1
|
Pan X, Wang Q, Sun B. Multifaceted roles of neutrophils in tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189231. [PMID: 39615862 DOI: 10.1016/j.bbcan.2024.189231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Neutrophils, the most abundant leukocyte population in circulation, play a crucial role in detecting and responding to foreign cells, such as pathogens and tumor cells. However, the impact of neutrophils on cancer pathogenesis has been overlooked because of their short lifespan, terminal differentiation, and limited transcriptional activity. Within the tumor microenvironment (TME), neutrophils can be influenced by tumor cells or other stromal cells to acquire either protumor or antitumor properties via the cytokine environment. Despite progress in neutrophil-related research, a comprehensive understanding of tissue-specific neutrophil diversity and adaptability in the TME is still lacking, which poses a significant obstacle to the development of neutrophil-based cancer therapies. This review evaluated the current studies on the dual roles of neutrophils in cancer progression, emphasizing their importance in predicting clinical outcomes, and explored various approaches for targeting neutrophils in cancer treatment, including their potential synergy with cancer immunotherapy.
Collapse
Affiliation(s)
- Xueyin Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| |
Collapse
|
2
|
Otake S, Saito K, Chiba Y, Yamada A, Fukumoto S. S100a6 knockdown promotes the differentiation of dental epithelial cells toward the epidermal lineage instead of the odontogenic lineage. FASEB J 2024; 38:e23608. [PMID: 38593315 DOI: 10.1096/fj.202302412rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Tooth development is a complex process involving various signaling pathways and genes. Recent findings suggest that ion channels and transporters, including the S100 family of calcium-binding proteins, may be involved in tooth formation. However, our knowledge in this regard is limited. Therefore, this study aimed to investigate the expression of S100 family members and their functions during tooth formation. Tooth germs were extracted from the embryonic and post-natal mice and the expression of S100a6 was examined. Additionally, the effects of S100a6 knockdown and calcium treatment on S100a6 expression and the proliferation of SF2 cells were examined. Microarrays and single-cell RNA-sequencing indicated that S100a6 was highly expressed in ameloblasts. Immunostaining of mouse tooth germs showed that S100a6 was expressed in ameloblasts but not in the undifferentiated dental epithelium. Additionally, S100a6 was localized to the calcification-forming side in enamel-forming ameloblasts. Moreover, siRNA-mediated S100a6 knockdown in ameloblasts reduced intracellular calcium concentration and the expression of ameloblast marker genes, indicating that S100a6 is associated with ameloblast differentiation. Furthermore, S100a6 knockdown inhibited the ERK/PI3K signaling pathway, suppressed ameloblast proliferation, and promoted the differentiation of the dental epithelium toward epidermal lineage. Conclusively, S100a6 knockdown in the dental epithelium suppresses cell proliferation via calcium and intracellular signaling and promotes differentiation of the dental epithelium toward the epidermal lineage.
Collapse
Grants
- 23H03109 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21J21873 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H03296 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H00488 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20K20612 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Shinji Otake
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yuta Chiba
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Isaacs JT, Dalrymple SL, Antony L, Rosen DM, Coleman IM, Nelson PS, Kostova M, Murray IA, Perdew GH, Denmeade SR, Akinboye ES, Brennen WN. Third generation quinoline-3-carboxamide transcriptional disrupter of HDAC4, HIF-1α, and MEF-2 signaling for metastatic castration-resistant prostate cancer. Prostate 2023; 83:1470-1493. [PMID: 37559436 PMCID: PMC10559933 DOI: 10.1002/pros.24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND The quinoline-3-carboxamide, Tasquinimod (TasQ), is orally active as a maintenance therapy with an on-target mechanism-of-action via allosteric binding to HDAC4. This prevents formation of the HDAC4/NCoR1/HDAC3 complex, disrupting HIF-1α transcriptional activation and repressing MEF-2 target genes needed for adaptive survival signaling in the compromised tumor micro environment. In phase 3 clinical testing against metastatic castration-resistant prostate cancer(mCRPC), TasQ (1 mg/day) increased time-to-progression, but not overall survival. METHODS TasQ analogs were chemically synthesized and tested for activity compared to the parental compound. These included HDAC4 enzymatic assays, qRT-PCR and western blot analyses of gene and protein expression following treatment, in vitro and in vivo efficacy against multiple prostate cancer models including PDXs, pharmacokinetic analyses,AHR binding and agonist assays, SPR analyses of binding to HDAC4 and NCoR1, RNAseq analysis of in vivo tumors, 3D endothelial sprouting assays, and a targeted kinase screen. Genetic knockout or knockdown controls were used when appropriate. RESULTS Here, we document that, on this regimen (1 mg/day), TasQ blood levels are 10-fold lower than the optimal concentration (≥2 μM) needed for anticancer activity, suggesting higher daily doses are needed. Unfortunately, we also demonstrate that TasQ is an arylhydrocarbon receptor (AHR) agonist, which binds with an EC50 of 1 μM to produce unwanted off-target side effects. Therefore, we screened a library of TasQ analogsto maximize on-target versus off-target activity. Using this approach, we identified ESATA-20, which has ~10-fold lower AHR agonism and 5-fold greater potency against prostate cancer patient-derived xenografts. CONCLUSION This increased therapeuticindex nominates ESATA-20 as a lead candidate forclinical development as an orally active third generation quinoline-3-carboxamide analog thatretains its on-target ability to disrupt HDAC4/HIF-1α/MEF-2-dependent adaptive survival signaling in the compromisedtumor microenvironment found in mCRPC.
Collapse
Affiliation(s)
- John T. Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan L. Dalrymple
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - Lizamma Antony
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - D. Marc Rosen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Maya Kostova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - Iain A. Murray
- Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA
| | - Gary H. Perdew
- Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA
| | - Samuel R. Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emmanuel S. Akinboye
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - W. Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Geh D, Leslie J, Rumney R, Reeves HL, Bird TG, Mann DA. Neutrophils as potential therapeutic targets in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2022; 19:257-273. [PMID: 35022608 DOI: 10.1038/s41575-021-00568-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
The success of atezolizumab plus bevacizumab treatment contributed to a shift in systemic therapies for hepatocellular carcinoma (HCC) towards combinations that include cancer immunotherapeutic agents. Thus far, the principal focus of cancer immunotherapy has been on interrupting immune checkpoints that suppress antitumour lymphocytes. As well as lymphocytes, the HCC environment includes numerous other immune cell types, among which neutrophils are emerging as an important contributor to the pathogenesis of HCC. A growing body of evidence supports neutrophils as key mediators of the immunosuppressive environment in which some cancers develop, as well as drivers of tumour progression. If neutrophils have a similar role in HCC, approaches that target or manipulate neutrophils might have therapeutic benefits, potentially including sensitization of tumours to conventional immunotherapy. Several neutrophil-directed therapies for patients with HCC (and other cancers) are now entering clinical trials. This Review outlines the evidence in support of neutrophils as drivers of HCC and details their mechanistic roles in development, progression and metastasis, highlighting the reasons that neutrophils are well worth investigating despite the challenges associated with studying them. Neutrophil-modulating anticancer therapies entering clinical trials are also summarized.
Collapse
Affiliation(s)
- Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rob Rumney
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Helen L Reeves
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- The Liver Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Hepatopancreatobiliary Multidisciplinary Team, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow, UK
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
6
|
Ma C, Taghour MS, Belal A, Mehany ABM, Mostafa N, Nabeeh A, Eissa IH, Al-Karmalawy AA. Design and Synthesis of New Quinoxaline Derivatives as Potential Histone Deacetylase Inhibitors Targeting Hepatocellular Carcinoma: In Silico, In Vitro, and SAR Studies. Front Chem 2021; 9:725135. [PMID: 34631658 PMCID: PMC8493129 DOI: 10.3389/fchem.2021.725135] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Guided by the structural optimization principle and the promising anticancer effect of the quinoxaline nucleus, a new series of novel HDAC inhibitors were designed and synthesized. The synthesized compounds were designed to bear the reported pharmacophoric features of the HDAC inhibitors in addition to an extra moiety to occupy the non-used vacant deep pocket of the HDAC receptor. The newly prepared compounds were evaluated for their in vitro anti-proliferative activities against HepG-2 and HuH-7 liver cancer cell lines. The tested compounds showed promising anti-proliferative activities against both cell lines. The most active ten candidates (6 c , 6 d , 6 f , 6 g , 6 k , 6 l , 7 b , 8, 10 h , and 12) were further evaluated for their effect on the gene expression levels of Bax as an apoptotic marker and Bcl-2 as an anti-apoptotic one. Moreover, they were evaluated for their ability to inhibit histone deacetylase (HDAC1, HDAC4, and HDAC6) activities. Compound 6 c achieved the best cytotoxic activities on both HepG-2 and HuH-7 cell lines with IC50 values of 1.53 and 3.06 µM, respectively, and also it showed the most inhibitory activities on HDAC1, HDAC4, and HDAC6 with IC50 values of 1.76, 1.39, and 3.46 µM, respectively, compared to suberoylanilide hydroxamic acid (SAHA) as a reference drug (IC50 = 0.86, 0.97, and 0.93 µM, respectively). Furthermore, it achieved a more characteristic arrest in the growth of cell population of HepG-2 at both G0/G1 and S phases with 1.23-, and 1.18-fold, respectively, compared to that of the control, as determined by cell cycle analysis. Also, compound 6 c showed a marked elevation in the AnxV-FITC apoptotic HepG-2 cells percentage in both early and late phases increasing the total apoptosis percentage by 9.98-, and 10.81-fold, respectively, compared to the control. Furthermore, docking studies were carried out to identify the proposed binding mode of the synthesized compounds towards the prospective target (HDAC4). In silico ADMET and toxicity studies revealed that most of the synthesized compounds have accepted profiles of drug-likeness with low toxicity. Finally, an interesting SAR analysis was concluded to help the future design of more potent HDACIs in the future by medicinal chemists.
Collapse
Affiliation(s)
- Chao Ma
- Hepatobiliary and Pancreatic Surgery, Cancer Hospital of Zhengzhou University, Zhengzhou City, China
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Naglaa Mostafa
- Biophysics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed Nabeeh
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
7
|
The S100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm Med 2021; 2021:5488591. [PMID: 34239729 PMCID: PMC8214497 DOI: 10.1155/2021/5488591] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes, including proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation, tissue repair, and migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable. The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines potential therapeutic strategies for treatment.
Collapse
|
8
|
High Monocyte Count and Expression of S100A9 and S100A12 in Peripheral Blood Mononuclear Cells Are Associated with Poor Outcome in Patients with Metastatic Prostate Cancer. Cancers (Basel) 2021; 13:cancers13102424. [PMID: 34067757 PMCID: PMC8156049 DOI: 10.3390/cancers13102424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023] Open
Abstract
Increasing evidence indicates calcium-binding S100 protein involvement in inflammation and tumor progression. In this prospective study, we evaluated the mRNA levels of two members of this family, S100A9 and S100A12, in peripheral blood mononuclear cells (PBMCs) in a cohort of 121 prostate cancer patients using RT-PCR. Furthermore, monocyte count was determined by flow cytometry. By stratifying patients into different risk groups, according to TNM stage, Gleason score and PSA concentration at diagnosis, expression of S100A9 and S100A12 was found to be significantly higher in patients with metastases compared to patients without clinically detectable metastases. In line with this, we observed that the protein levels of S100A9 and S100A12 in plasma were higher in patients with advanced disease. Importantly, in patients with metastases at diagnosis, high monocyte count and high levels of S100A9 and S100A12 were significantly associated with short progression free survival (PFS) after androgen deprivation therapy (ADT). High monocyte count and S100A9 levels were also associated with short cancer-specific survival, with monocyte count providing independent prognostic information. These findings indicate that circulating levels of monocytes, as well as S100A9 and S100A12, could be biomarkers for metastatic prostate cancer associated with particularly poor prognosis.
Collapse
|
9
|
Otazu GK, Dayyani M, Badie B. Role of RAGE and Its Ligands on Inflammatory Responses to Brain Tumors. Front Cell Neurosci 2021; 15:770472. [PMID: 34975408 PMCID: PMC8716782 DOI: 10.3389/fncel.2021.770472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Gliomas, the most common form of brain cancer, can range from relatively slow-growing low-grade to highly aggressive glioblastoma that has a median overall survival of only 15 months despite multimodal standard therapy. Although immunotherapy with checkpoint inhibitors has significantly improved patient survival for some cancers, to date, these agents have not shown consistent efficacy against malignant gliomas. Therefore, there is a pressing need to better understand the impact of host inflammatory responses on the efficacy of emerging immunotherapy approaches for these resistant tumors. RAGE is a multi-ligand pattern recognition receptor that is activated in various inflammatory states such as diabetes, Alzheimer's disease, cystic fibrosis, and cancer. Low levels of RAGE can be found under normal physiological conditions in neurons, immune cells, activated endothelial, and vascular smooth muscle cells, but it is over-expressed under chronic inflammation due to the accumulation of its ligands. RAGE binds to a range of damage-associated molecular pattern molecules (DAMPs) including AGEs, HMGB1, S100s, and DNA which mediate downstream cellular responses that promote tumor growth, angiogenesis, and invasion. Both in vitro and in vivo studies have shown that inhibition of RAGE signaling can disrupt inflammation and cancer progression and metastasis. Here, we will review our current understanding of the role of RAGE pathway on glioma progression and how it could be exploited to improve the efficacy of immunotherapy approaches.
Collapse
Affiliation(s)
- Griffith Kyle Otazu
- Division of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, United States
| | - Mojtaba Dayyani
- Division of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, United States
| | - Behnam Badie
- Division of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, United States
| |
Collapse
|
10
|
Boros F, Vécsei L. Progress in the development of kynurenine and quinoline-3-carboxamide-derived drugs. Expert Opin Investig Drugs 2020; 29:1223-1247. [DOI: 10.1080/13543784.2020.1813716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fanni Boros
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences and the University of Szeged, Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Wang M, Xia F, Wei Y, Wei X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8:30. [PMID: 32793401 PMCID: PMC7391760 DOI: 10.1038/s41413-020-00105-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the most common metastatic sites of malignancies, bone has a unique microenvironment that allows metastatic tumor cells to grow and flourish. The fenestrated capillaries in the bone, bone matrix, and bone cells, including osteoblasts and osteoclasts, together maintain the homeostasis of the bone microenvironment. In contrast, tumor-derived factors act on bone components, leading to subsequent bone resorption or excessive bone formation. The various pathways involved also provide multiple targets for therapeutic strategies against bone metastases. In this review, we summarize the current understanding of the mechanism of bone metastases. Based on the general process of bone metastases, we specifically highlight the complex crosstalk between tumor cells and the bone microenvironment and the current management of cancer bone metastases.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| |
Collapse
|
12
|
Sanaei MJ, Salimzadeh L, Bagheri N. Crosstalk between myeloid-derived suppressor cells and the immune system in prostate cancer. J Leukoc Biol 2020; 107:43-56. [DOI: 10.1002/jlb.4ru0819-150rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/23/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractProstate cancer is the second most common cancer and the fifth leading cause of cancer-associated death in men. Previous studies have revealed a surprising ability for an immature population of myeloid cells called myeloid-derived suppressor cells (MDSCs) in the commencement and development of many tumors, including those of prostate cancer. Herein, the molecular and cellular changes of MDSCs in prostate cancer in both human and nonhuman models are reviewed. The suppressive function of MDSCs are also discussed with a particular focus on the role of IL-6 and JAK/STAT3 signaling pathways in the induction of their suppressive activity. Ultimately, a brief review of MDSC-targeting approaches for potential cancer therapy is presented.
Collapse
Affiliation(s)
- Mohammad-Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Loghman Salimzadeh
- Department of Medicine, National University of Singapore , Singapore, Singapore
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord, Iran
| |
Collapse
|
13
|
Zhang X, Wei L, Wang J, Qin Z, Wang J, Lu Y, Zheng X, Peng Q, Ye Q, Ai F, Liu P, Wang S, Li G, Shen S, Ma J. Suppression Colitis and Colitis-Associated Colon Cancer by Anti-S100a9 Antibody in Mice. Front Immunol 2017; 8:1774. [PMID: 29326691 PMCID: PMC5733461 DOI: 10.3389/fimmu.2017.01774] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022] Open
Abstract
The association between chronic inflammation and cancer has long been recognized. The inflammatory bowel disease ulcerative colitis frequently progresses to colon cancer; however, the underlying mechanism is still unclear. S100a9 has been emerged as an important pro-inflammatory mediator in acute and chronic inflammation, and the aberrant expression of S100a9 also contributes to tumorigenic processes such as cell proliferation, angiogenesis, metastasis, and immune evasion. We previously revealed that S100a8 and S100a9 are highly activated and play an important role in the process of colitis-associated carcinogenesis, which suggests an attractive therapeutic target for ulcerative colitis and related colon cancer. Here, we report that administration of a neutralizing anti-S100a9 antibody significantly ameliorated dextran sulfate sodium (DSS)-induced colitis and accompanied by diminished cellular infiltrate of innate immunity cells (macrophages, neutrophils, and dendritic cells) and production of pro-inflammatory cytokines (Tnfα, Il1β, Ifnγ, Il6, Il17a, Il23a, Il4, and Il12a). The protective effect of anti-S100a9 antibody treatment was also observed in azoxymethane (AOM)/DSS-induced colitis-associated cancer (CAC) mouse model. The inflammatory response, tumor cell proliferation, and immune cells infiltration in the colon tissues were suppressed by anti-S100a9 antibody. Gene expression profiling showed that key pathways known to be involved in CAC development, such as Wnt signaling pathway, PI3K–Akt signaling pathway, cytokine–cytokine receptor interaction, and ECM–receptor interaction pathway, were suppressed after treatment with anti-S100a9 antibody in CAC mice. In view of the protective effect of neutralizing anti-S100a9 antibody against DSS-induced colitis and AOM/DSS-induced CAC in mouse model, this study suggests that anti-S100a9 antibody may provide a novel therapeutic approach to treat ulcerative colitis and may decrease the risk for developing CAC.
Collapse
Affiliation(s)
- Xuemei Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| | - Lingyu Wei
- Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| | - Jing Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zailong Qin
- Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| | - Jia Wang
- Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| | - Yuanjun Lu
- Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| | - Xiang Zheng
- Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| | - Qiu Peng
- Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| | - Qiurong Ye
- Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| | - Feiyan Ai
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China.,Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Peishan Liu
- Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| | - Siwen Wang
- Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| | - Guiyuan Li
- Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| | - Shourong Shen
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China.,Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| |
Collapse
|
14
|
Armstrong AJ, Humeniuk MS, Healy P, Szmulewitz R, Winters C, Kephart J, Harrison MR, Martinez E, Mundy K, Halabi S, George D. Phase Ib Trial of Cabazitaxel and Tasquinimod in Men With Heavily Pretreated Metastatic Castration Resistant Prostate Cancer (mCRPC): The CATCH Trial. Prostate 2017; 77:385-395. [PMID: 27862097 PMCID: PMC6309626 DOI: 10.1002/pros.23277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND Tasquinimod is an immunomodulating and anti-antiangiogenic oral agent with anti-prostate cancer activity in preclinical studies and in clinical trials of men with metastatic castration resistant prostate cancer (mCRPC), including single agent activity and in combination with taxanes. We sought to identify the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of tasquinimod in combination with cabazitaxel and prednisone in men with chemorefractory mCRPC. METHODS Men with mCRPC who had failed prior docetaxel chemotherapy received cabazitaxel 25 mg/m2 every 3 weeks with oral tasquinimod at 1 of 3 escalating dose levels (0.25, 0.5, and 1.0 mg once daily) with prednisone and PEG-filgastrim support, using a 3 + 3 dose escalation design. Treatment continued until progressive disease or unacceptable toxicity. RESULTS We enrolled 25 men with chemorefractory mCRPC. The RP2D was 0.5 mg tasquinimod based on excess DLTs (two of three men) observed at dose level 3 (1.0 mg) including grade 3 sensory neuropathy and grade 3 atrial fibrillation. Dose level 2 was expanded to 14 men, where 3 DLTs were observed: grade 3 fatigue, grade 4 febrile neutropenia, and grade 3 liver function abnormalities. The proportion of men with a ≥30% PSA decline was 63% and the median composite progression-free survival (PFS) was 8.5 months (95% CI 4.2-16.4 months) based on 12 PFS events. The median number of cycles of cabazitaxel was 6 (range 1-13), with six men receiving >10 cycles. Best overall RECIST responses (CR + PR) were observed in three men (12%), with stable disease in 12 (48%). No pharmacokinetic interactions were observed. CONCLUSIONS We determined the RP2D of tasquinimod combined with cabazitaxel to be 0.5 mg daily following a 3 week lead-in of tasquinimod 0.25 mg with growth factor support. No unexpected toxicities occurred. Prostate 77: 385-395, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew J. Armstrong
- Divisions of Medical Oncology and Urology, Departments of Medicine and Surgery, Duke Cancer Institute, Durham, North Carolina
- Correspondence to: Andrew J. Armstrong, MD, ScM, FACP, Associate Professor of Medicine and Surgery, Associate Director for Clinical Research in Genitourinary Oncology, Divisions of Medical Oncology and Urology, Departments of Medicine and Surgery, Duke Cancer Institute, DUMC Box 103861, Duke University, Durham, NC 27710.
| | - Michael S. Humeniuk
- Divisions of Medical Oncology and Urology, Departments of Medicine and Surgery, Duke Cancer Institute, Durham, North Carolina
| | - Patrick Healy
- Department of Biostatistics, Duke University, Durham, North Carolina
| | | | - Carolyn Winters
- Divisions of Medical Oncology and Urology, Departments of Medicine and Surgery, Duke Cancer Institute, Durham, North Carolina
| | - Julie Kephart
- Divisions of Medical Oncology and Urology, Departments of Medicine and Surgery, Duke Cancer Institute, Durham, North Carolina
| | - Michael R. Harrison
- Divisions of Medical Oncology and Urology, Departments of Medicine and Surgery, Duke Cancer Institute, Durham, North Carolina
| | - Elia Martinez
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Kelly Mundy
- Divisions of Medical Oncology and Urology, Departments of Medicine and Surgery, Duke Cancer Institute, Durham, North Carolina
| | - Susan Halabi
- Department of Biostatistics, Duke University, Durham, North Carolina
| | - Daniel George
- Divisions of Medical Oncology and Urology, Departments of Medicine and Surgery, Duke Cancer Institute, Durham, North Carolina
| |
Collapse
|
15
|
Deronic A, Tahvili S, Leanderson T, Ivars F. The anti-tumor effect of the quinoline-3-carboxamide tasquinimod: blockade of recruitment of CD11b(+) Ly6C(hi) cells to tumor tissue reduces tumor growth. BMC Cancer 2016; 16:440. [PMID: 27400708 PMCID: PMC4939705 DOI: 10.1186/s12885-016-2481-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 06/17/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022] Open
Abstract
Background Previous work has demonstrated immunomodulatory, anti-tumor, anti-metastatic and anti-angiogenic effects of the small molecule quinoline-3-carboxamide tasquinimod in pre-clinical cancer models. To better understand the anti-tumor effects of tasquinimod in transplantable tumor models, we have evaluated the impact of the compound both on recruitment of myeloid cells to tumor tissue and on tumor-induced myeloid cell expansion as these cells are known to promote tumor development. Methods Mice bearing subcutaneous 4 T1 mammary carcinoma tumors were treated with tasquinimod in the drinking water. A BrdU-based flow cytometry assay was utilized to assess the impact of short-term tasquinimod treatment on myeloid cell recruitment to tumors. Additionally, long-term treatment was performed to study the anti-tumor effect of tasquinimod as well as its effects on splenic myeloid cells and their progenitors. Myeloid cell populations were also immune-depleted by in vivo antibody treatment. Results Short-term tasquinimod treatment did not influence the proliferation of splenic Ly6Chi and Ly6Ghi cells, but instead reduced the influx of Ly6Chi cells to the tumor. Treatment with tasquinimod for various periods of time after tumor inoculation revealed that the anti-tumor effect of this compound mainly operated during the first few days of tumor growth. Similar to tasquinimod treatment, antibody-mediated depletion of Ly6Chi cells within that same time frame, caused reduced tumor growth, thereby confirming a significant role for these cells in tumor development. Additionally, long-term tasquinimod treatment reduced the splenomegaly and expansion of splenic myeloid cells during a later phase of tumor development. In this phase, tasquinimod normalized the tumor-induced alterations in myeloerythroid progenitor cells in the spleen but had only limited impact on the same populations in the bone marrow. Conclusions Our results indicate that tasquinimod treatment reduces tumor growth by operating early after tumor inoculation and that this effect is at least partially caused by reduced recruitment of Ly6Chi cells to tumor tissue. Long-term treatment also reduces the number of splenic myeloid cells and myeloerythroid progenitors, but these effects did not influence established rapidly growing tumors. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2481-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adnan Deronic
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Tomas Leanderson
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Fredrik Ivars
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
16
|
Safety of Abiraterone Acetate in Castration-resistant Prostate Cancer Patients With Concomitant Cardiovascular Risk Factors. Am J Clin Oncol 2016; 38:479-82. [PMID: 24064757 DOI: 10.1097/coc.0b013e3182a790ce] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the safety profile of abiraterone acetate (AA) in metastatic castration-resistant prostate cancer (mCRPC) men with cardiovascular comorbidity, as little conclusive safety data are available in this patient subset. PATIENTS AND METHODS A retrospective analysis of mCRPC patients with controlled cardiovascular comorbidities, receiving AA 1000 mg administered orally once daily and prednisone 5 mg twice daily, between April 2011 and July 2012, was performed. All clinical and instrumental variables and toxicity data were analyzed by descriptive statistics: mean, standard deviation, minimum and maximum values for continuous variables, and absolute and relative frequencies for categorical variables. RESULTS A total of 51 mCRPC patients were evaluated. Metastatic sites included the bone (74%), lungs, and liver (26%). All patients were previously treated with at least 2 lines of hormone and 1 docetaxel-based chemotherapy. Preexisting cardiac risk factors included hypertension (41%), cardiac ischemia (12%), arrhythmias (6%), dislipidemia (18%), and hyperglycemia (30%). No grade 3-4 adverse events were observed. Grade 1-2 adverse events included fluid retention (18%), asthenia (15%), and hypertension (16%). Median progression-free survival was 5.1 months (95% confidence interval, 0.5-12). Prostate specific antigen assessment revealed a good overall disease control rate (64%). CONCLUSIONS AA appears to be safe and well tolerated even in patients with cardiovascular comorbidities or with increased risk factors for cardiovascular diseases.
Collapse
|
17
|
Magnusson LU, Hagberg Thulin M, Plas P, Olsson A, Damber JE, Welén K. Tasquinimod inhibits prostate cancer growth in bone through alterations in the bone microenvironment. Prostate 2016; 76:383-93. [PMID: 26660725 DOI: 10.1002/pros.23133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/13/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Tasquinimod (ABR-215050) is an orally active quinoline-3-carboxamide analog that inhibits occurrence of experimental metastasis and delays disease progression of castration resistant prostate cancer in humans. Its mechanism of action is not fully elucidated, but previous studies show immunomodulatory and anti-angiogenic effects. The aim of the present study was to investigate the tumor inhibiting effect of tasquinimod in bone of castrated mice as well as to elucidate its working mechanism related to bone microenvironment. METHODS Effects of tasquinimod on prostate cancer metastasis to bone was studied in an intratibial xenograft model. Animals were treated with tasquinimod and tumor establishment and growth, immunological status, as well as markers for bone remodeling were analyzed. Direct effects of tasquinimod on osteoblasts were studied in vitro. RESULTS Establishment and growth of tumors in the bone after intratibial implantation in castrated mice was suppressed by tasquinimod treatment. The treatment effect was linked to decreased potential for immunosuppression in the pre-metastatic niche in bone (lower levels of CD206 and Arg1 expression in combination with increased iNOS expression) as well as in the tumor microenvironment (less Gr1 and CD206 staining). The shift to a pro-inflammatory, anti-tumorigenic milieu was also reflected in serum by increased levels of IFN-γ, CCL4, IL-5, LIX, IP-10, and MCP-1 as well as decreased TGF-β. Tasquinimod treatment also affected expression of factors involved in the pre-metastatic niche in the bone microenvironment (Lox, Cdh2, Cdh11, and Cxcl12). In addition, tasquinimod treatment caused a decreased osteogenic response indicated by decreased expression of Ocn, Runx2, and Col1a2 and increased expression of osteoclast stimulating CSF2. In vitro studies on mouse osteoblasts showed impaired osteoblast mineralization upon tasquinimod treatment. CONCLUSIONS The present study shows that tasquinimod reduces establishment and progression of tumor growth in bone likely through a combination of effects on the pre-metastatic niche, homing, immunological status, and osteogenesis. It was concluded that tasquinimod interferes with the metastatic process, presumably by inhibition of tumor establishment. Hence, our data suggest that tasquinimod might be most effective in inhibiting the occurrence of new metastatic lesions.
Collapse
Affiliation(s)
- Lisa U Magnusson
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Malin Hagberg Thulin
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | | | - Jan-Erik Damber
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Welén
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Hagberg Thulin M, Nilsson ME, Thulin P, Céraline J, Ohlsson C, Damber JE, Welén K. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis. Mol Cell Endocrinol 2016; 422:182-191. [PMID: 26586211 DOI: 10.1016/j.mce.2015.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 11/23/2022]
Abstract
The skeleton is the preferred site for prostate cancer (PC) metastasis leading to incurable castration-resistant disease. The increased expression of genes encoding steroidogenic enzymes found in bone metastatic tissue from patients suggests that up-regulated steroidogenesis might contribute to tumor growth at the metastatic site. Because of the overall sclerotic phenotype, we hypothesize that osteoblasts regulate the intratumoral steroidogenesis of castration resistant prostate cancer (CRPC) in bone. We here show that osteoblasts alter the steroidogenic transcription program in CRPC cells, closely mimicking the gene expression pattern described in CRPC. Osteoblast-stimulated LNCaP-19 cells displayed an increased expression of genes encoding for steroidogenic enzymes (CYP11A1, HSD3B1, and AKR1C3), estrogen signaling-related genes (CYP19A1, and ESR2), and genes for DHT-inactivating enzymes (UGT2B7, UGT2B15, and UGT2B17). The observed osteoblast-induced effect was exclusive to osteogenic CRPC cells (LNCaP-19) in contrast to osteolytic PC-3 and androgen-dependent LNCaP cells. The altered steroid enzymatic pattern was specific for the intratibial tumors and verified by immunohistochemistry in tissue specimens from LNCaP-19 xenograft tumors. Additionally, the overall steroidogenic effect was reflected by corresponding levels of progesterone and testosterone in serum from castrated mice with intratibial xenografts. A bi-directional interplay was demonstrated since both proliferation and Esr2 expression of osteoblasts were induced by CRPC cells in steroid-depleted conditions. Together, our results demonstrate that osteoblasts are important mediators of the intratumoral steroidogenesis of CRPC and for castration-resistant growth in bone. Targeting osteoblasts may therefore be important in the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Malin Hagberg Thulin
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Maria E Nilsson
- Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pontus Thulin
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jocelyn Céraline
- INSERM UMR_S 1113, FMTS, Université de Strasbourg, Strasbourg, France
| | - Claes Ohlsson
- Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan-Erik Damber
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Welén
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem Rev 2016; 116:422-518. [PMID: 26756377 DOI: 10.1021/acs.chemrev.5b00392] [Citation(s) in RCA: 1897] [Impact Index Per Article: 210.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiang Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhanni Gu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shuni Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wei Zhu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - José Luis Aceña
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,Department of Organic Chemistry, Autónoma University of Madrid , Cantoblanco, 28049 Madrid, Spain
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, Japan 533-0024
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
20
|
Olsson A, Nakhlé J, Sundstedt A, Plas P, Bauchet AL, Pierron V, Bruetschy L, Deronic A, Törngren M, Liberg D, Schmidlin F, Leanderson T. Tasquinimod triggers an early change in the polarization of tumor associated macrophages in the tumor microenvironment. J Immunother Cancer 2015; 3:53. [PMID: 26673090 PMCID: PMC4678646 DOI: 10.1186/s40425-015-0098-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/23/2015] [Indexed: 12/19/2022] Open
Abstract
Background Tasquinimod (a quinoline-3-carboxyamide) is a small molecule immunotherapy with demonstrated effects on the tumor microenvironment (TME) involving immunomodulation, anti-angiogenesis and inhibition of metastasis. A target molecule of tasquinimod is the inflammatory protein S100A9 which has been shown to affect the accumulation and function of suppressive myeloid cell subsets in tumors. Given the major impact of myeloid cells to the tumor microenvironment, manipulation of this cell compartment is a desirable goal in cancer therapeutics. Methods To understand the consequences of tasquinimod treatment on the TME, we evaluated early treatment effects in tumor infiltrating myeloid cells. Cellular phenotypes were studied by flow cytometry while gene expression both in tumor tissue and in isolated CD11b+ cells or tumor cells were measured by real time-PCR. Effects on angiogenesis were monitored by changes in CD31 levels and by gene expression in tumor tissue. Effects on cytokine levels in tumor tissue and serum were determined by multiplex analysis. Results The MC38-C215 colon carcinoma tumors showed a substantial infiltration of primarily myeloid cells that were dominated by Ly6ClowF4/80+CD206+ M2-polarized tumor associated macrophages (TAMs), an immuno-suppressive and pro-angiogenic cell population. Here, we show that tasquinimod treatment induces an anti-tumor effect which is subsequent to a reduction in tumor infiltrating CD206+ M2 macrophages and a simultaneous increase in M1 macrophages expressing MHC class II and CD86. The tasquinimod-induced changes in TAM polarization were evident within 24 h of exposure, emphasizing the ability of tasquinimod to rapidly reprogram the tumor microenvironment. This change in the tumor associated myeloid compartment preceded an increased IL12-production within the tumor and a decrease in tumor neovascularization. The switch in TAM polarization by tasquinimod was confirmed in the 4T1 breast cancer model where tasquinimod also reduce lung metastasis development. Conclusion Our data show that tasquinimod affects tumor infiltrating myeloid cells early after exposure, leading to a change in phenotype from pro-angiogenic and immunosuppressive M2-like TAMs to pro-inflammatory M1-like macrophages. These changes are consistent with the effects of tasquinimod seen on tumor vascularization, immune suppression and metastasis giving further insights to the anti-tumor mechanism of action of tasquinimod. Electronic supplementary material The online version of this article (doi:10.1186/s40425-015-0098-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jessica Nakhlé
- Global Drug Discovery Department, IPSEN Innovation, 91966 Les Ulis, France
| | | | - Pascale Plas
- Global Drug Discovery Department, IPSEN Innovation, 91966 Les Ulis, France
| | - Anne-Laure Bauchet
- Global Drug Discovery Department, IPSEN Innovation, 91966 Les Ulis, France
| | - Valérie Pierron
- Global Drug Discovery Department, IPSEN Innovation, 91966 Les Ulis, France
| | - Luce Bruetschy
- Global Drug Discovery Department, IPSEN Innovation, 91966 Les Ulis, France
| | | | | | | | - Fabien Schmidlin
- Global Drug Discovery Department, IPSEN Innovation, 91966 Les Ulis, France
| | - Tomas Leanderson
- Active Biotech AB, Lund, Sweden.,Immunology Group, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Isaacs JT, Dalrymple SL, Rosen DM, Hammers H, Olsson A, Leanderson T. Anti-cancer potency of tasquinimod is enhanced via albumin-binding facilitating increased uptake in the tumor microenvironment. Oncotarget 2015; 5:8093-106. [PMID: 25193858 PMCID: PMC4226669 DOI: 10.18632/oncotarget.2378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Tasquinimod, an orally active quinoline-3-carboxamide, binds with high affinity to HDAC4 and S100A9 in cancer and infiltrating host cells within compromised tumor microenvironment inhibiting adaptive survival pathways needed for an angiogenic response. Clinical trials document that as low as 0.5-1mg tasquinimod/day is therapeutic against castrate resistant metastatic prostate cancer. Tasquinimod is metabolized via cytochrome P4503A4, but ketoconazole at a dose which completely inhibits CYP3A metabolism does not affect tasquinimod's ability to inhibit endothelial “sprouting” in vitro or anti-cancer efficacy against human prostate cancer xenografts in vivo. Tasquinimod's potency is facilitated by its reversible binding (Kd < 35 μM) to the IIA subdomain of albumin (Sudlow's site I). As blood vessels within the compromised cancer microenvironment are characterized by a higher degree of leakiness than those in normal tissues, this results in an enhanced uptake of tasquinimod bound to albumin in cancer tissue via a tumor specific process known as the “enhanced permeability and retention” (i.e., EPR) effect. Thus, despite plasma levels of < 1 μM, the EPR effect results in intracellular drug concentrations of 2-3 μM, levels several-fold higher than needed for inhibition of endothelial sprouting (IC50 ~ 0.5 μM) or for inhibition of HDAC4 and S100A9 mediated tumor growth.
Collapse
Affiliation(s)
- John T Isaacs
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins ,Baltimore, MD; The Brady Urological Institute-Department of Urology, The Johns Hopkins University School of Medicine ,Baltimore, MD
| | - Susan L Dalrymple
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins ,Baltimore, MD
| | - D Marc Rosen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins ,Baltimore, MD
| | - Hans Hammers
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins ,Baltimore, MD
| | | | - Tomas Leanderson
- Active Biotech, AB Lund, Sweden; Immunology group, Lund University, Sweden
| |
Collapse
|
22
|
Houédé N, Irani J. [Tasquinimod: How to act on microenvironment in metastatic prostate cancer]. Prog Urol 2015; 25:298-305. [PMID: 25684391 DOI: 10.1016/j.purol.2015.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
Abstract
Despite the recent introduction of new drugs, castration-resistant metastatic prostate cancer, (mCRPC) remains a poor prognosis disease, with a crucial need for new therapeutic approaches. Tasquinimod is a newly developed molecule, orally administered, currently evaluated in phase III studies. Tasquinimod targets the tumor microenvironment, focusing on the angiogenic and immune components. Its specific action on the S100A9 protein restores immunity and reduces angiogenesis. A phase II double-blind randomized study against placebo showed an improvement of more than 50% of progression free survival in the group of mCRPC patients treated with tasquinimod, as compared to the placebo group. At a dose of 1mg/day, the tolerance of tasquinimod appeared acceptable. This review presents the available preclinical and clinical results of tasquinimod, with a particular focus on the originality of its mode of action.
Collapse
Affiliation(s)
- N Houédé
- Oncologie médicale, CHU Caremeau, place du Pr-Robert-Debré, 30029 Nîmes cedex 9, France.
| | - J Irani
- Service d'urologie, hôpital de Milétrie, avenue Jacques-Cœur, 86000 Poitiers, France
| |
Collapse
|
23
|
Abstract
In humans, the S100 protein family is composed of 21 members that exhibit a high degree of structural similarity, but are not functionally interchangeable. This family of proteins modulates cellular responses by functioning both as intracellular Ca(2+) sensors and as extracellular factors. Dysregulated expression of multiple members of the S100 family is a common feature of human cancers, with each type of cancer showing a unique S100 protein profile or signature. Emerging in vivo evidence indicates that the biology of most S100 proteins is complex and multifactorial, and that these proteins actively contribute to tumorigenic processes such as cell proliferation, metastasis, angiogenesis and immune evasion. Drug discovery efforts have identified leads for inhibiting several S100 family members, and two of the identified inhibitors have progressed to clinical trials in patients with cancer. This Review highlights new findings regarding the role of S100 family members in cancer diagnosis and treatment, the contribution of S100 signalling to tumour biology, and the discovery and development of S100 inhibitors for treating cancer.
Collapse
Affiliation(s)
- Anne R. Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - David J. Weber
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| | - Danna B. Zimmer
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 20102, USA
| |
Collapse
|
24
|
Frieling JS, Basanta D, Lynch CC. Current and emerging therapies for bone metastatic castration-resistant prostate cancer. Cancer Control 2015; 22:109-20. [PMID: 25504285 PMCID: PMC4673894 DOI: 10.1177/107327481502200114] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A paucity of therapeutic options is available to treat men with metastatic castration-resistant prostate cancer (mCRPC). However, recent developments in our understanding of the disease have resulted in several new therapies that show promise in improving overall survival rates in this patient population. METHODS Agents approved for use in the United States and those undergoing clinical trials for the treatment of mCRPC are reviewed. Recent contributions to the understanding of prostate biology and bone metastasis are discussed as well as how the underlying mechanisms may represent opportunities for therapeutic intervention. New challenges to delivering effective mCRPC treatment will also be examined. RESULTS New and emerging treatments that target androgen synthesis and utilization or the microenvironment may improve overall survival rates for men diagnosed with mCRPC. Determining how factors derived from the primary tumor can promote the development of premetastatic niches and how prostate cancer cells parasitize niches in the bone microenvironment, thus remaining dormant and protected from systemic therapy, could yield new therapies to treat mCRPC. Challenges such as intratumoral heterogeneity and patient selection can potentially be circumvented via computational biology approaches. CONCLUSIONS The emergence of novel treatments for mCRPC, combined with improved patient stratification and optimized therapy sequencing, suggests that significant gains may be made in terms of overall survival rates for men diagnosed with this form of cancer.
Collapse
Affiliation(s)
- Jeremy S Frieling
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
25
|
Shen L, Sundstedt A, Ciesielski M, Miles KM, Celander M, Adelaiye R, Orillion A, Ciamporcero E, Ramakrishnan S, Ellis L, Fenstermaker R, Abrams SI, Eriksson H, Leanderson T, Olsson A, Pili R. Tasquinimod modulates suppressive myeloid cells and enhances cancer immunotherapies in murine models. Cancer Immunol Res 2014; 3:136-48. [PMID: 25370534 DOI: 10.1158/2326-6066.cir-14-0036] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major barrier for cancer immunotherapy is the presence of suppressive cell populations in patients with cancer, such as myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM), which contribute to the immunosuppressive microenvironment that promotes tumor growth and metastasis. Tasquinimod is a novel antitumor agent that is currently at an advanced stage of clinical development for treatment of castration-resistant prostate cancer. A target of tasquinimod is the inflammatory protein S100A9, which has been demonstrated to affect the accumulation and function of tumor-suppressive myeloid cells. Here, we report that tasquinimod provided a significant enhancement to the antitumor effects of two different immunotherapeutics in mouse models of cancer: a tumor vaccine (SurVaxM) for prostate cancer and a tumor-targeted superantigen (TTS) for melanoma. In the combination strategies, tasquinimod inhibited distinct MDSC populations and TAMs of the M2-polarized phenotype (CD206(+)). CD11b(+) myeloid cells isolated from tumors of treated mice expressed lower levels of arginase-1 and higher levels of inducible nitric oxide synthase (iNOS), and were less immunosuppressive ex vivo, which translated into a significantly reduced tumor-promoting capacity in vivo when these cells were coinjected with tumor cells. Tumor-specific CD8(+) T cells were increased markedly in the circulation and in tumors. Furthermore, T-cell effector functions, including cell-mediated cytotoxicity and IFNγ production, were potentiated. Taken together, these data suggest that pharmacologic targeting of suppressive myeloid cells by tasquinimod induces therapeutic benefit and provide the rationale for clinical testing of tasquinimod in combination with cancer immunotherapies.
Collapse
Affiliation(s)
- Li Shen
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Michael Ciesielski
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, New York
| | | | | | - Remi Adelaiye
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, New York
| | - Ashley Orillion
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, New York
| | - Eric Ciamporcero
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Leigh Ellis
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, New York
| | - Robert Fenstermaker
- Department of Neurosurgery, Roswell Park Cancer Institute, Buffalo, New York
| | - Scott I Abrams
- Department of Tumor Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Tomas Leanderson
- Active Biotech AB, Lund, Sweden. Immunology Group, Lund University, Lund, Sweden
| | | | - Roberto Pili
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, New York.
| |
Collapse
|
26
|
Armstrong AJ, Kaboteh R, Carducci MA, Damber JE, Stadler WM, Hansen M, Edenbrandt L, Forsberg G, Nordle Ö, Pili R, Morris MJ. Assessment of the bone scan index in a randomized placebo-controlled trial of tasquinimod in men with metastatic castration-resistant prostate cancer (mCRPC). Urol Oncol 2014; 32:1308-16. [PMID: 25240761 DOI: 10.1016/j.urolonc.2014.08.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Drug development and clinical decision making for patients with metastatic prostate cancer (PC) have been hindered by a lack of quantitative methods of assessing changes in bony disease burden that are associated with overall survival (OS). Bone scan index (BSI), a quantitative imaging biomarker of bone tumor burden, is prognostic in men with metastatic PC. We evaluated an automated method for BSI calculation for the association between BSI over time with clinical outcomes in a randomized double-blind trial of tasquinimod (TASQ) in men with metastatic castration-resistant PC (mCRPC). METHODS Bone scans collected during central review from the TASQ trial were analyzed retrospectively using EXINIbone(BSI), an automated software package for BSI calculation. Associations between BSI and other prognostic biomarkers, progression-free survival, OS, and treatment were evaluated over time. RESULTS Of 201 men (57 TASQ and 28 placebo), 85 contributed scans at baseline and week 12 of sufficient quality. Baseline BSI correlated with prostate-specific antigen and alkaline phosphatase levels and was associated with OS in univariate (hazard ratio [HR] = 1.42, P = 0.013) and multivariate (HR = 1.64, P<0.001) analyses. BSI worsening at 12 weeks was prognostic for progression-free survival (HR = 2.14 per BSI doubling, P<0.001) and OS (HR = 1.58, P = 0.033) in multivariate analyses including baseline BSI and TASQ treatment. TASQ delayed BSI progression. CONCLUSIONS BSI and BSI changes over time were independently associated with OS in men with mCRPC. A delay in objective radiographic bone scan progression with TASQ is suggested; prospective evaluation of BSI progression and response criteria in phase 3 trials of men with mCRPC is warranted.
Collapse
Affiliation(s)
- Andrew J Armstrong
- Duke Cancer Institute and the Duke Prostate Center, Duke University, Durham, NC.
| | - Reza Kaboteh
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Michael A Carducci
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Jan-Erik Damber
- Department of Urology, Institute of Clinical Sciences, Gothenburg University, Gothenburg, Sweden
| | | | | | - Lars Edenbrandt
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden; Department of Clinical Sciences, Lund University, Malmö, Sweden; EXINI Diagnostics AB, Lund, Sweden
| | | | | | - Roberto Pili
- Roswell Park Cancer Institute Genitourinary Program, Buffalo, NY
| | - Michael J Morris
- Genitourinary Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
27
|
Quinn DI, Vaishampayan U, Higano CS, Lin DW, Shore ND, Beer TM. Sequencing therapy in advanced prostate cancer: focus on sipuleucel-T. Expert Rev Anticancer Ther 2014; 14:51-61. [PMID: 24224900 DOI: 10.1586/14737140.2014.848065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Immunotherapies such as sipuleucel-T present new and unique challenges for the optimal timing and sequencing of therapies for metastatic castration-resistant prostate cancer (mCRPC). Key considerations for the sequencing of sipuleucel-T are its unique proposed mechanism of action, the time required to generate a clinically relevant immune response, and the observed efficacy in Phase III trials in 'early' or asymptomatic or minimally symptomatic mCRPC. There are three broad timing and sequencing options for sipuleucel-T in patients with rising prostate-specific antigen and radiologic evidence of disease: immediately after androgen-deprivation therapy failure, after failure of secondary hormonal maneuvers, or after chemotherapy. There are several other agents in Phase III development in mCRPC and any future approvals will impact on the current treatment algorithm, and raise further questions regarding how to optimize sequencing and timing of therapies for better clinical outcomes.
Collapse
Affiliation(s)
- David I Quinn
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Bone metastases are present in the vast majority of men with advanced prostate cancer, representing the main cause for morbidity and mortality. Recurrent or metastatic disease is managed initially with androgen deprivation but the majority of the patients eventually will progress to castration-resistant prostate cancer, with patients developing bone metastases in most of the cases. Survival and growth of the metastatic prostate cancer cells is dependent on a complex microenvironment (onco-niche) that includes the osteoblasts, the osteoclasts, the endothelium, and the stroma. This review summarizes agents that target the pathways involved in this complex interaction between prostate cancer and bone microenvironment and aim to transform lethal metastatic prostate cancer into a chronic disease.
Collapse
Affiliation(s)
- Daniel L Suzman
- Prostate Cancer Research Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, CRB1-1 M45, Baltimore, MD, 21231-1000, USA
| | | | | |
Collapse
|
29
|
Tidehag V, Hammarsten P, Egevad L, Granfors T, Stattin P, Leanderson T, Wikström P, Josefsson A, Hägglöf C, Bergh A. High density of S100A9 positive inflammatory cells in prostate cancer stroma is associated with poor outcome. Eur J Cancer 2014; 50:1829-1835. [DOI: 10.1016/j.ejca.2014.03.278] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/28/2023]
|
30
|
Osanto S, van Poppel H, Burggraaf J. Tasquinimod: a novel drug in advanced prostate cancer. Future Oncol 2014; 9:1271-81. [PMID: 23980674 DOI: 10.2217/fon.13.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tasquinimod, an oral quinolone-3-carboxamide with anti-tumor activity in preclinical models of prostate cancer, has been tested in patients with minimally symptomatic castration-resistant prostate cancer (CRPC), showing promising inhibitory effects on the occurrence of metastasis and delayed disease progression. Although its mode of action is not fully understood, tasquinimod presumably exerts its unique anti-tumor action through inhibition of angiogenesis and immunomodulation. In clinical studies, tasquinimod demonstrated anti-tumor activity in prostate cancer in combination with a mild-to-moderate side effect profile. With single-agent tasquinimod, dose-limiting toxicity was amylase elevation without signs of pancreatitis and sinus tachycardia. The maximum tolerated dose in Phase I studies in patients with CRPC was once daily administration of 0.5-1-mg tasquinimod orally. In a Phase II trial, significant clinical activity has been demonstrated in asymptomatic or minimally symptomatic, chemotherapy-naive, metastatic CRPC (mCRPC) patients. Men were randomized to tasquinimod or placebo in a 2:1 fashion; treatment with tasquinimod resulted in significant improvement of median progression-free survival (7.6 vs 3.3 months with placebo; p = 0.0042). Based on these encouraging effects, a randomized, double-blind, placebo-controlled trial in men with minimally symptomatic mCRPC has been designed. This large Phase III trial, powered for a primary end point of progression-free survival, has now enrolled the target number of 1200 men. If the Phase II data are validated in the Phase III trial a new compound with a unique mode of action might become approved as a future therapy for minimally symptomatic mCRPC patients.
Collapse
Affiliation(s)
- Susanne Osanto
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | |
Collapse
|
31
|
Gupta N, Al Ustwani O, Shen L, Pili R. Mechanism of action and clinical activity of tasquinimod in castrate-resistant prostate cancer. Onco Targets Ther 2014; 7:223-34. [PMID: 24600234 PMCID: PMC3928061 DOI: 10.2147/ott.s53524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Castrate-resistant prostate cancer (CRPC) is a disease where survival is poor and treatment is challenging. Over the past 3 years, significant advances in the field have been made with US Food and Drug Administration approval of new drugs for patients with CRPC. However, despite the presence of new approved drugs such as enzalutamide, abiraterone, sipuleucel-T, cabazitaxel, and alpharadin, there is still an unmet need for novel agents with different mechanisms of action to target CRPC. Based on earlier studies demonstrating therapeutic potential of a quinoline-3-carboxamide agent roquinimex as an anticancer drug, efforts were directed to identify other useful members in this class. Tasquinimod is a second-generation quinoline-3-carboxamide agent that is currently in final stages of clinical development as a treatment for CRPC. The preclinical studies of tasquinimod have formed the basis for its success as an antiangiogenic and immunomodulatory agent in this disease. Tasquinimod is an orally available agent that has shown efficacy and favorable safety profile as deduced by the results of Phase I and II clinical trials of this drug in prostate cancer. The place of tasquinimod in the treatment of CRPC patients is currently under examination in an ongoing Phase III clinical trial. In this review, we will discuss tasquinimod, starting from its discovery and current knowledge on potential mechanisms of action to its clinical potential in CRPC.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Omar Al Ustwani
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Li Shen
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Roberto Pili
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
32
|
Hagberg Thulin M, Jennbacken K, Damber JE, Welén K. Osteoblasts stimulate the osteogenic and metastatic progression of castration-resistant prostate cancer in a novel model for in vitro and in vivo studies. Clin Exp Metastasis 2013; 31:269-83. [PMID: 24292404 PMCID: PMC3915083 DOI: 10.1007/s10585-013-9626-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/14/2013] [Indexed: 12/26/2022]
Abstract
Castration-resistant prostate cancer (CRPC) is strongly associated with sclerotic bone metastases and poor prognosis. Models that mimic human CRPC are needed to identify the mechanisms for prostate cancer (PC) growth in bone and to develop new therapeutic strategies. We characterize a new model, LNCaP-19, and investigate the interaction between tumor cells and osteoblasts in the sclerotic tumor response of CRPC. Osteogenic profiling of PC cell lines (LNCaP-19, LNCaP, C4-2B4, and PC-3) was performed by gene expression arrays and mineral staining. Conditioned medium from MC3T3-E1 was used for osteoblast stimulation of CRPC cells. The capacity of LNCaP-19 cells to induce sclerotic lesions was assessed in intratibial xenografts and verified by serum markers, histological analysis and bone mineral density (BMD) measurements. The CRPC cell line LNCaP-19 expresses a pronounced osteogenic profile compared to its parental androgen-dependent cell line LNCaP. Osteoblast-derived factors further increase the expression of genes known to enhance metastatic progression of PC. LNCaP-19 forms sclerotic tumors in tibia of castrated mice as evident by increased total BMD (P < 0.01). There was a strong correlation between serum osteocalcin and BMD (total: R2 0.811, P < 0.01, trabecular: R2 0.673, P < 0.05). For the first time we demonstrate that a CRPC cell line generated in vitro has osteogenic capacity and that osteomimicry can be an inherent feature of these cells. Osteoblast-derived factors further promote the osteogenic and metastatic phenotype in CRPC cells. Altogether, our model demonstrates that both tumor cells and osteoblasts are mediators of the bone forming process of CRPC.
Collapse
Affiliation(s)
- Malin Hagberg Thulin
- Department of Urology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Box 425, 405 30, Göteborg, Sweden,
| | | | | | | |
Collapse
|
33
|
Armstrong AJ, Häggman M, Stadler WM, Gingrich JR, Assikis V, Polikoff J, Damber JE, Belkoff L, Nordle Ö, Forsberg G, Carducci MA, Pili R. Long-term survival and biomarker correlates of tasquinimod efficacy in a multicenter randomized study of men with minimally symptomatic metastatic castration-resistant prostate cancer. Clin Cancer Res 2013; 19:6891-901. [PMID: 24255071 DOI: 10.1158/1078-0432.ccr-13-1581] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Tasquinimod (Active Biotech) is an oral immunomodulatory, anti-angiogenic, and anti-metastatic agent that delayed metastatic disease progression in a randomized placebo-controlled phase II trial in men with metastatic castration-resistant prostate cancer (mCRPC). Here, we report long-term survival with biomarker correlates from this trial. EXPERIMENTAL DESIGN Two hundred and one (134 tasquinimod and 67 placebo) men with mCRPC were evaluated. Forty-one men randomized to placebo crossed over to tasquinimod. Survival data were collected with a median follow-up time of 37 months. Exploratory biomarker studies at baseline and over time were collected to evaluate potential mechanism-based correlates with tasquinimod efficacy including progression-free survival (PFS) and overall survival (OS). RESULTS With 111 mortality events, median OS was 33.4 months for tasquinimod versus 30.4 months for placebo overall, and 34.2 versus 27.1 months in men with bone metastases (n = 136), respectively. Multivariable analysis demonstrated an adjusted HR of 0.52 [95% confidence interval (CI), 0.35-0.78; P = 0.001] for PFS and 0.64 (95% CI, 0.42-0.97; P = 0.034) for OS, favoring tasquinimod. Time-to-symptomatic progression was improved with tasquinimod (P = 0.039, HR = 0.42). Toxicities tended to be mild in nature and improved over time. Biomarker analyses suggested a favorable impact on bone alkaline phosphatase and lactate dehydrogenase (LDH) over time and a transient induction of inflammatory biomarkers, VEGF-A, and thrombospondin-1 levels with tasquinimod. Baseline levels of thrombospondin-1 less than the median were predictive of treatment benefit. CONCLUSIONS The survival observed in this trial of men with minimally symptomatic mCRPC suggests that the prolongation in PFS with tasquinimod may lead to a survival advantage in this setting, particularly among men with skeletal metastases, and has a favorable risk:benefit ratio.
Collapse
Affiliation(s)
- A J Armstrong
- Authors' Affiliations: Duke Cancer Institute and the Duke Prostate Center, Duke University, Durham, North Carolina; University Hospital of Uppsala, Uppsala, Sweden; University of Chicago, Chicago, Illinois; University of Pittsburgh, Pittsburgh, Pennsylvania; Peachtree Hematology Oncology Consultants, Atlanta, Georgia; Kaiser Permanente Medical Group, San Diego, California; Sahlgrenska University Hospital, Gothenburg, Sweden; Urologic Consultants of SE PA, Bala Cynwyd, Pennsylvania; Active Biotech AB, Lund, Sweden; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore Maryland; Roswell Park Cancer Institute, Buffalo, New York
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Raymond E, Dalgleish A, Damber JE, Smith M, Pili R. Mechanisms of action of tasquinimod on the tumour microenvironment. Cancer Chemother Pharmacol 2013; 73:1-8. [PMID: 24162378 PMCID: PMC3889691 DOI: 10.1007/s00280-013-2321-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/09/2013] [Indexed: 12/14/2022]
Abstract
Tasquinimod is a small molecule with pleiotropic effects on the tumour microenvironment. Tasquinimod inhibits the growth and metastasis of tumour cells in vitro and in vivo. It targets the tumour microenvironment, enhancing the host immune response and inhibiting the angiogenic response. Tasquinimod influences infiltrating myeloid cells in the tumour milieu shifting the balance towards a less immunosuppressive phenotype. Myeloid-derived suppressor cells and tumour-associated macrophages are major components of the immunosuppressive microenvironment and as a result promote tumour growth and favour angiogenesis and metastasis formation. Growing evidence indicates that tasquinimod targets these myeloid cells and modulates local tumour immunity by blocking the interaction between the multifunctional protein S100A9 and its ligands receptor of advanced glycation end products and Toll-like receptor 4. Its anti-angiogenic effects are achieved at least in part through these effects on regulatory myeloid cells and also potentially through inactivating histone deacetylase-4 and reducing expression of hypoxia-inducible factor 1-controlled genes. The aim is to comprehensively review the mode of action of tasquinimod as a novel oral anti-cancer agent. Based on its unique combination of effects, tasquinimod is a novel agent with clinical therapeutic potential in various solid tumours, both alone and as part of rational combination therapy.
Collapse
Affiliation(s)
- E Raymond
- Department of Medical Oncology, Beaujon University Hospital, Clichy, France,
| | | | | | | | | |
Collapse
|
35
|
Fraga A, Ribeiro R, Príncipe P, Lobato C, Pina F, Maurício J, Monteiro C, Sousa H, Calais da Silva F, Lopes C, Medeiros R. The HIF1A functional genetic polymorphism at locus +1772 associates with progression to metastatic prostate cancer and refractoriness to hormonal castration. Eur J Cancer 2013; 50:359-65. [PMID: 24090974 DOI: 10.1016/j.ejca.2013.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 08/05/2013] [Accepted: 09/09/2013] [Indexed: 11/26/2022]
Abstract
The hypoxia inducible factor 1 alpha (HIF1a) is a key regulator of tumour cell response to hypoxia, orchestrating mechanisms known to be involved in cancer aggressiveness and metastatic behaviour. In this study we sought to evaluate the association of a functional genetic polymorphism in HIF1A with overall and metastatic prostate cancer (PCa) risk and with response to androgen deprivation therapy (ADT). The HIF1A +1772 C>T (rs11549465) polymorphism was genotyped, using DNA isolated from peripheral blood, in 1490 male subjects (754 with prostate cancer and 736 controls cancer-free) through Real-Time PCR. A nested group of cancer patients who were eligible for androgen deprivation therapy was followed up. Univariate and multivariate models were used to analyse the response to hormonal treatment and the risk for developing distant metastasis. Age-adjusted odds ratios were calculated to evaluate prostate cancer risk. Our results showed that patients under ADT carrying the HIF1A +1772 T-allele have increased risk for developing distant metastasis (OR, 2.0; 95%CI, 1.1-3.9) and an independent 6-fold increased risk for resistance to ADT after multivariate analysis (OR, 6.0; 95%CI, 2.2-16.8). This polymorphism was not associated with increased risk for being diagnosed with prostate cancer (OR, 0.9; 95%CI, 0.7-1.2). The HIF1A +1772 genetic polymorphism predicts a more aggressive prostate cancer behaviour, supporting the involvement of HIF1a in prostate cancer biological progression and ADT resistance. Molecular profiles using hypoxia markers may help predict clinically relevant prostate cancer and response to ADT.
Collapse
Affiliation(s)
- Avelino Fraga
- Urology Department, Sto António Hospital, Porto Hospital Centre, Porto, Portugal; ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal.
| | - Ricardo Ribeiro
- Molecular Oncology Group-CI, Portuguese Institute of Oncology, Porto, Portugal; Genetics Laboratory, Faculty of Medicine, University of Lisbon, Lisboa, Portugal; LPCC - Portuguese League Against Cancer (NRNorte), Porto, Portugal; Instituto Rocha Cabral, Lisboa, Portugal
| | - Paulo Príncipe
- Urology Department, Sto António Hospital, Porto Hospital Centre, Porto, Portugal
| | - Carlos Lobato
- Urology Department, D. Pedro V Military Hospital, Porto, Portugal
| | | | - Joaquina Maurício
- Medical Oncology Department, Portuguese Institute of Oncology, Porto, Portugal
| | - Cátia Monteiro
- Molecular Oncology Group-CI, Portuguese Institute of Oncology, Porto, Portugal; LPCC - Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology Group-CI, Portuguese Institute of Oncology, Porto, Portugal
| | - F Calais da Silva
- Urology Department, Central Lisbon Hospital Centre, Lisboa, Portugal
| | - Carlos Lopes
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Rui Medeiros
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal; Molecular Oncology Group-CI, Portuguese Institute of Oncology, Porto, Portugal; LPCC - Portuguese League Against Cancer (NRNorte), Porto, Portugal
| |
Collapse
|
36
|
George S, Pili R. Tasquinimod: a novel angiogenesis inhibitor-development in prostate cancer. Curr Oncol Rep 2013; 15:65-8. [PMID: 23334511 DOI: 10.1007/s11912-013-0295-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Castration resistant prostate cancer (CRPC) treatment has been revolutionized over the past few years by the approval of novel therapies including cabazitaxel, sipuleucel-T, abiraterone and enzalutamide. Though androgen deprivation and chemotherapy remain the main therapeutic approaches for this disease, a series of targeted agents is also in development for the treatment of CRPC. Tasquinimod is a quinolone-3-carboxamide with antiangiogenic and antitumor activity in preclinical models of prostate cancer. A recent Phase II trial with this agent has demonstrated a significant clinical activity in asymptomatic or minimally symptomatic, chemotherapy-naïve, CRPC patients. A confirmatory Phase III trial of tasquinimod in prostate cancer is underway. Because of its antiangiogenic and immunomodulatory properties tasquinimod represents a novel targeted therapy with a unique mechanism of action.
Collapse
Affiliation(s)
- Saby George
- Genitorurinary Program, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | |
Collapse
|
37
|
Thrombospondin-1 in urological cancer: pathological role, clinical significance, and therapeutic prospects. Int J Mol Sci 2013; 14:12249-72. [PMID: 23749112 PMCID: PMC3709784 DOI: 10.3390/ijms140612249] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis is an important process for tumor growth and progression of various solid tumors including urological cancers. Thrombospondins (TSPs), especially TSP-1, are representative “anti”-angiogenic molecules and many studies have clarified their pathological role and clinical significance in vivo and in vitro. In fact, TSP-1 expression is associated with clinicopathological features and prognosis in many types of cancers. However, TSP-1 is a multi-functional protein and its biological activities vary according to the specific tumor environments. Consequently, there is no general agreement on its cancer-related function in urological cancers, and detailed information regarding regulative mechanisms is essential for a better understanding of its therapeutic effects and prognostic values. Various “suppressor genes” and “oncogenes” are known to be regulators and TSP-1-related factors under physiological and pathological conditions. In addition, various types of fragments derived from TSP-1 exist in a given tissue microenvironment and TSP-1 derived-peptides have specific activities. However, a detailed pathological function in human cancer tissues is not still understood. This review will focus on the pathological roles and clinical significance of TSP-1 in urological cancers, including prostate cancer, renal cell carcinoma, and urothelial cancer. In addition, special attention is paid to TSP-1-derived peptide and TSP-1-based therapy for malignancies.
Collapse
|
38
|
Björk P, Källberg E, Wellmar U, Riva M, Olsson A, He Z, Törngren M, Liberg D, Ivars F, Leanderson T. Common interactions between S100A4 and S100A9 defined by a novel chemical probe. PLoS One 2013; 8:e63012. [PMID: 23667563 PMCID: PMC3648463 DOI: 10.1371/journal.pone.0063012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/27/2013] [Indexed: 12/21/2022] Open
Abstract
S100A4 and S100A9 proteins have been described as playing roles in the control of tumor growth and metastasis. We show here that a chemical probe, oxyclozanide (OX), selected for inhibiting the interaction between S100A9 and the receptor for advanced glycation end-products (RAGE) interacts with both S100A9 and S100A4. Furthermore, we show that S100A9 and S100A4 interact with RAGE and TLR4; interactions that can be inhibited by OX. Hence, S100A4 and S100A9 display similar functional elements despite their primary sequence diversity. This was further confirmed by showing that S100A4 and S100A9 dimerize both in vitro and in vivo. All of these interactions required levels of Zn++ that are found in the extracellular space but not intracellularly. Interestingly, S100A4 and S100A9 are expressed by distinct CD11b+ subpopulations both in healthy animals and in animals with either inflammatory disease or tumor burden. The functions of S100A9 and S100A4 described in this paper, including heterodimerization, may therefore reflect S100A9 and S100A4 that are released into the extra-cellular milieu.
Collapse
|
39
|
Riva M, He Z, Källberg E, Ivars F, Leanderson T. Human S100A9 protein is stabilized by inflammatory stimuli via the formation of proteolytically-resistant homodimers. PLoS One 2013; 8:e61832. [PMID: 23626736 PMCID: PMC3633927 DOI: 10.1371/journal.pone.0061832] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/14/2013] [Indexed: 02/03/2023] Open
Abstract
S100A8 and S100A9 are Ca(2+)-binding proteins that are associated with acute and chronic inflammation and cancer. They form predominantly heterodimers even if there are data supporting homodimer formation. We investigated the stability of the heterodimer in myeloid and S100A8/S100A9 over-expressing COS cells. In both cases, S100A8 and S100A9 proteins were not completely degraded even 48 hrs after blocking protein synthesis. In contrast, in single transfected cells, S100A8 protein was completely degraded after 24 h, while S100A9 was completely unstable. However, S100A9 protein expression was rescued upon S100A8 co-expression or inhibition of proteasomal activity. Furthermore, S100A9, but not S100A8, could be stabilized by LPS, IL-1β and TNFα treatment. Interestingly, stimulation of S100A9-transfected COS cells with proteasomal inhibitor or IL-1β lead to the formation of protease resistant S100A9 homodimers. In summary, our data indicated that S100A9 protein is extremely unstable but can be rescued upon co-expression with S100A8 protein or inflammatory stimuli, via proteolytically resistant homodimer formation. The formation of S100A9 homodimers by this mechanism may constitute an amplification step during an inflammatory reaction.
Collapse
Affiliation(s)
- Matteo Riva
- Immunology Group, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
40
|
Williamson SC, Hartley AE, Heer R. A review of tasquinimod in the treatment of advanced prostate cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:167-74. [PMID: 23662046 PMCID: PMC3610437 DOI: 10.2147/dddt.s31500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Castration resistant prostate cancer remains a major clinical burden and novel therapeutic options are urgently required to improve survival. Tasquinimod is an orally administered quinoline-3-carboxamide with potent antiangiogenic and antitumorigenic action that has shown promise in the treatment of advanced prostate cancers. This review explores both preclinical and clinical findings to date. In summary, tasquinimod has been shown to demonstrate a potent in vitro and in vivo anticancer action and completed early phase clinical trials have demonstrated good drug tolerance and prolonged progression-free survival. Although Phase III clinical trials are on-going, the findings to date highlight the promise of this drug in the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Stuart Charles Williamson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | | | | |
Collapse
|
41
|
Isaacs JT, Antony L, Dalrymple SL, Brennen WN, Gerber S, Hammers H, Wissing M, Kachhap S, Luo J, Xing L, Björk P, Olsson A, Björk A, Leanderson T. Tasquinimod Is an Allosteric Modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res 2012; 73:1386-99. [PMID: 23149916 DOI: 10.1158/0008-5472.can-12-2730] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tasquinimod is an orally active antiangiogenic drug that is currently in phase III clinical trials for the treatment of castration-resistant prostate cancer. However, the target of this drug has remained unclear. In this study, we applied diverse strategies to identify the histone deacetylase HDAC4 as a target for the antiangiogenic activity of tasquinimod. Our comprehensive analysis revealed allosteric binding (Kd 10-30 nmol/L) to the regulatory Zn(2+) binding domain of HDAC4 that locks the protein in a conformation preventing HDAC4/N-CoR/HDAC3 complex formation. This binding inhibited colocalization of N-CoR/HDAC3, thereby inhibiting deacetylation of histones and HDAC4 client transcription factors, such as HIF-1α, which are bound at promoter/enhancers where epigenetic reprogramming is required for cancer cell survival and angiogenic response. Through this mechanism, tasquinimod is effective as a monotherapeutic agent against human prostate, breast, bladder, and colon tumor xenografts, where its efficacy could be further enhanced in combination with a targeted thapsigargin prodrug (G202) that selectively kills tumor endothelial cells. Together, our findings define a mechanism of action of tasquinimod and offer a perspective on how its clinical activity might be leveraged in combination with other drugs that target the tumor microenvironment. Cancer Res; 73(4); 1386-99. ©2012 AACR.
Collapse
Affiliation(s)
- John T Isaacs
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|