1
|
O'Malley A, Ray JM, Kitlas P, Ruethers T, Kapingidza AB, Cierpicki T, Lopata A, Kowal K, Chruszcz M. Comparative studies of seafood and reptile α- and β-parvalbumins. Protein Sci 2024; 33:e5226. [PMID: 39584689 PMCID: PMC11586863 DOI: 10.1002/pro.5226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Small calcium-binding proteins such as parvalbumins (PVs) are major seafood and fish allergens. However, the impact of structural changes on their capacity to bind IgE has not been studied in detail. Therefore, fish and reptilian PVs, as well as human α-PV, were selected for biochemical, structural, and IgE binding studies. Likely due to their high solubility, crystallization proved difficult, so additional techniques were used to promote crystallization of the proteins. Novel crystal structures were determined for human PV, cod allergen Gad m 1.0201, saltwater crocodile allergen Cro p 1.0101, and the α-PV from thornback ray. β-PVs are considered the major fish allergens, while α-PVs are rarely categorized as allergens. To explain these differences, the results of structural and IgE binding studies were combined. This approach allowed us to provide new insight into IgE binding epitopes present on PVs, focusing on cross-reactivity among the selected α- and β-PVs. In addition, we have shown that these proteins display remarkable thermal stability across a range of pH conditions, which is relevant in the case of food allergens and food processing. Moreover, it is shown that the presence of calcium cations is critical for stability of the studied PVs via their protein folding, which has an impact on the formation of IgE binding epitopes. These studies shows the stability of fish and reptile PV allergens, and it allows for further evaluation of their IgE cross-reactivity.
Collapse
Affiliation(s)
- Andrea O'Malley
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Joshua M. Ray
- Department of PathologyUniversity of MichiganAnn ArborMichiganUSA
| | - Patrycja Kitlas
- Department of Experimental Allergology and ImmunologyMedical University of BialystokBialystokPoland
| | - Thimo Ruethers
- Tropical Futures InstituteJames Cook University in SingaporeSingaporeSingapore
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQueenslandAustralia
- Centre for Food and Allergy ResearchMurdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - A. Brenda Kapingidza
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Tomasz Cierpicki
- Department of PathologyUniversity of MichiganAnn ArborMichiganUSA
| | - Andreas Lopata
- Department of Experimental Allergology and ImmunologyMedical University of BialystokBialystokPoland
- Tropical Futures InstituteJames Cook University in SingaporeSingaporeSingapore
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQueenslandAustralia
| | - Krzysztof Kowal
- Department of Experimental Allergology and ImmunologyMedical University of BialystokBialystokPoland
- Department of Allergology and Internal MedicineMedical University of BialystokBialystokPoland
| | - Maksymilian Chruszcz
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
2
|
Aksun Tümerkan ET. Detection of Parvalbumin Fish Allergen in Canned Tuna by Real-Time PCR Driven by Tuna Species and Can-Filling Medium. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175674. [PMID: 36080437 PMCID: PMC9457812 DOI: 10.3390/molecules27175674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Canned tuna is considered one of the most popular and most commonly consumed products in the seafood market, globally. However, in past decades, fish allergens have been detected as the main concern regarding food safety in these seafood products and are listed as the top eight food allergies. In the group of fish allergens, parvalbumin is the most common. As a thermally stable and calcium-binding protein, parvalbumin can be easily altered with changing the food matrices. This study investigated the effect of a can-filling medium (tomato sauce, spices, and brine solutions) on the parvalbumin levels in canned tuna. The effect of pH, calcium content, and the DNA quality of canned tuna was also investigated before the parvalbumin-specific encoded gene amplification. The presence of fish allergens was determined by melting curve analyses and confirmed by agarose gel electrophoresis. The obtained results showed that the presence of parvalbumin in commercially canned tuna was driven by can-filling mediums, thermal conductivity, calcium content, and the acidity of various ingredients in food matrices. The intra-specific differences revealed a variation in fish allergens that are caused by cryptic species. This study proved that allergens encoding gene analyses by agarose electrophoresis could be used as a reliable approach for other food-borne allergens in complex food matrices.
Collapse
Affiliation(s)
- Elif Tugce Aksun Tümerkan
- Department of Food Processing-Food Technology, Vocational School of Health Services, Ankara Yıldırım Beyazıt University, Ankara 06760, Turkey;
- AYBU Central Research Laboratory, Application and Research Center, Ankara Yıldırım Beyazıt University, Ankara 06010, Turkey
| |
Collapse
|
3
|
Schrama D, Czolk R, Raposo de Magalhães C, Kuehn A, Rodrigues PM. Fish Allergenicity Modulation Using Tailored Enriched Diets—Where Are We? Front Physiol 2022; 13:897168. [PMID: 35694394 PMCID: PMC9174421 DOI: 10.3389/fphys.2022.897168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Food allergy is an abnormal immune response to specific proteins in a certain food. The chronicity, prevalence, and the potential fatality of food allergy, make it a serious socio-economic problem. Fish is considered the third most allergenic food in the world, affecting part of the world population with a higher incidence in children and adolescents. The main allergen in fish, responsible for the large majority of fish-allergic reactions in sensitized patients, is a small and stable calcium-binding muscle protein named beta-parvalbumin. Targeting the expression or/and the 3D conformation of this protein by adding specific molecules to fish diets has been the innovative strategy of some researchers in the fields of fish allergies and nutrition. This has shown promising results, namely when the apo-form of β-parvalbumin is induced, leading in the case of gilthead seabream to a 50% reduction of IgE-reactivity in fish allergic patients.
Collapse
Affiliation(s)
- Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cláudia Raposo de Magalhães
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Pedro M. Rodrigues
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Universidade do Algarve, Faro, Portugal
- *Correspondence: Pedro M. Rodrigues,
| |
Collapse
|
4
|
What Is Parvalbumin for? Biomolecules 2022; 12:biom12050656. [PMID: 35625584 PMCID: PMC9138604 DOI: 10.3390/biom12050656] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
Parvalbumin (PA) is a small, acidic, mostly cytosolic Ca2+-binding protein of the EF-hand superfamily. Structural and physical properties of PA are well studied but recently two highly conserved structural motifs consisting of three amino acids each (clusters I and II), which contribute to the hydrophobic core of the EF-hand domains, have been revealed. Despite several decades of studies, physiological functions of PA are still poorly known. Since no target proteins have been revealed for PA so far, it is believed that PA acts as a slow calcium buffer. Numerous experiments on various muscle systems have shown that PA accelerates the relaxation of fast skeletal muscles. It has been found that oxidation of PA by reactive oxygen species (ROS) is conformation-dependent and one more physiological function of PA in fast muscles could be a protection of these cells from ROS. PA is thought to regulate calcium-dependent metabolic and electric processes within the population of gamma-aminobutyric acid (GABA) neurons. Genetic elimination of PA results in changes in GABAergic synaptic transmission. Mammalian oncomodulin (OM), the β isoform of PA, is expressed mostly in cochlear outer hair cells and in vestibular hair cells. OM knockout mice lose their hearing after 3–4 months. It was suggested that, in sensory cells, OM maintains auditory function, most likely affecting outer hair cells’ motility mechanisms.
Collapse
|
5
|
Vologzhannikova AA, Shevelyova MP, Kazakov AS, Sokolov AS, Borisova NI, Permyakov EA, Kircheva N, Nikolova V, Dudev T, Permyakov SE. Strontium Binding to α-Parvalbumin, a Canonical Calcium-Binding Protein of the "EF-Hand" Family. Biomolecules 2021; 11:biom11081158. [PMID: 34439824 PMCID: PMC8392015 DOI: 10.3390/biom11081158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
Strontium salts are used for treatment of osteoporosis and bone cancer, but their impact on calcium-mediated physiological processes remains obscure. To explore Sr2+ interference with Ca2+ binding to proteins of the EF-hand family, we studied Sr2+/Ca2+ interaction with a canonical EF-hand protein, α-parvalbumin (α-PA). Evaluation of the equilibrium metal association constants for the active Ca2+ binding sites of recombinant human α-PA (‘CD’ and ‘EF’ sites) from fluorimetric titration experiments and isothermal titration calorimetry data gave 4 × 109 M−1 and 4 × 109 M−1 for Ca2+, and 2 × 107 M−1 and 2 × 106 M−1 for Sr2+. Inactivation of the EF site by homologous substitution of the Ca2+-coordinating Glu in position 12 of the EF-loop by Gln decreased Ca2+/Sr2+ affinity of the protein by an order of magnitude, whereas the analogous inactivation of the CD site induced much deeper suppression of the Ca2+/Sr2+ affinity. These results suggest that Sr2+ and Ca2+ bind to CD/EF sites of α-PA and the Ca2+/Sr2+ binding are sequential processes with the CD site being occupied first. Spectrofluorimetric Sr2+ titration of the Ca2+-loaded α-PA revealed presence of secondary Sr2+ binding site(s) with an apparent equilibrium association constant of 4 × 105 M−1. Fourier-transform infrared spectroscopy data evidence that Ca2+/Sr2+-loaded forms of α-PA exhibit similar states of their COO− groups. Near-UV circular dichroism (CD) data show that Ca2+/Sr2+ binding to α-PA induce similar changes in symmetry of microenvironment of its Phe residues. Far-UV CD experiments reveal that Ca2+/Sr2+ binding are accompanied by nearly identical changes in secondary structure of α-PA. Meanwhile, scanning calorimetry measurements show markedly lower Sr2+-induced increase in stability of tertiary structure of α-PA, compared to the Ca2+-induced effect. Theoretical modeling using Density Functional Theory computations with Polarizable Continuum Model calculations confirms that Ca2+-binding sites of α-PA are well protected against exchange of Ca2+ for Sr2+ regardless of coordination number of Sr2+, solvent exposure or rigidity of sites. The latter appears to be a key determinant of the Ca2+/Sr2+ selectivity. Overall, despite lowered affinity of α-PA to Sr2+, the latter competes with Ca2+ for the same EF-hands and induces similar structural rearrangements. The presence of a secondary Sr2+ binding site(s) could be a factor contributing to Sr2+ impact on the functional activity of proteins.
Collapse
Affiliation(s)
- Alisa A. Vologzhannikova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (A.A.V.); (M.P.S.); (A.S.K.); (A.S.S.); (N.I.B.); (E.A.P.)
| | - Marina P. Shevelyova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (A.A.V.); (M.P.S.); (A.S.K.); (A.S.S.); (N.I.B.); (E.A.P.)
| | - Alexey S. Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (A.A.V.); (M.P.S.); (A.S.K.); (A.S.S.); (N.I.B.); (E.A.P.)
| | - Andrey S. Sokolov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (A.A.V.); (M.P.S.); (A.S.K.); (A.S.S.); (N.I.B.); (E.A.P.)
| | - Nadezhda I. Borisova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (A.A.V.); (M.P.S.); (A.S.K.); (A.S.S.); (N.I.B.); (E.A.P.)
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (A.A.V.); (M.P.S.); (A.S.K.); (A.S.S.); (N.I.B.); (E.A.P.)
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (V.N.); (T.D.)
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (V.N.); (T.D.)
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (A.A.V.); (M.P.S.); (A.S.K.); (A.S.S.); (N.I.B.); (E.A.P.)
- Correspondence: ; Tel.: +7-(4967)-143-7741
| |
Collapse
|
6
|
De Magalhães CR, Schrama D, Fonseca F, Kuehn A, Morisset M, Ferreira SR, Gonçalves A, Rodrigues PM. Effect of EDTA enriched diets on farmed fish allergenicity and muscle quality; a proteomics approach. Food Chem 2019; 305:125508. [PMID: 31622806 DOI: 10.1016/j.foodchem.2019.125508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
Fish is one of the most common elicitors of food-allergic reactions worldwide. These reactions are triggered by the calcium-binding muscle protein β-parvalbumin, which was shown to have reduced immunoglobulin E (IgE)-binding capacity upon calcium depletion. This work aimed to reduce gilthead seabream allergenicity using diets supplemented with a calcium chelator. Three experimental feeds were tested, differing in ethylenediaminetetraacetic acid (EDTA) supplementation, and its effects on muscle and parvalbumin's IgE-reactivity were analyzed. Chromatographic determination of EDTA showed no accumulation in the muscle and sensory results demonstrated that the lowest concentration did not affect fish quality as edible fish. Proteomics revealed one protein related to muscle contraction with significantly different relative abundance. Immunoblot assays performed with fish-allergic patients sera indicated a 50% reduction in IgE-reactivity upon EDTA presence. These preliminary results provide the basis for the further development of a non-GMO approach to modulate fish allergenicity and improve safety of aquaculture fish.
Collapse
Affiliation(s)
| | - Denise Schrama
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
| | - Flávio Fonseca
- Instituto Federal de Educação, Ciência e Tecnologia do Amazonas - Campus Zona Leste, Av. Cosme Ferreira, 8045, Bairro Gilberto Mestrinho, 69086-475 Manaus, AM, Brazil.
| | - Annette Kuehn
- Luxembourg Institute of Health, Department of Infection and Immunity, 29, Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Martine Morisset
- National Unit of Immunology and Allergology, Centre Hospitalier de Luxembourg, Luxembourg; Allergy Unit, Angers University Hospital, 4 Rue Larrey, 49993 Angers, France.
| | - Sara R Ferreira
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
| | - Amparo Gonçalves
- IPMA I.P., Portuguese Institute for the Sea and Atmosphere, Division of Aquaculture and Upgrading, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal.
| | - Pedro M Rodrigues
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
7
|
Permyakova ME, Permyakov SE, Kazakov AS, Denesyuk AI, Denessiouk K, Uversky VN, Permyakov EA. Analyzing the structural and functional roles of residues from the 'black' and 'gray' clusters of human S100P protein. Cell Calcium 2019; 80:46-55. [PMID: 30953998 DOI: 10.1016/j.ceca.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
Two highly conserved structural motifs observed in members of the EF-hand family of calcium binding proteins. The motifs provide a supporting scaffold for the Ca2+ binding loops and contribute to the hydrophobic core of the EF-hand domain. Each structural motif represents a cluster of three amino acids called cluster I ('black' cluster) and cluster II ('grey' cluster). Cluster I is more conserved and mostly incorporates aromatic amino acids. In contrast, cluster II is noticeably less conserved and includes a mix of aromatic, hydrophobic, and polar amino acids of different sizes. In the human calcium binding S100 P protein, these 'black' and 'gray' clusters include residues F15, F71, and F74 and L33, L58, and K30, respectively. To evaluate the effects of these clusters on structure and functionality of human S100 P, we have performed Ala scanning. The resulting mutants were studied by a multiparametric approach that included circular dichroism, scanning calorimetry, dynamic light scattering, chemical crosslinking, and fluorescent probes. Spectrofluorimetric Ca2+-titration of wild type S100 P showed that S100 P dimer has 1-2 strong calcium binding sites (K1 = 4 × 106 M-1) and two cooperative low affinity (K2 = 4 × 104 M-1) binding sites. Similarly, the S100 P mutants possess two types of calcium binding sites. This analysis revealed that the alanine substitutions in the clusters I and II caused comparable changes in the S100 P functional properties. However, analysis of heat- or GuHCl-induced unfolding of these proteins showed that the alanine substitutions in the cluster I caused notably more pronounced decrease in the protein stability compared to the changes caused by alanine substitutions in the cluster II. Opposite to literature data, the F15 A substitution did not cause the S100 P dimer dissociation, indicating that F15 is not crucial for dimer stability. Overall, similar to parvalbumins, the S100 P cluster I is more important for protein conformational stability than the cluster II.
Collapse
Affiliation(s)
- Maria E Permyakova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia.
| | - Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia; Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Pushchino, Moscow region, 142290, Russia.
| | - Alexei S Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia; Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Pushchino, Moscow region, 142290, Russia
| | - Alexander I Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia; Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland; Pharmaceutical Sciences Laboratory, Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia; Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Eugene A Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia; Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Pushchino, Moscow region, 142290, Russia
| |
Collapse
|
8
|
Deryusheva E, Nemashkalova E, Galloux M, Richard C, Eléouët J, Kovacs D, Belle K, Tompa P, Uversky V, Permyakov S. Does Intrinsic Disorder in Proteins Favor Their Interaction with Lipids? Proteomics 2019; 19:e1800098. [DOI: 10.1002/pmic.201800098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 12/09/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Evgenia Deryusheva
- Russian Academy of SciencesInstitute for Biological Instrumentation Pushchino Moscow Region 142290 Russia
| | - Ekaterina Nemashkalova
- Russian Academy of SciencesInstitute for Biological Instrumentation Pushchino Moscow Region 142290 Russia
| | - Marie Galloux
- VIM, INRAUniversité Paris‐Saclay Jouy‐en‐Josas 78350 France
| | | | | | - Denis Kovacs
- VIB, Structural Biology Research CenterVrije Universiteit Brussel Brussels 1050 Belgium
| | - Karo Belle
- VIB, Structural Biology Research CenterVrije Universiteit Brussel Brussels 1050 Belgium
| | - Peter Tompa
- VIB, Structural Biology Research CenterVrije Universiteit Brussel Brussels 1050 Belgium
- Institute of EnzymologyResearch Centre for Natural Sciences of the Hungarian Academy of Sciences Budapest 1117 Hungary
| | - Vladimir Uversky
- Russian Academy of SciencesInstitute for Biological Instrumentation Pushchino Moscow Region 142290 Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research InstituteMorsani College of MedicineUniversity of South Florida Tampa FL 33612 USA
| | - Sergei Permyakov
- Russian Academy of SciencesInstitute for Biological Instrumentation Pushchino Moscow Region 142290 Russia
| |
Collapse
|
9
|
Vologzhannikova AA, Khorn PA, Kazakov AS, Permyakov EA, Uversky VN, Permyakov SE. Effects of his-tags on physical properties of parvalbumins. Cell Calcium 2019; 77:1-7. [DOI: 10.1016/j.ceca.2018.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
|
10
|
Deryusheva EI, Denesyuk AI, Denessiouk K, Uversky VN, Permyakov SE, Permyakov EA. On the relationship between the conserved ‘black’ and ‘gray’ structural clusters and intrinsic disorder in parvalbumins. Int J Biol Macromol 2018; 120:1055-1062. [DOI: 10.1016/j.ijbiomac.2018.08.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022]
|
11
|
Joseph JA, Wales DJ. Intrinsically Disordered Landscapes for Human CD4 Receptor Peptide. J Phys Chem B 2018; 122:11906-11921. [DOI: 10.1021/acs.jpcb.8b08371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jerelle A. Joseph
- Department of Chemistry, University of Cambridge, Lenfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lenfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
12
|
The yeast GRASP Grh1 displays a high polypeptide backbone mobility along with an amyloidogenic behavior. Sci Rep 2018; 8:15690. [PMID: 30356074 PMCID: PMC6200761 DOI: 10.1038/s41598-018-33955-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/06/2018] [Indexed: 12/25/2022] Open
Abstract
GRASPs are proteins involved in cell processes that seem paradoxical: responsible for shaping the Golgi cisternae and involved in unconventional secretion mechanisms that bypass the Golgi. Despite its physiological relevance, there is still a considerable lack of studies on full-length GRASPs. Our group has previously reported an unexpected behavior of the full-length GRASP from the fungus C. neoformans: its intrinsically-disordered characteristic. Here, we generalize this finding by showing that it is also observed in the GRASP from S. cerevisae (Grh1), which strongly suggests it might be a general property within the GRASP family. Furthermore, Grh1 is also able to form amyloid-like fibrils either upon heating or when submitted to changes in the dielectric constant of its surroundings, a condition that is experienced by the protein when in close contact with membranes of cell compartments, such as the Golgi apparatus. Intrinsic disorder and fibril formation can thus be two structural properties exploited by GRASP during its functional cycle.
Collapse
|
13
|
Bhojane P, Duff MR, Bafna K, Agarwal P, Stanley C, Howell EE. Small Angle Neutron Scattering Studies of R67 Dihydrofolate Reductase, a Tetrameric Protein with Intrinsically Disordered N-Termini. Biochemistry 2017; 56:5886-5899. [PMID: 29020453 PMCID: PMC5678894 DOI: 10.1021/acs.biochem.7b00822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/02/2017] [Indexed: 11/28/2022]
Abstract
R67 dihydrofolate reductase (DHFR) is a homotetramer with a single active site pore and no sequence or structural homology with chromosomal DHFRs. The R67 enzyme provides resistance to trimethoprim, an active site-directed inhibitor of Escherichia coli DHFR. Sixteen to twenty N-terminal amino acids are intrinsically disordered in the R67 dimer crystal structure. Chymotrypsin cleavage of 16 N-terminal residues results in an active enzyme with a decreased stability. The space sampled by the disordered N-termini of R67 DHFR was investigated using small angle neutron scattering. From a combined analysis using molecular dynamics and the program SASSIE ( http://www.smallangles.net/sassie/SASSIE_HOME.html ), the apoenzyme displays a radius of gyration (Rg) of 21.46 ± 0.50 Å. Addition of glycine betaine, an osmolyte, does not result in folding of the termini as the Rg increases slightly to 22.78 ± 0.87 Å. SASSIE fits of the latter SANS data indicate that the disordered N-termini sample larger regions of space and remain disordered, suggesting they might function as entropic bristles. Pressure perturbation calorimetry also indicated that the volume of R67 DHFR increases upon addition of 10% betaine and decreased at 20% betaine because of the dehydration of the protein. Studies of the hydration of full-length R67 DHFR in the presence of the osmolytes betaine and dimethyl sulfoxide find around 1250 water molecules hydrating the protein. Similar studies with truncated R67 DHFR yield around 400 water molecules hydrating the protein in the presence of betaine. The difference of ∼900 waters indicates the N-termini are well-hydrated.
Collapse
Affiliation(s)
- Purva
P. Bhojane
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, United States
| | - Michael R. Duff
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, United States
| | - Khushboo Bafna
- Genome
Science and Technology Program, University
of Tennessee, Knoxville, Tennessee 37996-0840, United States
| | - Pratul Agarwal
- Computer
Science and Mathematics Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Christopher Stanley
- Biology
and Soft Matter Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Elizabeth E. Howell
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, United States
- Genome
Science and Technology Program, University
of Tennessee, Knoxville, Tennessee 37996-0840, United States
| |
Collapse
|
14
|
In search for globally disordered apo-parvalbumins: Case of parvalbumin β-1 from coho salmon. Cell Calcium 2017; 67:53-64. [DOI: 10.1016/j.ceca.2017.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/08/2017] [Accepted: 08/31/2017] [Indexed: 11/22/2022]
|
15
|
Fernandes TJR, Costa J, Carrapatoso I, Oliveira MBPP, Mafra I. Advances on the molecular characterization, clinical relevance, and detection methods of Gadiform parvalbumin allergens. Crit Rev Food Sci Nutr 2017; 57:3281-3296. [DOI: 10.1080/10408398.2015.1113157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Isabel Carrapatoso
- Serviço de Imunoalergologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Zhdanova NG, Maksimov EG, Arutyunyan AM, Fadeev VV, Shirshin EA. Tyrosine fluorescence probing of conformational changes in tryptophan-lacking domain of albumins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:223-229. [PMID: 27918933 DOI: 10.1016/j.saa.2016.11.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
We addressed the possibility of using tyrosine (Tyr) fluorescence for monitoring conformational changes of proteins which are undetectable via tryptophan (Trp) fluorescence. The model objects, human (HSA) and bovine (BSA) serum albumins, contain one and two Trp residues, respectively, while Tyr is more uniformly distributed over their structure. The results of the investigation of albumins interaction with ethanol using intrinsic Trp and Tyr steady-state and time-resolved picosecond fluorescence indicated the presence of an intermediate at 10% (v/v) of ethanol in solution, that was supported by the results of extrinsic fluorescence measurements with the Nile Red dye. Based on the comparison of HSA and BSA Trp and Tyr fluorescence, it was suggested that conformational changes at low ethanol concentration are located in the domain III of albumins, which lacks tryptophan residues. The sensitivity of Tyr fluorescence to domain III alterations was further verified by studying albumins interaction with GdnHCl.
Collapse
Affiliation(s)
- N G Zhdanova
- Department of Physics, M.V. Lomonosov Moscow State University, 119991, Russia.
| | - E G Maksimov
- Department of Biology, M.V. Lomonosov Moscow State University, 119991, Russia
| | - A M Arutyunyan
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Russia
| | - V V Fadeev
- Department of Physics, M.V. Lomonosov Moscow State University, 119991, Russia
| | - E A Shirshin
- Department of Physics, M.V. Lomonosov Moscow State University, 119991, Russia.
| |
Collapse
|
17
|
Sanagavarapu K, Weiffert T, Ní Mhurchú N, O'Connell D, Linse S. Calcium Binding and Disulfide Bonds Regulate the Stability of Secretagogin towards Thermal and Urea Denaturation. PLoS One 2016; 11:e0165709. [PMID: 27812162 PMCID: PMC5094748 DOI: 10.1371/journal.pone.0165709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
Secretagogin is a calcium-sensor protein with six EF-hands. It is widely expressed in neurons and neuro-endocrine cells of a broad range of vertebrates including mammals, fishes and amphibia. The protein plays a role in secretion and interacts with several vesicle-associated proteins. In this work, we have studied the contribution of calcium binding and disulfide-bond formation to the stability of the secretagogin structure towards thermal and urea denaturation. SDS-PAGE analysis of secretagogin in reducing and non-reducing conditions identified a tendency of the protein to form dimers in a redox-dependent manner. The denaturation of apo and Calcium-loaded secretagogin was studied by circular dichroism and fluorescence spectroscopy under conditions favoring monomer or dimer or a 1:1 monomer: dimer ratio. This analysis reveals significantly higher stability towards urea denaturation of Calcium-loaded secretagogin compared to the apo protein. The secondary and tertiary structure of the Calcium-loaded form is not completely denatured in the presence of 10 M urea. Reduced and Calcium-loaded secretagogin is found to refold reversibly after heating to 95°C, while both oxidized and reduced apo secretagogin is irreversibly denatured at this temperature. Thus, calcium binding greatly stabilizes the structure of secretagogin towards chemical and heat denaturation.
Collapse
Affiliation(s)
- Kalyani Sanagavarapu
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Tanja Weiffert
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Niamh Ní Mhurchú
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - David O'Connell
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Kubota H, Kobayashi A, Kobayashi Y, Shiomi K, Hamada-Sato N. Reduction in IgE reactivity of Pacific mackerel parvalbumin by heat treatment. Food Chem 2016; 206:78-84. [DOI: 10.1016/j.foodchem.2016.03.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/24/2016] [Accepted: 03/14/2016] [Indexed: 11/27/2022]
|
19
|
Lomonosova AV, Ovchinnikova EV, Kazakov AS, Denesyuk AI, Sofin AD, Mikhailov RV, Ulitin AB, Mirzabekov TA, Permyakov EA, Permyakov SE. Extremophilic 50S Ribosomal RNA-Binding Protein L35Ae as a Basis for Engineering of an Alternative Protein Scaffold. PLoS One 2015; 10:e0134906. [PMID: 26247602 PMCID: PMC4527664 DOI: 10.1371/journal.pone.0134906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023] Open
Abstract
Due to their remarkably high structural stability, proteins from extremophiles are particularly useful in numerous biological applications. Their utility as alternative protein scaffolds could be especially valuable in small antibody mimetic engineering. These artificial binding proteins occupy a specific niche between antibodies and low molecular weight substances, paving the way for development of innovative approaches in therapeutics, diagnostics, and reagent use. Here, the 50S ribosomal RNA-binding protein L35Ae from the extremophilic archaea Pyrococcus horikoshii has been probed for its potential to serve as a backbone in alternative scaffold engineering. The recombinant wild type L35Ae has a native-like secondary structure, extreme thermal stability (mid-transition temperature of 90°C) and a moderate resistance to the denaturation by guanidine hydrochloride (half-transition at 2.6 M). Chemical crosslinking and dynamic light scattering data revealed that the wild type L35Ae protein has a propensity for multimerization and aggregation correlating with its non-specific binding to a model cell surface of HEK293 cells, as evidenced by flow cytometry. To suppress these negative features, a 10-amino acid mutant (called L35Ae 10X) was designed, which lacks the interaction with HEK293 cells, is less susceptible to aggregation, and maintains native-like secondary structure and thermal stability. However, L35Ae 10X also shows lowered resistance to guanidine hydrochloride (half-transition at 2.0M) and is more prone to oligomerization. This investigation of an extremophile protein’s scaffolding potential demonstrates that lowered resistance to charged chemical denaturants and increased propensity to multimerization may limit the utility of extremophile proteins as alternative scaffolds.
Collapse
Affiliation(s)
- Anna V. Lomonosova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Elena V. Ovchinnikova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Alexei S. Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Alexander I. Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- Department of Biosciences, Åbo Akademi University, Turku, 20520, Finland
| | - Alexander D. Sofin
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Roman V. Mikhailov
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Andrei B. Ulitin
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Tajib A. Mirzabekov
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- Biomirex Inc., 304 Pleasant Street, Watertown, Massachusetts, 02472, United States of America
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- * E-mail:
| |
Collapse
|
20
|
Uversky VN. Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J 2015; 282:1182-9. [DOI: 10.1111/febs.13202] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa FL USA
- Department of Biological Science; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Laboratory of Structural Dynamics; Stability and Folding of Proteins; Institute of Cytology; Russian Academy of Sciences; St Petersburg Russia
| |
Collapse
|
21
|
E. Rohrback S, Wheatly MG, Gillen CM. Calcium binding to Procambarus clarkii sarcoplasmic calcium binding protein splice variants. Comp Biochem Physiol B Biochem Mol Biol 2015; 179:57-63. [DOI: 10.1016/j.cbpb.2014.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|
22
|
Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3894] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
23
|
Denessiouk K, Permyakov S, Denesyuk A, Permyakov E, Johnson MS. Two structural motifs within canonical EF-hand calcium-binding domains identify five different classes of calcium buffers and sensors. PLoS One 2014; 9:e109287. [PMID: 25313560 PMCID: PMC4196763 DOI: 10.1371/journal.pone.0109287] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
Proteins with EF-hand calcium-binding motifs are essential for many cellular processes, but are also associated with cancer, autism, cardiac arrhythmias, and Alzheimer's, skeletal muscle and neuronal diseases. Functionally, all EF-hand proteins are divided into two groups: (1) calcium sensors, which function to translate the signal to various responses; and (2) calcium buffers, which control the level of free Ca2+ ions in the cytoplasm. The borderline between the two groups is not clear, and many proteins cannot be described as definitive buffers or sensors. Here, we describe two highly-conserved structural motifs found in all known different families of the EF-hand proteins. The two motifs provide a supporting scaffold for the DxDxDG calcium binding loop and contribute to the hydrophobic core of the EF hand domain. The motifs allow more precise identification of calcium buffers and calcium sensors. Based on the characteristics of the two motifs, we could classify individual EF-hand domains into five groups: (1) Open static; (2) Closed static; (3) Local dynamic; (4) Dynamic; and (5) Local static EF-hand domains.
Collapse
Affiliation(s)
- Konstantin Denessiouk
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
- * E-mail:
| | - Sergei Permyakov
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| | - Alexander Denesyuk
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Eugene Permyakov
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| | - Mark S. Johnson
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| |
Collapse
|
24
|
Kuehn A, Swoboda I, Arumugam K, Hilger C, Hentges F. Fish allergens at a glance: variable allergenicity of parvalbumins, the major fish allergens. Front Immunol 2014; 5:179. [PMID: 24795722 PMCID: PMC4001008 DOI: 10.3389/fimmu.2014.00179] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/05/2014] [Indexed: 01/19/2023] Open
Abstract
Fish is a common trigger of severe, food-allergic reactions. Only a limited number of proteins induce specific IgE-mediated immune reactions. The major fish allergens are the parvalbumins. They are members of the calcium-binding EF-hand protein family characterized by a conserved protein structure. They represent highly cross-reactive allergens for patients with specific IgE to conserved epitopes. These patients might experience clinical reactions with various fish species. On the other hand, some individuals have IgE antibodies directed against unique, species-specific parvalbumin epitopes, and these patients show clinical symptoms only with certain fish species. Furthermore, different parvalbumin isoforms and isoallergens are present in the same fish and might display variable allergenicity. This was shown for salmon homologs, where only a single parvalbumin (beta-1) isoform was identified as allergen in specific patients. In addition to the parvalbumins, several other fish proteins, enolases, aldolases, and fish gelatin, seem to be important allergens. New clinical and molecular insights advanced the knowledge and understanding of fish allergy in the last years. These findings were useful for the advancement of the IgE-based diagnosis and also for the management of fish allergies consisting of advice and treatment of fish-allergic patients.
Collapse
Affiliation(s)
- Annette Kuehn
- Laboratory of Immunogenetics and Allergology, Public Research Centre for Health (CRP-Santé), Luxembourg, Luxembourg
| | - Ines Swoboda
- Molecular Biotechnology Section, University of Applied Sciences, Vienna, Austria
| | - Karthik Arumugam
- Laboratory of Immunogenetics and Allergology, Public Research Centre for Health (CRP-Santé), Luxembourg, Luxembourg
| | - Christiane Hilger
- Laboratory of Immunogenetics and Allergology, Public Research Centre for Health (CRP-Santé), Luxembourg, Luxembourg
| | - François Hentges
- Laboratory of Immunogenetics and Allergology, Public Research Centre for Health (CRP-Santé), Luxembourg, Luxembourg
- Unit of Immunology and Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
25
|
Marín M, Ott T. Intrinsic disorder in plant proteins and phytopathogenic bacterial effectors. Chem Rev 2014; 114:6912-32. [PMID: 24697726 DOI: 10.1021/cr400488d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Macarena Marín
- Genetics Institute, Faculty of Biology, Ludwig-Maximilians-University of Munich , Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| | | |
Collapse
|
26
|
Somkuti J, Smeller L. High pressure effects on allergen food proteins. Biophys Chem 2013; 183:19-29. [DOI: 10.1016/j.bpc.2013.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
|
27
|
Nemashkalova EL, Kazakov AS, Khasanova LM, Permyakov EA, Permyakov SE. Structural characterization of more potent alternatives to HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid. Biochemistry 2013; 52:6286-99. [PMID: 23947814 DOI: 10.1021/bi400643s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HAMLET is a complex of human α-lactalbumin (hLA) with oleic acid (OA) that kills various tumor cells and strains of Streptococcus pneumoniae. More potent protein-OA complexes were previously reported for bovine α-lactalbumin (bLA) and β-lactoglobulin (bLG), and pike parvalbumin (pPA), and here we explore their structural features. The concentration dependencies of the tryptophan fluorescence of hLA, bLA, and bLG complexes with OA reveal their disintegration at protein concentrations below the micromolar level. Chemical cross-linking experiments provide evidence that association with OA shifts the distribution of oligomeric forms of hLA, bLA, bLG, and pPA toward higher-order oligomers. This effect is confirmed for bLA and bLG using the dynamic light scattering method, while pPA is shown to associate with OA vesicles. Like hLA binding, OA binding increases the affinity of bLG for small unilamellar dipalmitoylphosphatidylcholine vesicles, while pPA efficiently binds to the vesicles irrespective of OA binding. The association of OA with bLG and pPA increases their α-helix and cross-β-sheet content and resistance to enzymatic proteolysis, which is indicative of OA-induced protein structuring. The lack of excess heat sorption during melting of bLG and pPA in complex with OA and the presence of a cooperative thermal transition at the level of their secondary structure suggest that the OA-bound forms of bLG and pPA lack a fixed tertiary structure but exhibit a continuous thermal transition. Overall, despite marked differences, the HAMLET-like complexes that were studied exhibit a common feature: a tendency toward protein oligomerization. Because OA-induced oligomerization has been reported for other proteins, this phenomenon is inherent to many proteins.
Collapse
Affiliation(s)
- Ekaterina L Nemashkalova
- Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region 142290, Russia
| | | | | | | | | |
Collapse
|
28
|
Lapteva YS, Uversky VN, Permyakov SE. Sequence microheterogeneity of parvalbumin, the major fish allergen. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1607-14. [PMID: 23632315 DOI: 10.1016/j.bbapap.2013.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/05/2013] [Accepted: 04/21/2013] [Indexed: 12/11/2022]
Abstract
The microheterogeneity of amino acid sequence observed in various allergens may affect immune response, but incidence of sequence microheterogeneity in allergens and its relation to their allergenicity are unclear. The occurrence of sequence microheterogeneity in major fish allergen, parvalbumin (PA), has been explored using bioinformatics approaches. 44% of 111 species with known PA sequence have PA isoforms. 41% of these species exhibit from 1 to 4 cases of PA sequence microheterogeneity, i.e. unique pairs of PA isoforms with sequence identity above 90%. 29% of 210 PA sequences studied are characterized by microheterogeneity. The occurrence of allergens among them is 2.5-fold higher than among other PAs. The incidence of sequence microheterogeneity within more allergenic β isoform of PA is 2.0-fold lower than that for its less allergenic α isoform. 39 residues affected by PA microheterogeneity are concentrated in the region of helices A, B, F, while helices D and E are the most conservative region. 44% and 11% of the microheterogeneous substitutions are located in the species-specific and cross-reactive IgE-binding epitopes of PAs, respectively. 45% and 48% of the substitution cases are predicted to cause notable changes in protein disorder propensity and protein stability, respectively. Hence, the increased allergenicity rate among PAs having microheterogeneous isoforms can be related to differences in their IgE-binding caused directly or in an allosteric manner. Overall, sequence microheterogeneity is shown to be inherent to many of PAs and likely contributes to PA allergenicity.
Collapse
Affiliation(s)
- Yulia S Lapteva
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | | | | |
Collapse
|
29
|
Permyakov SE, Vologzhannikova AA, Emelyanenko VI, Knyazeva EL, Kazakov AS, Lapteva YS, Permyakova ME, Zhadan AP, Permyakov EA. The impact of alpha-N-acetylation on structural and functional status of parvalbumin. Cell Calcium 2012; 52:366-76. [DOI: 10.1016/j.ceca.2012.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 05/30/2012] [Accepted: 06/01/2012] [Indexed: 01/09/2023]
|
30
|
Bakunts AG. Metal-specific structural changes in parvalbumin. Biochem Biophys Res Commun 2012; 424:730-5. [PMID: 22809511 DOI: 10.1016/j.bbrc.2012.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
Abstract
Parvalbumin is a small protein of EF-hand family whose main role is considered to be metal buffering. Recent evidences indicate that parvalbumin also fulfills more complicated functions, which may be determined by the diversity in structural changes in response to the binding of different metal cations. In the present work the conformations of α and β isoforms of pike parvalbumin in the Ca(2+)- and Mg(2+)-loaded state were studied by intrinsic fluorescence, circular dichroism and bis-ANS extrinsic fluorescence. We have determined the structural region causing different spectral response on the binding of Mg(2+)- and Ca(2+) ions in pike β-parvalbumin. Our data reveal similarity of the metal-bound forms of α-parvalbumin. In contrast, those of β isoform differ significantly in the tyrosine spectral range. We also discuss the possible physiological consequences of the structural rearrangements accompanied Mg(2+)/Ca(2+) exchange in pike β-parvalbumin.
Collapse
Affiliation(s)
- Anush G Bakunts
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str. 7, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
31
|
Somkuti J, Bublin M, Breiteneder H, Smeller L. Pressure–Temperature Stability, Ca2+ Binding, and Pressure–Temperature Phase Diagram of Cod Parvalbumin: Gad m 1. Biochemistry 2012; 51:5903-11. [DOI: 10.1021/bi300403h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Judit Somkuti
- Department of Biophysics and
Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Merima Bublin
- Department
of Pathophysiology
and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Heimo Breiteneder
- Department
of Pathophysiology
and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - László Smeller
- Department of Biophysics and
Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
32
|
Rawat N, Biswas P. Hydrophobic moments, shape, and packing in disordered proteins. J Phys Chem B 2012; 116:6326-35. [PMID: 22582807 DOI: 10.1021/jp3016529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Disordered proteins play a significant role in many biological processes and provide an attractive target for biophysical studies under physiological conditions. Disordered proteins may be classified as (a) proteins with overall well-defined secondary structures, interspersed with regions of missing residues, or (b) natively unstructured proteins which lack definite secondary structure. The spatial profile of second order hydrophobic moment for disordered proteins depicts the distribution of hydrophobic residues from the interior to the surface of the protein and indicates the lack of a well-formed hydrophobic core unlike that of the globular proteins. This trend is independent of the size or position of the disordered region in the sequence. The hydrophobicity profile of the ordered regions of the disordered proteins differ considerably from that of globular proteins implying the role of disordered parts and the significance of hydrophobic interactions in the folding of proteins. The shape asymmetry of the two classes of disordered proteins is determined by calculating the asphercity and shape parameters, derived from the cartesian components of radius of gyration tensor. Disordered proteins of group a are more spherical as compared to the natively unstructured proteins (group b), which are more prolate. Both groups of proteins exhibit similar types of side-chain backbone contacts, as that of the globular proteins. While disordered proteins contains few hydrophobic residues natively unstructured proteins are characterized by a residues of low mean hydrophobicity and high mean net charge.
Collapse
Affiliation(s)
- Nidhi Rawat
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | | |
Collapse
|
33
|
Wojtas M, Kapłon TM, Dobryszycki P, Ożyhar A. The effect of counter ions on the conformation of intrinsically disordered proteins studied by size-exclusion chromatography. Methods Mol Biol 2012; 896:319-330. [PMID: 22821534 DOI: 10.1007/978-1-4614-3704-8_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Counter ions are able to change the conformation of intrinsically disordered proteins (IDPs) to a more compact structure via the reduction of electrostatic repulsion. When the extended IDP conformation is transformed into a more ordered one, the value of the Stokes radius should decrease. Size-exclusion chromatography is a simple method for the determination of the Stokes radius, which describes the hydrodynamic properties of protein molecules. In our paper size-exclusion chromatography experiments of Starmaker (a highly acidic IDP), in the presence of various counter ions, are presented as an example of a simple experimental method, which provides valuable information about subtle counter ions-induced conformational changes in IDP.
Collapse
Affiliation(s)
- Magdalena Wojtas
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | | | | | | |
Collapse
|
34
|
Abstract
Ultrasensitive differential scanning calorimetry (DSC) is an indispensable thermophysical technique enabling to get direct information on enthalpies accompanying heating/cooling of dilute biopolymer solutions. The thermal dependence of protein heat capacity extracted from DSC data is a valuable source of information on intrinsic disorder level of a protein. Application details and limitations of DSC technique in exploration of protein intrinsic disorder are described.
Collapse
Affiliation(s)
- Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
35
|
Permyakov EA. The use of UV-Vis absorption spectroscopy for studies of natively disordered proteins. Methods Mol Biol 2012; 895:421-433. [PMID: 22760331 DOI: 10.1007/978-1-61779-927-3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Absorption spectroscopy can be used to monitor structural changes upon transitions from ordered to disordered state in proteins. Changes in environment of tryptophan, tyrosine, and phenylalanine residues result in changes of their absorption spectra. In most cases the changes are small and can be measured only in a differential mode.
Collapse
Affiliation(s)
- Eugene A Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
36
|
Bianconi A, Ciasca G, Tenenbaum A, Battisti A, Campi G. Temperature and solvent dependence of the dynamical landscape of tau protein conformations. J Biol Phys 2012; 38:169-79. [PMID: 23277677 PMCID: PMC3285732 DOI: 10.1007/s10867-011-9244-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/18/2011] [Indexed: 02/05/2023] Open
Abstract
We report the variation with temperature of the ensemble distribution of conformations spanned by the tau protein in its dynamical states measured by small-angle X-ray scattering (SAXS) using synchrotron radiation. The SAXS data show a clear temperature variation of the distribution of occupied protein conformations from 293 to 318 K. More conformations with a smaller radius of gyration are occupied at higher temperature. The protein-solvent interactions are shown by computer simulation to be essential for controlling the dynamics of protein conformations, providing evidence for the key role of water solvent in the protein dynamics, as proposed by Giorgio Careri.
Collapse
Affiliation(s)
- Antonio Bianconi
- Physics Department, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Gabriele Ciasca
- Physics Department, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Alexander Tenenbaum
- Physics Department, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Anna Battisti
- Physics Department, University of Trento, Via Sommarive 14, 38123 Povo (Trento), Italy
- LISC, FBK-CMM and University of Trento, Via Sommarive 18, 38123 Povo (Trento), Italy
| | - Gaetano Campi
- CNR, Institute of Crystallography, Via Salaria Km 29.300, 00016 Monterotondo (Roma), Italy
| |
Collapse
|
37
|
Lee PW, Nordlee JA, Koppelman SJ, Baumert JL, Taylor SL. Evaluation and comparison of the species-specificity of 3 antiparvalbumin IgG antibodies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12309-12316. [PMID: 21999209 DOI: 10.1021/jf203277z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Parvalbumin is a pan-allergen in fish and frogs that triggers IgE-mediated reactions in fish-allergic individuals. Previous studies demonstrated that antibodies raised against fish and frog parvalbumins displayed varying specificity for different fish species, and thus, the applicability of these antibodies for potential use in immunoassays to detect fish residues were limited. We aimed to determine the specificity of 3 IgG antibodies for various fish species. Indirect enzyme-linked immunosorbent assay (ELISA) and IgG-immunoblotting were used to compare the reactivity of the polyclonal anticod parvalbumin antibody and the commercially available, monoclonal antifrog and monoclonal anticarp parvalbumin antibodies against raw muscle extracts of 29 fish species. All antibodies demonstrated varying specificities for different fish species. Of the 3 antibodies, the polyclonal anticod parvalbumin antibody is the most suitable for the detection of fish parvalbumins as it showed reactivity to the widest range of species, including herring, pilchard, carp, pike, cod, pollock, haddock, cusk, hake, bluegill, tilapia, bass, grouper, trout, catfish, and perch, although detection was still limited for several key fish species.
Collapse
Affiliation(s)
- Poi-Wah Lee
- Food Allergy Research and Resource Program, University of Nebraska, Lincoln, Nebraska, United States
| | | | | | | | | |
Collapse
|
38
|
Potoyan DA, Papoian GA. Energy landscape analyses of disordered histone tails reveal special organization of their conformational dynamics. J Am Chem Soc 2011; 133:7405-15. [PMID: 21517079 DOI: 10.1021/ja1111964] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Histone tails are highly flexible N- or C-terminal protrusions of histone proteins which facilitate the compaction of DNA into dense superstructures known as chromatin. On a molecular scale histone tails are polyelectrolytes with high degree of conformational disorder which allows them to function as biomolecular "switches", regulating various genetic processes. Unfortunately, their intrinsically disordered nature creates obstacles for comprehensive experimental investigation of both the structural and dynamical aspects of histone tails, because of which their conformational behaviors are still not well understood. In this work we have carried out ∼3 microsecond long all atom replica exchange molecular dynamics (REMD) simulations for each of four histone tails, H4, H3, H2B, and H2A, and probed their intrinsic conformational preferences. Our subsequent free energy landscape analysis demonstrated that most tails are not fully disordered, but show distinct conformational organization, containing specific flickering secondary structural elements. In particular, H4 forms β-hairpins, H3 and H2B adopt α-helical elements, while H2A is fully disordered. We rationalized observed patterns of conformational dynamics of various histone tails using ideas from physics of polyelectrolytes and disordered systems. We also discovered an intriguing re-entrant contraction-expansion of the tails upon heating, which is caused by subtle interplay between ionic screening and chain entropy.
Collapse
Affiliation(s)
- Davit A Potoyan
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
39
|
Nevzorov IA, Nikolaeva OP, Kainov YA, Redwood CS, Levitsky DI. Conserved noncanonical residue Gly-126 confers instability to the middle part of the tropomyosin molecule. J Biol Chem 2011; 286:15766-72. [PMID: 21454502 DOI: 10.1074/jbc.m110.209353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tropomyosin (Tm) is a two-stranded α-helical coiled-coil protein with a well established role in regulation of actin cytoskeleton and muscle contraction. It is believed that many Tm functions are enabled by its flexibility whose nature has not been completely understood. We hypothesized that the well conserved non-canonical residue Gly-126 causes local destabilization of Tm. To test this, we substituted Gly-126 in skeletal muscle α-Tm either with an Ala residue, which should stabilize the Tm α-helix, or with an Arg residue, which is expected to stabilize both α-helix and coiled-coil structure of Tm. We have shown that both mutations dramatically reduce the rate of Tm proteolysis by trypsin at Asp-133. Differential scanning calorimetry was used for detailed investigation of thermal unfolding of the Tm mutants, both free in solution and bound to F-actin. It was shown that a significant part of wild type Tm unfolds in a non-cooperative manner at low temperature, and both mutations confer cooperativity to this part of the Tm molecule. The size of the flexible middle part of Tm is estimated to be 60-70 amino acid residues, about a quarter of the Tm molecule. Thus, our results show that flexibility is unevenly distributed in the Tm molecule and achieves the highest extent in its middle part. We conclude that the highly conserved Gly-126, acting in concert with the previously identified non-canonical Asp-137, destabilizes the middle part of Tm, resulting in a more flexible region that is important for Tm function.
Collapse
Affiliation(s)
- Ilya A Nevzorov
- AN Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
40
|
Permyakov SE, Zernii EY, Knyazeva EL, Denesyuk AI, Nazipova AA, Kolpakova TV, Zinchenko DV, Philippov PP, Permyakov EA, Senin II. Oxidation mimicking substitution of conservative cysteine in recoverin suppresses its membrane association. Amino Acids 2011; 42:1435-42. [PMID: 21344177 DOI: 10.1007/s00726-011-0843-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/03/2011] [Indexed: 11/26/2022]
Abstract
Recoverin belongs to the family of intracellular Ca(2+)-binding proteins containing EF-hand domains, neuronal calcium sensors (NCS). In photoreceptor outer segments, recoverin is involved into the recovery of visual cycle via Ca(2+)-dependent interaction with disk membranes and inhibition of rhodopsin kinase. The function of a conservative within NCS family Cys residue in the inactive EF-loop 1 remains unclear, but previous study has shown its vulnerability to oxidation under mild oxidizing conditions. To elucidate the influence of oxidation of the conservative Cys39 in recoverin the properties of its C39D mutant, mimicking oxidative conversion of Cys39 into sulfenic, sulfinic or sulfonic acids have been studied using intrinsic fluorescence, circular dichroism, and equilibrium centrifugation methods. The C39D substitution results in essential changes in structural, physico-chemical and physiological properties of the protein: it reduces α-helical content, decreases thermal stability and suppresses protein affinity for photoreceptor membranes. The latter effect precludes proper functioning of the Ca(2+)-myristoyl switch in recoverin. The revealed significance of oxidation state of Cys39 for maintaining the protein functional status shows that it may serve as redox sensor in vision and suggests an explanation of the available data on localization and light-dependent translocation of recoverin in rod photoreceptors.
Collapse
Affiliation(s)
- Sergei E Permyakov
- Institute for Biological Instrumentation of Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kazakov AS, Markov DI, Gusev NB, Levitsky DI. Thermally induced structural changes of intrinsically disordered small heat shock protein Hsp22. Biophys Chem 2009; 145:79-85. [DOI: 10.1016/j.bpc.2009.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 08/31/2009] [Accepted: 09/05/2009] [Indexed: 10/20/2022]
|
42
|
Intrinsically Disordered Proteins and Their Environment: Effects of Strong Denaturants, Temperature, pH, Counter Ions, Membranes, Binding Partners, Osmolytes, and Macromolecular Crowding. Protein J 2009; 28:305-25. [DOI: 10.1007/s10930-009-9201-4] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Permyakov SE, Bakunts AG, Permyakova ME, Denesyuk AI, Uversky VN, Permyakov EA. Metal-controlled interdomain cooperativity in parvalbumins. Cell Calcium 2009; 46:163-75. [PMID: 19651438 PMCID: PMC2754762 DOI: 10.1016/j.ceca.2009.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/29/2009] [Accepted: 07/06/2009] [Indexed: 11/30/2022]
Abstract
Conformational behavior of five homologous proteins, parvalbumins (PAs) from northern pike (alpha and beta isoforms), Baltic cod, and rat (alpha and beta isoforms), was studied by scanning calorimetry, circular dichroism, and bis-ANS fluorescence. The mechanism of the temperature-induced denaturation of these proteins depends dramatically on both the peculiarities of their amino acid sequences and on their interaction with metal ions. For example, the pike alpha-PA melting can be described by two successive two-state transitions with mid-temperatures of 90 and 120 degrees C, suggesting the presence of two thermodynamic domains. The intermediate state populated at the end of the first transition was shown to bind Ca(2+) ions, and was characterized by the largely preserved secondary structure and increased solvent exposure of hydrophobic groups. Mg(2+)- and Na(+)-loaded forms of pike alpha-PA demonstrated a single two-state transition. Therefore, the mechanism of the PA thermal denaturation is controlled by metal binding. It ranged from the absence of detectable first-order transition (apo-form of pike PA), to the two-state transition (e.g., Mg(2+)- and Na(+)-loaded forms of pike alpha-PA), to the more complex mechanisms (Ca(2+)-loaded PAs) involving at least one partially folded intermediate. Analysis of isolated cavities in the protein structures revealed that the interface between the CD and EF subdomains of Ca(2+)-loaded pike alpha-PA is much more loosely packed compared with PAs manifesting single heat-sorption peak. The impairment of interactions between CD and EF subdomains may cause a loss of structural cooperativity and appearance of two separate thermodynamic domains. One more peculiar feature of pike alpha-PA is that depending on its interactions with metal ions, it can be an intrinsically disordered protein (apo-form), an ordered protein of mesophilic (Na(+)-bound state), thermophilic (Mg(2+)-form), or even of the hyperthermophilic origin (Ca(2+)-form).
Collapse
Affiliation(s)
- Sergei E. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290 Russia
| | - Anush G. Bakunts
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290 Russia
| | - Maria E. Permyakova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290 Russia
| | - Alexander I. Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290 Russia
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Artillerigatan 6A, FI-20520 Turku, Finland
| | - Vladimir N. Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290 Russia
- Institute for Intrinsically Disordered Protein Research, Center of Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290 Russia
| |
Collapse
|
44
|
Tan A, Henzl MT. Evidence for a Ca2+-Specific Conformational Change in Avian Thymic Hormone, a High-Affinity β-Parvalbumin. Biochemistry 2009; 48:3936-45. [DOI: 10.1021/bi900029j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anmin Tan
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Michael T. Henzl
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
45
|
Henzl MT, Davis ME, Tan A. Leucine 85 is an important determinant of divalent ion affinity in rat beta-parvalbumin (Oncomodulin). Biochemistry 2009; 47:13635-46. [PMID: 19075559 DOI: 10.1021/bi8014899] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite 69% sequence identity with chicken parvalbumin 3 (CPV3), rat beta-parvalbumin (beta-PV) exhibits a substantially lower Ca(2+) affinity (DeltaDeltaG degrees ' = 2.0 kcal/mol). This difference largely reflects the disparate behavior of the respective CD sites. Replacement of the rat beta-PV codon with the CPV3 codon at positions 49, 50, and 57-60 produces virtual sequence identity with the CPV3 CD site. However, the resulting protein exhibits a modest (0.5 kcal/mol) improvement in Ca(2+) affinity, implying that sequence differences beyond the binding site modulate divalent ion binding behavior. The solution structure of Ca(2+)-free rat beta-PV suggested that Leu-85, phenylalanine in CPV3, might be an important determinant. Therefore, the impact of the L85F mutation on divalent ion affinity was examined in rat beta-PV, in the variant harboring all six of the aforementioned CD site mutations, and in the intermediate CD site variants. We find that the identity of residue 85, located within the E helix, strongly influences divalent ion affinity in the mammalian beta-PV isoform and that its impact is mediated by interactions with residues in the CD site. In the wild-type protein, L85F primarily affects the EF site. By contrast, in the presence of the six CD site mutations, L85F also improves the CD site performance, yielding a protein with Ca(2+) affinity rivaling that of CPV3 and markedly enhanced Mg(2+) affinity as well. The impact of L85F on CD site Ca(2+) affinity is particularly sensitive to the identities of residues 59 and 60. Interestingly, however, significant improvement in CD site Mg(2+) affinity also requires mutation of additional CD site residues.
Collapse
Affiliation(s)
- Michael T Henzl
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
46
|
Scaglione P, Nemec KN, Burlingame KE, Grabon A, Huerta J, Navarro-Garcia F, Tatulian SA, Teter K. Structural characteristics of the plasmid-encoded toxin from enteroaggregative Escherichia coli. Biochemistry 2008; 47:9582-91. [PMID: 18702515 PMCID: PMC2551761 DOI: 10.1021/bi8008714] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intoxication by the plasmid-encoded toxin (Pet) of enteroaggregative Escherichia coli requires toxin translocation from the endoplasmic reticulum (ER) to the cytosol. This event involves the quality control system of ER-associated degradation (ERAD), but the molecular details of the process are poorly characterized. For many structurally distinct AB-type toxins, ERAD-mediated translocation is triggered by the spontaneous unfolding of a thermally unstable A chain. Here we show that Pet, a non-AB toxin, engages ERAD by a different mechanism that does not involve thermal unfolding. Circular dichroism and fluorescence spectroscopy measurements demonstrated that Pet maintains most of its secondary and tertiary structural features at 37 degrees C, with significant thermal unfolding only occurring at temperatures >or=50 degrees C. Fluorescence quenching experiments detected the partial solvent exposure of Pet aromatic amino acid residues at 37 degrees C, and a cell-based assay suggested that these changes could activate an ERAD-related event known as the unfolded protein response. We also found that HEp-2 cells were resistant to Pet intoxication when incubated with glycerol, a protein stabilizer. Altogether, our data are consistent with a model in which ERAD activity is triggered by a subtle structural destabilization of Pet and the exposure of Pet hydrophobic residues at physiological temperature. This was further supported by computer modeling analysis, which identified a surface-exposed hydrophobic loop among other accessible nonpolar residues in Pet. From our data it appears that Pet can promote its ERAD-mediated translocation into the cytosol by a distinct mechanism involving partial exposure of hydrophobic residues rather than the substantial unfolding observed for certain AB toxins.
Collapse
Affiliation(s)
- Patricia Scaglione
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, USA
| | | | | | | | | | | | | | | |
Collapse
|