1
|
Cai Q, Jing C, Wang X, Xing X, Liu W. STEAP Proteins: Roles in disease biology and potential for therapeutic intervention. Int J Biol Macromol 2025; 309:142797. [PMID: 40185436 DOI: 10.1016/j.ijbiomac.2025.142797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Iron and copper are essential metal ions, and maintaining their metabolic balance is critical for organismal health. The Six-Transmembrane Epithelial Antigen of the Prostate (STEAP) protein family, comprising STEAP1, STEAP2, STEAP3, and STEAP4, plays a vital role in cellular metal homeostasis. These proteins are located on the cell membrane and are characterized by six transmembrane domains. With the exception of STEAP1, the STEAP proteins function as metal oxidoreductases due to their F420H2:NADP+ oxidoreductase (FNO)-like domain. However, STEAP1 contributes to metal metabolism through its heme group and interaction with other STEAP proteins. Beyond metal metabolism, STEAP proteins are involved in critical cellular processes, including the regulation of the cell cycle, proliferation, differentiation, and apoptosis. Notably, STEAP proteins are recognized as potential biomarkers and therapeutic targets in human cancers, particularly prostate cancer. This review outlines the structural features and functional roles of STEAP proteins in various diseases, including cancers, insulin resistance, non-alcoholic fatty liver disease (NAFLD), and benign prostatic hyperplasia, with a focus on their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Qiaomei Cai
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, PR China
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, PR China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin 300060, PR China
| | - Xiangling Xing
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China.
| | - Wancheng Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, PR China.
| |
Collapse
|
2
|
Nolan-Stevaux O, Li C, Liang L, Zhan J, Estrada J, Osgood T, Li F, Zhang H, Case R, Murawsky CM, Estes B, Moore GL, Bernett MJ, Muchhal U, Desjarlais JR, Staley BK, Stevens J, Cooke KS, Aeffner F, Thomas O, Stieglmaier J, Lee JL, Coxon A, Bailis JM. AMG 509 (Xaluritamig), an Anti-STEAP1 XmAb 2+1 T-cell Redirecting Immune Therapy with Avidity-Dependent Activity against Prostate Cancer. Cancer Discov 2024; 14:90-103. [PMID: 37861452 DOI: 10.1158/2159-8290.cd-23-0984] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
The tumor-associated antigen STEAP1 is a potential therapeutic target that is expressed in most prostate tumors and at increased levels in metastatic castration-resistant prostate cancer (mCRPC). We developed a STEAP1-targeted XmAb 2+1 T-cell engager (TCE) molecule, AMG 509 (also designated xaluritamig), that is designed to redirect T cells to kill prostate cancer cells that express STEAP1. AMG 509 mediates potent T cell-dependent cytotoxicity of prostate cancer cell lines in vitro and promotes tumor regression in xenograft and syngeneic mouse models of prostate cancer in vivo. The avidity-driven activity of AMG 509 enables selectivity for tumor cells with high STEAP1 expression compared with normal cells. AMG 509 is the first STEAP1 TCE to advance to clinical testing, and we report a case study of a patient with mCRPC who achieved an objective response on AMG 509 treatment. SIGNIFICANCE Immunotherapy in prostate cancer has met with limited success due to the immunosuppressive microenvironment and lack of tumor-specific targets. AMG 509 provides a targeted immunotherapy approach to engage a patient's T cells to kill STEAP1-expressing tumor cells and represents a new treatment option for mCRPC and potentially more broadly for prostate cancer. See related commentary by Hage Chehade et al., p. 20. See related article by Kelly et al., p. 76. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
| | - Cong Li
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Lingming Liang
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Jinghui Zhan
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Juan Estrada
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Tao Osgood
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Fei Li
- Structural Biology, Amgen Research, Amgen Inc., South San Francisco, California
| | - Hanzhi Zhang
- Structural Biology, Amgen Research, Amgen Inc., South San Francisco, California
| | - Ryan Case
- Lead Discovery and Characterization, Amgen Research, Amgen Inc., South San Francisco, California
| | | | - Bram Estes
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California
| | | | | | | | | | - Binnaz K Staley
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Jennitte Stevens
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California
| | - Keegan S Cooke
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Famke Aeffner
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, California
| | - Oliver Thomas
- Translational Safety and Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| | - Julia Stieglmaier
- Early Development Oncology, Amgen Research (Munich) GmbH, Munich, Germany
| | - Jae-Lyun Lee
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Angela Coxon
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Julie M Bailis
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| |
Collapse
|
3
|
Chen K, Wang L, Shen J, Tsai AL, Zhou M, Wu G. Mechanism of stepwise electron transfer in six-transmembrane epithelial antigen of the prostate (STEAP) 1 and 2. eLife 2023; 12:RP88299. [PMID: 37983176 PMCID: PMC10659578 DOI: 10.7554/elife.88299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
Six transmembrane epithelial antigen of the prostate (STEAP) 1-4 are membrane-embedded hemoproteins that chelate a heme prosthetic group in a transmembrane domain (TMD). STEAP2-4, but not STEAP1, have an intracellular oxidoreductase domain (OxRD) and can mediate cross-membrane electron transfer from NADPH via FAD and heme. However, it is unknown whether STEAP1 can establish a physiologically relevant electron transfer chain. Here, we show that STEAP1 can be reduced by reduced FAD or soluble cytochrome b5 reductase that serves as a surrogate OxRD, providing the first evidence that STEAP1 can support a cross-membrane electron transfer chain. It is not clear whether FAD, which relays electrons from NADPH in OxRD to heme in TMD, remains constantly bound to the STEAPs. We found that FAD reduced by STEAP2 can be utilized by STEAP1, suggesting that FAD is diffusible rather than staying bound to STEAP2. We determined the structure of human STEAP2 in complex with NADP+ and FAD to an overall resolution of 3.2 Å by cryo-electron microscopy and found that the two cofactors bind STEAP2 similarly as in STEAP4, suggesting that a diffusible FAD is a general feature of the electron transfer mechanism in the STEAPs. We also demonstrated that STEAP2 reduces ferric nitrilotriacetic acid (Fe3+-NTA) significantly slower than STEAP1 and proposed that the slower reduction is due to the poor Fe3+-NTA binding to the highly flexible extracellular region in STEAP2. These results establish a solid foundation for understanding the function and mechanisms of the STEAPs.
Collapse
Affiliation(s)
- Kehan Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of MedicineHoustonUnited States
| | - Lie Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of MedicineHoustonUnited States
| | - Jiemin Shen
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of MedicineHoustonUnited States
| | - Ah-Lim Tsai
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas-McGovern Medical SchoolHoustonUnited States
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of MedicineHoustonUnited States
| | - Gang Wu
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas-McGovern Medical SchoolHoustonUnited States
| |
Collapse
|
4
|
Bhatia V, Kamat NV, Pariva TE, Wu LT, Tsao A, Sasaki K, Sun H, Javier G, Nutt S, Coleman I, Hitchcock L, Zhang A, Rudoy D, Gulati R, Patel RA, Roudier MP, True LD, Srivastava S, Morrissey CM, Haffner MC, Nelson PS, Priceman SJ, Ishihara J, Lee JK. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat Commun 2023; 14:2041. [PMID: 37041154 PMCID: PMC10090190 DOI: 10.1038/s41467-023-37874-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
Six transmembrane epithelial antigen of the prostate 1 (STEAP1) is a cell surface antigen for therapeutic targeting in prostate cancer. Here, we report broad expression of STEAP1 relative to prostate-specific membrane antigen (PSMA) in lethal metastatic prostate cancers and the development of a STEAP1-directed chimeric antigen receptor (CAR) T cell therapy. STEAP1 CAR T cells demonstrate reactivity in low antigen density, antitumor activity across metastatic prostate cancer models, and safety in a human STEAP1 knock-in mouse model. STEAP1 antigen escape is a recurrent mechanism of treatment resistance and is associated with diminished tumor antigen processing and presentation. The application of tumor-localized interleukin-12 (IL-12) therapy in the form of a collagen binding domain (CBD)-IL-12 fusion protein combined with STEAP1 CAR T cell therapy enhances antitumor efficacy by remodeling the immunologically cold tumor microenvironment of prostate cancer and combating STEAP1 antigen escape through the engagement of host immunity and epitope spreading.
Collapse
Affiliation(s)
- Vipul Bhatia
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Nikhil V Kamat
- Division of Medical Oncology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Tiffany E Pariva
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Li-Ting Wu
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Annabelle Tsao
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Koichi Sasaki
- Department of Bioengineering, Imperial College London, 86 Wood Lane, London, W12 0BZ, UK
| | - Huiyun Sun
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Gerardo Javier
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Sam Nutt
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Ilsa Coleman
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Lauren Hitchcock
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Ailin Zhang
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Dmytro Rudoy
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Roman Gulati
- Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Radhika A Patel
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Martine P Roudier
- Department of Urology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Lawrence D True
- Department of Pathology and Laboratory Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Shivani Srivastava
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Colm M Morrissey
- Department of Urology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Michael C Haffner
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Pathology and Laboratory Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Division of Medical Oncology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Urology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Department of Pathology and Laboratory Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, 86 Wood Lane, London, W12 0BZ, UK.
| | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
- Division of Medical Oncology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
- Department of Pathology and Laboratory Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
5
|
Rocha SM, Nascimento D, Cardoso AM, Passarinha L, Socorro S, Maia CJ. STEAP1 regulation and its influence modulating the response of LNCaP prostate cancer cells to bicalutamide, enzalutamide and apalutamide. Mol Med Rep 2023; 27:52. [PMID: 36660947 PMCID: PMC9879076 DOI: 10.3892/mmr.2023.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 01/15/2023] Open
Abstract
Anti‑androgen drugs are the standard pharmacological therapies for treatment of non‑metastatic prostate cancer (PCa). However, the response of PCa cells may depend on the anti‑androgen used and often patients become resistant to treatment. Thus, studying how the anti‑androgen drugs affect oncogenes expression and action and the identification of the best strategy for combined therapies are essential to improve the efficacy of treatments. The Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) is an oncogene associated with PCa progression and aggressiveness, although its relationship with the androgen receptor signaling remains to be elucidated. The present study aimed to evaluate the effect of anti‑androgens in regulating STEAP1 expression and investigate whether silencing STEAP1 can make PCa cells more sensitive to anti‑androgen drugs. For this purpose, wild‑type and STEAP1 knockdown LNCaP cells were exposed to bicalutamide, enzalutamide and apalutamide. Bicalutamide decreased the expression of STEAP1, but enzalutamide and apalutamide increased its expression. However, decreased cell proliferation and increased apoptosis was observed in response to all drugs. Overall, the cellular and molecular effects were similar between LNCaP wild‑type and LNCaP‑STEAP1 knockdown cells, except for c‑myc expression levels, where a cumulative effect between anti‑androgen treatment and STEAP1 knockdown was observed. The effect of STEAP1 knockdown alone or combined with anti‑androgens in c‑myc levels is required to be addressed in future studies.
Collapse
Affiliation(s)
- Sandra M. Rocha
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Daniel Nascimento
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Ana Margarida Cardoso
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Luís Passarinha
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal,Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal,Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-284 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal,C4-UBI-Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| | - Cláudio J. Maia
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal,C4-UBI-Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal,Correspondence to: Professor Cláudio J. Maia, CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal, E-mail:
| |
Collapse
|
6
|
Cardoso HJ, Figueira MI, Carvalho TM, Serra CD, Vaz CV, Madureira PA, Socorro S. Androgens and low density lipoprotein-cholesterol interplay in modulating prostate cancer cell fate and metabolism. Pathol Res Pract 2022; 240:154181. [PMID: 36327818 DOI: 10.1016/j.prp.2022.154181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/16/2022] [Indexed: 11/15/2022]
|
7
|
Li CL, Fang ZX, Wu Z, Hou YY, Wu HT, Liu J. Repurposed itraconazole for use in the treatment of malignancies as a promising therapeutic strategy. Biomed Pharmacother 2022; 154:113616. [PMID: 36055112 DOI: 10.1016/j.biopha.2022.113616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 02/05/2023] Open
Abstract
Understanding cancer biology and the development of novel agents for cancer treatment has always been the goal of cancer researchers. However, the research and development of new drugs is hindered by its long development time, exorbitant cost, high regulatory hurdles, and staggering failure rates. Given the challenges involved drug development for cancer therapies, alternative strategies, in particular the repurposing of 'old' drugs that have been approved for other indications, are attractive. Itraconazole is an FDA-approved anti-fungal drug of the triazole class, and has been used clinically for more than 30 years. Recent drug repurposing screens revealed itraconazole exerts anti-cancer activity via inhibiting angiogenesis and multiple oncogenic signaling pathways. To explore the potential utilization of itraconazole in different types of malignancies, we retrieved the published literature relating to itraconazole in cancer and reviewed the mechanisms of itraconazole in preclinical and clinical cancer studies. Current research predicts the hedgehog signaling pathway as the main target by which itraconazole inhibits a variety of solid and hematological cancers. As clinical trial results become available, itraconazole could emerge as a new antitumor drug that can be used in combination with first-line antitumor drugs.
Collapse
Affiliation(s)
- Chun-Lan Li
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
8
|
Abstract
Currently available treatment options for patients with refractory metastatic prostate, bladder, or kidney cancers are limited with the prognosis remaining poor. Advances in the pathobiology of tumors has led to the discovery of cancer antigens that may be used as the target for cancer treatment. Antibody-drug conjugates (ADCs) are a relatively new concept in cancer treatment that broaden therapeutic landscape. ADCs are examples of a 'drug delivery into the tumor' system composed of an antigen-directed antibody linked to a cytotoxic drug that may release cytotoxic components after binding to the antigen located on the surface of tumor cells. The clinical properties of drugs are influenced by every component of ADCs. Regarding uro-oncology, enfortumab vedotin (EV) and sacituzumab govitecan (SG) are currently registered for patients with locally advanced or metastatic urothelial cancer following previous treatment with an immune checkpoint inhibitor (iCPI; programmed death receptor-1 [PD-1] or programmed death-ligand 1 [PD-L1]) inhibitor) and platinum-containing chemotherapy. The EV-301 trial showed that EV significantly prolonged the overall survival compared with classic chemotherapy. The TROPHY-U-01 trial conducted to evaluate SG demonstrated promising results as regards the objective response rate and duration of response. The safety and efficacy of ADCs in monotherapy and polytherapy (mainly with iCPIs) for different cancer stages and tumor types are assessed in numerous ongoing clinical trials. The aim of this review is to present new molecular biomarkers, specific mechanisms of action, and ongoing clinical trials of ADCs in genitourinary cancers. In the expert discussion, we assess the place of ADCs in uro-oncology and discuss their clinical value.
Collapse
|
9
|
Comprehensive Landscape of STEAP Family Members Expression in Human Cancers: Unraveling the Potential Usefulness in Clinical Practice Using Integrated Bioinformatics Analysis. DATA 2022. [DOI: 10.3390/data7050064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human Six-Transmembrane Epithelial Antigen of the Prostate (STEAP) family comprises STEAP1-4. Several studies have pointed out STEAP proteins as putative biomarkers, as well as therapeutic targets in several types of human cancers, particularly in prostate cancer. However, the relationships and significance of the expression pattern of STEAP1-4 in cancer cases are barely known. Herein, the Oncomine database and cBioPortal platform were selected to predict the differential expression levels of STEAP members and clinical prognosis. The most common expression pattern observed was the combination of the over- and underexpression of distinct STEAP genes, but cervical and gastric cancer and lymphoma showed overexpression of all STEAP genes. It was also found that STEAP genes’ expression levels were already deregulated in benign lesions. Regarding the prognostic value, it was found that STEAP1 (prostate), STEAP2 (brain and central nervous system), STEAP3 (kidney, leukemia and testicular) and STEAP4 (bladder, cervical, gastric) overexpression correlate with lower patient survival rate. However, in prostate cancer, overexpression of the STEAP4 gene was correlated with a higher survival rate. Overall, this study first showed that the expression levels of STEAP genes are highly variable in human cancers, which may be related to different patients’ outcomes.
Collapse
|
10
|
Chen WJ, Wu HT, Li CL, Lin YK, Fang ZX, Lin WT, Liu J. Regulatory Roles of Six-Transmembrane Epithelial Antigen of the Prostate Family Members in the Occurrence and Development of Malignant Tumors. Front Cell Dev Biol 2021; 9:752426. [PMID: 34778263 PMCID: PMC8586211 DOI: 10.3389/fcell.2021.752426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
The human six-transmembrane epithelial antigen of the prostate (STEAP) proteins, which include STEAP1-4 and atypical STEAP1B, contain six transmembrane domains and are located in the cell membrane. STEAPs are considered archaeal metal oxidoreductases, based on their heme groups and F420H2:NADP+ oxidoreductase (FNO)-like structures, and play an important role in cell metal metabolism. Interestingly, STEAPs not only participate in biological processes, such as molecular transport, cell cycling, immune response, and intracellular and extracellular activities, but also are closely related to the occurrence and development of several diseases, especially malignant tumors. Up to now, the expression patterns of STEAPs have been found to be diverse in different types of tumors, with controversial participation in different aspects of malignancy, such as cell proliferation, migration, invasion, apoptosis, and therapeutic resistance. It is clinically important to explore the potential roles of STEAPs as new immunotherapeutic targets for the treatment of different malignant tumors. Therefore, this review focuses on the molecular mechanism and function of STEAPs in the occurrence and development of different cancers in order to understand the role of STEAPs in cancer and provide a new theoretical basis for the treatment of diverse cancers.
Collapse
Affiliation(s)
- Wen-Jia Chen
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chun-Lan Li
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Yi-Ke Lin
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Xuan Fang
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Wen-Ting Lin
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jing Liu
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| |
Collapse
|
11
|
Barroca-Ferreira J, Cruz-Vicente P, Santos MFA, Rocha SM, Santos-Silva T, Maia CJ, Passarinha LA. Enhanced Stability of Detergent-Free Human Native STEAP1 Protein from Neoplastic Prostate Cancer Cells upon an Innovative Isolation Procedure. Int J Mol Sci 2021; 22:10012. [PMID: 34576175 PMCID: PMC8472055 DOI: 10.3390/ijms221810012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The STEAP1 is a cell-surface antigen over-expressed in prostate cancer, which contributes to tumor progression and aggressiveness. However, the molecular mechanisms underlying STEAP1 and its structural determinants remain elusive. METHODS The fraction capacity of Butyl- and Octyl-Sepharose matrices on LNCaP lysates was evaluated by manipulating the ionic strength of binding and elution phases, followed by a Co-Immunoprecipitation (Co-IP) polishing. Several potential stabilizing additives were assessed, and the melting temperature (Tm) values ranked the best/worst compounds. The secondary structure of STEAP1 was identified by circular dichroism. RESULTS The STEAP1 was not fully captured with 1.375 M (Butyl), in contrast with interfering heterologous proteins, which were strongly retained and mostly eluted with water. This single step demonstrated higher selectivity of Butyl-Sepharose for host impurities removal from injected crude samples. Co-IP allowed recovering a purified fraction of STEAP1 and contributed to unveil potential physiologically interacting counterparts with the target. A Tm of ~55 °C was determined, confirming STEAP1 stability in the purification buffer. A predominant α-helical structure was identified, ensuring the protein's structural stability. CONCLUSIONS A method for successfully isolating human STEAP1 from LNCaP cells was provided, avoiding the use of detergents to achieve stability, even outside a membrane-mimicking environment.
Collapse
Affiliation(s)
- Jorge Barroca-Ferreira
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Pedro Cruz-Vicente
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Marino F. A. Santos
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Sandra M. Rocha
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
| | - Teresa Santos-Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Cláudio J. Maia
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
| | - Luís A. Passarinha
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (J.B.-F.); (P.C.-V.); (S.M.R.); (C.J.M.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; (M.F.A.S.); (T.S.-S.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, University of Beira Interior, 6201-284 Covilhã, Portugal
| |
Collapse
|
12
|
Guo Q, Ke XX, Liu Z, Gao WL, Fang SX, Chen C, Song YX, Han H, Lu HL, Xu G. Evaluation of the Prognostic Value of STEAP1 in Lung Adenocarcinoma and Insights Into Its Potential Molecular Pathways via Bioinformatic Analysis. Front Genet 2020; 11:242. [PMID: 32265985 PMCID: PMC7099762 DOI: 10.3389/fgene.2020.00242] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Background Upregulation of the six-transmembrane epithelial antigen of prostate-1 (STEAP1) is closely associated with prognosis of numerous malignant cancers. However, its role in lung adenocarcinoma (LUAD), the most common type of lung cancer, remains unknown. This study aimed to investigate the role of STEAP1 in the occurrence and progression of LUAD and the potential mechanisms underlying its regulatory effects. Methods STEAP1 mRNA and protein expression were analyzed in 40 LUAD patients via real-time PCR and western blotting, respectively. We accessed the clinical data of 522 LUAD patients from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) to investigate the expression and prognostic role of STEAP1 in LUAD. Further, we performed gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and gene set enrichment analysis (GSEA) to elucidate the potential mechanism underlying the role of STEAP1 in LUAD. The protein-protein interaction (PPI) network of STEAP1 was analyzed using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and hub genes with significant positive and negative associations with STEAP1 were identified and their role in LUAD prognosis was predicted. Results STEAP1 was significantly upregulated in LUAD patients and associated with LUAD prognosis. Further, TCGA data indicated that STEAP1 upregulation is correlated with the clinical prognosis of LUAD. GO and KEGG analysis revealed that the genes co-expressed with STEAP1 were primarily involved in cell division, DNA replication, cell cycle, apoptosis, cytokine signaling, NF-kB signaling, and TNF signaling. GSEA revealed that homologous recombination, p53 signaling pathway, cell cycle, DNA replication, apoptosis, and toll-like receptor signaling were highly enriched upon STEAP1 upregulation. Gene Expression Profiling Interactive Analysis (GEPIA) analysis revealed that the top 10 hub genes associated with STEAP1 expression were also associated with the LUAD prognosis. Conclusion STEAP1 upregulation potentially influences the occurrence and progression of LUAD and its co-expressed genes via regulation of homologous recombination, p53 signaling, cell cycle, DNA replication, and apoptosis. STEAP1 is a potential prognostic biomarker for LUAD.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xi-Xian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhou Liu
- Department of Cardiac Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei-Long Gao
- Department of Cardiac Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shi-Xu Fang
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yong-Xiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hao Han
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong-Ling Lu
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
13
|
Gomes IM, Rocha SM, Gaspar C, Alvelos MI, Santos CR, Socorro S, Maia CJ. Knockdown of STEAP1 inhibits cell growth and induces apoptosis in LNCaP prostate cancer cells counteracting the effect of androgens. Med Oncol 2018; 35:40. [PMID: 29464393 DOI: 10.1007/s12032-018-1100-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Abstract
Six transmembrane epithelial antigen of the prostate 1 (STEAP1) is overexpressed in numerous types of tumors, especially in prostate cancer. STEAP1 is located in the plasma membrane of epithelial cells and may play an important role in inter- and intracellular communication. Several studies suggest STEAP1 as a potential biomarker and an immunotherapeutic target for prostate cancer. However, the role of STEAP1 in cell proliferation and apoptosis remains unclear. Therefore, the role of STEAP1 in prostate cancer cells proliferation and apoptosis was determined by inducing STEAP1 gene knockdown in LNCaP cells. In addition, the effect of DHT on the proliferation of LNCaP cells knocked down for STEAP1 gene was evaluated. Our results demonstrated that silencing the STEAP1 gene reduces LNCaP cell viability and proliferation, while inducing apoptosis. In addition, we showed that the cellular and molecular effects of STEAP1 gene knockdown may be independent of DHT treatment, and blocking STEAP1 may reveal to be an appropriate strategy to activate apoptosis in cancer cells, as well as to prevent the proliferative and anti-apoptotic effects of DHT in prostate cancer.
Collapse
Affiliation(s)
- Inês Margarida Gomes
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Sandra Moreira Rocha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Carlos Gaspar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Maria Inês Alvelos
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Cecília Reis Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Cláudio Jorge Maia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
14
|
Vaz CV, Marques R, Alves MG, Oliveira PF, Cavaco JE, Maia CJ, Socorro S. Androgens enhance the glycolytic metabolism and lactate export in prostate cancer cells by modulating the expression of GLUT1, GLUT3, PFK, LDH and MCT4 genes. J Cancer Res Clin Oncol 2016; 142:5-16. [PMID: 26048031 DOI: 10.1007/s00432-015-1992-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The present study aims to investigate the role of androgens in controlling the glycolytic metabolism and lactate efflux in prostate cancer (PCa) cells. METHODS Androgen-responsive LNCaP cells were treated with 5α-dihydrotestosterone (DHT, 10 nM) for 12-48 h, and their glycolytic metabolism, lactate production and viability were analyzed. Intracellular and extracellular levels of glucose and lactate were determined spectrophotometrically, and the expression of glucose transporters (GLUT1/GLUT3), phosphofructokinase 1, lactate dehydrogenase (LDH) and monocarboxylate transporter (MCT4) was analyzed by real-time PCR and Western blot. The enzymatic activity of LDH was determined by means of a colorimetric assay. Experiments were reproduced in androgen-non-responsive DU145 and PC3 cells. RESULTS Androgens stimulated glucose consumption in LNCaP cells by increasing the expression of GLUT3, GLUT1 and PFK, which was underpinned by increased cell viability. Accordingly, lactate production by LNCaP cells was enhanced upon DHT stimulation as evidenced by the increased levels of lactate found in cell culture medium. Although LDH enzymatic activity decreased in LNCaP cells treated with DHT, the expression of MCT4 was significantly increased with androgenic treatment, which sustains the increase on lactate export. Glucose consumption and the expression of GLUTs and PFK remained unchanged in DHT-treated DU145 and PC3 cells. CONCLUSIONS The results obtained establish androgens as modulators of glycolytic metabolism in PCa cells by stimulating glucose consumption, as well as the production and export of lactate, which may represent a crucial issue-driven prostate tumor development. These findings also highlight the importance of PCa therapies targeting AR and metabolism-related proteins.
Collapse
Affiliation(s)
- Cátia V Vaz
- Faculdade de Ciências da Saúde, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ricardo Marques
- Faculdade de Ciências da Saúde, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Marco G Alves
- Faculdade de Ciências da Saúde, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Pedro F Oliveira
- Faculdade de Ciências da Saúde, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - José E Cavaco
- Faculdade de Ciências da Saúde, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Cláudio J Maia
- Faculdade de Ciências da Saúde, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Sílvia Socorro
- Faculdade de Ciências da Saúde, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
15
|
Tamilzhalagan S, Muthuswami M, Periasamy J, Lee MH, Rha SY, Tan P, Ganesan K. Upregulated, 7q21–22 amplicon candidate gene SHFM1 confers oncogenic advantage by suppressing p53 function in gastric cancer. Cell Signal 2015; 27:1075-86. [DOI: 10.1016/j.cellsig.2015.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/28/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
|
16
|
Doran MG, Watson PA, Cheal SM, Spratt DE, Wongvipat J, Steckler JM, Carrasquillo JA, Evans MJ, Lewis JS. Annotating STEAP1 regulation in prostate cancer with 89Zr immuno-PET. J Nucl Med 2014; 55:2045-9. [PMID: 25453051 DOI: 10.2967/jnumed.114.145185] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Antibodies and antibody-drug conjugates targeting the cell surface protein 6 transmembrane epithelial antigen of prostate 1 (STEAP1) are in early clinical development for the treatment of castration-resistant prostate cancer (PCa). In general, antigen expression directly affects the bioactivity of therapeutic antibodies, and the biologic regulation of STEAP1 is unusually complicated in PCa. Paradoxically, STEAP1 can be induced or repressed by the androgen receptor (AR) in different human PCa models, while also expressed in AR-null PCa. Consequently, there is an urgent need to translate diagnostic strategies to establish which regulatory mechanism predominates in patients to situate the appropriate therapy within standard of care therapies inhibiting AR. METHODS To this end, we prepared and evaluated (89)Zr-labeled MSTP2109A ((89)Zr-2109A), a radiotracer for PET derived from a fully humanized monoclonal antibody to STEAP1 in preclinical PCa models. RESULTS (89)Zr-2109A specifically localized to the STEAP1-positive human PCa models CWR22Pc, 22Rv1, and PC3. Moreover, (89)Zr-2109A sensitively measured treatment-induced changes (∼66% decline) in STEAP1 expression in CWR22PC in vitro and in vivo, a model we showed to express STEAP1 in an AR-dependent manner. CONCLUSION These findings highlight the ability of immuno-PET with (89)Zr-2109A to detect acute changes in STEAP1 expression and argue for an expansion of ongoing efforts to image PCa patients with (89)Zr-2109A to maximize the clinical benefit associated with antibodies or antibody-drug conjugates to STEAP1.
Collapse
Affiliation(s)
- Michael G Doran
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Philip A Watson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah M Cheal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel E Spratt
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - John Wongvipat
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey M Steckler
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge A Carrasquillo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J Evans
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
17
|
Expression of STEAP1 and STEAP1B in prostate cell lines, and the putative regulation of STEAP1 by post-transcriptional and post-translational mechanisms. Genes Cancer 2014; 5:142-51. [PMID: 25053991 PMCID: PMC4091532 DOI: 10.18632/genesandcancer.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/10/2014] [Indexed: 12/26/2022] Open
Abstract
STEAP1 gene is overexpressed in several kinds of tumors, particularly in prostate cancer. Besides STEAP1, there is another related gene, STEAP1B, which may encode two different transcripts. Although several studies have been pointing STEAP1 as a putative immunotherapeutic target and biomarker, the mechanisms underlying its regulation are not fully understood. In silico analysis allowed us to show that STEAP1 and STEAP1B share high homology, but with slight differences at structural level. Experiments with prostate cells showed that STEAP1B2 is overexpressed in cancer cells. Regarding STEAP1 regulation, it is demonstrated that the stability of mRNA and protein is higher in LNCaP than in PNT1A cells. Of note, serum triggered opposite effects in LNCaP and PNT1A in relation to STEAP1 stability, e.g., increasing it in PNT1A and decreasing in LNCaP. These results suggest that STEAP1 may be regulated by post-transcriptional and post-translational modifications (PTM), which may differ between non-neoplastic and neoplastic cells. These PTM are supported through in silico analysis, where several modifications such as N-glycosylation, N-Glycation, Phosphorylation and O-linked β-N-acetylglucosamine, may occur in STEAP1 protein. In conclusion, these data indicate that STEAP1B2 is overexpressed in neoplastic cells, and PTM may be involved in regulation of STEAP1 expression in prostate cells.
Collapse
|
18
|
Gomes IM, Arinto P, Lopes C, Santos CR, Maia CJ. STEAP1 is overexpressed in prostate cancer and prostatic intraepithelial neoplasia lesions, and it is positively associated with Gleason score. Urol Oncol 2014; 32:53.e23-9. [DOI: 10.1016/j.urolonc.2013.08.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/23/2013] [Accepted: 08/21/2013] [Indexed: 11/26/2022]
|