1
|
Wang Z, Xie X, Xue Y, Chen Y. Tryptophan-2,3-Dioxygenase as a Therapeutic Target in Digestive System Diseases. BIOLOGY 2025; 14:295. [PMID: 40136551 PMCID: PMC11939885 DOI: 10.3390/biology14030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Tryptophan (Trp) is an essential amino acid that must be acquired exclusively through dietary intake. The metabolism of tryptophan plays a critical role in maintaining immune homeostasis and tolerance, as well as in preventing excessive inflammatory responses. Tryptophan-2,3-dioxygenase (TDO2) is a tetrameric heme protein and serves as one of the pivotal rate-limiting enzymes in the first step of tryptophan metabolism. Dysregulation of TDO2 expression has been observed in various digestive system diseases, encompassing those related to the oral cavity, esophagus, liver, stomach, pancreas, and colon and rectum. Digestive system diseases are the most common clinical diseases, with complex clinical manifestations and interrelated symptoms, and have become a research hotspot in the field of medicine. Studies have demonstrated that aberrant TDO2 expression is closely associated with various clinical manifestations and disease outcomes in patients with digestive system disorders. Consequently, TDO2 has garnered increasing recognition as a promising therapeutic target for digestive system diseases in recent years, attracting growing attention. This article provides a brief overview of the role of TDO2 in the tryptophan pathway, emphasizing its significant involvement in diseases of the digestive system. Strategies targeting TDO2 through specific inhibitors suggest considerable promise in enhancing therapeutic outcomes for digestive diseases. Thus, this review concludes by discussing recent advancements in the development of TDO2 inhibitors. We believe that targeted inhibition of TDO2 combined with immunotherapy, the screening of a large number of natural products, and the assistance of artificial intelligence in drug design will be important directions for developing more effective TDO2 inhibitors and improving treatment outcomes in the future.
Collapse
Affiliation(s)
| | | | | | - Yixuan Chen
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
2
|
Dechenne J, Wierzbicka M, Krimou R, El Aakchioui A, Malo Pueyo J, Messens J, Fillet M, Spillier Q, Frédérick R. Examining Arginase-1 Trimerization Uncovers a Promising Allosteric Site for Inhibition. J Med Chem 2025; 68:1433-1445. [PMID: 39748145 DOI: 10.1021/acs.jmedchem.4c01993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Arginase-1 (ARG-1) is a promising target for cancer immunotherapy, but the small size and the highly polar nature of its catalytic site present significant challenges for inhibitor development. An alternative strategy to induce enzyme inhibition by targeting protein oligomerization has been developed recently, offering several advantages such as increased selectivity, promotion of protein degradation, and potential substoichiometric inhibition. In this study, we demonstrated that only trimeric ARG-1 is active, which was confirmed by producing monomeric arginase-1. Through in silico-driven site-directed mutagenesis, we identified an allosteric site involving five key amino acids responsible for ARG-1 trimerization. We further demonstrated the covalent modification of a key arginine residue within this pocket using phenylglyoxal disrupted ARG-1 oligomerization. Although phenylglyoxal has limited potency, it effectively supports the concept of ARG-1 inhibition via homomeric disruption, validating this allosteric targeting approach.
Collapse
Affiliation(s)
- Juhans Dechenne
- Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Magdalena Wierzbicka
- Laboratory for the Analysis of Medicines (CIRM), Université de Liège (ULG), Liège B-4000, Belgium
| | - Reda Krimou
- Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Asia El Aakchioui
- Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Julia Malo Pueyo
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, Brussels B-1050, Belgium
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, Brussels B-1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels B-1050, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, Brussels B-1050, Belgium
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, Brussels B-1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels B-1050, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (CIRM), Université de Liège (ULG), Liège B-4000, Belgium
| | - Quentin Spillier
- Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Medicinal Chemistry Research Group (CMFA), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| |
Collapse
|
3
|
Lotz-Jenne C, Lange R, Cren S, Bourquin G, Goglia L, Kimmerlin T, Wicki M, Müller M, Artico N, Ackerknecht S, Pfaff P, Joesch C, Mac Sweeney A. Discovery and binding mode of small molecule inhibitors of the apo form of human TDO2. Sci Rep 2024; 14:27937. [PMID: 39537789 PMCID: PMC11561238 DOI: 10.1038/s41598-024-78981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Tryptophan-2,3-dioxygenase (TDO2) and indoleamine-2,3-dioxygenase (IDO1) are structurally distinct heme enzymes that catalyze the conversion of L-tryptophan to N-formyl-kynurenine, and play important roles in metabolism, inflammation, and tumor immune surveillance. The enzymes can adopt an inactive, heme-free (apo) state or an active, heme-containing (holo) state, with the balance between them varying dynamically according to biological conditions. Inhibitors of holo-TDO2 are known but, despite several advantages of the heme-free state as a drug target, no inhibitors of apo-TDO2 have been reported. We describe the discovery of the first apo-TDO2 binding inhibitors, to our knowledge, and their inhibition of cellular TDO2 activity at low nanomolar concentrations. The crystal structure of a potent, small molecule inhibitor bound to apo-TDO2 reveals its detailed binding interactions within the large, hydrophobic heme binding pocket of the active site.
Collapse
Affiliation(s)
- Carina Lotz-Jenne
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland.
| | - Roland Lange
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Sylvaine Cren
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Geoffroy Bourquin
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Laksmei Goglia
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Thierry Kimmerlin
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Micha Wicki
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Manon Müller
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Nadia Artico
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Sabine Ackerknecht
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Philippe Pfaff
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Christoph Joesch
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Aengus Mac Sweeney
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland.
| |
Collapse
|
4
|
Xu R, He X, Xu J, Yu G, Wu Y. Immunometabolism: signaling pathways, homeostasis, and therapeutic targets. MedComm (Beijing) 2024; 5:e789. [PMID: 39492834 PMCID: PMC11531657 DOI: 10.1002/mco2.789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Immunometabolism plays a central role in sustaining immune system functionality and preserving physiological homeostasis within the organism. During the differentiation and activation, immune cells undergo metabolic reprogramming mediated by complex signaling pathways. Immune cells maintain homeostasis and are influenced by metabolic microenvironmental cues. A series of immunometabolic enzymes modulate immune cell function by metabolizing nutrients and accumulating metabolic products. These enzymes reverse immune cells' differentiation, disrupt intracellular signaling pathways, and regulate immune responses, thereby influencing disease progression. The huge population of immune metabolic enzymes, the ubiquity, and the complexity of metabolic regulation have kept the immune metabolic mechanisms related to many diseases from being discovered, and what has been revealed so far is only the tip of the iceberg. This review comprehensively summarized the immune metabolic enzymes' role in multiple immune cells such as T cells, macrophages, natural killer cells, and dendritic cells. By classifying and dissecting the immunometabolism mechanisms and the implications in diseases, summarizing and analyzing advancements in research and clinical applications of the inhibitors targeting these enzymes, this review is intended to provide a new perspective concerning immune metabolic enzymes for understanding the immune system, and offer novel insight into future therapeutic interventions.
Collapse
Affiliation(s)
- Rongrong Xu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
- School of Life SciencesFudan UniversityShanghaiChina
| | - Xiaobo He
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Jia Xu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Ganjun Yu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Yanfeng Wu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| |
Collapse
|
5
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
6
|
Wakasugi K, Yokosawa T. The high-affinity tryptophan uptake transport system in human cells. Biochem Soc Trans 2024; 52:1149-1158. [PMID: 38813870 PMCID: PMC11346423 DOI: 10.1042/bst20230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
The L-tryptophan (Trp) transport system is highly selective for Trp with affinity in the nanomolar range. This transport system is augmented in human interferon (IFN)-γ-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. Up-regulated cellular uptake of Trp causes a reduction in extracellular Trp and initiates immune suppression. Recent studies demonstrate that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are up-regulated by IFN-γ, play a pivotal role in high-affinity Trp uptake into human cells. Furthermore, overexpression of tryptophan 2,3-dioxygenase (TDO2) elicits a similar effect as IDO1 on TrpRS-mediated high-affinity Trp uptake. In this review, we summarize recent findings regarding this Trp uptake system and put forward a possible molecular mechanism based on Trp deficiency induced by IDO1 or TDO2 and tryptophanyl-AMP production by TrpRS.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takumi Yokosawa
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Aboomar NM, Essam O, Hassan A, Bassiouny AR, Arafa RK. Exploring a repurposed candidate with dual hIDO1/hTDO2 inhibitory potential for anticancer efficacy identified through pharmacophore-based virtual screening and in vitro evaluation. Sci Rep 2024; 14:9386. [PMID: 38653790 PMCID: PMC11039737 DOI: 10.1038/s41598-024-59353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Discovering effective anti-cancer agents poses a formidable challenge given the limited efficacy of current therapeutic modalities against various cancer types due to intrinsic resistance mechanisms. Cancer immunochemotherapy is an alternative strategy for breast cancer treatment and overcoming cancer resistance. Human Indoleamine 2,3-dioxygenase (hIDO1) and human Tryptophan 2,3-dioxygenase 2 (hTDO2) play pivotal roles in tryptophan metabolism, leading to the generation of kynurenine and other bioactive metabolites. This process facilitates the de novo synthesis of Nicotinamide Dinucleotide (NAD), promoting cancer resistance. This study identified a new dual hIDO1/hTDO2 inhibitor using a drug repurposing strategy of FDA-approved drugs. Herein, we delineate the development of a ligand-based pharmacophore model based on a training set of 12 compounds with reported hIDO1/hTDO2 inhibitory activity. We conducted a pharmacophore search followed by high-throughput virtual screening of 2568 FDA-approved drugs against both enzymes, resulting in ten hits, four of them with high potential of dual inhibitory activity. For further in silico and in vitro biological investigation, the anti-hypercholesterolemic drug Pitavastatin deemed the drug of choice in this study. Molecular dynamics (MD) simulations demonstrated that Pitavastatin forms stable complexes with both hIDO1 and hTDO2 receptors, providing a structural basis for its potential therapeutic efficacy. At nanomolar (nM) concentration, it exhibited remarkable in vitro enzyme inhibitory activity against both examined enzymes. Additionally, Pitavastatin demonstrated potent cytotoxic activity against BT-549, MCF-7, and HepG2 cell lines (IC50 = 16.82, 9.52, and 1.84 µM, respectively). Its anticancer activity was primarily due to the induction of G1/S phase arrest as discovered through cell cycle analysis of HepG2 cancer cells. Ultimately, treating HepG2 cancer cells with Pitavastatin affected significant activation of caspase-3 accompanied by down-regulation of cellular apoptotic biomarkers such as IDO, TDO, STAT3, P21, P27, IL-6, and AhR.
Collapse
Affiliation(s)
- Nourhan M Aboomar
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo, 12578, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt
| | - Omar Essam
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo, 12578, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt
| | - Afnan Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo, 12578, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt
- Euro-Mediterranean Master in Neuroscience and Biotechnology Program, Alexandria University, Alexandria, 21511, Egypt
| | - Ahmad R Bassiouny
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo, 12578, Giza, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt.
| |
Collapse
|
8
|
Azimnasab-Sorkhabi P, Soltani-Asl M, Yoshinaga TT, Zaidan Dagli ML, Massoco CDO, Kfoury Junior JR. Indoleamine-2,3 dioxygenase: a fate-changer of the tumor microenvironment. Mol Biol Rep 2023:10.1007/s11033-023-08469-3. [PMID: 37217614 DOI: 10.1007/s11033-023-08469-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Indoleamine-2,3 dioxygenase is a rate-limiting enzyme in the tryptophan catabolism in kynurenine pathways that has an immunosuppressive effect and supports cancer cells to evade the immune system in different cancer types. Diverse cytokines and pathways upregulate the production of indoleamine-2,3 dioxygenase enzymes in the tumor microenvironment and cause more production and activity of this enzyme. Ultimately, this situation results in anti-tumor immune suppression which is in favor of tumor growth. Several inhibitors such as 1-methyl-tryptophan have been introduced for indoleamine-2,3 dioxygenase enzyme and some of them are widely utilized in pre-clinical and clinical trials. Importantly at the molecular level, indoleamine-2,3 dioxygenase is positioned in a series of intricate signaling and molecular networks. Here, the main objective is to provide a focused view of indoleamine-2,3 dioxygenase enhancer pathways and propose further studies to cover the gap in available information on the function of indoleamine-2,3 dioxygenase enzyme in the tumor microenvironment.
Collapse
Affiliation(s)
- Parviz Azimnasab-Sorkhabi
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Maryam Soltani-Asl
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Túlio Teruo Yoshinaga
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristina de Oliveira Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose Roberto Kfoury Junior
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Klaessens S, Stroobant V, De Plaen E, Van den Eynde BJ. Systemic tryptophan homeostasis. Front Mol Biosci 2022; 9:897929. [PMID: 36188218 PMCID: PMC9515494 DOI: 10.3389/fmolb.2022.897929] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022] Open
Abstract
Tryptophan is an essential amino acid, which is not only a building block for protein synthesis, but also a precursor for the biosynthesis of co-enzymes and neuromodulators, such as NAD/NADP(H), kynurenic acid, melatonin and serotonin. It also plays a role in immune homeostasis, as local tryptophan catabolism impairs T-lymphocyte mediated immunity. Therefore, tryptophan plasmatic concentration needs to be stable, in spite of large variations in dietary supply. Here, we review the main checkpoints accounting for tryptophan homeostasis, including absorption, transport, metabolism and elimination, and we discuss the physiopathology of disorders associated with their dysfunction. Tryptophan is catabolized along the kynurenine pathway through the action of two enzymes that mediate the first and rate-limiting step of the pathway: indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO). While IDO1 expression is restricted to peripheral sites of immune modulation, TDO is massively expressed in the liver and accounts for 90% of tryptophan catabolism. Recent data indicated that the stability of the TDO protein is regulated by tryptophan and that this regulation allows a tight control of tryptophanemia. TDO is stabilized when tryptophan is abundant in the plasma, resulting in rapid degradation of dietary tryptophan. In contrast, when tryptophan is scarce, TDO is degraded by the proteasome to avoid excessive tryptophan catabolism. This is triggered by the unmasking of a degron in a non-catalytic tryptophan-binding site, resulting in TDO ubiquitination by E3 ligase SKP1-CUL1-F-box. Deficiency in TDO or in the hepatic aromatic transporter SLC16A10 leads to severe hypertryptophanemia, which can disturb immune and neurological homeostasis.
Collapse
Affiliation(s)
- Simon Klaessens
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Etienne De Plaen
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Benoit J. Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavre, Belgium
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| |
Collapse
|
10
|
Dual-target inhibitors of indoleamine 2, 3 dioxygenase 1 (Ido1): A promising direction in cancer immunotherapy. Eur J Med Chem 2022; 238:114524. [PMID: 35696861 DOI: 10.1016/j.ejmech.2022.114524] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) is a rate-limiting enzyme that catalyzes the kynurenine (Kyn) pathway of tryptophan metabolism in the first step, and the kynurenine pathway plays a fundamental role in immunosuppression in the tumor microenvironment. Therefore, researchers are vigorously developing IDO1 inhibitors, hoping to apply them to cancer immunotherapy. Nowadays, there have been 11 kinds of IDO1 inhibitors entering clinical trials, among which many inhibitors have shown good tumor inhibitory effect in phase I/II clinical trials. But the phase III study of the most promising IDO1 inhibitor compound 29 (Epacadostat) failed in 2018, which may be caused by the compensation effect offered by tryptophan 2,3-dioxygenase (TDO), the mismatched drug combination strategies, or other reasons. Luckily, dual-target inhibitors show great potential and advantages in solving these problems. In recent years, many studies have linked IDO1 to popular targets and selected many IDO1 dual-target inhibitors through pharmacophore fusion strategy and library construction, which enhance the tumor inhibitory effect and reduce side effects. Currently, three kinds of IDO1/TDO dual-target inhibitors have entered clinical trials, and extensive studies have been developing on IDO1 dual-target inhibitors. In this review, we summarize the IDO1 dual-target inhibitors developed in recent years and focus on the structure optimization process, structure-activity relationship, and the efficacy of in vitro and in vivo experiments, shedding a light on the pivotal significance of IDO1 dual-target inhibitors in the treatment of cancer, providing inspiration for the development of new IDO1 dual-target inhibitors.
Collapse
|
11
|
Kondo HX, Kanematsu Y, Takano Y. Structure of Heme-binding Pocket in Heme Protein is Generally Rigid and can be Predicted by AlphaFold2. CHEM LETT 2022. [DOI: 10.1246/cl.220172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroko X. Kondo
- Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
- Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima, Hiroshima 731-3194, Japan
| | - Yusuke Kanematsu
- Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima, Hiroshima 731-3194, Japan
- Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Yu Takano
- Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima, Hiroshima 731-3194, Japan
| |
Collapse
|
12
|
Yuasa HJ. Inhibitory effect of ascorbate on tryptophan 2,3-dioxygenase. J Biochem 2022; 171:653-661. [PMID: 35244712 DOI: 10.1093/jb/mvac024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) catalyze the same reaction, oxidative cleavage of L-tryptophan (L-Trp) to N-formyl-kynurenine. In both enzymes, the ferric (FeIII) form is inactive, and ascorbate (Asc) is frequently used as a reductant in in vitro assays to activate the enzymes by reducing the heme iron. Recently, it has been reported that Asc activates IDO2 by acting as a reductant, however, it is also a competitive inhibitor of the enzyme. Here, the effect of Asc on human TDO (hTDO) is investigated. Similar to its interaction with IDO2, Asc acts as both a reductant and a competitive inhibitor of hTDO in the absence of catalase, and its inhibitory effect was enhanced by the addition of H2O2. Interestingly, however, no inhibitory effect of Asc was observed in the presence of catalase. TDO is known to be activated by H2O2 and a ferryl-oxo (FeIV=O) intermediate (Compound II) is generated during the activation process. The observation that Asc acts as a competitive inhibitor of hTDO only in the absence of catalase can be explained by assuming that the target of Asc is Compound II. Asc seems to compete with L-Trp in an unusual manner.
Collapse
Affiliation(s)
- Hajime Julie Yuasa
- Laboratory of Biochemistry, Department of Chemistry and Biotechnology, Faculty of Science and Technology, National University Corporation Kochi University, Kochi 780-8520, Japan
| |
Collapse
|
13
|
Biswas P, Dai Y, Stuehr DJ. Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through GAPDH- and Hsp90-dependent control of their heme levels. Free Radic Biol Med 2022; 180:179-190. [PMID: 35051612 PMCID: PMC11389873 DOI: 10.1016/j.freeradbiomed.2022.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 01/11/2022] [Indexed: 01/15/2023]
Abstract
Indoleamine-2, 3-dioxygenase (IDO1) and Tryptophan-2, 3-dioxygense (TDO) are heme-containing dioxygenases that catalyze the conversion of tryptophan to N-formyl-kynurenine and thus enable generation of l-kynurenine and related metabolites that govern the immune response and broadly impact human biology. Given that TDO and IDO1 activities are directly proportional to their heme contents, it is important to understand their heme delivery and insertion processes. Early studies established that TDO and IDO1 heme levels are sub-saturating in vivo and subject to change but did not identify the cellular mechanisms that provide their heme or enable dynamic changes in their heme contents. We investigated the potential involvement of GAPDH and chaperone Hsp90, based on our previous studies linking these proteins to intracellular heme allocation. We studied heme delivery and insertion into IDO1 and TDO expressed in both normal and heme-deficient HEK293T cells and into IDO1 naturally expressed in HeLa cells in response to IFN-γ, and also investigated the interactions of TDO and IDO1 with GAPDH and Hsp90 in cells and among their purified forms. We found that GAPDH delivered both mitochondrially-generated and exogenous heme to apo-IDO1 and apo-TDO in cells, potentially through a direct interaction with either enzyme. In contrast, we found Hsp90 interacted with apo-IDO1 but not with apo-TDO, and was only needed to drive heme insertion into apo-IDO1. By uncovering the cellular processes that allocate heme to IDO1 and TDO, our study provides new insight on how their activities and l-kynurenine production may be controlled in health and disease.
Collapse
Affiliation(s)
- Pranjal Biswas
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
14
|
Ai Y, Luo S, Wang B, Xiao S, Wang Y. MiR-126-5p Promotes Tumor Cell Proliferation, Metastasis and Invasion by Targeting TDO2 in Hepatocellular Carcinoma. Molecules 2022; 27:443. [PMID: 35056756 PMCID: PMC8779717 DOI: 10.3390/molecules27020443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
TDO2 is a key enzyme in the kynurenine metabolic pathway, which is the most important pathway of tryptophan metabolism. It has been shown that miRNAs are involved in cell metastasis through interaction with target mRNAs. In this study, we found 645 miRNAs that could be immunoprecipitated with TDO2 through the RNA-immunoprecipitation experiment. miR-126-5p was selected as the research target, which was also confirmed by dual-luciferase reporter assay. Through qRT-PCR analysis, it was verified that the overexpression of miR-126-5p promoted the expression of TDO2, PI3K/AKT and WNT1. Meanwhile, it was verified that overexpression of miR-126-5p can promote intracellular tryptophan metabolism by HPLC. We also verified the effects of miR-126-5p on cell proliferation, migration, and invasion by cck-8, cell colony formation and trans-well assay in both HCCLM3 cells and HepG2 cells. In vivo experiments were also conducted to verify that miR-126-5p promoted tumor formation and growth via immunohistochemical detection of cell infiltration and proliferation to generate markers Ki-67, BAX, and VEGF. In conclusion, our results suggest that miR-126-5p is a biomarker and a potential new treatment target in the progression of HCC via promoting the expression of TDO2.
Collapse
Affiliation(s)
| | | | | | | | - Yefu Wang
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, 299 BaYi Road, Wuhan 430065, China; (Y.A.); (S.L.); (B.W.); (S.X.)
| |
Collapse
|
15
|
A new regime of heme-dependent aromatic oxygenase superfamily. Proc Natl Acad Sci U S A 2021; 118:2106561118. [PMID: 34667125 DOI: 10.1073/pnas.2106561118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Two histidine-ligated heme-dependent monooxygenase proteins, TyrH and SfmD, have recently been found to resemble enzymes from the dioxygenase superfamily currently named after tryptophan 2,3-dioxygenase (TDO), that is, the TDO superfamily. These latest findings prompted us to revisit the structure and function of the superfamily. The enzymes in this superfamily share a similar core architecture and a histidine-ligated heme. Their primary functions are to promote O-atom transfer to an aromatic metabolite. TDO and indoleamine 2,3-dioxygenase (IDO), the founding members, promote dioxygenation through a two-step monooxygenation pathway. However, the new members of the superfamily, including PrnB, SfmD, TyrH, and MarE, expand its boundaries and mediate monooxygenation on a broader set of aromatic substrates. We found that the enlarged superfamily contains eight clades of proteins. Overall, this protein group is a more sizeable, structure-based, histidine-ligated heme-dependent, and functionally diverse superfamily for aromatics oxidation. The concept of TDO superfamily or heme-dependent dioxygenase superfamily is no longer appropriate for defining this growing superfamily. Hence, there is a pressing need to redefine it as a heme-dependent aromatic oxygenase (HDAO) superfamily. The revised concept puts HDAO in the context of thiol-ligated heme-based enzymes alongside cytochrome P450 and peroxygenase. It will update what we understand about the choice of heme axial ligand. Hemoproteins may not be as stringent about the type of axial ligand for oxygenation, although thiolate-ligated hemes (P450s and peroxygenases) more frequently catalyze oxygenation reactions. Histidine-ligated hemes found in HDAO enzymes can likewise mediate oxygenation when confronted with a proper substrate.
Collapse
|
16
|
Basran J, Booth ES, Campbell LP, Thackray SJ, Jesani MH, Clayden J, Moody PCE, Mowat CG, Kwon H, Raven EL. Binding of l-kynurenine to X. campestris tryptophan 2,3-dioxygenase. J Inorg Biochem 2021; 225:111604. [PMID: 34571402 DOI: 10.1016/j.jinorgbio.2021.111604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022]
Abstract
The kynurenine pathway is the major route of tryptophan metabolism. The first step of this pathway is catalysed by one of two heme-dependent dioxygenase enzymes - tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) - leading initially to the formation of N-formylkynurenine (NFK). In this paper, we present a crystal structure of a bacterial TDO from X. campestris in complex with l-kynurenine, the hydrolysed product of NFK. l-kynurenine is bound at the active site in a similar location to the substrate (l-Trp). Hydrogen bonding interactions with Arg117 and the heme 7-propionate anchor the l-kynurenine molecule into the pocket. A mechanism for the hydrolysis of NFK in the active site is presented.
Collapse
Affiliation(s)
- Jaswir Basran
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Elizabeth S Booth
- Department of Chemistry, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Laura P Campbell
- EastChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Sarah J Thackray
- EastChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Mehul H Jesani
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Peter C E Moody
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Christopher G Mowat
- EastChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Hanna Kwon
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Emma L Raven
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
17
|
Mammoli A, Riccio A, Bianconi E, Coletti A, Camaioni E, Macchiarulo A. One Key and Multiple Locks: Substrate Binding in Structures of Tryptophan Dioxygenases and Hydroxylases. ChemMedChem 2021; 16:2732-2743. [PMID: 34137184 PMCID: PMC8518741 DOI: 10.1002/cmdc.202100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/14/2021] [Indexed: 12/18/2022]
Abstract
Since its discovery at the beginning of the past century, the essential nutrient l-Tryptophan (l-Trp) and its catabolic pathways have acquired an increasing interest in an ever wider scientific community for their pivotal roles in underlying many important physiological functions and associated pathological conditions. As a consequence, enzymes catalyzing rate limiting steps along l-Trp catabolic pathways - including IDO1, TDO, TPH1 and TPH2 - have turned to be interesting drug targets for the design and development of novel therapeutic agents for different disorders such as carcinoid syndrome, cancer and autoimmune diseases. This article provides a fresh comparative overview on the most recent advancements that crystallographic studies, biophysical and computational works have brought on structural aspects and molecular recognition patterns of these enzymes toward l-Trp. Finally, a conformational analysis of l-Trp is also discussed as part of the molecular recognition process governing the binding of a substrate to its cognate enzymes.
Collapse
Affiliation(s)
- Andrea Mammoli
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Liceo N. 106123PerugiaItaly
| | - Alessandra Riccio
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Liceo N. 106123PerugiaItaly
| | - Elisa Bianconi
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Liceo N. 106123PerugiaItaly
| | - Alice Coletti
- Department of Medicine and SurgeryUniversity of PerugiaP. le Gambuli06132PerugiaItaly
| | - Emidio Camaioni
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Liceo N. 106123PerugiaItaly
| | - Antonio Macchiarulo
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Liceo N. 106123PerugiaItaly
| |
Collapse
|
18
|
Kozlova A, Thabault L, Liberelle M, Klaessens S, Prévost JRC, Mathieu C, Pilotte L, Stroobant V, Van den Eynde B, Frédérick R. Rational Design of Original Fused-Cycle Selective Inhibitors of Tryptophan 2,3-Dioxygenase. J Med Chem 2021; 64:10967-10980. [PMID: 34338527 DOI: 10.1021/acs.jmedchem.1c00323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tryptophan 2,3-dioxygenase (TDO2) is a heme-containing enzyme constitutively expressed at high concentrations in the liver and responsible for l-tryptophan (l-Trp) homeostasis. Expression of TDO2 in cancer cells results in the inhibition of immune-mediated tumor rejection due to an enhancement of l-Trp catabolism via the kynurenine pathway. In the study herein, we disclose a new 6-(1H-indol-3-yl)-benzotriazole scaffold of TDO2 inhibitors developed through rational design, starting from existing inhibitors. Rigidification of the initial scaffold led to the synthesis of stable compounds displaying a nanomolar cellular potency and a better understanding of the structural modulations that can be accommodated inside the active site of hTDO2.
Collapse
Affiliation(s)
- Arina Kozlova
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium.,Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Léopold Thabault
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium.,Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels B-1200, Belgium
| | - Maxime Liberelle
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Simon Klaessens
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Julien R C Prévost
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Caroline Mathieu
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| |
Collapse
|
19
|
Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bumbu AG, Andronie-Cioara FL, Nechifor AC, Gitea D, Bungau AF, Toma MM, Bungau SG. The Footprint of Kynurenine Pathway in Neurodegeneration: Janus-Faced Role in Parkinson's Disorder and Therapeutic Implications. Int J Mol Sci 2021; 22:6737. [PMID: 34201647 PMCID: PMC8268239 DOI: 10.3390/ijms22136737] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Progressive degeneration of neurons and aggravation of dopaminergic neurons in the substantia nigra pars compacta results in the loss of dopamine in the brain of Parkinson's disease (PD) patients. Numerous therapies, exhibiting transient efficacy have been developed; however, they are mostly accompanied by side effects and limited reliability, therefore instigating the need to develop novel optimistic treatment targets. Significant therapeutic targets have been identified, namely: chaperones, protein Abelson, glucocerebrosidase-1, calcium, neuromelanin, ubiquitin-proteasome system, neuroinflammation, mitochondrial dysfunction, and the kynurenine pathway (KP). The role of KP and its metabolites and enzymes in PD, namely quinolinic acid (QUIN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranillic acid (3-HAA), kunurenine-3-monooxygenase (KMO), etc. has been reported. The neurotoxic QUIN, N-methyl-D-aspartate (NMDA) receptor agonist, and neuroprotective KYNA-which antagonizes QUIN actions-primarily justify the Janus-faced role of KP in PD. Moreover, KP has been reported to play a biomarker role in PD detection. Therefore, the authors detail the neurotoxic, neuroprotective, and immunomodulatory neuroactive components, alongside the upstream and downstream metabolic pathways of KP, forming a basis for a therapeutic paradigm of the disease while recognizing KP as a potential biomarker in PD, thus facilitating the development of a suitable target in PD management.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122412, India;
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616 Birkat Al Mouz, Nizwa 611, Oman;
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616 Birkat Al Mouz, Nizwa 611, Oman;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Adrian Gheorghe Bumbu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania;
| | - Daniela Gitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
| | | | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
20
|
Tryptophanemia is controlled by a tryptophan-sensing mechanism ubiquitinating tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A 2021; 118:2022447118. [PMID: 34074763 DOI: 10.1073/pnas.2022447118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Maintaining stable tryptophan levels is required to control neuronal and immune activity. We report that tryptophan homeostasis is largely controlled by the stability of tryptophan 2,3-dioxygenase (TDO), the hepatic enzyme responsible for tryptophan catabolism. High tryptophan levels stabilize the active tetrameric conformation of TDO through binding noncatalytic exosites, resulting in rapid catabolism of tryptophan. In low tryptophan, the lack of tryptophan binding in the exosites destabilizes the tetramer into inactive monomers and dimers and unmasks a four-amino acid degron that triggers TDO polyubiquitination by SKP1-CUL1-F-box complexes, resulting in proteasome-mediated degradation of TDO and rapid interruption of tryptophan catabolism. The nonmetabolizable analog alpha-methyl-tryptophan stabilizes tetrameric TDO and thereby stably reduces tryptophanemia. Our results uncover a mechanism allowing a rapid adaptation of tryptophan catabolism to ensure quick degradation of excess tryptophan while preventing further catabolism below physiological levels. This ensures a tight control of tryptophanemia as required for both neurological and immune homeostasis.
Collapse
|
21
|
Characterization of the structural determinants of the ubiquitin-dependent proteasomal degradation of human hepatic tryptophan 2,3-dioxygenase. Biochem J 2021; 478:1999-2017. [PMID: 33960368 DOI: 10.1042/bcj20210213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022]
Abstract
Human hepatic tryptophan 2,3-dioxygenase (hTDO) is a homotetrameric hemoprotein. It is one of the most rapidly degraded liver proteins with a half-life (t1/2) of ∼2.3 h, relative to an average t1/2 of ∼2-3 days for total liver protein. The molecular mechanism underlying the poor longevity of hTDO remains elusive. Previously, we showed that hTDO could be recognized and ubiquitinated by two E3 ubiquitin (Ub) ligases, gp78/AMFR and CHIP, and subsequently degraded via Ub-dependent proteasomal degradation pathway. Additionally, we identified 15 ubiquitination K-sites and demonstrated that Trp-binding to an exosite impeded its proteolytic degradation. Here, we further established autophagic-lysosomal degradation as an alternative back-up pathway for cellular hTDO degradation. In addition, with protein kinases A and C, we identified 13 phosphorylated Ser/Thr (pS/pT) sites. Mapping these pS/pT sites on the hTDO surface revealed their propinquity to acidic Asp/Glu (D/E) residues engendering negatively charged DEpSpT clusters vicinal to the ubiquitination K-sites over the entire protein surface. Through site-directed mutagenesis of positively charged patches of gp78, previously documented to interact with the DEpSpT clusters in other target proteins, we uncovered the likely role of the DEpSpT clusters in the molecular recognition of hTDO by gp78 and plausibly other E3 Ub-ligases. Furthermore, cycloheximide-chase analyses revealed the critical structural relevance of the disordered N- and C-termini not only in the Ub-ligase recognition, but also in the proteasome engagement. Together, the surface DEpSpT clusters and the N- and C-termini constitute an intrinsic bipartite degron for hTDO physiological turnover.
Collapse
|
22
|
Targeting protein self-association in drug design. Drug Discov Today 2021; 26:1148-1163. [PMID: 33548462 DOI: 10.1016/j.drudis.2021.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Protein self-association is a universal phenomenon essential for stability and molecular recognition. Disrupting constitutive homomers constitutes an original and emerging strategy in drug design. Inhibition of homomeric proteins can be achieved through direct complex disruption, subunit intercalation, or by promoting inactive oligomeric states. Targeting self-interaction grants several advantages over active site inhibition because of the stimulation of protein degradation, the enhancement of selectivity, substoichiometric inhibition, and by-pass of compensatory mechanisms. This new landscape in protein inhibition is driven by the development of biophysical and biochemical tools suited for the study of homomeric proteins, such as differential scanning fluorimetry (DSF), native mass spectrometry (MS), Förster resonance energy transfer (FRET) spectroscopy, 2D nuclear magnetic resonance (NMR), and X-ray crystallography. In this review, we discuss the different aspects of this new paradigm in drug design.
Collapse
|
23
|
Yokosawa T, Sato A, Wakasugi K. Tryptophan Depletion Modulates Tryptophanyl-tRNA Synthetase-Mediated High-Affinity Tryptophan Uptake into Human Cells. Genes (Basel) 2020; 11:genes11121423. [PMID: 33261077 PMCID: PMC7760169 DOI: 10.3390/genes11121423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
The novel high-affinity tryptophan (Trp)-selective transport system is present at elevated levels in human interferon-γ (IFN-γ)-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. High-affinity Trp uptake into cells results in extracellular Trp depletion and immune suppression. We have previously shown that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are increased by IFN-γ, have a crucial function in high-affinity Trp uptake into human cells. Here, we aimed to elucidate the relationship between TrpRS and IDO1 in high-affinity Trp uptake. We demonstrated that overexpression of IDO1 in HeLa cells drastically enhances high-affinity Trp uptake upon addition of purified TrpRS protein to uptake assay buffer. We also clarified that high-affinity Trp uptake by Trp-starved cells is significantly enhanced by the addition of TrpRS protein to the assay buffer. Moreover, we showed that high-affinity Trp uptake is also markedly elevated by the addition of TrpRS protein to the assay buffer of cells overexpressing another Trp-metabolizing enzyme, tryptophan 2,3-dioxygenase (TDO2). Taken together, we conclude that Trp deficiency is crucial for high-affinity Trp uptake mediated by extracellular TrpRS.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Aomi Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
| | - Keisuke Wakasugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
- Correspondence: ; Tel.: +81-3-5454-4392
| |
Collapse
|
24
|
Dolšak A, Gobec S, Sova M. Indoleamine and tryptophan 2,3-dioxygenases as important future therapeutic targets. Pharmacol Ther 2020; 221:107746. [PMID: 33212094 DOI: 10.1016/j.pharmthera.2020.107746] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Conversion of tryptophan to N-formylkynurenine is the first and rate-limiting step of the tryptophan metabolic pathway (i.e., the kynurenine pathway). This conversion is catalyzed by three enzyme isoforms: indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), and tryptophan 2,3-dioxygenase (TDO). As this pathway generates numerous metabolites that are involved in various pathological conditions, IDOs and TDO represent important targets for therapeutic intervention. This pathway has especially drawn attention due to its importance in tumor resistance. Over the last decade, a large number of IDO and TDO inhibitors have been developed, many of which have entered clinical trials. Here, detailed structural comparisons of these three enzymes (with emphasis on their active sites), their involvement in cellular signaling, and their role(s) in pathological conditions are discussed. Furthermore, the most important recent inhibitors described in papers and patents and involved in clinical trials are reviewed, with a focus on both selective and multiple inhibitors. A short overview of the biochemical and cellular assays used for inhibitory potency evaluation is also presented. This review summarizes recent advances on IDO and TDO as potential drug targets, and provides the key features and perspectives for further research and development of potent inhibitors of the kynurenine pathway.
Collapse
Affiliation(s)
- Ana Dolšak
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matej Sova
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
25
|
Lee R, Lee NE, Choi SH, Nam SM, Kim HC, Rhim H, Cho IH, Hwang SH, Nah SY. Effects of gintonin-enriched fraction on hippocampal gene expressions. Integr Med Res 2020; 10:100475. [PMID: 33134079 PMCID: PMC7588706 DOI: 10.1016/j.imr.2020.100475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
Background Recently, gintonin and gintonin-enriched fraction (GEF) have been isolated from ginseng, a herbal medicine. Gintonin induces [Ca2+]i transition in cultured hippocampal neurons and stimulates acetylcholine release through LPA receptor activation. Oral administration of GEF is linked to hippocampus-dependent cognitive enhancement and other neuroprotective effects; however, effects of its long-term administration on hippocampal gene expression remains unknown. Here, we used next-generation sequence (NGS) analysis to examine changes in hippocampal gene expressions after long-term oral administration of GEF. Methods C57BL/6 mice were divided into three groups: control group, GEF50 (GEF 50 mg/kg, p.o.), and GEF100 (GEF 100 mg/kg, p.o.). After 22 days, total RNA was extracted from mouse hippocampal tissues. NGS was used for gene expression profiling; quantitative-real-time PCR and western blot were performed to quantify the changes in specific genes and to confirm the protein expression levels in treatment groups. Results NGS analysis screened a total of 23,282 genes, analyzing 11-related categories. We focused on the neurogenesis category, which includes four genes for candidate markers: choline acetyltransferase (ChAT) gene, β3-adrenergic receptor (Adrb3) gene, and corticotrophin-releasing hormone (Crh) gene, and tryptophan 2,3-dioxygenase (Tdo2) gene. Real-time PCR showed a marked overexpression of ChAT, Adrb3, and Crh genes, while reduced expression of Tdo2. Western blot analysis also confirmed increased ChAT and decreased Tdo2 protein levels. Conclusion We found that GEF affects mouse hippocampal gene expressions, associated with memory, cognitive, anti-stress and anti-anxiety functions, and neurodegeneration at differential degree, that might explain the genetic bases of GEF-mediated neuroprotective effects.
Collapse
Affiliation(s)
- Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Na-Eun Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung Min Nam
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuro Psychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Li S, Li L, Wu J, Song F, Qin Z, Hou L, Xiao C, Weng J, Qin X, Xu J. TDO Promotes Hepatocellular Carcinoma Progression. Onco Targets Ther 2020; 13:5845-5855. [PMID: 32606795 PMCID: PMC7311207 DOI: 10.2147/ott.s252929] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Tryptophan 2,3-dioxygenase (TDO), encoded by the gene TDO2, is an enzyme that catalyses the first and rate-limiting step of tryptophan (Try) degradation in the kynurenine (Kyn) pathway in the liver. Recently, TDO has been demonstrated to be expressed in various human tumours, especially hepatocellular carcinoma (HCC). However, the role of TDO in HCC is still not very clear. Here, we studied the role of TDO in HCC. Methods We demonstrated that TDO is overexpressed in human HCC tissues and is significantly correlated with malignant phenotype characteristics, including tumour size, tumour differentiation, vascular invasion, etc. Kaplan–Meier analysis showed a poor overall survival rate in patients with TDO-overexpressing tumours. In addition, the effects of TDO on HCC tumour growth and metastasis were detected both in vivo and in vitro. TDO overexpression facilitated HCC cell growth, invasion and migration. Conclusion Our results suggest that TDO positively regulates HCC proliferation and invasion and acts as a new prognostic biomarker of HCC.
Collapse
Affiliation(s)
- Shanbao Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.,Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Lei Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Junyi Wu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Fangbin Song
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Zhiwei Qin
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Lei Hou
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Chao Xiao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Junyong Weng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Xuebin Qin
- Division of Pathology, Tulane National Primate Research Center, Health Sciences Campus, Covington, LA 70433, USA
| | - Junming Xu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| |
Collapse
|
27
|
Circular RNA circZNF566 promotes hepatocellular carcinoma progression by sponging miR-4738-3p and regulating TDO2 expression. Cell Death Dis 2020; 11:452. [PMID: 32532962 PMCID: PMC7293356 DOI: 10.1038/s41419-020-2616-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Abstract
As a recently discovered noncoding RNA, circular RNAs (circRNAs) have been identified to play key roles in cancer biology; however, the detailed functions and mechanisms of circRNAs in hepatocellular carcinoma (HCC) remain largely unclarified. RNA-seq analysis was used to screen the expression profiles of circRNAs in HCC. CircZNF566 expression in HCC tissues and cell lines was detected by qRT-PCR. In vitro CCK-8, colony formation, wound healing, transwell migration, and invasion assays and in vivo tumorigenesis and metastasis assays were conducted to determine the functions of circZNF566. Luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays were also performed to confirm the relationship between circZNF566 and miR-4738-3p. Bioinformatics analysis and luciferase reporter assays were employed to determine whether miR-4738-3p regulates tryptophan 2,3-dioxygenase (TDO2) expression. Finally, immunohistochemistry (IHC) was used to detect the level of TDO2 and determine its prognostic value. CircZNF566 was significantly upregulated in HCC tissues and cell lines. High circZNF566 expression in HCC tissues was positively correlated with clinicopathological features and poor prognosis. Functionally, in vitro experiments showed that circZNF566 promoted HCC cell migration, invasion, and proliferation, whereas in vivo experiments showed that circZNF566 promoted tumorigenesis and metastasis. Mechanistically, circZNF566 acted as a miR-4738-3p sponge to relieve the repressive effect of miR-4738-3p on its target TDO2. In addition, miR-4738-3p suppressed HCC cell migration, invasion, and proliferation, while TDO2 was positively correlated with pathological features and poor prognosis and promoted cell migration, invasion, and proliferation in HCC. CircZNF566 is a novel tumor promoter in HCC and functions through the circZNF566/ miR-4738-3p /TDO2 axis; in addition, circZNF566 may serve as a novel diagnostic marker, prognostic indicator, and target for the treatment of HCC.
Collapse
|
28
|
Chaikeawkaew D, Everts V, Pavasant P. TLR3 activation modulates immunomodulatory properties of human periodontal ligament cells. J Periodontol 2020; 91:1225-1236. [PMID: 31981371 DOI: 10.1002/jper.19-0551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Toll-like receptors (TLR) are a group of receptors that play roles in the innate immune system. Human periodontal ligament cells (hPDL cells) express several TLRs, including TLR3, a nucleotide sensing receptor that recognizes double-stranded RNA from viral infection. However, its role in hPDL cells is unclear. The aim of this study was to investigate the responses of hPDL cells in terms of immunomodulation after TLR3 engagement. METHODS HPDL cells were treated with various doses of poly I:C, a TLR3 activator. The expression of interferon-gamma (IFNγ), indoleamine 2,3 dioxygenase (IDO), and human leukocyte antigen G (HLA-G) was determined. Chemical inhibitors and small interfering RNA (siRNA) were used to confirm the role of TLR3. Coculture with human peripheral blood mononuclear cells (PBMCs) with poly I:C-activated hPDL cells was performed. RESULTS Endosomal TLR3 in hPDL cells was observed by immunocytochemistry. Addition of poly I:C significantly enhanced the expression and secretion of IFNγ, IDO, and HLA-G. Knockdown of TLR3 using siRNA decreased the poly I:C-induced expression of these three molecules. Bafilomycin-A, an inhibitor of auto-phagosome and lysosome fusion, inhibited poly I:C-induced IDO and HLA-G expression, whereas cycloheximide and a TLR3-neutralizing antibody had no effect. In co-culture experiments, poly I:C-activated hPDL cells inhibited PBMCs proliferation and increased mRNA expression of forkhead box P3 (FOXP3), a transcription factor which is a marker of regulatory T cells. CONCLUSION Our findings indicated that TLR3 engagement of hPDL cells induced immunosuppressive properties of these cells. Because immunosuppressive properties play an important role in tissue healing and regeneration, activation of TLR3 may help to attenuate tissue destruction by limiting the inflammatory process and perhaps initiate the healing and regeneration process of the periodontium.
Collapse
Affiliation(s)
- Daneeya Chaikeawkaew
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Oral Biology Graduate Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Center of Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Prasit Pavasant
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
29
|
Discovery and Characterisation of Dual Inhibitors of Tryptophan 2,3-Dioxygenase (TDO2) and Indoleamine 2,3-Dioxygenase 1 (IDO1) Using Virtual Screening. Molecules 2019; 24:molecules24234346. [PMID: 31795096 PMCID: PMC6930675 DOI: 10.3390/molecules24234346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Cancers express tryptophan catabolising enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2) to produce immunosuppressive tryptophan metabolites that undermine patients’ immune systems, leading to poor disease outcomes. Both enzymes are validated targets for cancer immunotherapy but there is a paucity of potent TDO2 and dual IDO1/TDO2 inhibitors. To identify novel dual IDO1/TDO2 scaffolds, 3D shape similarity and pharmacophore in silico screening was conducted using TDO2 as a model for both systems. The obtained hits were tested in cancer cell lines expressing mainly IDO1 (SKOV3—ovarian), predominantly TDO2 (A172—brain), and both IDO1 and TDO2 (BT549—breast). Three virtual screening hits were confirmed as inhibitors (TD12, TD18 and TD34). Dose response experiments showed that TD34 is the most potent inhibitor capable of blocking both IDO1 and TDO2 activity, with the IC50 value for BT549 at 3.42 µM. This work identified new scaffolds able to inhibit both IDO1 and TDO2, thus enriching the collection of dual IDO1/TDO2 inhibitors and providing chemical matter for potential development into future anticancer drugs.
Collapse
|
30
|
Greco FA, Albini E, Coletti A, Dolciami D, Carotti A, Orabona C, Grohmann U, Macchiarulo A. Tracking Hidden Binding Pockets Along the Molecular Recognition Path ofl‐Trp to Indoleamine 2,3‐Dioxygenase 1. ChemMedChem 2019; 14:2084-2092. [DOI: 10.1002/cmdc.201900529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/17/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Francesco A. Greco
- Department of Pharmaceutical SciencesUniversity of Perugia via del liceo n.1 06123 Perugia Italy
| | - Elisa Albini
- Department of Experimental MedicineUniversity of Perugia P.le Gambuli 06132 Perugia Italy
| | - Alice Coletti
- Department of Pharmaceutical SciencesUniversity of Perugia via del liceo n.1 06123 Perugia Italy
| | - Daniela Dolciami
- Department of Pharmaceutical SciencesUniversity of Perugia via del liceo n.1 06123 Perugia Italy
| | - Andrea Carotti
- Department of Pharmaceutical SciencesUniversity of Perugia via del liceo n.1 06123 Perugia Italy
| | - Ciriana Orabona
- Department of Experimental MedicineUniversity of Perugia P.le Gambuli 06132 Perugia Italy
| | - Ursula Grohmann
- Department of Experimental MedicineUniversity of Perugia P.le Gambuli 06132 Perugia Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical SciencesUniversity of Perugia via del liceo n.1 06123 Perugia Italy
| |
Collapse
|
31
|
Yuasa HJ. A comprehensive comparison of the metazoan tryptophan degrading enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140247. [PMID: 31276825 DOI: 10.1016/j.bbapap.2019.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 01/15/2023]
Abstract
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) have an independent origin; however, they have distinctly evolved to catalyze the same reaction. In general, TDO is a single-copy gene in each metazoan species, and TDO enzymes demonstrate similar enzyme activity regardless of their biological origin. In contrast, multiple IDO paralogues are observed in many species, and they display various enzymatic properties. Similar to vertebrate IDO2, invertebrate IDOs generally show low affinity/catalytic efficiency for L-Trp. Meanwhile, two IDO isoforms from scallop (IDO-I and -III) and sponge IDOs show high L-Trp catalytic activity, which is comparable to vertebrate IDO1. Site-directed mutagenesis experiments have revealed that primarily two residues, Tyr located at the 2nd residue on the F-helix (F2nd) and His located at the 9th residue on the G-helix (G9th), are crucial for the high affinity/catalytic efficiency of these 'high performance' invertebrate IDOs. Conversely, those two amino acid substitutions (F2nd/Tyr and G9th/His) resulted in high affinity and catalytic activity in other molluscan 'low performance' IDOs. In human IDO1, G9th is Ser167, whereas the counterpart residue of G9th in human TDO is His76. Previous studies have shown that Ser167 could not be substituted by His because the human IDO1 Ser167His variant showed significantly low catalytic activity. However, this may be specific for human IDO1 because G9th/His was demonstrated to be very effective in increasing the L-Trp affinity even in vertebrate IDOs. Therefore, these findings indicate that the active sites of TDO and IDO are more similar to each other than previously expected.
Collapse
Affiliation(s)
- Hajime Julie Yuasa
- Laboratory of Biochemistry, Department of Applied Science, Faculty of Science and Technology, National University Corporation Kochi University, Kochi 780-8520, Japan.
| |
Collapse
|
32
|
Wang WT, Zhang DJ, Liu ZG, Peng FG, Wang L, Fu B, Wu SH, Li ZQ, Guo ZH, Liu D. Identification of differentially expressed genes in adipose tissue of min pig and large white pig using RNA-seq. ACTA AGR SCAND A-AN 2019. [DOI: 10.1080/09064702.2019.1611912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- W. T. Wang
- College of Wildlife Resource, Northeast Forestry University, Harbin, People’s Republic of China
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - D. J. Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Z. G. Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - F. G. Peng
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - L. Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - B. Fu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - S. H. Wu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Z. Q. Li
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Z. H. Guo
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - D. Liu
- College of Wildlife Resource, Northeast Forestry University, Harbin, People’s Republic of China
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
33
|
Yan J, Zhao Q, Gabrusiewicz K, Kong LY, Xia X, Wang J, Ott M, Xu J, Davis RE, Huo L, Rao G, Sun SC, Watowich SS, Heimberger AB, Li S. FGL2 promotes tumor progression in the CNS by suppressing CD103 + dendritic cell differentiation. Nat Commun 2019; 10:448. [PMID: 30683885 PMCID: PMC6347641 DOI: 10.1038/s41467-018-08271-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
Few studies implicate immunoregulatory gene expression in tumor cells in arbitrating brain tumor progression. Here we show that fibrinogen-like protein 2 (FGL2) is highly expressed in glioma stem cells and primary glioblastoma (GBM) cells. FGL2 knockout in tumor cells did not affect tumor-cell proliferation in vitro or tumor progression in immunodeficient mice but completely impaired GBM progression in immune-competent mice. This impairment was reversed in mice with a defect in dendritic cells (DCs) or CD103+ DC differentiation in the brain and in tumor-draining lymph nodes. The presence of FGL2 in tumor cells inhibited granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced CD103+ DC differentiation by suppressing NF-κB, STAT1/5, and p38 activation. These findings are relevant to GBM patients because a low level of FGL2 expression with concurrent high GM-CSF expression is associated with higher CD8B expression and longer survival. These data provide a rationale for therapeutic inhibition of FGL2 in brain tumors.
Collapse
Affiliation(s)
- Jun Yan
- Center for Brain Disorders Research, Capital Medical University, Beijing, 100069, China
- Beijing Institute for Brain Disorders, Beijing, 100069, China
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qingnan Zhao
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Konrad Gabrusiewicz
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ling-Yuan Kong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xueqing Xia
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jingda Xu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - R Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Longfei Huo
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Shulin Li
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Tryptophan 2,3-dioxygenase inhibitory activities of tryptanthrin derivatives. Eur J Med Chem 2018; 160:133-145. [DOI: 10.1016/j.ejmech.2018.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/21/2023]
|
35
|
Cheong JE, Sun L. Targeting the IDO1/TDO2–KYN–AhR Pathway for Cancer Immunotherapy – Challenges and Opportunities. Trends Pharmacol Sci 2018; 39:307-325. [PMID: 29254698 DOI: 10.1016/j.tips.2017.11.007] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Jae Eun Cheong
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
36
|
Zhang Y, Zou Y, Brock NL, Huang T, Lan Y, Wang X, Deng Z, Tang Y, Lin S. Characterization of 2-Oxindole Forming Heme Enzyme MarE, Expanding the Functional Diversity of the Tryptophan Dioxygenase Superfamily. J Am Chem Soc 2017; 139:11887-11894. [PMID: 28809552 DOI: 10.1021/jacs.7b05517] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
3-Substituted 2-oxindoles are important structural motifs found in many biologically active natural products and pharmaceutical lead compounds. Here, we report an enzymatic formation of the 3-substituted 2-oxindoles catalyzed by MarE in the maremycin biosynthetic pathway in Streptomyces sp. B9173. MarE is a homologue of FeII/heme-dependent tryptophan 2,3-dioxygenases (TDOs). Typical TDOs usually catalyze the insertion of two oxygen atoms from O2 into an indole ring to generate N-formylkynurenine (NFK)-like products. In contrast, MarE catalyzes the insertion of a single oxygen atom from O2 into an indole ring, to probably generate an epoxyindole intermediate that undergoes an unprecedented 2,3-hydride migration to form 2-oxindole structure. MarE shows substrate robustness to catalyze the conversion of a series of 3-substituted indoles into their corresponding 3-substituted 2-oxindoles. Although containing most key amino acid residues conserved in well-known TDO homologues, MarE falls into a separate new subgroup in the phylogenetic tree. The characterization of MarE and its homologue enriches the functional diversities of TDO superfamily and provides a new strategy for discovering novel natural products containing 3-substituted 2-oxindole pharmacophores by genome mining.
Collapse
Affiliation(s)
- Yuyang Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Yi Zou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China.,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, and Department of Bioengineering, University of California, Los Angeles , 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Nelson L Brock
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Yingxia Lan
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, and Department of Bioengineering, University of California, Los Angeles , 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
37
|
Nienhaus K, Hahn V, Hüpfel M, Nienhaus GU. Substrate Binding Primes Human Tryptophan 2,3-Dioxygenase for Ligand Binding. J Phys Chem B 2017; 121:7412-7420. [PMID: 28715185 DOI: 10.1021/acs.jpcb.7b03463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human heme enzyme tryptophan 2,3-dioxygenase (hTDO) catalyzes the insertion of dioxygen into its cognate substrate, l-tryptophan (l-Trp). Its active site structure is highly dynamic, and the mechanism of enzyme-substrate-ligand complex formation and the ensuing enzymatic reaction is not yet understood. Here we have studied complex formation in hTDO by using time-resolved optical and infrared spectroscopy with carbon monoxide (CO) as a ligand. We have observed that both substrate-free and substrate-bound hTDO coexist in two discrete conformations with greatly different ligand binding rates. In the fast rebinding hTDO conformation, there is facile ligand access to the heme iron, but it is greatly hindered in the slowly rebinding conformation. Spectroscopic evidence implicates active site solvation as playing a crucial role for the observed kinetic differences. Substrate binding shifts the conformational equilibrium markedly toward the fast species and thus primes the active site for subsequent ligand binding, ensuring that formation of the ternary complex occurs predominantly by first binding l-Trp and then the ligand. Consequently, the efficiency of catalysis is enhanced because O2 binding prior to substrate binding, resulting in nonproductive oxidation of the heme iron, is greatly suppressed.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Vincent Hahn
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Manuel Hüpfel
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany.,Institute of Nanotechnology (INT) and Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT) , 76344 Eggenstein-Leopoldshafen, Germany.,Department of Physics, University of Illinois at Urbana-Champaign , 1110 W. Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
38
|
In silico discovery and therapeutic potential of IDO1 and TDO2 inhibitors. Future Med Chem 2017; 9:1309-1311. [DOI: 10.4155/fmc-2017-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Abram DM, Fernandes LGR, Ramos Filho ACS, Simioni PU. The modulation of enzyme indoleamine 2,3-dioxygenase from dendritic cells for the treatment of type 1 diabetes mellitus. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2171-2178. [PMID: 28769554 PMCID: PMC5533566 DOI: 10.2147/dddt.s135367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus type 1 (DM1) is an autoimmune disease in which β-cells of the pancreas islet are destroyed by T lymphocytes. Specific T cells are activated by antigen-presenting cells, mainly dendritic cells (DCs). It is already known that the regulation of tryptophan pathway in DC can be a mechanism of immunomodulation. The enzyme indoleamine 2,3-dioxygenase (IDO) is present in many cells, including DC, and participates in the metabolism of the amino acid tryptophan. Recent studies suggest the involvement of IDO in the modulation of immune response, which became more evident after the in vitro demonstration of IDO production by DC and of the ability of these cells to inhibit lymphocyte function through the control of tryptophan metabolism. Current studies on immunotherapies describe the use of DC and IDO to control the progression of the immune response that triggers DM1. The initial results obtained are promising and indicate the possibility of developing therapies for the treatment or prevention of the DM1. Clinical trials using these cells in DM1 patients represent an interesting alternative treatment. However, clinical trials are still in the initial phase and a robust group of assays is necessary.
Collapse
Affiliation(s)
- Débora Moitinho Abram
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Luis Gustavo Romani Fernandes
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.,Department of Biomedical Science, Faculty of Americana, Americana, SP, Brazil
| | | | - Patrícia Ucelli Simioni
- Department of Biomedical Science, Faculty of Americana, Americana, SP, Brazil.,Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Biochemistry and Microbiology, Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| |
Collapse
|
40
|
Gelpi M, Hartling HJ, Ueland PM, Ullum H, Trøseid M, Nielsen SD. Tryptophan catabolism and immune activation in primary and chronic HIV infection. BMC Infect Dis 2017; 17:349. [PMID: 28511640 PMCID: PMC5434617 DOI: 10.1186/s12879-017-2456-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Kynurenine/Tryptophan ratio (KTR) is increased in HIV infection, and linked to immune activation. We hypothesized that early cART initiation results in lower KTR compared to late initiation. Furthermore, we hypothesized that KTR prior to cART is a predictor of the magnitude of subsequent reduction in immune activation. METHODS Prospective study including 57 HIV-infected individuals (primary HIV infection (N = 14), early presenters (>350 CD4+ T cells/μL, N = 24), late presenters (<200 CD4+ T cells/μL, N = 19)). Kynurenine and tryptophan were analysed by liquid chromatography-tandem mass spectrometry. Total CD4+ and CD8+ T cells were determined and proportion of activated CD38 + HLA-DR+ Tcells was measured using flow cytometry at baseline and after 6 and 12 months of cART. RESULTS At baseline, primary HIV infection had higher KTR than early presenters. However, similar KTR in primary HIV infection and early presenters was found after cART initiation, while late presenters had higher KTR at all time points. In primary HIV infection and early presenters, KTR was positively associated with proportion of activated cells at baseline. Furthermore, in early presenters the KTR at baseline was associated with proportion of activated cells after 6 and 12 months. Interestingly, in primary HIV infection the KTR at baseline was positively associated with reduction in proportion of CD8 + CD38 + HLA-DR T cells after 6 and 12 months. CONCLUSIONS Lower kynurenine/tryptophan ratio during follow-up was found after early initiation of cART. KTR in primary HIV infection and early presenters was positively associated with immune activation. Importantly, KTR in primary HIV infection predicted the magnitude of subsequent reduction in immune activation. Thus, a beneficial effect of early cART on KTR was suggested.
Collapse
Affiliation(s)
- Marco Gelpi
- Viro-Immunology Research Unit, Department of Infectious Diseases, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark
| | - Hans J Hartling
- Viro-Immunology Research Unit, Department of Infectious Diseases, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark
| | - Per M Ueland
- Section for pharmacology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Henrik Ullum
- Department of Clinical Immunology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark
| | - Marius Trøseid
- Section of Clinical Immunology and Infectious Diseases, University Hospital Rikshospitalet, Kirkeveien 166, Oslo, Norway
| | - Susanne D Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark.
| |
Collapse
|
41
|
Michels H, Seinstra RI, Uitdehaag JCM, Koopman M, van Faassen M, Martineau CN, Kema IP, Buijsman R, Nollen EAA. Identification of an evolutionary conserved structural loop that is required for the enzymatic and biological function of tryptophan 2,3-dioxygenase. Sci Rep 2016; 6:39199. [PMID: 27995966 PMCID: PMC5171515 DOI: 10.1038/srep39199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/21/2016] [Indexed: 01/25/2023] Open
Abstract
The enzyme TDO (tryptophan 2,3-dioxygenase; TDO-2 in Caenorhabditis elegans) is a potential therapeutic target to cancer but is also thought to regulate proteotoxic events seen in the progression of neurodegenerative diseases. To better understand its function and develop specific compounds that target TDO we need to understand the structure of this molecule. In C. elegans we compared multiple different CRISPR/Cas9-induced tdo-2 deletion mutants and identified a motif of three amino acids (PLD) that is required for the enzymatic conversion of tryptophan to N-formylkynurenine. Loss of TDO-2’s enzymatic activity in PDL deletion mutants was accompanied by an increase in motility during aging and a prolonged lifespan, which is in line with the previously observed phenotypes induced by a knockdown of the full enzyme. Comparison of sequence structures suggests that blocking this motif might interfere with haem binding, which is essential for the enzyme’s activity. The fact that these three residues are situated in an evolutionary conserved structural loop of the enzyme suggests that the findings can be translated to humans. The identification of this specific loop region in TDO-2–essential for its catalytic function–will aid in the design of novel inhibitors to treat diseases in which the TDO enzyme is overexpressed or hyperactive.
Collapse
Affiliation(s)
- Helen Michels
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, Laboratory of Molecular Neurobiology of Aging, The Netherlands
| | - Renée I Seinstra
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, Laboratory of Molecular Neurobiology of Aging, The Netherlands
| | | | - Mandy Koopman
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, Laboratory of Molecular Neurobiology of Aging, The Netherlands
| | - Martijn van Faassen
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, The Netherlands
| | - Céline N Martineau
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, Laboratory of Molecular Neurobiology of Aging, The Netherlands
| | - Ido P Kema
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, The Netherlands
| | - Rogier Buijsman
- Netherlands Translational Research Center B.V., Oss, The Netherlands
| | - Ellen A A Nollen
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, Laboratory of Molecular Neurobiology of Aging, The Netherlands
| |
Collapse
|
42
|
Raven EL. A short history of heme dioxygenases: rise, fall and rise again. J Biol Inorg Chem 2016; 22:175-183. [PMID: 27909919 PMCID: PMC5350241 DOI: 10.1007/s00775-016-1412-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/10/2016] [Indexed: 01/20/2023]
Abstract
It is well established that there are two different classes of enzymes—tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO)—that catalyse the O2-dependent oxidation of l-tryptophan to N-formylkynurenine. But it was not always so. This perspective presents a short history of the early TDO and IDO literature, the people that were involved in creating it, and the legacy that this left for the future.
Collapse
Affiliation(s)
- Emma L Raven
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
43
|
Lewis-Ballester A, Forouhar F, Kim SM, Lew S, Wang Y, Karkashon S, Seetharaman J, Batabyal D, Chiang BY, Hussain M, Correia MA, Yeh SR, Tong L. Molecular basis for catalysis and substrate-mediated cellular stabilization of human tryptophan 2,3-dioxygenase. Sci Rep 2016; 6:35169. [PMID: 27762317 PMCID: PMC5071832 DOI: 10.1038/srep35169] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/26/2016] [Indexed: 11/09/2022] Open
Abstract
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) play a central role in tryptophan metabolism and are involved in many cellular and disease processes. Here we report the crystal structure of human TDO (hTDO) in a ternary complex with the substrates L-Trp and O2 and in a binary complex with the product N-formylkynurenine (NFK), defining for the first time the binding modes of both substrates and the product of this enzyme. The structure indicates that the dioxygenation reaction is initiated by a direct attack of O2 on the C2 atom of the L-Trp indole ring. The structure also reveals an exo binding site for L-Trp, located ~42 Å from the active site and formed by residues conserved among tryptophan-auxotrophic TDOs. Biochemical and cellular studies indicate that Trp binding at this exo site does not affect enzyme catalysis but instead it retards the degradation of hTDO through the ubiquitin-dependent proteasomal pathway. This exo site may therefore provide a novel L-Trp-mediated regulation mechanism for cellular degradation of hTDO, which may have important implications in human diseases.
Collapse
Affiliation(s)
- Ariel Lewis-Ballester
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Farhad Forouhar
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| | - Sung-Mi Kim
- Departments of Cellular and Molecular Pharmacology, Pharmaceutical Chemistry, and Bioengineering and Therapeutic Sciences, The Liver Center, University of California at San Francisco San Francisco, CA 94158, USA
| | - Scott Lew
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| | - YongQiang Wang
- Departments of Cellular and Molecular Pharmacology, Pharmaceutical Chemistry, and Bioengineering and Therapeutic Sciences, The Liver Center, University of California at San Francisco San Francisco, CA 94158, USA
| | - Shay Karkashon
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Jayaraman Seetharaman
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| | - Dipanwita Batabyal
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Bing-Yu Chiang
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Munif Hussain
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| | - Maria Almira Correia
- Departments of Cellular and Molecular Pharmacology, Pharmaceutical Chemistry, and Bioengineering and Therapeutic Sciences, The Liver Center, University of California at San Francisco San Francisco, CA 94158, USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Liang Tong
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| |
Collapse
|
44
|
Abstract
Tryptophan-2, 3-dioxygenase (TDO) is a heme-containing protein catalyzing the first reaction in the kynurenine pathway, which incorporates oxygen into the indole moiety of tryptophan and catalyzes it into kynurenine (KYN). The activation of TDO results in the depletion of tryptophan and the accumulation of kynurenine and its metabolites. These metabolites can affect the function of neurons and inhibit the proliferation of T cells. Increasing evidence demonstrates that TDO is a potential therapeutic target in the treatment of brain diseases as well as in the antitumor and transplant fields. Despite its growing popularity, there are few reviews only focusing on TDO. Hence, we herein review TDO by providing a comprehensive overview of TDO, including its biological functions as well as the evolution, structure and catalytic process of TDO. Additionally, this review will focus on the role of TDO in the pathology of three groups of brain diseases: Schizophrenia, Alzheimer's disease (AD) and Glioma. Finally, we will also provide an opinion regarding the future developmental directions of TDO in brain diseases, especially whether TDO has a potential role in other brain diseases as well as the development and applications of TDO inhibitors as treatments.
Collapse
Affiliation(s)
- Cheng-Peng Yu
- The Second Clinic Medical College, School of Medicine, Nanchang University, Nanchang, China
| | - Ze-Zheng Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Da-Ya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.
| |
Collapse
|
45
|
Álvarez L, Lewis-Ballester A, Roitberg A, Estrin DA, Yeh SR, Marti MA, Capece L. Structural Study of a Flexible Active Site Loop in Human Indoleamine 2,3-Dioxygenase and Its Functional Implications. Biochemistry 2016; 55:2785-93. [PMID: 27112409 DOI: 10.1021/acs.biochem.6b00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human indoleamine 2,3-dioxygenase catalyzes the oxidative cleavage of tryptophan to N-formyl kynurenine, the initial and rate-limiting step in the kynurenine pathway. Additionally, this enzyme has been identified as a possible target for cancer therapy. A 20-amino acid protein segment (the JK loop), which connects the J and K helices, was not resolved in the reported hIDO crystal structure. Previous studies have shown that this loop undergoes structural rearrangement upon substrate binding. In this work, we apply a combination of replica exchange molecular dynamics simulations and site-directed mutagenesis experiments to characterize the structure and dynamics of this protein region. Our simulations show that the JK loop can be divided into two regions: the first region (JK loop(C)) displays specific and well-defined conformations and is within hydrogen bonding distance of the substrate, while the second region (JK loop(N)) is highly disordered and exposed to the solvent. The peculiar flexible nature of JK loop(N) suggests that it may function as a target for post-translational modifications and/or a mediator for protein-protein interactions. In contrast, hydrogen bonding interactions are observed between the substrate and Thr379 in the highly conserved "GTGG" motif of JK loop(C), thereby anchoring JK loop(C) in a closed conformation, which secures the appropriate substrate binding mode for catalysis. Site-directed mutagenesis experiments confirm the key role of this residue, highlighting the importance of the JK loop(C) conformation in regulating the enzymatic activity. Furthermore, the existence of the partially and totally open conformations in the substrate-free form suggests a role of JK loop(C) in controlling substrate and product dynamics.
Collapse
Affiliation(s)
- Lucía Álvarez
- Dto. de Química Inorgánica, Analítica y Química Física, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires C1428EGA, Argentina.,INQUIMAE-CONICET , Buenos Aires C1428EGA, Argentina
| | - Ariel Lewis-Ballester
- Department of Physiology and Biophysics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, New York, New York 10461, United States
| | - Adrián Roitberg
- Department of Chemistry, University of Florida , 440 Leigh Hall, Gainesville, Florida 32611-7200, United States
| | - Darío A Estrin
- Dto. de Química Inorgánica, Analítica y Química Física, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires C1428EGA, Argentina.,INQUIMAE-CONICET , Buenos Aires C1428EGA, Argentina
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, New York, New York 10461, United States
| | - Marcelo A Marti
- Dto. de Química Biologica Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires C1428EGA, Argentina.,IQUIBICEN-CONICET , Buenos Aires C1428EGA, Argentina
| | - Luciana Capece
- Dto. de Química Inorgánica, Analítica y Química Física, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires C1428EGA, Argentina.,INQUIMAE-CONICET , Buenos Aires C1428EGA, Argentina
| |
Collapse
|
46
|
Astrocytes as Pharmacological Targets in the Treatment of Schizophrenia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-800981-9.00025-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Booth ES, Basran J, Lee M, Handa S, Raven EL. Substrate Oxidation by Indoleamine 2,3-Dioxygenase: EVIDENCE FOR A COMMON REACTION MECHANISM. J Biol Chem 2015; 290:30924-30. [PMID: 26511316 PMCID: PMC4692220 DOI: 10.1074/jbc.m115.695684] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/06/2022] Open
Abstract
The kynurenine pathway is the major route of l-tryptophan (l-Trp) catabolism in biology, leading ultimately to the formation of NAD+. The initial and rate-limiting step of the kynurenine pathway involves oxidation of l-Trp to N-formylkynurenine. This is an O2-dependent process and catalyzed by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. More than 60 years after these dioxygenase enzymes were first isolated (Kotake, Y., and Masayama, I. (1936) Z. Physiol. Chem. 243, 237–244), the mechanism of the reaction is not established. We examined the mechanism of substrate oxidation for a series of substituted tryptophan analogues by indoleamine 2,3-dioxygenase. We observed formation of a transient intermediate, assigned as a Compound II (ferryl) species, during oxidation of l-Trp, 1-methyl-l-Trp, and a number of other substrate analogues. The data are consistent with a common reaction mechanism for indoleamine 2,3-dioxygenase-catalyzed oxidation of tryptophan and other tryptophan analogues.
Collapse
Affiliation(s)
- Elizabeth S Booth
- From the Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, Great Britain, United Kingdom and
| | - Jaswir Basran
- Department of Molecular and Cellular Biology and Henry Wellcome Laboratories for Structural Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, Great Britain, United Kingdom
| | - Michael Lee
- From the Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, Great Britain, United Kingdom and
| | - Sandeep Handa
- From the Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, Great Britain, United Kingdom and
| | - Emma L Raven
- From the Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, Great Britain, United Kingdom and
| |
Collapse
|
48
|
Wu JS, Lin SY, Liao FY, Hsiao WC, Lee LC, Peng YH, Hsieh CL, Wu MH, Song JS, Yueh A, Chen CH, Yeh SH, Liu CY, Lin SY, Yeh TK, Hsu JTA, Shih C, Ueng SH, Hung MS, Wu SY. Identification of Substituted Naphthotriazolediones as Novel Tryptophan 2,3-Dioxygenase (TDO) Inhibitors through Structure-Based Virtual Screening. J Med Chem 2015; 58:7807-19. [PMID: 26348881 DOI: 10.1021/acs.jmedchem.5b00921] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A structure-based virtual screening strategy, comprising homology modeling, ligand-support binding site optimization, virtual screening, and structure clustering analysis, was developed and used to identify novel tryptophan 2,3-dioxygenase (TDO) inhibitors. Compound 1 (IC50 = 711 nM), selected by virtual screening, showed inhibitory activity toward TDO and was subjected to structural modifications and molecular docking studies. This resulted in the identification of a potent TDO selective inhibitor (11e, IC50 = 30 nM), making it a potential compound for further investigation as a cancer therapeutic and other TDO-related targeted therapy.
Collapse
Affiliation(s)
- Jian-Sung Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Shu-Yu Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Fang-Yu Liao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Wen-Chi Hsiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Lung-Chun Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Yi-Hui Peng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chia-Ling Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chun-Hwa Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chia-Yeh Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - John T-A Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Shau-Hua Ueng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Ming-Shiu Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Su-Ying Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| |
Collapse
|
49
|
Maddison DC, Giorgini F. The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 2015; 40:134-41. [PMID: 25773161 DOI: 10.1016/j.semcdb.2015.03.002] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 11/30/2022]
Abstract
Neuroactive metabolites of the kynurenine pathway (KP) of tryptophan degradation have been closely linked to the pathogenesis of several neurodegenerative diseases. Tryptophan is an essential amino acid required for protein synthesis, and in higher eukaryotes is also converted into the key neurotransmitters serotonin and tryptamine. However, in mammals >95% of tryptophan is metabolized through the KP, ultimately leading to the production of nicotinamide adenosine dinucleotide (NAD(+)). A number of the pathway metabolites are neuroactive; e.g. can modulate activity of several glutamate receptors and generate/scavenge free radicals. Imbalances in absolute and relative levels of KP metabolites have been strongly associated with neurodegenerative disorders including Huntington's, Alzheimer's, and Parkinson's diseases. The KP has also been implicated in the pathogenesis of other brain disorders (e.g. schizophrenia, bipolar disorder), as well as several cancers and autoimmune disorders such as HIV. Pharmacological and genetic manipulation of the KP has been shown to ameliorate neurodegenerative phenotypes in a number of model organisms, suggesting that it could prove to be a viable target for the treatment of such diseases. Here, we provide an overview of the KP, its role in neurodegeneration and the current strategies for therapeutic targeting of the pathway.
Collapse
Affiliation(s)
- Daniel C Maddison
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Flaviano Giorgini
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK.
| |
Collapse
|