1
|
Amiri A, Xu W, Zhang Q, Jeong JH, Freedland SJ, Fleshner NE, Finelli A, Hamilton RJ. The association between statin use, genetic variation, and prostate cancer risk. Prostate Cancer Prostatic Dis 2025:10.1038/s41391-025-00964-x. [PMID: 40195554 DOI: 10.1038/s41391-025-00964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/11/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND The association between statin medication use and prostate cancer remains inconclusive. Evidence shows that genetic variation modifies lipid-lowering efficacy of statins, however, there are limited data on the pharmacogenomics of statins in prostate cancer chemoprevention. METHODS Clinical and germline data were extracted from the prostate biopsy database at the University Health Network, Toronto, Canada (1996-2014). A genome-wide association study (GWAS) and a custom array of 54 single nucleotide polymorphisms (SNPs) related to statin metabolism were performed. Using a case-control design, we examined the associations between statin use and overall and high-grade (Grade Group ≥2) prostate cancer risk. A case-only design was employed to explore interactions between candidate/GWAS SNPs and the statin-cancer association. RESULTS Among 3481 patients, 1104 (32%) were using statins at biopsy. Statin users were older and had higher body mass index, greater number of positive cores, and higher Gleason scores. In total, 2061 participants (59%) were diagnosed with prostate cancer, with 922 cases (45%) classified as high-grade. When adjusted for baseline characteristics, the use of statins was not associated with decreased risk of overall or high-grade prostate cancer. Two unique SNPs implicated in statin metabolism showed significant interaction with the statin-cancer association. In particular, statin users harboring the GG genotype (n = 668; 24%) of rs10276036 had significantly lower prostate cancer risk (HR 0.71, 95% CI 051-1.00). However, none of the SNPs achieved genome-wide significance. CONCLUSIONS In our study, statin use was not associated with either prostate cancer or high-grade prostate cancer risk. While one candidate SNP that influences statin metabolism may be associated with a lower cancer risk among statin users and thus warrants further study, neither this nor any other SNPs achieved genome-wide significance. Thus, our findings do not add evidence in support of a prostate cancer chemopreventive role for statins.
Collapse
Affiliation(s)
- Ali Amiri
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Qihuang Zhang
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| | - Jae H Jeong
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stephen J Freedland
- Department of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Section of Urology, Veterans Affairs Medical Center, Durham, NC, USA
| | - Neil E Fleshner
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Antonio Finelli
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Robert J Hamilton
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Marques AVL, Ruginsk BE, Prado LDO, de Lima DE, Daniel IW, Moure VR, Valdameri G. The association of ABC proteins with multidrug resistance in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119878. [PMID: 39571941 DOI: 10.1016/j.bbamcr.2024.119878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Multidrug resistance (MDR) poses one of the primary challenges for cancer treatment, especially in cases of metastatic disease. Various mechanisms contribute to MDR, including the overexpression of ATP-binding cassette (ABC) proteins. In this context, we reviewed the literature to establish a correlation between the overexpression of ABC proteins and MDR in cancer, considering both in vitro and clinical studies. Initially, we presented an overview of the seven subfamilies of ABC proteins, along with the subcellular localization of each protein. Subsequently, we identified a panel of 20 ABC proteins (ABCA1-3, ABCA7, ABCB1-2, ABCB4-6, ABCC1-5, ABCC10-11, ABCE1, ABCF2, ABCG1, and ABCG2) associated with MDR. We also emphasize the significance of drug sequestration by certain ABC proteins into intracellular compartments. Among the anticancer drugs linked to MDR, 29 were definitively identified as substrates for at least one of the three most crucial ABC transporters: ABCB1, ABCC1, and ABCG2. We further discussed that the most commonly used drugs in standard regimens for mainly breast cancer, lung cancer, and acute lymphoblastic leukemia could be subject to MDR mediated by ABC transporters. Collectively, these insights will aid in conducting new studies aimed at a deeper understanding of the clinical MDR mediated by ABC proteins and in designing more effective pharmacological treatments to enhance the objective response rate in cancer patients.
Collapse
Affiliation(s)
- Andrezza Viviany Lourenço Marques
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Bruna Estelita Ruginsk
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Larissa de Oliveira Prado
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Diogo Eugênio de Lima
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Isabelle Watanabe Daniel
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| |
Collapse
|
3
|
Peñata-Taborda A, Espitia-Pérez P, Espitia-Pérez L, Coneo-Pretelt A, Brango H, Ricardo-Caldera D, Arteaga-Arroyo G, Jiménez-Vidal L, Galeano-Páez C, Pastor-Sierra K, Humanez-Alvarez A, Bru-Cordero O, Jones-Cifuentes N, Rincón-Orozco B, Mendez-Sanchez S, Negrette-Guzmán M. Combination of Low-Dose Sulforaphane and Docetaxel on Mitochondrial Function and Metabolic Reprogramming in Prostate Cancer Cell Lines. Int J Mol Sci 2025; 26:1013. [PMID: 39940782 PMCID: PMC11817897 DOI: 10.3390/ijms26031013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
Considering the limitations of monotherapies due to chemoresistance and side effects, this research aimed to determine whether low doses of sulforaphane (SFN) combined with docetaxel (DCT) could enhance therapeutic efficacy. Prostate cancer cell lines LNCaP and PC-3 were treated with individual IC50 doses of SFN and DCT and half-reduced IC50 values for the SFN:DCT combination. Metabolic markers, including glucose consumption, lactate production, reactive oxygen species (ROS), mitochondrial mass, and caspase activity, were assessed. In LNCaP cells, the SFN:DCT combination reduced cell viability to 50%, comparable to DCT monotherapy (48%). Caspase 3 activation was also higher with SFN:DCT (2.4 ± 0.75 RFU) than DCT alone (2.1 ± 0.47 RFU), while caspase 8 activation remained comparable, indicating equivalent effectiveness at lower concentrations. In PC-3 cells, the combination induced caspase 3 activation (1.16 ± 0.0484 RFU) at levels slightly lower than DCT (1.51 ± 0.2062 RFU) but achieved greater reductions in mitochondrial mass, reflecting its ability to target metabolic vulnerabilities in aggressive phenotypes. Our findings suggest that the SFN:DCT combination is a promising strategy for early-stage prostate cancer. By achieving comparable efficacy to DCT monotherapy at low doses, the SFN:DCT combination maintains the therapeutic impact, mitigating the adverse effects of conventional DCT treatment.
Collapse
Affiliation(s)
- Ana Peñata-Taborda
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Pedro Espitia-Pérez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Lyda Espitia-Pérez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Andrés Coneo-Pretelt
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Hugo Brango
- Facultad de Educación y Ciencias, Departamento de Matemáticas, Universidad de Sucre, Sincelejo 700003, Colombia;
| | - Dina Ricardo-Caldera
- Grupo de Investigación Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú E.B.Z., Montería 230001, Colombia;
| | - Gean Arteaga-Arroyo
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Luisa Jiménez-Vidal
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Claudia Galeano-Páez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Karina Pastor-Sierra
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Alicia Humanez-Alvarez
- Grupo de Investigación Biomédicas y Biología Molecular, Universidad del Sinú E.B.Z., Montería 230001, Colombia; (A.P.-T.); (P.E.-P.); (A.C.-P.); (G.A.-A.); (L.J.-V.); (C.G.-P.); (K.P.-S.); (A.H.-A.)
| | - Osnamir Bru-Cordero
- Dirección Académica, Universidad Nacional de Colombia, Kilómetro 9, Vía Valledupar-La Paz, La Paz 202010, Colombia;
| | - Nathalia Jones-Cifuentes
- Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (N.J.-C.); (B.R.-O.); (M.N.-G.)
| | - Bladimiro Rincón-Orozco
- Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (N.J.-C.); (B.R.-O.); (M.N.-G.)
| | - Stelia Mendez-Sanchez
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| | - Mario Negrette-Guzmán
- Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (N.J.-C.); (B.R.-O.); (M.N.-G.)
| |
Collapse
|
4
|
Wang D, Pan H, Cheng S, Huang Z, Shi Z, Deng H, Yang J, Jin C, Dai J. Construction and Validation of a Prognostic Model Based on Mitochondrial Genes in Prostate Cancer. Horm Metab Res 2024; 56:807-817. [PMID: 38870985 DOI: 10.1055/a-2330-3696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This study attempted to build a prostate cancer (PC) prognostic risk model with mitochondrial feature genes. PC-related MTGs were screened for Cox regression analyses, followed by establishing a prognostic model. Model validity was analyzed via survival analysis and receiver operating characteristic (ROC) curves, and model accuracy was validated in the GEO dataset. Combining risk score with clinical factors, the independence of the risk score was verified by using Cox analysis, followed by generating a nomogram. The Gleason score, microsatellite instability (MSI), immune microenvironment, and tumor mutation burden were analyzed in two risk groups. Finally, the prognostic feature genes were verified through a q-PCR test. Ten PC-associated MTGs were screened, and a prognostic model was built. Survival analysis and ROC curves illustrated that the model was a good predictor for the risk of PC. Cox regression analysis revealed that risk score acted as an independent prognostic factor. The Gleason score and MSI in the high-risk group were substantially higher than in the low-risk group. Levels of ESTIMATE Score, Immune Score, Stromal Score, immune cells, immune function, immune checkpoint, and immunopheno score of partial immune checkpoints in the high-risk group were significantly lower than in the low-risk group. Genes with the highest mutation frequencies in the two groups were SPOP, TTN, and TP53. The q-PCR results of the feature genes were consistent with the gene expression results in the database. The 10-gene model based on MTGs could accurately predict the prognosis of PC patients and their responses to immunotherapy.
Collapse
Affiliation(s)
- Dan Wang
- Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Hui Pan
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Shaoping Cheng
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Zhigang Huang
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Zhenlei Shi
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Hao Deng
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Junwu Yang
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Chenghua Jin
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Jin Dai
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| |
Collapse
|
5
|
Yang S, Wang X, Huan R, Deng M, Kong Z, Xiong Y, Luo T, Jin Z, Liu J, Chu L, Han G, Zhang J, Tan Y. Machine learning unveils immune-related signature in multicenter glioma studies. iScience 2024; 27:109317. [PMID: 38500821 PMCID: PMC10946333 DOI: 10.1016/j.isci.2024.109317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/11/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024] Open
Abstract
In glioma molecular subtyping, existing biomarkers are limited, prompting the development of new ones. We present a multicenter study-derived consensus immune-related and prognostic gene signature (CIPS) using an optimal risk score model and 101 algorithms. CIPS, an independent risk factor, showed stable and powerful predictive performance for overall and progression-free survival, surpassing traditional clinical variables. The risk score correlated significantly with the immune microenvironment, indicating potential sensitivity to immunotherapy. High-risk groups exhibited distinct chemotherapy drug sensitivity. Seven signature genes, including IGFBP2 and TNFRSF12A, were validated by qRT-PCR, with higher expression in tumors and prognostic relevance. TNFRSF12A, upregulated in GBM, demonstrated inhibitory effects on glioma cell proliferation, migration, and invasion. CIPS emerges as a robust tool for enhancing individual glioma patient outcomes, while IGFBP2 and TNFRSF12A pose as promising tumor markers and therapeutic targets.
Collapse
Affiliation(s)
- Sha Yang
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Xiang Wang
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Renzheng Huan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mei Deng
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zhuo Kong
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yunbiao Xiong
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Tao Luo
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zheng Jin
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jian Liu
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Liangzhao Chu
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
6
|
Soh PXY, Mmekwa N, Petersen DC, Gheybi K, van Zyl S, Jiang J, Patrick SM, Campbell R, Jaratlerdseri W, Mutambirwa SBA, Bornman MSR, Hayes VM. Prostate cancer genetic risk and associated aggressive disease in men of African ancestry. Nat Commun 2023; 14:8037. [PMID: 38052806 PMCID: PMC10697980 DOI: 10.1038/s41467-023-43726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
African ancestry is a significant risk factor for prostate cancer and advanced disease. Yet, genetic studies have largely been conducted outside the context of Sub-Saharan Africa, identifying 278 common risk variants contributing to a multiethnic polygenic risk score, with rare variants focused on a panel of roughly 20 pathogenic genes. Based on this knowledge, we are unable to determine polygenic risk or differentiate prostate cancer status interrogating whole genome data for 113 Black South African men. To further assess for potentially functional common and rare variant associations, here we interrogate 247,780 exomic variants for 798 Black South African men using a case versus control or aggressive versus non-aggressive study design. Notable genes of interest include HCP5, RFX6 and H3C1 for risk, and MKI67 and KLF5 for aggressive disease. Our study highlights the need for further inclusion across the African diaspora to establish African-relevant risk models aimed at reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Pamela X Y Soh
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Naledi Mmekwa
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Desiree C Petersen
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kazzem Gheybi
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Smit van Zyl
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, South Africa
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | | | - Weerachai Jaratlerdseri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa, South Africa
| | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, South Africa.
- Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
7
|
Integrative Analysis of Bulk RNA-Seq and Single-Cell RNA-Seq Unveils the Characteristics of the Immune Microenvironment and Prognosis Signature in Prostate Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6768139. [PMID: 35909899 PMCID: PMC9325591 DOI: 10.1155/2022/6768139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
The immune microenvironment is a culmination of the collaborative effort of immune cells and is important in cancer development. The underlying mechanisms of the tumor immune microenvironment in regulating prostate cancer (PRAD) are unclear. In the current study, 144 natural killer cell-related genes were identified using differential expression, single-sample gene set enrichment analysis, and weighted gene coexpression network analysis. Furthermore, VCL, ACTA2, MYL9, MYLK, MYH11, TPM1, ACTG2, TAGLN, and FLNC were selected as hub genes via the protein-protein interaction network. Based on the expression patterns of the hub genes, endothelial, epithelial, and tissue stem cells were identified as key cell subpopulations, which could regulate PRAD via immune response, extracellular signaling, and protein formation. Moreover, 27 genes were identified as prognostic signatures and used to construct the risk score model. Receiver operating characteristic curves revealed the good performance of the risk score model in both the training and testing datasets. Different chemotherapeutic responses were observed between the low- and high-risk groups. Additionally, a nomogram based on the risk score and other clinical features was established to predict the 1-, 3-, and 5-year progression-free interval of patients with PRAD. This study provides novel insights into the molecular mechanisms of the immune microenvironment and its role in the pathogenesis of PARD. The identification of key cell subpopulations has a potential therapeutic and prognostic use in PRAD.
Collapse
|
8
|
Identification of ABCA5 among ATP-Binding Cassette Transporter Family as a New Biomarker for Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3399311. [PMID: 35783152 PMCID: PMC9242773 DOI: 10.1155/2022/3399311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Background The increasing incidence and mortality of colorectal cancer (CRC) urgently requires updated biomarkers. The ABC transporter family is a widespread family of membrane-bound proteins involved in the transportation of substrates associated with ATP hydrolysis, including metabolites, amino acids, peptides and proteins, sterols and lipids, organic and inorganic ions, sugars, metals, and drugs. They play an important role in the maintenance of homeostasis in the body. Purpose This study aims to search for new markers in the ABC transporter gene family for diagnostic and prognostic purposes through data mining of The Cancer Genome Atlas (TCGA) and GEO (Gene Expression Omnibus) datasets. Methods A total of 980 samples, including 684 CRC patients and 296 controls from five different datasets, were included for analysis. The construction of the PPI (protein-protein interaction) network and pathway analysis were performed in STRING database and DAVID (database for annotation, visualization, and integrated discovery), respectively. In addition, GSEA (gene set enrichment analysis) and WGCNA (weighted gene co-expression network analysis) were also used for functional analysis. Results After several rounds of screening and validation, only the ABCB5 gene was retained among the 49 genes. Conclusions The results demonstrated that ABCA5 expression is reduced in CRC and patients with high ABCA5 expression have better OS, which can provide guidance for better management and treatment of CRC in the future.
Collapse
|
9
|
Kong J, Yu G, Si W, Li G, Chai J, Liu Y, Liu J. Identification of a glycolysis-related gene signature for predicting prognosis in patients with hepatocellular carcinoma. BMC Cancer 2022; 22:142. [PMID: 35123420 PMCID: PMC8817563 DOI: 10.1186/s12885-022-09209-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common primary liver cancer in the world. Although great advances in HCC diagnosis and treatment have been achieved, due to the complicated mechanisms in tumor development and progression, the prognosis of HCC is still dismal. Recent studies have revealed that the Warburg effect is related to the development, progression and treatment of various cancers; however, there have been a few explorations of the relationship between glycolysis and HCC prognosis. Methods mRNA expression profiling was downloaded from public databases. Gene set enrichment analysis (GSEA) was used to explore glycolysis-related genes (GRGs), and the LASSO method and Cox regression analysis were used to identify GRGs related to HCC prognosis and to construct predictive models associated with overall survival (OS) and disease-free survival (DFS). The relationship between the predictive model and the tumor mutation burden (TMB) and tumor immune microenvironment (TIME) was explored. Finally, real-time PCR was used to validate the expression levels of the GRGs in clinical samples and different cell lines. Results Five GRGs (ABCB6, ANKZF1, B3GAT3, KIF20A and STC2) were identified and used to construct gene signatures to predict HCC OS and DFS. Using the median value, HCC patients were divided into low- and high-risk groups. Patients in the high-risk group had worse OS/DFS than those in the low-risk group, were related to higher TMB and were associated with a higher rate of CD4+ memory T cells resting and CD4+ memory T cells activated. Finally, real-time PCR suggested that the five GRGs were all dysregulated in HCC samples compared to adjacent normal samples. Conclusions We identified five GRGs associated with HCC prognosis and constructed two GRGs-related gene signatures to predict HCC OS and DFS. The findings in this study may contribute to the prediction of prognosis and promote HCC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09209-9.
Collapse
|
10
|
DiNatale A, Kaur R, Qian C, Zhang J, Marchioli M, Ipe D, Castelli M, McNair CM, Kumar G, Meucci O, Fatatis A. Subsets of cancer cells expressing CX3CR1 are endowed with metastasis-initiating properties and resistance to chemotherapy. Oncogene 2022; 41:1337-1351. [PMID: 34999735 PMCID: PMC8941631 DOI: 10.1038/s41388-021-02174-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
Metastasis-initiating cells (MICs) display stem cell-like features, cause metastatic recurrences and defy chemotherapy, which leads to patients' demise. Here we show that prostate and breast cancer patients harbor contingents of tumor cells with high expression of CX3CR1, OCT4a (POU5F1), and NANOG. Impairing CX3CR1 expression or signaling hampered the formation of tumor spheroids by cell lines from which we isolated small subsets co-expressing CX3CR1 and stemness-related markers, similarly to patients' tumors. These rare CX3CR1High cells show transcriptomic profiles enriched in pathways that regulate pluripotency and endowed with metastasis-initiating behavior in murine models. Cancer cells lacking these features (CX3CR1Low) were capable of re-acquiring CX3CR1-associated features over time, implying that MICs can continuously emerge from non-stem cancer cells. CX3CR1 expression also conferred resistance to docetaxel, and prolonged treatment with docetaxel selected CX3CR1High phenotypes with de-enriched transcriptomic profiles for apoptotic pathways. These findings nominate CX3CR1 as a novel marker of stem-like tumor cells and provide conceptual ground for future development of approaches targeting CX3CR1 signaling and (re)expression as therapeutic means to prevent or contain metastasis initiation.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Ramanpreet Kaur
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Champions Oncology, 1330 Piccard Drive, Rockville, MD, 20850, USA
| | - Chen Qian
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Samuel Oschin Cancer Center, Cedars-Sinai, Los Angeles, CA, 90048, USA
| | - Jieyi Zhang
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Michael Marchioli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Darin Ipe
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Maria Castelli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chris M McNair
- Department of Cancer Biology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Cancer Informatics, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Program in Immune Cell Regulation & Targeting, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Program in Translational and Cellular Oncology at Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
11
|
Wang JQ, Wu ZX, Yang Y, Teng QX, Li YD, Lei ZN, Jani KA, Kaushal N, Chen ZS. ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. J Evid Based Med 2021; 14:232-256. [PMID: 34388310 DOI: 10.1111/jebm.12434] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest membrane protein families existing in wide spectrum of organisms from prokaryotes to human. ABC transporters are also known as efflux pumps because they mediate the cross-membrane transportation of various endo- and xenobiotic molecules energized by ATP hydrolysis. Therefore, ABC transporters have been considered closely to multidrug resistance (MDR) in cancer, where the efflux of structurally distinct chemotherapeutic drugs causes reduced itherapeutic efficacy. Besides, ABC transporters also play other critical biological roles in cancer such as signal transduction. During the past decades, extensive efforts have been made in understanding the structure-function relationship, transportation profile of ABC transporters, as well as the possibility to overcome MDR via targeting these transporters. In this review, we discuss the most recent knowledge regarding ABC transporters and cancer drug resistance in order to provide insights for the development of more effective therapies.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Khushboo A Jani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Neeraj Kaushal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| |
Collapse
|
12
|
Jadhao M, Tsai EM, Yang HC, Chen YF, Liang SS, Wang TN, Teng YN, Huang HW, Wang LF, Chiu CC. The Long-Term DEHP Exposure Confers Multidrug Resistance of Triple-Negative Breast Cancer Cells through ABC Transporters and Intracellular ROS. Antioxidants (Basel) 2021; 10:949. [PMID: 34208283 PMCID: PMC8230873 DOI: 10.3390/antiox10060949] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
The characteristics of phthalates had been thought to be similar to endocrine disruptors, which increases cancer risk. The role of phthalates in acquired drug resistance remains unclear. In this study, we investigated the effect of di-(2-ethylhexyl) phthalate (DEHP) on acquired drug resistance in breast cancer. MCF7 and MDA-MB-231 breast cancer cells were exposed to long-term physiological concentration of DEHP for more than three months. Long-exposure DEHP permanently attenuated the anti-proliferative effect of doxorubicin with estrogen receptor-independent activity even after withdrawal of DEHP. Long term DEHP exposure significantly reduced ROS (O2-) level in MDA-MB-231 cells while increased in MCF7 cells. ATP-binding cassette (ABC) transporters possess a widely recognized mechanism of drug resistance and are considered a target for drug therapy. Upregulation of ABC family proteins, ABCB-1 and ABCC-1 observed in DEHP-exposed clones compared to doxorubicin-resistant (DoxR) and parental MDA-MB-231 cells. A viability assay showed enhanced multidrug resistance in DEHP-exposed clones against Dox, topotecan, and irinotecan. Inhibition of ABC transporters with tariquidar, enhanced drug cytotoxicity through increased drug accumulation reversing acquired multidrug resistance in MDA-MB-231 breast cancer cells. Tariquidar enhanced Dox cytotoxicity by increasing intracellular ROS production leading to caspase-3 mediated apoptosis. Activation of PI3K/Akt signaling enhanced proliferation and growth of DEHP-exposed MDA-MB-231 cells. Overall, long-term DEHP exposure resulted in acquired multidrug resistance by upregulating ABCB-1 and ABCC1; apart from proliferation PI3K/Akt may be responsible for acquired drug resistance through ABC transporter upregulation. Targeting ABCB1 and ABCC1 with tariquidar may be a promising strategy for reversing the acquired multidrug resistance of triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Mahendra Jadhao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan; or
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- The Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ho-Chun Yang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.Y.); (S.-S.L.)
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shih-Shin Liang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.Y.); (S.-S.L.)
| | - Tsu-Nai Wang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan;
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan; or
| | - Chien-Chih Chiu
- The Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.Y.); (S.-S.L.)
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
13
|
Fuggle NR, Westbury LD, Bevilacqua G, Titcombe P, Ó Breasail M, Harvey NC, Dennison EM, Cooper C, Ward KA. Level and change in bone microarchitectural parameters and their relationship with previous fracture and established bone mineral density loci. Bone 2021; 147:115937. [PMID: 33766802 PMCID: PMC7611749 DOI: 10.1016/j.bone.2021.115937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Osteoporosis is characterised by a reduction of bone mineral density (BMD) and predisposition to fracture. Bone microarchitecture, measured by high resolution peripheral quantitative computed tomography (HR-pQCT), has been related to fragility fractures and BMD and has been the subject of large-scale genome-wide analysis. We investigated whether fracture was related to baseline values and longitudinal changes in bone microarchitecture and whether bone microarchitecture was associated with established BMD loci. METHODS 115 males and 99 females (aged 72-81 at baseline) from the Hertfordshire Cohort Study (HCS) were analysed. Fracture history was determined in 2011-2012 by self-report and vertebral fracture assessment. Participants underwent HR-pQCT scans of the distal radius and tibia in 2011-2012 and 2017. Previous fracture in relation to baseline values and changes in tibial HR-pQCT parameters was examined using sex-adjusted logistic regression with and without adjustment for age, sociodemographic, lifestyle and clinical characteristics; baseline values and changes in parameters associated with previous fracture were then examined in relation to four established BMD loci after adjustment for sex and age. RESULTS Previous fracture was related to: higher trabecular area (fully-adjusted odds ratio [95% CI] per SD greater baseline value: 2.18 [1.27,3.73], p = 0.005); lower total volumetric BMD (0.53 [0.34,0.84], p = 0.007), cortical area (0.53 [0.30,0.95], p = 0.032), cortical BMD (0.56 [0.36,0.88], p = 0.011) and cortical thickness (0.45 [0.27,0.77], p = 0.004); and greater declines in trabecular BMD (p = 0.001). Associations were robust in sex- and fully-adjusted analysis. Relationships between BMD loci and these HR-pQCT parameters were weak: rs3801387 (WNT16) was related to decline in trabecular BMD (p = 0.011) but no other associations were significant (p > 0.05). CONCLUSION Baseline values of HR-pQCT parameters and greater decline in trabecular BMD were associated with fracture. Change in trabecular BMD was associated with WNT16 which has been demonstrated to influence bone health in murine models and human genome-wide association studies (GWAS).
Collapse
Affiliation(s)
- Nicholas R Fuggle
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK; The Alan Turing Institute, London, UK.
| | - Leo D Westbury
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
| | - Gregorio Bevilacqua
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
| | - Philip Titcombe
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
| | | | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Elaine M Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK; Victoria University of Wellington, Wellington, New Zealand.
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Kate A Ward
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
| |
Collapse
|
14
|
Xu Z, Xu L, Liu L, Li H, Jin J, Peng M, Huang Y, Xiao H, Li Y, Guan H. A Glycolysis-Related Five-Gene Signature Predicts Biochemical Recurrence-Free Survival in Patients With Prostate Adenocarcinoma. Front Oncol 2021; 11:625452. [PMID: 33954109 PMCID: PMC8092437 DOI: 10.3389/fonc.2021.625452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed cancers in males worldwide. Approximately 25% of all patients experience biochemical recurrence (BCR) after radical prostatectomy (RP) and BCR indicates increased risk for metastasis and castration resistance. PCa patients with highly glycolytic tumors have a worse prognosis. Thus, this study aimed to explore glycolysis-based predictive biomarkers for BCR. Expression data and clinical information of PCa samples were retrieved from three publicly available datasets. One from The Cancer Genome Atlas (TCGA) dataset was used as the training cohort, and two from the Gene Expression Omnibus (GEO) dataset (GSE54460 and GSE70769) were used as validation cohorts. Using the training cohort, univariate Cox regression survival analysis, robust likelihood-based survival model, and stepwise multiply Cox analysis were sequentially applied to explore predictive glycolysis-related candidates. A five-gene risk score was then constructed based on the Cox coefficient as the following: (−0.8367*GYS2) + (0.3448*STMN1) + (0.3595*PPFIA4) + (−0.1940*KDELR3) + (0.4779*ABCB6). Receiver operating characteristic curve (ROC) analysis was used to identify the optimal cut-off point, and patients were divided into low risk and high risk groups. Kaplan–Meier analysis revealed that high risk group had significantly shorter BCR free survival time as compared with that in low risk group in training and validation cohorts. In conclusion, our data support the glycolysis-based five-gene signature as a novel and robust signature for predicting BCR of PCa patients.
Collapse
Affiliation(s)
- Zijun Xu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lijuan Xu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liping Liu
- National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,The Translational Medicine Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiewen Jin
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Miaoguan Peng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanrui Huang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Ji G, He S, Huang C, Gong Y, Li X, Zhou L. Upregulation of ATP Binding Cassette Subfamily C Member 5 facilitates Prostate Cancer progression and Enzalutamide resistance via the CDK1-mediated AR Ser81 Phosphorylation Pathway. Int J Biol Sci 2021; 17:1613-1628. [PMID: 33994848 PMCID: PMC8120459 DOI: 10.7150/ijbs.59559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/26/2021] [Indexed: 01/25/2023] Open
Abstract
The treatment of advanced prostate cancer, castration-resistant prostate cancer, remains challenging. The mechanisms of action of ATP binding cassette subfamily C member 5 (ABCC5) in prostate cancer and its relationship with drug resistance are still unclear. Expression and prognostic analyses of ABCC5 were performed through bioinformatic methods and immunohistochemistry analyses in multiple public databases as well as in our own prostate cancer cohort. The biological function of ABCC5 in prostate cancer cells was evaluated by in vitro and in vivo cell proliferation and migration and invasion assays. The regulation of CDK1 by ABCC5 was determined via RT-qPCR, western blots, and immunofluorescence. ABCC5 was significantly overexpressed in prostate cancer and positively associated with unfavorable clinicopathological features and prognosis. Upregulation of ABCC5 could enhance the cell proliferation, migration, and invasion of prostate cancer in vitro and in vivo. Mechanistically, ABCC5 exerts a protumor effect by binding to and inhibiting the protein degradation of CDK1, which promotes the phosphorylation of AR at Ser81 by CDK1 and activates the transcriptional activity of AR on target genes. Moreover, the addition of a CDK1 inhibitor or knockdown of CDK1 significantly improved the efficacy of enzalutamide on prostate cancer cells. The ABCC5-CDK1-AR regulatory pathway could be a potential therapeutic target for advanced prostate cancer, especially castration-resistant prostate cancer (CRPC), to enhance the therapeutic effect of enzalutamide.
Collapse
Affiliation(s)
- Guangjie Ji
- Institute of Urology, Peking University. Department of Urology, Peking University First Hospital. National Urological Cancer Center of China, Beijing, China
| | - Shiming He
- Institute of Urology, Peking University. Department of Urology, Peking University First Hospital. National Urological Cancer Center of China, Beijing, China
| | - Cong Huang
- Institute of Urology, Peking University. Department of Urology, Peking University First Hospital. National Urological Cancer Center of China, Beijing, China
| | - Yanqing Gong
- Institute of Urology, Peking University. Department of Urology, Peking University First Hospital. National Urological Cancer Center of China, Beijing, China
| | - Xuesong Li
- Institute of Urology, Peking University. Department of Urology, Peking University First Hospital. National Urological Cancer Center of China, Beijing, China
| | - Liqun Zhou
- Institute of Urology, Peking University. Department of Urology, Peking University First Hospital. National Urological Cancer Center of China, Beijing, China
| |
Collapse
|
16
|
Asif M, Usman M, Ayub S, Farhat S, Huma Z, Ahmed J, Kamal MA, Hussein D, Javed A, Khan I. Role of ATP-Binding Cassette Transporter Proteins in CNS Tumors: Resistance- Based Perspectives and Clinical Updates. Curr Pharm Des 2021; 26:4747-4763. [PMID: 32091329 DOI: 10.2174/1381612826666200224112141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
Despite gigantic advances in medical research and development, chemotherapeutic resistance remains a major challenge in complete remission of CNS tumors. The failure of complete eradication of CNS tumors has been correlated with the existence of several factors including overexpression of transporter proteins. To date, 49 ABC-transporter proteins (ABC-TPs) have been reported in humans, and the evidence of their strong association with chemotherapeutics' influx, dissemination, and efflux in CNS tumors, is growing. Research studies on CNS tumors are implicating ABC-TPs as diagnostic, prognostic and therapeutic biomarkers that may be utilised in preclinical and clinical studies. With the current advancements in cell biology, molecular analysis of genomic and transcriptomic interplay, and protein homology-based drug-transporters interaction, our research approaches are streamlining the roles of ABC-TPs in cancer and multidrug resistance. Potential inhibitors of ABC-TP for better clinical outcomes in CNS tumors have emerged. Elacridar has shown to enhance the chemo-sensitivity of Dasatanib and Imatinib in various glioma models. Tariquidar has improved the effectiveness of Temozolomide's in CNS tumors. Although these inhibitors have been effective in preclinical settings, their clinical outcomes have not been as significant in clinical trials. Thus, to have a better understanding of the molecular evaluations of ABC-TPs, as well as drug-interactions, further research is being pursued in research labs. Our lab aims to better comprehend the biological mechanisms involved in drug resistance and to explore novel strategies to increase the clinical effectiveness of anticancer chemotherapeutics, which will ultimately improve clinical outcomes.
Collapse
Affiliation(s)
- M Asif
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - M Usman
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shahid Ayub
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan,Department of Neurosurgery, Hayatabad Medical Complex, KPK Medical Teaching Institute, Peshawar, Pakistan
| | - Sahar Farhat
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Zilli Huma
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Jawad Ahmed
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,4Enzymoics; Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Deema Hussein
- Neurooncology Translational Group, Medical Technology, College of Applied Medical Sciences, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology,
Islamabad 44000, Pakistan,Department of Infectious diseases, Brigham and Women Hospital, Harvard Medical School, Cambridge, Boston, MA 02139, USA
| | - Ishaq Khan
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
17
|
Duz MB, Karatas OF. Differential expression of ABCB1, ABCG2, and KLF4 as putative indicators for paclitaxel resistance in human epithelial type 2 cells. Mol Biol Rep 2021; 48:1393-1400. [PMID: 33506275 DOI: 10.1007/s11033-021-06167-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is the second most common malignancy of the head and neck region in the USA with a declining 5-year survival rate. Paclitaxel resistance of tumors including LSCC still stands as a vital cause for poor clinical outcome in patients. In the current study, our aim was to explore the expressions of ATP-binding cassette transporters and stemness associated genes in human epithelial type 2 (Hep-2) cells with paclitaxel resistance. Resistant cells were developed via treatment with increasing doses of paclitaxel to acquire four sub-lines resistant to one-, two-, four-, and eightfold concentrations of paclitaxel (1×, 2×, 4×, 8×). Then, we profiled the expressions of ten selected ABC transporters (ABCA5, ABCB1, ABCB6, ABCC1, ABCC2, ABCC3, ABCC5, ABCC10, ABCF2, and ABCG2) and four stem cell markers (SOX2, OCT4, KLF, and CXCR4) using quantitative real time polymerase chain reaction in paclitaxel resistant cells to look for a link between these markers and chemoresistance. We demonstrated that ABCB1 and ABCG2 expressions gradually elevated and reached a maximum level in Taxol 8× cells. Considering stem cell markers, KLF4 expression elevated significantly, as soon as parental cells acquired resistance to the lowest dose of paclitaxel and its expression elevated stepwise. Expression levels of other tested ATP-binding cassette transporters and stem cell markers also elevated, although at different steps of paclitaxel resistance acquisition. Our findings suggest that higher expressions of ABCB1, ABCG2, and KLF4 might be considered as putative indicators for paclitaxel resistance in LSCC patients.
Collapse
Affiliation(s)
- Mehmet Bugrahan Duz
- Department of Medical Genetics, Haseki Training and Research Hospital, Istanbul, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey. .,High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
18
|
Inhibition of the Lysophosphatidylinositol Transporter ABCC1 Reduces Prostate Cancer Cell Growth and Sensitizes to Chemotherapy. Cancers (Basel) 2020; 12:cancers12082022. [PMID: 32718079 PMCID: PMC7465469 DOI: 10.3390/cancers12082022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022] Open
Abstract
Expression of ATP-binding cassette (ABC) transporters has long been implicated in cancer chemotherapy resistance. Increased expression of the ABCC subfamily transporters has been reported in prostate cancer, especially in androgen-resistant cases. ABCC transporters are known to efflux drugs but, recently, we have demonstrated that they can also have a more direct role in cancer progression. The pharmacological potential of targeting ABCC1, however, remained to be assessed. In this study, we investigated whether the blockade of ABCC1 affects prostate cancer cell proliferation using both in vitro and in vivo models. Our data demonstrate that pharmacological inhibition of ABCC1 reduced prostate cancer cell growth in vitro and potentiated the effects of Docetaxel in vitro and in mouse models of prostate cancer in vivo. Collectively, these data identify ABCC1 as a novel and promising target in prostate cancer therapy.
Collapse
|
19
|
Duz MB, Karatas OF. Expression profile of stem cell markers and ABC transporters in 5-fluorouracil resistant Hep-2 cells. Mol Biol Rep 2020; 47:5431-5438. [PMID: 32627138 DOI: 10.1007/s11033-020-05633-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Resistance of laryngeal squamous cell carcinoma cells to traditional therapeutic regimens still remains to be a major reason for therapeutic failure in patients. In this study, we aimed at investigating the expression profiles of ATP-binding cassette (ABC) transporters and stem cell markers in 5-fluorouracil (5-FU) resistant laryngeal Hep-2 cells. We treated parental Hep-2 cells, with stepwise increased doses of 5-FU for almost 1 year to develop 5-FU resistant sub-lines with resistance against varying levels of 5-FU concentrations (4 sub-lines resistant to 1, 2, 4, and eightfold of 5-FU). Then, we measured the expression levels of 10 genes from ABC transporters family and 4 stem cell associated markers using quantitative reverse transcription polymerase chain reaction (qRT-PCR) to find out a potential relationship between these markers and chemoresistance. We found that stemness-associated markers had elevated expressions from the beginning of 5-FU resistance acquisition. Their expressions elevated stepwise while parental Hep-2 cells got resistance to higher doses of 5-FU. Expressions of tested ABC transporters (ABCA5, ABCB1, ABCB6, ABCC1, ABCC2, ABCC3, ABCC5, ABCC10 and ABCF2, and ABCG2) were also deregulated in 5-FU resistant Hep-2 cells. Although their expressions remained unaltered at the beginning of acquisition of resistance, expressions of ABC transporters except from ABCB6 increased significantly when cells became resistant to higher doses of 5-FU. Our results suggest that enrichment of cells with stemness characteristics and upregulation of ABC transporters might be amongst the crucial contributors of chemoresistance in laryngeal cancer cells.
Collapse
Affiliation(s)
- Mehmet Bugrahan Duz
- Department of Medical Genetics, Haseki Training and Research Hospital, Health Science University, Istanbul, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey. .,High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
20
|
Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin Cancer Biol 2019; 60:57-71. [PMID: 31605751 DOI: 10.1016/j.semcancer.2019.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is a cause of drug resistance in a plethora of tumors. More recent evidence indicates additional contribution of these transporters to other processes, such as tumor cell dissemination and metastasis, thereby extending their possible roles in tumor progression. While the role of some ABC transporters, such as ABCB1, ABCC1 and ABCG2, in multidrug resistance is well documented, the mechanisms by which ABC transporters affect the proliferation, differentiation, migration and invasion of cancer cells are still poorly defined and are frequently controversial. This review, summarizes recent advances that highlight the role of subfamily A members in cancer. Emerging evidence highlights the potential value of ABCA members as biomarkers of risk and response in different tumors, but information is disperse and very little is known about their possible mechanisms of action. The only clear evidence is that ABCA members are involved in lipid metabolism and homeostasis. In particular, the relationship between ABCA1 and cholesterol is becoming evident in different fields of biology, including cancer. In parallel, emerging findings indicate that cholesterol, the main component of cell membranes, can influence many physiological and pathological processes, including cell migration, cancer progression and metastasis. This review aims to link the dispersed knowledge regarding the relationship of ABCA members with lipid metabolism and cancer in an effort to stimulate and guide readers to areas that the writers consider to have significant impact and relevant potentialities.
Collapse
Affiliation(s)
- Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Anna Maria Giudice
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, 40126, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| |
Collapse
|
21
|
Kawai N, Hirohashi Y, Ebihara Y, Saito T, Murai A, Saito T, Shirosaki T, Kubo T, Nakatsugawa M, Kanaseki T, Tsukahara T, Shichinohe T, Li L, Hirano S, Torigoe T. ABCG2 expression is related to low 5-ALA photodynamic diagnosis (PDD) efficacy and cancer stem cell phenotype, and suppression of ABCG2 improves the efficacy of PDD. PLoS One 2019; 14:e0216503. [PMID: 31083682 PMCID: PMC6513434 DOI: 10.1371/journal.pone.0216503] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
Photodynamic diagnosis/therapy (PDD/PDT) are novel modalities for the diagnosis and treatment of cancer. The photosensitizer protoporphyrin IX is metabolized from 5-aminolevulinic acid (5-ALA) intracellularly, and PDD/PDT using 5-ALA have been approved in dermatologic malignancies and gliomas. However, the molecular mechanism that defines the efficacy of PDD/PDT is unknown. In this study, we analyzed the functions of ATP-binding cassette (ABC) transporters in PDD using 5-ALA. Most of the human gastrointestinal cancer line cells examined showed a homogenous staining pattern with 5-ALA, except for the pancreatic cancer line PANC-1, which showed heterogeneous staining. To analyze this heterogeneous staining pattern, single cell clones were established from PANC-1 cells and the expression of ABC transporters was assessed. Among the ABC transporter genes examined, ABCG2 showed an inverse correlation with the rate of 5-ALA-positive staining. PANC-1 clone #2 cells showed the highest level of ABCG2 expression and the lowest level of 5-ALA staining, with only a 0.6% positive rate. Knockdown of the ABCG2 gene by small interfering RNAs increased the positive rate of 5-ALA staining in PANC-1 wild-type and clone cells. Interestingly, PANC-1 clone #2 cells showed the high sphere-forming ability and tumor-formation ability, indicating that the cells contained high numbers of cancer stem cells (CSCs). Knockdown or inhibition of ABCG2 increased the rate of 5-ALA staining, but did not decrease sphere-forming ability. These results indicate that gastrointestinal cancer cell lines expressing high levels of ABCG2 are enriched with CSCs and show low rates of 5-ALA staining, but 5-ALA staining rates can be improved by inhibition of ABCG2.
Collapse
Affiliation(s)
- Noriko Kawai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
- * E-mail: (TT); (YH)
| | - Yuma Ebihara
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takuma Saito
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
- Graduate School of Photonic Science, Chitose Institute for Science and Technology, Chitose, Hokkaido, Japan
| | - Aiko Murai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Takahiro Saito
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Tomohide Shirosaki
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Munehide Nakatsugawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Toshiaki Shichinohe
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Liming Li
- Graduate School of Photonic Science, Chitose Institute for Science and Technology, Chitose, Hokkaido, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
- * E-mail: (TT); (YH)
| |
Collapse
|
22
|
Dong L, Zieren RC, Xue W, de Reijke TM, Pienta KJ. Metastatic prostate cancer remains incurable, why? Asian J Urol 2019; 6:26-41. [PMID: 30775246 PMCID: PMC6363601 DOI: 10.1016/j.ajur.2018.11.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022] Open
Abstract
Metastatic prostate cancer patients present in two ways-with already disseminated disease at the time of presentation or with disease recurrence after definitive local therapy. Androgen deprivation therapy is given as the most effective initial treatment to patients. However, after the initial response, almost all patients will eventually progress despite the low levels of testosterone. Disease at this stage is termed castration resistant prostate cancer (CRPC). Before 2010, the taxane docetaxel was the first and only life prolonging agent for metastatic CRPC (mCRPC). The last decade has witnessed robust progress in CRPC therapeutics development. Abiraterone, enzalutamide, apalutamide and sipuleucel-T have been evaluated as first- and second-line agents in mCRPC patients, while cabazitaxel was approved as a second-line treatment. Radium-223 dichloride was approved in symptomatic patients with bone metastases and no known visceral metastases pre- and post-docetaxel. However, despite significant advances, mCRPC remains a lethal disease. Both primary and acquired resistance have been observed in CRPC patients treated by these new agents. It could be solely cell intrinsic or it is possible that the clonal heterogeneity in treated tumors may result from the adaptive responses to the selective pressures within the tumor microenvironment. The aim of this review is to list current treatment agents of CRPC and summarize recent findings in therapeutic resistance mechanisms.
Collapse
Affiliation(s)
- Liang Dong
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Richard C. Zieren
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Theo M. de Reijke
- Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kenneth J. Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Freedman JA, Wang Y, Li X, Liu H, Moorman PG, George DJ, Lee NH, Hyslop T, Wei Q, Patierno SR. Single-nucleotide polymorphisms of stemness genes predicted to regulate RNA splicing, microRNA and oncogenic signaling are associated with prostate cancer survival. Carcinogenesis 2018; 39:879-888. [PMID: 29726910 PMCID: PMC6248658 DOI: 10.1093/carcin/bgy062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is a clinically and molecularly heterogeneous disease, with variation in outcomes only partially predicted by grade and stage. Additional tools to distinguish indolent from aggressive disease are needed. Phenotypic characteristics of stemness correlate with poor cancer prognosis. Given this correlation, we identified single-nucleotide polymorphisms (SNPs) of stemness-related genes and examined their associations with PCa survival. SNPs within stemness-related genes were analyzed for association with overall survival of PCa in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Significant SNPs predicted to be functional were selected for linkage disequilibrium analysis and combined and stratified analyses. Identified SNPs were evaluated for association with gene expression. SNPs of CD44 (rs9666607), ABCC1 (rs35605 and rs212091) and GDF15 (rs1058587) were associated with PCa survival and predicted to be functional. A role for rs9666607 of CD44 and rs35605 of ABCC1 in RNA splicing regulation, rs212091 of ABCC1 in miRNA binding site activity and rs1058587 of GDF15 in causing an amino acid change was predicted. These SNPs represent potential novel prognostic markers for overall survival of PCa and support a contribution of the stemness pathway to PCa patient outcome.
Collapse
Affiliation(s)
- Jennifer A Freedman
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Yanru Wang
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Xuechan Li
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Hongliang Liu
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Patricia G Moorman
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Daniel J George
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Norman H Lee
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Terry Hyslop
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Qingyi Wei
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Steven R Patierno
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
24
|
Boswell-Casteel RC, Fukuda Y, Schuetz JD. ABCB6, an ABC Transporter Impacting Drug Response and Disease. AAPS JOURNAL 2017; 20:8. [PMID: 29192381 DOI: 10.1208/s12248-017-0165-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Abstract
Recent findings have discovered how insufficiency of ATP-binding cassette (ABC) transporter, ABCB6, can negatively impact human health. These advances were made possible by, first, finding that ABCB6 deficiency was the genetic basis for some severe transfusion reactions and by, second, determining that functionally impaired ABCB6 variants enhanced the severity of porphyria, i.e., diseases associated with defects in heme synthesis. ABCB6 is a broad-spectrum porphyrin transporter that is capable of both exporting and importing heme and its precursors across the plasma membrane and outer mitochondrial membrane, respectively. Biochemical studies have demonstrated that while ABCB6 influences the antioxidant system by reducing the levels of reactive oxygen species, the exact mechanism is currently unknown, though effects on heme synthesis are likely. Furthermore, it is unknown what biochemical or cellular signals determine where ABCB6 localizes in the cell. This review highlights the major recent findings on ABCB6 and focuses on details of its structure, mechanism, transport, contributions to cellular stress, and current clinical implications.
Collapse
Affiliation(s)
- Rebba C Boswell-Casteel
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105-2794, USA
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105-2794, USA
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105-2794, USA.
| |
Collapse
|
25
|
Cánovas V, Puñal Y, Maggio V, Redondo E, Marín M, Mellado B, Olivan M, Lleonart M, Planas J, Morote J, Paciucci R. Prostate Tumor Overexpressed-1 (PTOV1) promotes docetaxel-resistance and survival of castration resistant prostate cancer cells. Oncotarget 2017; 8:59165-59180. [PMID: 28938627 PMCID: PMC5601723 DOI: 10.18632/oncotarget.19467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/19/2017] [Indexed: 12/28/2022] Open
Abstract
Metastatic prostate cancer is presently incurable. The oncogenic protein PTOV1, first described in prostate cancer, was reported as overexpressed and significantly correlated with poor survival in numerous tumors. Here, we investigated the role of PTOV1 in prostate cancer survival to docetaxel and self-renewal ability. Transduction of PTOV1 in docetaxel-sensitive Du145 and PC3 cells significantly increased cell survival after docetaxel exposure and induced docetaxel-resistance genes expression (ABCB1, CCNG2 and TUBB2B). In addition, PTOV1 induced prostatospheres formation and self-renewal genes expression (ALDH1A1, LIN28A, MYC and NANOG). In contrast, Du145 and PC3 cells knockdown for PTOV1 significantly accumulated in the G2/M phase, presented a concomitant increased subG1 peak, and cell death by apoptosis. These effects were enhanced in docetaxel-resistant cells. Analyses of tumor datasets show that PTOV1 expression significantly correlated with prostate tumor grade, drug resistance (CCNG2) and self-renewal (ALDH1A1, MYC) markers. These genes are concurrently overexpressed in most metastatic lesions. Metastases also show PTOV1 genomic amplification in significant co-occurrence with docetaxel-resistance and self-renewal genes. Our findings identify PTOV1 as a promoter of docetaxel-resistance and self-renewal characteristics for castration resistant prostate cancer. The concomitant increased expression of PTOV1, ALDH1A1 and CCNG2 in primary tumors, may predict metastasis and bad prognosis.
Collapse
Affiliation(s)
- Verónica Cánovas
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yolanda Puñal
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Valentina Maggio
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enric Redondo
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercedes Marín
- Laboratory of Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Medical Oncoloy Department, Hospital Clinic, Barcelona, Spain
| | - Begoña Mellado
- Laboratory of Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Medical Oncoloy Department, Hospital Clinic, Barcelona, Spain
| | - Mireia Olivan
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde Lleonart
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jacques Planas
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Deparment of Urology, Vall d'Hebron Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Morote
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Deparment of Urology, Vall d'Hebron Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosanna Paciucci
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Lombard AP, Liu C, Armstrong CM, Cucchiara V, Gu X, Lou W, Evans CP, Gao AC. ABCB1 Mediates Cabazitaxel-Docetaxel Cross-Resistance in Advanced Prostate Cancer. Mol Cancer Ther 2017; 16:2257-2266. [PMID: 28698198 DOI: 10.1158/1535-7163.mct-17-0179] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/23/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023]
Abstract
Advancements in research have added several new therapies for castration-resistant prostate cancer (CRPC), greatly augmenting our ability to treat patients. However, CRPC remains an incurable disease due to the development of therapeutic resistance and the existence of cross-resistance between available therapies. Understanding the interplay between different treatments will lead to improved sequencing and the creation of combinations that overcome resistance and prolong survival. Whether there exists cross-resistance between docetaxel and the next-generation taxane cabazitaxel is poorly understood. In this study, we use C4-2B and DU145 derived docetaxel-resistant cell lines to test response to cabazitaxel. Our results demonstrate that docetaxel resistance confers cross-resistance to cabazitaxel. We show that increased ABCB1 expression is responsible for cross-resistance to cabazitaxel and that inhibition of ABCB1 function through the small-molecule inhibitor elacridar resensitizes taxane-resistant cells to treatment. In addition, the antiandrogens bicalutamide and enzalutamide, previously demonstrated to be able to resensitize taxane-resistant cells to docetaxel through inhibition of ABCB1 ATPase activity, are also able to resensitize resistant cells to cabazitaxel treatment. Finally, we show that resensitization using an antiandrogen is far more effective in combination with cabazitaxel than docetaxel. Collectively, these results address key concerns in the field, including that of cross-resistance between taxanes and highlighting a mechanism of cabazitaxel resistance involving ABCB1. Furthermore, these preclinical studies suggest the potential in using combinations of antiandrogens with cabazitaxel for increased effect in treating advanced CRPC. Mol Cancer Ther; 16(10); 2257-66. ©2017 AACR.
Collapse
Affiliation(s)
- Alan P Lombard
- Department of Urology, University of California Davis, Davis, California
| | - Chengfei Liu
- Department of Urology, University of California Davis, Davis, California
| | | | - Vito Cucchiara
- Department of Urology, University of California Davis, Davis, California
| | - Xinwei Gu
- Department of Urology, University of California Davis, Davis, California
| | - Wei Lou
- Department of Urology, University of California Davis, Davis, California
| | - Christopher P Evans
- Department of Urology, University of California Davis, Davis, California.,UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Allen C Gao
- Department of Urology, University of California Davis, Davis, California. .,UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California.,VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
27
|
Chen Z, Gerke T, Bird V, Prosperi M. Trends in Gene Expression Profiling for Prostate Cancer Risk Assessment: A Systematic Review. Biomed Hub 2017; 2:1-15. [PMID: 31988908 PMCID: PMC6945900 DOI: 10.1159/000472146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The aim of the study is to review biotechnology advances in gene expression profiling on prostate cancer (PCa), focusing on experimental platform development and gene discovery, in relation to different study designs and outcomes in order to understand how they can be exploited to improve PCa diagnosis and clinical management. METHODS We conducted a systematic literature review on gene expression profiling studies through PubMed/MEDLINE and Web of Science between 2000 and 2016. Tissue biopsy and clinical gene profiling studies with different outcomes (e.g., recurrence, survival) were included. RESULTS Over 3,000 papers were screened and 137 full-text articles were selected. In terms of technology used, microarray is still the most popular technique, increasing from 50 to 70% between 2010 and 2015, but there has been a rise in the number of studies using RNA sequencing (13% in 2015). Sample sizes have increased, as well as the number of genes that can be screened all at once, but we have also observed more focused targeting in more recent studies. Qualitative analysis on the specific genes found associated with PCa risk or clinical outcomes revealed a large variety of gene candidates, with a few consistent cross-studies. CONCLUSIONS The last 15 years of research in gene expression in PCa have brought a large volume of data and information that has been decoded only in part, but advancements in high-throughput sequencing technology are increasing the amount of data that can be generated. The variety of findings warrants the execution of both validation studies and meta-analyses. Genetic biomarkers have tremendous potential for early diagnosis of PCa and, if coupled with other diagnostics (e.g., imaging), can effectively be used to concretize less-invasive, personalized prediction of PCa risk and progression.
Collapse
Affiliation(s)
- Zhaoyi Chen
- Department of Epidemiology, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Victoria Bird
- Department of Urology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mattia Prosperi
- Department of Epidemiology, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Dvorak P, Pesta M, Soucek P. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer. Tumour Biol 2017; 39:1010428317699800. [PMID: 28468577 DOI: 10.1177/1010428317699800] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adenosine triphosphate-binding cassette proteins constitute a large family of active transporters through extracellular and intracellular membranes. Increased drug efflux based on adenosine triphosphate-binding cassette protein activity is related to the development of cancer cell chemoresistance. Several articles have focused on adenosine triphosphate-binding cassette gene expression profiles (signatures), based on the expression of all 49 human adenosine triphosphate-binding cassette genes, in individual tumor types and reported connections to established clinicopathological features. The aim of this study was to test our theory about the existence of adenosine triphosphate-binding cassette gene expression profiles common to multiple types of tumors, which may modify tumor progression and provide clinically relevant information. Such general adenosine triphosphate-binding cassette profiles could constitute a new attribute of carcinogenesis. Our combined cohort consisted of tissues from 151 cancer patients-breast, colorectal, and pancreatic carcinomas. Standard protocols for RNA isolation and quantitative real-time polymerase chain reaction were followed. Gene expression data from individual tumor types as well as a merged tumor dataset were analyzed by bioinformatics tools. Several general adenosine triphosphate-binding cassette profiles, with differences in gene functions, were established and shown to have significant relations to clinicopathological features such as tumor size, histological grade, or clinical stage. Genes ABCC7, A3, A8, A12, and C8 prevailed among the most upregulated or downregulated ones. In conclusion, the results supported our theory about general adenosine triphosphate-binding cassette gene expression profiles and their importance for cancer on clinical as well as research levels. The presence of ABCC7 (official symbol CFTR) among the genes with key roles in the profiles supports the emerging evidence about its crucial role in various cancers. Graphical abstract.
Collapse
Affiliation(s)
- Pavel Dvorak
- 1 Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Martin Pesta
- 1 Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Soucek
- 2 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
29
|
Protein expression of ATP-binding cassette transporters ABCC10 and ABCC11 associates with survival of colorectal cancer patients. Cancer Chemother Pharmacol 2016; 78:595-603. [PMID: 27468921 DOI: 10.1007/s00280-016-3114-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE This study investigated the prognostic importance of protein expression of ATP-binding cassette (ABC) transporters ABCC10 and ABCC11 in colorectal cancer. METHODS Protein content of ABCC10 and ABCC11 was assessed in tumor tissue blocks of 140 colorectal cancer patients and associated with survival of patients with regard to 5-fluorouracil-based therapy. RESULTS Low ABCC10 protein content in tumors increased hazard ratio of patient's death more than three times in comparison with high ABCC10-expressing tumors (P = 0.004). In contrast, the low ABCC11 content increased the hazard ratio of cancer recurrence in patients almost four times (P = 0.016). Analysis of patients treated with regimens based on 5-fluorouracil revealed that patients with low ABCC11 content in their tumors had shorter disease-free interval than those with higher content (P = 0.024). CONCLUSIONS The present study shows for the first time that the protein expression of ABCC10 significantly associates with overall survival and the expression of ABCC11 with disease-free interval of colorectal cancer patients and provides strong impulse for further validation of their prognostic value in colorectal cancer.
Collapse
|