell growth in the human colorectal cancer cell line SW620. In SW620 treated with mAbP CO17-1A and RAW264.7 cells, expression of p53 and p21 increased, whereas the expression of G1 phase-related proteins, cyclin D1, CDK4, cyclin E, and CDK2, decreased, similar to mammalian-derived mAb (mAbM) CO17-1A. Similar to mAbM CO17-1A, treatment with mAbP CO17-1A and RAW264.7 cell decreased the expression of anti-apoptotic protein, Bcl-2, but the expression of pro-apoptotic proteins Bax, TNF-α, caspase-3, caspase-6, caspase-8 and caspase-9, increased. Cells treated with mAbP CO17-1A and RAW264.7 cells expressed metastasis-related gangliosides, GM1 and GD1a, similar to mAbM CO17-1A. These results suggest that mAbP CO17-1A is as effective on anti-cancer activity as mAbM CO17-1A.
Collapse
|
8
|
Kwak DH, Ryu JS, Kim CH, Ko K, Ma JY, Hwang KA, Choo YK. Relationship between ganglioside expression and anti-cancer effects of the monoclonal antibody against epithelial cell adhesion molecule in colon cancer. Exp Mol Med 2012; 43:693-701. [PMID: 22033101 DOI: 10.3858/emm.2011.43.12.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The human colorectal carcinoma-associated GA733 antigen epithelial cell adhesion molecule (EpCAM) was initially described as a cell surface protein selectively expressed in some myeloid cancers. Gangliosides are sialic acid-containing glycosphingolipids involved in inflammation and oncogenesis. We have demonstrated that treatment with anti-EpCAM mAb and RAW264.7 cells significant inhibited the cell growth in SW620 cancer cells, but neither anti-EpCAM mAb nor RAW264.7 cells alone induced cytotoxicity. The relationship between ganglioside expression and the anti- cancer effects of anti-EpCAM mAb and RAW264.7 was investigated by high-performance thin-layer chromatography. The results demonstrated that expression of GM1 and GD1a significantly increased in the ability of anti-EpCAM to inhibit cell growth in SW620 cells. Anti-EpCAM mAb treatment increased the expression of anti-apoptotic proteins such as Bcl-2, but the expression of pro-apoptotic proteins Bax, TNF-α, caspase-3, cleaved caspase-3, and cleaved caspase-8 were unaltered. We observed that anti-EpCAM mAb significantly inhibited the growth of colon tumors, as determined by a decrease in tumor volume and weight. The expression of anti-apoptotic protein was inhibited by treatment with anti-EpCAM mAb, whereas the expression of pro-apoptotic proteins was increased. These results suggest that GD1a and GM1 were closely related to anticancer effects of anti-EpCAM mAb. In light of these results, further clinical investigation should be conducted on anti-EpCAM mAb to determine its possible chemopreventive and/or therapeutic efficacy against human colon cancer.
Collapse
Affiliation(s)
- Dong Hoon Kwak
- Center for Herbal Medicine Improvement Research, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Cochrane DR, Cittelly DM, Richer JK. Steroid receptors and microRNAs: relationships revealed. Steroids 2011; 76:1-10. [PMID: 21093468 DOI: 10.1016/j.steroids.2010.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/22/2010] [Accepted: 11/10/2010] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that serve as post-transcriptional regulators of gene expression. They work predominantly by binding to complementary sequences in target messenger RNA (mRNA) 3' untranslated regions (UTRs) where they prevent translation or cause degradation of the message. Steroid hormone receptors (SHRs) are ligand-activated transcription factors that regulate genes in steroid responsive tissues. Recent studies demonstrate that SHRs regulate miRNAs, and in turn, miRNAs can regulate SHR expression and function. Mounting evidence indicates that miRNAs are intimately involved with SHRs, as they are with other transcription factors, often in double negative feedback loops. Investigators are just beginning to expose the details of these complex relationships and reveal the extent to which miRNAs are involved with SHRs in normal physiology and the pathobiology of steroid hormone responsive tissues.
Collapse
Affiliation(s)
- Dawn R Cochrane
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | |
Collapse
|
11
|
Sakamoto S, Kyprianou N. Targeting anoikis resistance in prostate cancer metastasis. Mol Aspects Med 2010; 31:205-14. [PMID: 20153362 DOI: 10.1016/j.mam.2010.02.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 02/06/2010] [Indexed: 01/20/2023]
Abstract
Anoikis is a mode of apoptotic cell death, consequential to insufficient cell-matrix interactions and a critical player in tumor angiogenesis and metastasis. The events involved in tumor cell progression toward metastasis potential are mediated by integrins, which upon engagement with components of the extracellular matrix (ECM), reorganize to form adhesion complexes. Targeting apoptotic players is of immense therapeutic significance since resistance to apoptosis is not only critical in conferring therapeutic failure to standard treatment strategies, but anoikis (apoptosis upon loss of anchorage and detachment from ECM) also plays an important role in angiogenesis and metastasis. The ability to survive in the absence of adhesion to the ECM, enables tumor cells to disseminate from the primary tumor site, invade a distant site and establish a metastatic lesion. Tumor cells can escape from detachment-induced apoptosis by controlling anoikis pathways, including the extrinsic death receptor pathway and the ECM-integrin mediated cell survival pathway. Considering the functional promiscuity of individual signaling effectors, it is critical to dissect the molecular networks mechanistically driving tumor cells to evade anoikis and embark on a metastatic spread. Resistance to die via anoikis dictates tumor cell survival and provides a molecular basis for therapeutic targeting of metastatic prostate cancer. Further dissection of critical anoikis signaling events will enable the therapeutic optimization of anoikis targeting to impair prostate cancer metastasis prior to its initiation. This review will discuss the molecular understanding of anoikis regulation in the tumor microenvironment and the in vivo pharmacological implementation of a novel class of antitumor-drugs to optimize apoptotic-based therapeutic targeting, bypassing anoikis-resistance to impair prostate cancer progression to metastasis. Potential combination strategies targeting tumor vascularity (via anoikis) and impairing tumor initiation (via "classic" apoptosis), provide strong therapeutic promise for metastatic prostate cancer by preventing the onset of metastasis.
Collapse
Affiliation(s)
- Shinichi Sakamoto
- Department of Surgery/Urology, University of Kentucky College of Medicine, Lexington, KY, USA
| | | |
Collapse
|
12
|
Dallagi T, Top S, Masi S, Jaouen G, Saidi M. Synthesis and biodistribution of [99mTc]-N-[4-nitro-3-trifluoromethyl-phenyl] cyclopentadienyltricarbonyltechnetium carboxamide, a nonsteroidal antiandrogen flutamide derivative. Metallomics 2010; 2:289-93. [DOI: 10.1039/b925224j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Park YH, Hwang IS, Jeong CW, Kim HH, Lee SE, Kwak C. Prostate Specific Antigen Half-Time and Prostate Specific Antigen Doubling Time as Predictors of Response to Androgen Deprivation Therapy for Metastatic Prostate Cancer. J Urol 2009; 181:2520-4; discussion 2525. [DOI: 10.1016/j.juro.2009.01.104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Indexed: 10/20/2022]
Affiliation(s)
- Yong Hyun Park
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - In Sik Hwang
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Hyeon Hoe Kim
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Sang Eun Lee
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
14
|
Golovine K, Makhov P, Uzzo RG, Shaw T, Kunkle D, Kolenko VM. Overexpression of the zinc uptake transporter hZIP1 inhibits nuclear factor-kappaB and reduces the malignant potential of prostate cancer cells in vitro and in vivo. Clin Cancer Res 2008; 14:5376-84. [PMID: 18765529 DOI: 10.1158/1078-0432.ccr-08-0455] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Intracellular zinc levels and expression of the zinc uptake transporter, hZIP1, are markedly down-regulated in prostate adenocarcinomatous tissue compared with normal prostate tissue. Our previous studies have shown that zinc inhibits nuclear factor-kappaB (NF-kappaB) activity and reduces the malignant potential of prostate cancer cells in vitro. In this study, we investigate the functional effect of hZIP1 overexpression on NF-kappaB activity and tumorigenic potential in human prostate cancer cells in vitro and in vivo. EXPERIMENTAL DESIGN NF-kappaB activity in PC-3 prostate cancer cells was examined by Western blotting and luciferase assay. ELISA was used to examine the expression of tumorigenic cytokines. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, adhesion, and invasiveness assays were used to assess the malignant potential of tumor cells. The effect of hZIP1 overexpression on prostate tumor progression in vivo was assessed using a xenograft model. RESULTS Overexpression of the hZIP1 transporter in PC-3 cells results in significant inhibition of NF-kappaB activity in the presence of physiologic levels of zinc. NF-kappaB inhibition coincides with a reduction in expression of several NF-kappaB controlled prometastatic and antiapoptotic factors as well as sensitization of the cells to etoposide and tumor necrosis factor-mediated apoptosis-inducing ligand-mediated cell death. Moreover, overexpression of the hZIP1 transporter induces regression of prostate tumor growth in a xenograft model. CONCLUSIONS Our results show that hZIP1 overexpression has a functional effect on the malignant potential of prostate cancer cells via inhibition of NF-kappaB-dependent pathways and support the concept that hZIP1 may function as a tumor suppressor gene in prostate cancer.
Collapse
Affiliation(s)
- Konstantin Golovine
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 10111, USA
| | | | | | | | | | | |
Collapse
|
15
|
Risek B, Bilski P, Rice AB, Schrader WT. Androgen receptor-mediated apoptosis is regulated by photoactivatable androgen receptor ligands. Mol Endocrinol 2008; 22:2099-115. [PMID: 18562628 DOI: 10.1210/me.2007-0426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have studied nonsteroidal ligands of the human androgen receptor (hAR) and have shown elsewhere that when photoactivated by visible light they collide with O2 to yield singlet oxygens (1O2) in vitro. Here we report cell killing after brief light activation (405 nm) of 1,2,3,4-tetrahydro-2,2-dimethyl-6-(trifluoromethyl)-8-pyridono[5,6-g]quinoline (TDPQ) in human prostate tumor cells. TDPQ/AR complexes were required for the death response because AR-positive LNCaP cells were killed, whereas AR-negative PC-3 cells were resistant. Excess dihydrotestosterone (DHT) blocked the TDPQ effect when the two were added together; irradiation of cells containing DHT alone had no effect. When LNCaP AR expression was suppressed using small interfering oligonucleotides targeting AR, photocytotoxicity was diminished. Conversely, stable transfection of hAR into PC-3 cells made the cells photosensitive to TDPQ. Similar results were obtained using a structural isomer of TDPQ, and also the synthetic steroidal AR ligand R1881. Cell death occurred via apoptosis as demonstrated by annexin V immunostaining, nuclear condensation, and caspase inhibition. Death involved oxidative stress, because it was prevented by addition of the antioxidant ascorbic acid during photoactivation. Detection of elevated levels of 8-hydroxy-2'-deoxyguanosine in nuclei of irradiated cells indicated oxidative DNA damage. Apoptosis spread into adjacent nonirradiated cells by direct cell-cell contacts, indicative of a bystander effect. Other photoactivatable ligands are described, implying a general method for ablation of cells bearing specific nuclear hormone receptors.
Collapse
Affiliation(s)
- Boris Risek
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, III T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- John M Fitzpatrick
- Department of Surgery, Mater Misericordiae Hospital, University College, Dublin, Ireland.
| |
Collapse
|
17
|
Sfar S, Saad H, Mosbah F, Chouchane L. Association of HSP70-hom genetic variant with prostate cancer risk. Mol Biol Rep 2007; 35:459-64. [PMID: 17578680 DOI: 10.1007/s11033-007-9107-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 05/30/2007] [Indexed: 11/29/2022]
Abstract
Because of the importance of androgens to prostate cancer (PCa) development, several candidate genes along androgen pathway have been under intensive study. Given the role of the molecular chaperone HSP70 in the regulation of the androgen receptor (AR) transactivation function, we first chose to explore the association between the HSP70-hom functional genetic variant (+2437 T > C) and prostate cancer risk by genotyping DNA samples from 101 unselected PCa patients and 105 healthy men. There was a trend towards lower frequency of TC and CC genotypes among patients when compared with healthy controls, however the difference did not reach the statistical significance (TC genotype: OR = 0.53, P = 0.05; CC genotype: OR = 0.42, P = 0.16). Moreover, individuals carrying at least one C allele have a statistically significant lower susceptibility for PCa (OR = 0.51 (0.26-0.97); P = 0.02). Since some factors may influence tumor progression rather than initiation, we also examined the relationship between the HSP70-hom polymorphism and the clinical characteristics of the malignancy at the time of diagnosis. The stratified analysis of the genotypes with the clinical stage and tumor grade showed that there was no significant difference in the risk estimates according to prognostic indicators of PCa disease in our population study. This is the first report on the studies of HSP70 SNPs in PCa and our data suggest that this genetic variant may be a genetic marker for PCa susceptibility in Tunisians.
Collapse
Affiliation(s)
- Sana Sfar
- Department of Molecular Immuno-Oncology, Faculty of Medicine, Monastir, Tunisia.
| | | | | | | |
Collapse
|
18
|
Lessard L, Saad F, Le Page C, Diallo JS, Péant B, Delvoye N, Mes-Masson AM. NF-κB2 processing and p52 nuclear accumulation after androgenic stimulation of LNCaP prostate cancer cells. Cell Signal 2007; 19:1093-100. [PMID: 17292587 DOI: 10.1016/j.cellsig.2006.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 12/13/2006] [Accepted: 12/18/2006] [Indexed: 02/01/2023]
Abstract
Several reports suggest that androgen signalling interferes with canonical RelA-p50 activity in androgen-sensitive cells. Whether this also occurs with non-canonical NF-kappaB subunits has not been studied. Here we report that androgenic stimulation of LNCaP cells with the androgen analogue R1881 appears to positively regulate the non-canonical NF-kappaB pathway as p52 accumulates both in the cytoplasm and nucleus after 48-72 h of stimulation. In contrast to TNF-alpha stimulation, androgen stimulation fails to induce RelB expression and is absent from nucleus of R1881-treated LNCaP cells. Electromobility shift assays reveal a time-dependent change in the nature of NF-kappaB complexes actively bound to DNA after 72 h of androgenic stimulation concomitant with the appearance of p52-containing complexes. Co-immunoprecipitation studies indicate that newly produced p52 can exist as a heterodimer with RelA or p50, but may be mainly present as a homodimer. RNAi experiments targeting IKK-alpha and IKK-beta show that the R1881-induced nuclear accumulation of p52 is IKK-alpha-dependent. These results point to a novel mechanism by which androgens regulate NF-kappaB and provide a rationale for further studies into the biological significance of non-canonical NF-kappaB signalling in prostate cancer.
Collapse
Affiliation(s)
- Laurent Lessard
- Université de Montréal, Centre de recherche du CHUM et Institut du cancer de Montréal, 1560 Sherbrooke East, Montréal, QC, Canada, H2L 4M1
| | | | | | | | | | | | | |
Collapse
|
19
|
Cochrane DR, Wang Z, Muramaki M, Gleave ME, Nelson CC. Differential regulation of clusterin and its isoforms by androgens in prostate cells. J Biol Chem 2006; 282:2278-87. [PMID: 17148459 DOI: 10.1074/jbc.m608162200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clusterin mRNA levels were shown to increase dramatically in rat ventral prostate following castration, and clusterin was therefore originally thought to be repressed by androgens. It was later discovered that the increased clusterin levels are most likely due to castration-induced apoptosis of the prostatic epithelium rather than direct action of the androgen receptor (AR). In the studies presented here, LNCaP cells in culture and rat prostate organ culture were treated with androgens. Clusterin mRNA and protein are shown to increase with androgen treatment in a time- and dose-dependent manner. This induction of clusterin requires AR and can be inhibited by casodex, an AR antagonist. We have found that the first intron of the clusterin gene contains putative androgen response elements. The intronic region is shown to be bound by AR in chromatin immunoprecipitation assays and is transactivated by AR in reporter assays. Two isoforms of clusterin result from alternate transcriptional start sites. Both isoforms are cytoprotective; however, Isoform 1 has the capacity to produce a splice variant that is apoptotic. Real time PCR was used to determine the response of the two isoforms to androgens. Intriguingly, these results illustrated that Isoform 2 was up-regulated, whereas Isoform 1 was down-regulated by androgens. Isoform 2 was also increased as the LNCaP xenograft tumor progressed to androgen-independence, whereas Isoform 1 was unaltered. This androgen regulation of clusterin may underline the cytoprotective role of androgens in normal prostate physiology as well as play an antiapoptotic role in prostate cancer progression.
Collapse
Affiliation(s)
- Dawn R Cochrane
- Department of Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
20
|
Sanchez D, Rosell D, Honorato B, Lopez J, Arocena J, Sanz G. Androgen receptor mutations are associated with Gleason score in localized prostate cancer. BJU Int 2006; 98:1320-5. [PMID: 17034507 DOI: 10.1111/j.1464-410x.2006.06438.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To study human androgen receptor (hAR) mutations and their relationship to the clinical and pathological characteristics of patients with prostate cancer, as the mechanisms by which tumour cells escape androgen control and grow independently of hormone stimulation are unclear. PATIENTS AND METHODS In all, 67 radical prostatectomy specimens were sequenced genomically (mean age of the patients, 64 years; median prostate-specific antigen level 15 ng/mL; 34% T1 and 66% T2). Of the 66 patients who had a valid follow-up, 28 (43%) had biochemical progression during the follow-up. RESULTS There was mutation in the hAR in 11 patients (16%); nine types of different mutations were identified, only one of which was described previously in patients with prostate cancer. Patients with mutated hAR had statistically lower Gleason scores (P = 0.004) than had patients with native hAR. CONCLUSION hAR mutations have a different effect on the disease course in patients with localized than in those with metastatic prostatic cancer.
Collapse
Affiliation(s)
- Daniel Sanchez
- Urology Department, Fundación Hospital Calahorra, Clínica Universitaria de Navarra, Spain.
| | | | | | | | | | | |
Collapse
|
21
|
McKenzie S, Kyprianou N. Apoptosis evasion: the role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem 2006; 97:18-32. [PMID: 16216007 PMCID: PMC2274918 DOI: 10.1002/jcb.20634] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The ability of a tumor cell population to grow exponentially represents an imbalance between cellular proliferation and cellular attrition. There is an overwhelming body of evidence suggesting the ability of tumor cells to avoid programmed cellular attrition, or apoptosis, is a major molecular force driving the progression of human tumors. Apoptotic evasion represents one of the true hallmarks of cancer and appears to be a vital component in the immunogenic, chemotherapeutic, and radiotherapeutic resistance that characterizes the most aggressive of human cancers [Hanahan and Weinberg, 2000]. The challenges in the development of effective treatment modalities for advanced prostate cancer represent a classic paradigm of the functional significance of anti-apoptotic pathways in the development of therapeutic resistance.
Collapse
Affiliation(s)
- Shaun McKenzie
- Departments of Surgery/Urology and Molecular & Cellular Biochemistry and the Markey Cancer Center, University of Kentucky Medical Center, Lexington, Kentucky
| | - Natasha Kyprianou
- Departments of Surgery/Urology and Molecular & Cellular Biochemistry and the Markey Cancer Center, University of Kentucky Medical Center, Lexington, Kentucky
| |
Collapse
|
22
|
Skibola CF, Bracci PM, Paynter RA, Forrest MS, Agana L, Woodage T, Guegler K, Smith MT, Holly EA. Polymorphisms and haplotypes in the cytochrome P450 17A1, prolactin, and catechol-O-methyltransferase genes and non-Hodgkin lymphoma risk. Cancer Epidemiol Biomarkers Prev 2005; 14:2391-401. [PMID: 16214922 DOI: 10.1158/1055-9965.epi-05-0343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Expression of prolactin and of prolactin and estrogen receptors in lymphocytes, bone marrow, and lymphoma cell lines suggests that hormonal modulation may influence lymphoma risk. Prolactin and estrogen promote the proliferation and survival of B cells, factors that may increase non-Hodgkin lymphoma risk, and effects of estrogen may be modified by catechol-O-methyltransferase (COMT), an enzyme that alters estrogenic activity. Cytochrome P450 17A1 (CYP17A1), a key enzyme in estrogen biosynthesis, has been associated with increased cancer risk and may affect lymphoma susceptibility. We studied the polymorphisms prolactin (PRL) -1149G>T, CYP17A1 -34T>C, and COMT 108/158Val>Met, and predicted haplotypes among a subset of participants (n = 308 cases, n = 684 controls) in a San Francisco Bay Area population-based non-Hodgkin lymphoma study (n = 1,593 cases, n = 2,515 controls) conducted from 1988 to 1995. Oral contraceptive and other hormone use also was analyzed. Odds ratios (OR) for non-Hodgkin lymphoma and follicular lymphoma were reduced for carriers of the PRL -1149TT genotype [OR, 0.64; 95% confidence interval (95% CI), 0.41-1.0; OR, 0.53; 95% CI, 0.26-1.0, respectively]. Diffuse large-cell lymphoma risk was increased for those with CYP17A1 polymorphisms including CYP17A1 -34CC (OR, 2.0; 95% CI, 1.1-3.5). ORs for all non-Hodgkin lymphoma and follicular lymphoma among women were decreased for COMT IVS1 701A>G [rs737865; variant allele: OR, 0.53; 95% CI, 0.34-0.82; OR, 0.42; 95% CI, 0.23-0.78, respectively]. Compared with never users of oral contraceptives, a 35% reduced risk was observed among oral contraceptive users in the total population. Reduced ORs for all non-Hodgkin lymphoma were observed with use of exogenous estrogens among genotyped women although 95% CIs included unity. These results suggest that PRL, CYP17A1, and COMT may be relevant genetic loci for non-Hodgkin lymphoma and indicate a possible role for prolactin and estrogen in lymphoma pathogenesis.
Collapse
Affiliation(s)
- Christine F Skibola
- Division of Environmental Health Sciences, School of Public Health, 140 Earl Warren Hall, University of California, Berkeley, CA 94720-7360, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wegiel B, Bjartell A, Ekberg J, Gadaleanu V, Brunhoff C, Persson JL. A role for cyclin A1 in mediating the autocrine expression of vascular endothelial growth factor in prostate cancer. Oncogene 2005; 24:6385-93. [PMID: 16007189 DOI: 10.1038/sj.onc.1208795] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Elevated levels of cyclin A1 expression have been implicated in acute myeloid leukemia and in male germ cell tumors. However, a role of cyclin A1 in tumorigenesis of prostate cancer has not been reported. In the present study, expression of cyclin A1 in patients with prostate cancer and a role of cyclin A1 in mediating expression of vascular endothelial growth factor (VEGF) were investigated. Cyclin A1 was highly expressed in aggressive tumors and was significantly correlated with VEGF expression in 96 patients with prostate cancer. Treatment of LNCaP cells with R1881, a synthetic androgen resulted in increased cyclin A1 expression. Induction of cyclin A1 expression in LNCaP cells led to an increase in VEGF expression and this effect was manifested upon the R1881 treatment. Cyclin A1 failed to mediate VEGF activation in DU-145 cells lacking a functional Rb and an androgen receptor (AR). Although AR expression was induced into DU-145 cells, cyclin A1 was unable to mediate VEGF expression. However, induced coexpression of cyclin A1, Rb and AR in DU-145 cells in the presence of R1881 greatly promoted VEGF promoter activity. This suggests that cyclin A1 mediates VEGF expression in cooperation with Rb- and androgen-dependent pathways in prostate cancer.
Collapse
Affiliation(s)
- Barbara Wegiel
- Department of Laboratory Medicine, Division of Pathology, Lund University, University Hospital, 20502, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Rokhlin OW, Taghiyev AF, Guseva NV, Glover RA, Chumakov PM, Kravchenko JE, Cohen MB. Androgen regulates apoptosis induced by TNFR family ligands via multiple signaling pathways in LNCaP. Oncogene 2005; 24:6773-84. [PMID: 16007156 PMCID: PMC1361275 DOI: 10.1038/sj.onc.1208833] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/12/2005] [Accepted: 05/12/2005] [Indexed: 11/08/2022]
Abstract
It has been suggested in many studies that combined treatment with chemotherapeutic agents and apoptosis-inducing ligands belonging to TNFR family is a more effective strategy for cancer treatment. However, the role of androgen regulation of TNFR family-induced apoptosis in prostate cancer is poorly understood. In this study, we investigated the dose-dependent effects of androgen on TNF-alpha and TRAIL-mediated apoptosis in LNCaP. To investigate the interaction between the androgen receptor (AR) and the caspase-2 gene, chromatin immunoprecipitation analysis was used, and we are the first to identify that AR interacts in vivo with an androgen-responsive elements in intron 8 of caspase-2 gene. We have found that DHT inhibited apoptosis in dose-dependent manner. There is a direct, androgen-dependent correlation between the levels of activated Akt and caspase activation after treatment with TNF-alpha and TRAIL. We have also found that there are at least two different regulatory mechanisms of p53 expression by androgen: at the gene and protein levels. At the same time, the level of AR was found to be higher in LNCaP-si-p53 compared to LNCaP-mock cells. These data indicate that there is a mutual regulation of expression between p53 and AR. Our study suggests that androgen-dependent outcome of apoptotic treatment can occur, at least in part, via the caspase-2, Akt and p53-mediated pathways.
Collapse
Affiliation(s)
- Oskar W Rokhlin
- Department of Pathology, University of Iowa, Iowa City, 1163 ML, IA, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Gao S, Lee P, Wang H, Gerald W, Adler M, Zhang L, Wang YF, Wang Z. The androgen receptor directly targets the cellular Fas/FasL-associated death domain protein-like inhibitory protein gene to promote the androgen-independent growth of prostate cancer cells. Mol Endocrinol 2005; 19:1792-802. [PMID: 15731171 PMCID: PMC1855294 DOI: 10.1210/me.2004-0445] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Androgens provide survival signals to prostate epithelial cells, and androgen ablation induces apoptosis in the prostate gland. However, the molecular mechanisms of actions of the androgen-signaling pathway in these processes are not fully understood. Here, we report that androgens induced expression of the cellular Fas/FasL-associated death domain protein-like inhibitory protein (c-FLIP) gene, which is a potent inhibitor of Fas/FasL-mediated apoptosis. The androgen receptor was recruited to the promoter of the c-FLIP gene in the presence of androgens. We found that c-FLIP promoter contained multiple functional androgen response elements. In addition, we show that c-FLIP overexpression accelerated progression to androgen independence by inhibiting apoptosis in LNCaP prostate tumors implanted in nude mice. Our results suggest that the androgen receptor affects survival and apoptosis of prostate cells through regulation of the c-FLIP gene in response to androgens.
Collapse
Affiliation(s)
- Shen Gao
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 173, Houston, TX 77030-4009, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Coffey RNT, Morrissey C, Taylor CT, Fitzpatrick JM, Watson RWG. Resistance to caspase-dependent, hypoxia-induced apoptosis is not hypoxia-inducible factor-1 alpha mediated in prostate carcinoma cells. Cancer 2005; 103:1363-74. [PMID: 15719438 DOI: 10.1002/cncr.20918] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Hypoxia occurs in association with cancer development, the result being a more aggressive and metastatic cancer phenotype. Hypoxia, which activates hypoxia-inducible factor-1 alpha (HIF-1alpha), is associated with a number of cellular changes including increased apoptotic resistance. The authors hypothesized that HIF-1alpha is central to the cell's ability to resist apoptosis induced during the hypoxia selection process. METHODS PWR-1E, LNCaP, LNCaP-HOF, PC-3, and DU-145 cells were cultured in normoxic and hypoxic conditions. Apoptosis was assessed by propidium iodide DNA staining. Cleavage of specific substrates was used to assess caspase activity and Western blotting was used to assess mitochondrial release of cytochrome c and second mitochondria-derived activator caspase (SMAC)/Diablo. A dominant negative HIF-1alpha construct was transfected into the PC-3 and LNCaP cells to block HIF-1alpha activity. RESULTS PC-3 and DU-145 were resistant to apoptosis induced by exposure to hypoxia, but the PWR-1E and LNCaP cells were susceptible. This induction of apoptosis in the LNCaP cells was caspase dependent but independent of cytochrome c release. Blocking the activity of HIF-1alpha had no effect on increased apoptotic susceptibility in the PC-3 cells. LNCaP-HOF cells, which were resistant to hypoxia-induced apoptosis, showed no increase in HIF-1alpha expression or activity. CONCLUSIONS Apoptotic resistance is already established in cells that survive a hypoxic insult and whereas increased HIF-1alpha activity may be essential for the development of a more aggressive cancer phenotype, it may not be responsible for the initial selection of an apoptotic resistance phenotype.
Collapse
Affiliation(s)
- Ronan N T Coffey
- Department of Surgery, Mater Misericordiae University Hospital, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Ireland
| | | | | | | | | |
Collapse
|
27
|
Sánchez Zalabardo D, Rosell Costa D, Honorato Cia B, Rioja Zuazu J, Regojo Balboa JM, Fernández Montero JM, López Ferrandis J, Robles García JE, Zudaire Bergera JJ, García Foncillas J, Berián Polo JM. [Mutations of the androgen receptor gene in patients with clinically localized adenocarcinoma of the prostate]. Actas Urol Esp 2004; 28:221-9. [PMID: 15141419 DOI: 10.1016/s0210-4806(04)73063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UNLABELLED The aim of this study was to detect mutations in the human androgen receptor gene in radical prostatectomy specimens. MATERIAL AND METHODS The genomic sequence was realized in 67 radical prostatectomy specimens. The mean age was 64 years old. The PSA median was 15 ng/ml. TNM 1997: 34.3% were T1 and 65.7% T2. Genomic sequence: 1. Radical prostatectomy specimens desparaffitation. 2. Extraction of the DNA 3. DNA amplification. 4. Automatic genome sequence. 5. Comparison with Gene-Bank. RESULTS 16.7% of the specimens were mutated. The most frequent mutation was the punctual mutation. The exon most frequent mutated was exon 1.
Collapse
Affiliation(s)
- D Sánchez Zalabardo
- Departamento de Urología, Clínica Universitaria, Universidad de Navarra, Pamplona
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rothermund CA, Gopalakrishnan VK, Vishwanatha JK. Androgen signaling and post-transcriptional downregulation of Bcl-2 in androgen-unresponsive prostate cancer. Prostate Cancer Prostatic Dis 2004; 7:158-64. [PMID: 15124003 DOI: 10.1038/sj.pcan.4500717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously characterized the LNCaP prostate cancer progression model and showed that despite loss of Bcl-2 protein in the androgen-unresponsive LNCaP-unresponsive (UR) cells, these cells maintained an increased resistance to the induction of apoptosis. Since the loss of Bcl-2 protein coincided with the progression to androgen-unresponsiveness, we sought to determine if Bcl-2 expression was regulated through androgen signaling pathways. LNCaP-responsive (R) and -UR cells grown in charcoal-stripped serum conditions for 3 months differentiated to a neuroendocrine (NE)-like morphology. Under these conditions, LNCaP-UR cells regained Bcl-2 protein expression, and LNCaP-R cells overexpressed Bcl-2. Chronic exposure to casodex resulted in differentiation of both LNCaP-R and -UR cells to the NE-type morphology accompanied by a marked downregulation of Bcl-2 protein, while Bax protein levels were unchanged. Downregulation of Bcl-2 was post-transcriptional since Bcl-2 message levels were unchanged in LNCaP cells treated with casodex. These data suggest that Bcl-2 is post-transcriptionally modulated by androgen signaling pathways in LNCaP cells.
Collapse
Affiliation(s)
- C A Rothermund
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-4525, USA
| | | | | |
Collapse
|
29
|
Cronauer MV, Schulz WA, Burchardt T, Ackermann R, Burchardt M. Inhibition of p53 function diminishes androgen receptor-mediated signaling in prostate cancer cell lines. Oncogene 2004; 23:3541-9. [PMID: 15077179 DOI: 10.1038/sj.onc.1207346] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current therapy for advanced prostate cancer is mainly based on androgen deprivation, although most patients relapse to androgen-insensitive disease. Several mechanisms contributing to androgen-independent growth including alterations in the structure or expression of the androgen receptor (AR) and its cofactors have been identified. Recent evidence suggests that p53 is involved in androgen signaling. The analysis of the effect of p53 on androgen signaling was performed in 22Rv1 and LNCaP prostate cancer cells that express both p53 and AR. The overexpression of p53 diminished the androgenic response in both cell lines in a reporter gene assay. Conversely, the inhibition of p53 by three different p53 inhibitors, Pifithrin-1alpha (PFT-1alpha), an inhibitor of p53-dependent transactivation; MDM2, a regulator of p53 expression; and a dominant-negative N-terminally truncated p53 gene also reduced transactivation of androgen-dependent reporter genes. The inactivation of p53 by PFT-1alpha decreased AR-protein expression in both 22Rv1 and LNCaP cells. Our findings confirm that the overexpression of wild-type p53 decreases androgen function, whereas p53 expression at physiological levels stabilizes AR signaling. Thus, our findings suggest that there is a balance of AR and p53 expression during the androgen-dependent growth of prostate cancer, which is obliterated during further progression of the disease.
Collapse
Affiliation(s)
- Marcus V Cronauer
- Department of Urology, Heinrich-Heine University, Düsseldorf D-40225, Germany
| | | | | | | | | |
Collapse
|
30
|
Wang L, Hsu CL, Ni J, Wang PH, Yeh S, Keng P, Chang C. Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells. Mol Cell Biol 2004; 24:2202-13. [PMID: 14966297 PMCID: PMC350564 DOI: 10.1128/mcb.24.5.2202-2213.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive responses to combined androgen elimination therapy and radiation therapy have been well documented in the treatment of prostate cancer patients. The detailed mechanisms how androgen-androgen receptor (AR) cross talks to the radiation-related signal pathways, however, remain largely unknown. Here we report the identification of hRad9, a key member of the checkpoint Rad protein family, as a coregulator to suppress androgen-AR transactivation in prostate cancer cells. In vivo and in vitro interaction assays using Saccharomyces cerevisiae two-hybrid, mammalian two-hybrid, glutathione S-transferase pull-down, and coimmunoprecipitation methods prove that AR can interact with the C terminus of hRad9 via its ligand binding domain. The FXXLF motif within the C terminus of hRad9 interrupts the androgen-induced interaction between the N terminus and C terminus of AR. This interaction between AR and hRad9 may result in the suppression of AR transactivation, demonstrated by the repressed AR transactivation in androgen-induced luciferase reporter assay and the reduced endogenous prostate-specific antigen expression in Western blot assay. Addition of small interfering RNA of hRad9 can reverse hRad9 suppression effects, which suggests that hRad9 functions as a repressor of AR transactivation in vivo. Together, our data provide the first linkage between androgen-AR signals and radiation-induced responses. Further studies of the influence of hRad9 on prostate cancer growth may provide potential new therapeutic approaches.
Collapse
Affiliation(s)
- Liang Wang
- George H. Whipple Laboratory for Cancer Research, Department of Pathology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Yoshimura N, Harada N, Bukholm I, Kåresen R, Børresen-Dale AL, Kristensen VN. Intratumoural mRNA expression of genes from the oestradiol metabolic pathway and clinical and histopathological parameters of breast cancer. Breast Cancer Res 2003; 6:R46-55. [PMID: 14979917 PMCID: PMC400649 DOI: 10.1186/bcr746] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 10/27/2003] [Accepted: 11/07/2003] [Indexed: 11/30/2022] Open
Abstract
Introduction The expression of the oestrogen receptor (ER) is one of the more important clinical parameters of breast cancer. However, the relationship between the ER and its ligand, oestradiol, and the enzymes that synthesise it are not well understood. The expression of mRNA transcripts of members of the oestradiol metabolic and signalling pathways including the ER was studied in detail. Method mRNA transcripts for aromatase (CYP19), 17-β-hydroxysteroid dehydrogenase I, 17-β-hydroxysteroid dehydrogenase II, ERα, ERβ, steroid sulfatase (STS), oestradiol sulfotransferase (EST), cyclin D1 (CYCLD1) and ERBB2 were fluorometrically quantified by competitive RT-PCR using an internal standard in 155 breast carcinomas. In addition, the transcripts of CYP19 were analysed for alternative splicing/usage of exon 1 and an alternative poly A tail. Results A great variability of expression was observed, ranging from 0 to 2376 amol/mg RNA. The highest levels were observed for STS and EST, and the lowest levels (close to zero) were observed for the 17-β-hydroxysteroid dehydrogenase isoenzymes. The levels of mRNA expression were analysed with respect to clinical and histopathological parameters as well as for disease-free survival. High correlation of the mRNA expression of STS, EST and 17-β-hydroxysteroid dehydrogenase in the tumours suggested a common regulation, possibly by their common metabolite (oestradiol). Hierarchical clustering analysis in the 155 patients resulted in two main clusters, representing the ERα-negative and ERα-positive breast cancer cases. The mRNA expression of the oestradiol metabolising enzymes did not follow the expression of the ERα in all cases, leading to the formation of several subclasses of tumours. Patients with no expression of CYP19 and patients with high levels of expression of STS had significantly shorter disease-free survival time (P > 0.0005 and P < 0.03, respectively). Expression of ERβ mRNA was a better prognostic factor than that of ERα in this material. Conclusion Our results indicate the importance of CYP19 and the enzymes regulating the oestrone sulfate metabolism as factors of disease-free survival in breast cancer, in addition to the well-known factors ER and ERBB2.
Collapse
Affiliation(s)
- Noriko Yoshimura
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Nobuhiro Harada
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Ida Bukholm
- Department of Oncology, Ullevaal Hospital, Oslo, Norway
| | - Rolf Kåresen
- Department of Oncology, Ullevaal Hospital, Oslo, Norway
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute of Cancer Research, The Norwegian Radium Hospital, Montebello 0310, Oslo, Norway
| | - Vessela N Kristensen
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, Japan
- Department of Genetics, Institute of Cancer Research, The Norwegian Radium Hospital, Montebello 0310, Oslo, Norway
| |
Collapse
|
32
|
Mimeault M, Pommery N, Hénichart JP. New advances on prostate carcinogenesis and therapies: involvement of EGF-EGFR transduction system. Growth Factors 2003; 21:1-14. [PMID: 12795332 DOI: 10.1080/0897719031000094921] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The prostate cancers (PCs) are among the major causes of death because therapeutic treatments are not effective against advanced and metastatic forms of this cellular hyperproliferative disorder. In fact, although androgen-deprivation therapies permit to cure localized PC forms, the metastatic PC cells have acquired multiple functional features that confer to them resistance to ionizing radiations and anticarcinogenic drugs currently used in therapy. The present review describes last advances on molecular mechanisms that might be responsible for sustained growth and survival of PC cells. In particular, emphasis is on intracellular signaling cascades which are involved in the mitogenic and antiapoptotic effects of epidermal growth factor EGF-EGFR system. Of therapeutic interest, recent advances and prospects for development of new treatments against incurable forms of metastatic PC forms are also discussed.
Collapse
Affiliation(s)
- Murielle Mimeault
- Institut de Chimie Pharmaceutique Albert Lespagnol, Faculté de Pharmacie, 3 Rue du Professeur Laguesse, BP83, 59006 Lille, Cédex, France.
| | | | | |
Collapse
|
33
|
Suh J, Rabson AB. NF-?B activation in human prostate cancer: Important mediator or epiphenomenon? J Cell Biochem 2003; 91:100-17. [PMID: 14689584 DOI: 10.1002/jcb.10729] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The NF-kappaB family of transcription factors has been shown to be constitutively activated in various human malignancies, including leukemias, lymphomas, and a number of solid tumors. NF-kappaB is hypothesized to contribute to development and/or progression of malignancy by regulating the expression of genes involved in cell growth and proliferation, anti-apoptosis, angiogenesis, and metastasis. Prostate cancer cells have been reported to have constitutive NF-kappaB activity due to increased activity of the IkappaB kinase complex. Furthermore, an inverse correlation between androgen receptor (AR) status and NF-kappaB activity was observed in prostate cancer cell lines. NF-kappaB may promote cell growth and proliferation in prostate cancer cells by regulating expression of genes such as c-myc, cyclin D1, and IL-6. NF-kappaB may also inhibit apoptosis in prostate cancer cells through activation of expression of anti-apoptotic genes, such as Bcl-2, although pro-apoptotic activity of NF-kappaB has also been reported. NF-kappaB-mediated expression of genes involved in angiogenesis (IL-8, VEGF), and invasion and metastasis (MMP9, uPA, uPA receptor) may further contribute to the progression of prostate cancer. Constitutive NF-kappaB activity has also been demonstrated in primary prostate cancer tissue samples and suggested to have prognostic importance for a subset of primary tumors. The limited number of samples analyzed in those studies and the relative lack of NF-kappaB target genes identified in RNA expression microarray analyses of prostate cancer cells suggest that further studies will be required in order to determine if NF-kappaB actually plays a role in human prostate cancer development, and/or progression, and to characterize its potential as a therapeutic target.
Collapse
Affiliation(s)
- Junghan Suh
- Cancer Institute of New Jersey and Center for Advanced Biotechnology and Medicine, Department of Molecular Genetics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|