1
|
De Paepe B, De Mey M. Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors. ACS Synth Biol 2025; 14:72-86. [PMID: 39709556 PMCID: PMC11745168 DOI: 10.1021/acssynbio.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Since the description of the lac operon in 1961 by Jacob and Monod, transcriptional regulation in prokaryotes has been studied extensively and has led to the development of transcription factor-based biosensors. Due to the broad variety of detectable small molecules and their various applications across biotechnology, biosensor research and development have increased exponentially over the past decades. Throughout this period, key milestones in fundamental knowledge, synthetic biology, analytical tools, and computational learning have led to an immense expansion of the biosensor repertoire and its application portfolio. Over the years, biosensor engineering became a more multidisciplinary discipline, combining high-throughput analytical tools, DNA randomization strategies, forward engineering, and advanced protein engineering workflows. Despite these advances, many obstacles remain to fully unlock the potential of biosensor technology. This review analyzes the timeline of key milestones on fundamental research (1960s to 2000s) and engineering strategies (2000s onward), on both the DNA and protein level of biosensors. Moreover, insights into the future perspectives, remaining hurdles, and unexplored opportunities of this promising field are discussed.
Collapse
Affiliation(s)
- Brecht De Paepe
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
3
|
Wu S, Zhou Y, Dai L, Yang A, Qiao J. Assembly of functional microbial ecosystems: from molecular circuits to communities. FEMS Microbiol Rev 2024; 48:fuae026. [PMID: 39496507 PMCID: PMC11585282 DOI: 10.1093/femsre/fuae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Microbes compete and cooperate with each other via a variety of chemicals and circuits. Recently, to decipher, simulate, or reconstruct microbial communities, many researches have been engaged in engineering microbiomes with bottom-up synthetic biology approaches for diverse applications. However, they have been separately focused on individual perspectives including genetic circuits, communications tools, microbiome engineering, or promising applications. The strategies for coordinating microbial ecosystems based on different regulation circuits have not been systematically summarized, which calls for a more comprehensive framework for the assembly of microbial communities. In this review, we summarize diverse cross-talk and orthogonal regulation modules for de novo bottom-up assembling functional microbial ecosystems, thus promoting further consortia-based applications. First, we review the cross-talk communication-based regulations among various microbial communities from intra-species and inter-species aspects. Then, orthogonal regulations are summarized at metabolites, transcription, translation, and post-translation levels, respectively. Furthermore, to give more details for better design and optimize various microbial ecosystems, we propose a more comprehensive design-build-test-learn procedure including function specification, chassis selection, interaction design, system build, performance test, modeling analysis, and global optimization. Finally, current challenges and opportunities are discussed for the further development and application of microbial ecosystems.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, China
| | - Yongsheng Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, China
| |
Collapse
|
4
|
Nishikawa KK, Chen J, Acheson JF, Harbaugh SV, Huss P, Frenkel M, Novy N, Sieren HR, Lodewyk EC, Lee DH, Chávez JL, Fox BG, Raman S. Highly multiplexed design of an allosteric transcription factor to sense new ligands. Nat Commun 2024; 15:10001. [PMID: 39562775 PMCID: PMC11577015 DOI: 10.1038/s41467-024-54260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
Allosteric transcription factors (aTF) regulate gene expression through conformational changes induced by small molecule binding. Although widely used as biosensors, aTFs have proven challenging to design for detecting new molecules because mutation of ligand-binding residues often disrupts allostery. Here, we develop Sensor-seq, a high-throughput platform to design and identify aTF biosensors that bind to non-native ligands. We screen a library of 17,737 variants of the aTF TtgR, a regulator of a multidrug exporter, against six non-native ligands of diverse chemical structures - four derivatives of the cancer therapeutic tamoxifen, the antimalarial drug quinine, and the opiate analog naltrexone - as well as two native flavonoid ligands, naringenin and phloretin. Sensor-seq identifies biosensors for each of these ligands with high dynamic range and diverse specificity profiles. The structure of a naltrexone-bound design shows shape-complementary methionine-aromatic interactions driving ligand specificity. To demonstrate practical utility, we develop cell-free detection systems for naltrexone and quinine. Sensor-seq enables rapid and scalable design of new biosensors, overcoming constraints of natural biosensors.
Collapse
Affiliation(s)
- Kyle K Nishikawa
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jackie Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin F Acheson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Svetlana V Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory, Wright Patterson Air Force Base, OH, USA
| | - Phil Huss
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Max Frenkel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathan Novy
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Hailey R Sieren
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Dane County Youth Apprenticeship Program, State of Wisconsin Department of Workforce Development, Madison, WI, USA
| | - Ella C Lodewyk
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Dane County Youth Apprenticeship Program, State of Wisconsin Department of Workforce Development, Madison, WI, USA
| | - Daniel H Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Dane County Youth Apprenticeship Program, State of Wisconsin Department of Workforce Development, Madison, WI, USA
| | - Jorge L Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright Patterson Air Force Base, OH, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Pham C, Nasr MA, Skarina T, Di Leo R, Kwan DH, Martin VJJ, Stogios PJ, Mahadevan R, Savchenko A. Functional and structural characterization of an IclR family transcription factor for the development of dicarboxylic acid biosensors. FEBS J 2024; 291:3481-3498. [PMID: 38696354 DOI: 10.1111/febs.17149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/15/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Prokaryotic transcription factors (TFs) regulate gene expression in response to small molecules, thus representing promising candidates as versatile small molecule-detecting biosensors valuable for synthetic biology applications. The engineering of such biosensors requires thorough in vitro and in vivo characterization of TF ligand response as well as detailed molecular structure information. In this work, we functionally and structurally characterize the Pca regulon regulatory protein (PcaR) transcription factor belonging to the IclR transcription factor family. Here, we present in vitro functional analysis of the ligand profile of PcaR and the construction of genetic circuits for the characterization of PcaR as an in vivo biosensor in the model eukaryote Saccharomyces cerevisiae. We report the crystal structures of PcaR in the apo state and in complex with one of its ligands, succinate, which suggests the mechanism of dicarboxylic acid recognition by this transcription factor. This work contributes key structural and functional insights enabling the engineering of PcaR for dicarboxylic acid biosensors, in addition to providing more insights into the IclR family of regulators.
Collapse
Affiliation(s)
- Chester Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Mohamed A Nasr
- Centre for Applied Synthetic Biology, Concordia University, Montreal, Canada
- Department of Biology, Concordia University, Montreal, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - David H Kwan
- Centre for Applied Synthetic Biology, Concordia University, Montreal, Canada
- Department of Biology, Concordia University, Montreal, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Canada
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Canada
| | - Vincent J J Martin
- Centre for Applied Synthetic Biology, Concordia University, Montreal, Canada
- Department of Biology, Concordia University, Montreal, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
- The Institute of Biomedical Engineering, University of Toronto, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Canada
| |
Collapse
|
6
|
Nishikawa KK, Chen J, Acheson JF, Harbaugh SV, Huss P, Frenkel M, Novy N, Sieren HR, Lodewyk EC, Lee DH, Chávez JL, Fox BG, Raman S. Highly multiplexed design of an allosteric transcription factor to sense novel ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583947. [PMID: 38496486 PMCID: PMC10942455 DOI: 10.1101/2024.03.07.583947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Allosteric transcription factors (aTF), widely used as biosensors, have proven challenging to design for detecting novel molecules because mutation of ligand-binding residues often disrupts allostery. We developed Sensor-seq, a high-throughput platform to design and identify aTF biosensors that bind to non-native ligands. We screened a library of 17,737 variants of the aTF TtgR, a regulator of a multidrug exporter, against six non-native ligands of diverse chemical structures - four derivatives of the cancer therapeutic tamoxifen, the antimalarial drug quinine, and the opiate analog naltrexone - as well as two native flavonoid ligands, naringenin and phloretin. Sensor-seq identified novel biosensors for each of these ligands with high dynamic range and diverse specificity profiles. The structure of a naltrexone-bound design showed shape-complementary methionine-aromatic interactions driving ligand specificity. To demonstrate practical utility, we developed cell-free detection systems for naltrexone and quinine. Sensor-seq enables rapid, scalable design of new biosensors, overcoming constraints of natural biosensors.
Collapse
Affiliation(s)
- Kyle K Nishikawa
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jackie Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Justin F Acheson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Svetlana V Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory Wright Patterson Air Force Base, OH, USA
| | - Phil Huss
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Max Frenkel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan Novy
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hailey R Sieren
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ella C Lodewyk
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel H Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jorge L Chávez
- 711th Human Performance Wing, Air Force Research Laboratory Wright Patterson Air Force Base, OH, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Zeng M, Sarker B, Rondthaler SN, Vu V, Andrews LB. Identifying LasR Quorum Sensors with Improved Signal Specificity by Mapping the Sequence-Function Landscape. ACS Synth Biol 2024; 13:568-589. [PMID: 38206199 DOI: 10.1021/acssynbio.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Programmable intercellular signaling using components of naturally occurring quorum sensing can allow for coordinated functions to be engineered in microbial consortia. LuxR-type transcriptional regulators are widely used for this purpose and are activated by homoserine lactone (HSL) signals. However, they often suffer from imperfect molecular discrimination of structurally similar HSLs, causing misregulation within engineered consortia containing multiple HSL signals. Here, we studied one such example, the regulator LasR from Pseudomonas aeruginosa. We elucidated its sequence-function relationship for ligand specificity using targeted protein engineering and multiplexed high-throughput biosensor screening. A pooled combinatorial saturation mutagenesis library (9,486 LasR DNA sequences) was created by mutating six residues in LasR's β5 sheet with single, double, or triple amino acid substitutions. Sort-seq assays were performed in parallel using cognate and noncognate HSLs to quantify each corresponding sensor's response to each HSL signal, which identified hundreds of highly specific variants. Sensor variants identified were individually assayed and exhibited up to 60.6-fold (p = 0.0013) improved relative activation by the cognate signal compared to the wildtype. Interestingly, we uncovered prevalent mutational epistasis and previously unidentified residues contributing to signal specificity. The resulting sensors with negligible signal crosstalk could be broadly applied to engineer bacteria consortia.
Collapse
Affiliation(s)
- Min Zeng
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Biprodev Sarker
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Stephen N Rondthaler
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Vanessa Vu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Xi C, Diao J, Moon TS. Advances in ligand-specific biosensing for structurally similar molecules. Cell Syst 2023; 14:1024-1043. [PMID: 38128482 PMCID: PMC10751988 DOI: 10.1016/j.cels.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023]
Abstract
The specificity of biological systems makes it possible to develop biosensors targeting specific metabolites, toxins, and pollutants in complex medical or environmental samples without interference from structurally similar compounds. For the last two decades, great efforts have been devoted to creating proteins or nucleic acids with novel properties through synthetic biology strategies. Beyond augmenting biocatalytic activity, expanding target substrate scopes, and enhancing enzymes' enantioselectivity and stability, an increasing research area is the enhancement of molecular specificity for genetically encoded biosensors. Here, we summarize recent advances in the development of highly specific biosensor systems and their essential applications. First, we describe the rational design principles required to create libraries containing potential mutants with less promiscuity or better specificity. Next, we review the emerging high-throughput screening techniques to engineer biosensing specificity for the desired target. Finally, we examine the computer-aided evaluation and prediction methods to facilitate the construction of ligand-specific biosensors.
Collapse
Affiliation(s)
- Chenggang Xi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
9
|
Huttanus HM, Triola EKH, Velasquez-Guzman JC, Shin SM, Granja-Travez RS, Singh A, Dale T, Jha RK. Targeted mutagenesis and high-throughput screening of diversified gene and promoter libraries for isolating gain-of-function mutations. Front Bioeng Biotechnol 2023; 11:1202388. [PMID: 37545889 PMCID: PMC10400447 DOI: 10.3389/fbioe.2023.1202388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/25/2023] [Indexed: 08/08/2023] Open
Abstract
Targeted mutagenesis of a promoter or gene is essential for attaining new functions in microbial and protein engineering efforts. In the burgeoning field of synthetic biology, heterologous genes are expressed in new host organisms. Similarly, natural or designed proteins are mutagenized at targeted positions and screened for gain-of-function mutations. Here, we describe methods to attain complete randomization or controlled mutations in promoters or genes. Combinatorial libraries of one hundred thousands to tens of millions of variants can be created using commercially synthesized oligonucleotides, simply by performing two rounds of polymerase chain reactions. With a suitably engineered reporter in a whole cell, these libraries can be screened rapidly by performing fluorescence-activated cell sorting (FACS). Within a few rounds of positive and negative sorting based on the response from the reporter, the library can rapidly converge to a few optimal or extremely rare variants with desired phenotypes. Library construction, transformation and sequence verification takes 6-9 days and requires only basic molecular biology lab experience. Screening the library by FACS takes 3-5 days and requires training for the specific cytometer used. Further steps after sorting, including colony picking, sequencing, verification, and characterization of individual clones may take longer, depending on number of clones and required experiments.
Collapse
Affiliation(s)
- Herbert M. Huttanus
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Ellin-Kristina H. Triola
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Jeanette C. Velasquez-Guzman
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Sang-Min Shin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Rommel S. Granja-Travez
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Anmoldeep Singh
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Taraka Dale
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Ramesh K. Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
- BOTTLE Consortium, Golden, CO, United States
| |
Collapse
|
10
|
Shin SM, Jha RK, Dale T. Tackling the Catch-22 Situation of Optimizing a Sensor and a Transporter System in a Whole-Cell Microbial Biosensor Design for an Anthropogenic Small Molecule. ACS Synth Biol 2022; 11:3996-4008. [PMID: 36472954 DOI: 10.1021/acssynbio.2c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Whole-cell biosensors provide a convenient detection tool for the high-throughput screening of genetically engineered biocatalytic activity. But establishing a biosensor for an anthropogenic molecule requires both a custom transporter and a transcription factor. This results in an unavoidable "Catch-22" situation in which transporter activity cannot be easily confirmed without a biosensor and a biosensor cannot be established without a functional transporter in a host organism. We overcame this type of circular problem while developing an adipic acid (ADA) sensor. First, leveraging an established cis,cis-muconic acid (ccMA) sensor, an annotated ccMA transporter MucK, which is expected to be broadly responsive to dicarboxylates, was stably expressed in the genome of Pseudomonas putida to function as a transporter for ADA, and then a PcaR transcription factor (endogenous to the strain and naturally induced by β-ketoadipic acid, BKA) was diversified and selected to detect the ADA molecule. While MucK expression is otherwise very unstable in P. putida under strong promoter expression, our optimized mucK expression was functional for over 70 generations without loss of function, and we selected an ADA sensor that showed a specificity switch of over 35-fold from BKA at low concentrations (typically <0.1 mM of inducers). Our ADA and BKA biosensors show high sensitivity (low detection concentration <10 μM) and dynamic range (∼50-fold) in an industrially relevant organism and will open new avenues for high throughput discovery and optimization of enzymes and metabolic pathways for the biomanufacture of these molecules. In particular, the novel ADA sensor will aid the discovery and evolution of efficient biocatalysts for the biological recycling of ADA from the degradation of nylon-6,6 waste.
Collapse
Affiliation(s)
- Sang-Min Shin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States.,BOTTLE Consortium, Golden, Colorado80401, United States
| | - Ramesh K Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States.,BOTTLE Consortium, Golden, Colorado80401, United States.,Agile BioFoundry, Emeryville, California94608, United States
| | - Taraka Dale
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States.,BOTTLE Consortium, Golden, Colorado80401, United States.,Agile BioFoundry, Emeryville, California94608, United States
| |
Collapse
|
11
|
Pham C, Stogios PJ, Savchenko A, Mahadevan R. Advances in engineering and optimization of transcription factor-based biosensors for plug-and-play small molecule detection. Curr Opin Biotechnol 2022; 76:102753. [PMID: 35872379 DOI: 10.1016/j.copbio.2022.102753] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Transcription factor (TF)-based biosensors have been applied in biotechnology for a variety of functions, including protein engineering, dynamic control, environmental detection, and point-of-care diagnostics. Such biosensors are promising analytical tools due to their wide range of detectable ligands and modular nature. However, designing biosensors tailored for applications of interest with the desired performance parameters, including ligand specificity, remains challenging. Biosensors often require significant engineering and tuning to meet desired specificity, sensitivity, dynamic range, and operating range parameters. Another limitation is the orthogonality of biosensors across hosts, given the role of the cellular context. Here, we describe recent advances and examples in the engineering and optimization of TF-based biosensors for plug-and-play small molecule detection. We highlight novel developments in TF discovery and biosensor design, TF specificity engineering, and biosensor tuning, with emphasis on emerging computational methods.
Collapse
Affiliation(s)
- Chester Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada; Department of Microbiology, Immunology and Infectious Disease, University of Calgary, AB, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada; The Institute of Biomedical Engineering, University of Toronto, ON, Canada.
| |
Collapse
|
12
|
Liang Y, Luo J, Yang C, Guo S, Zhang B, Chen F, Su K, Zhang Y, Dong Y, Wang Z, Fu H, Sui G, Wang P. Directed evolution of the PobR allosteric transcription factor to generate a biosensor for 4-hydroxymandelic acid. World J Microbiol Biotechnol 2022; 38:104. [PMID: 35501522 DOI: 10.1007/s11274-022-03286-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Hydroxy-mandelic acid (HMA) is widely applied in pharmaceuticals, food and cosmetics. In this study, we aimed to develop an allosteric transcription factors (aTFs) based biosensor for HMA. PobR, an aTF for HMA analog 4-hydroxybenzoic acid, was used to alter its selectivity and create novel aTFs responsive to HMA by directed evolution. We established a PobR mutant library with a capacity of 550,000 mutants using error-prone PCR and Megawhop PCR. Through our screening, two mutants were obtained with responsiveness to HMA. Analysis of each missense mutation indicating residues 122-126 were involved in its PobR ligand specificity. These results showed the effectiveness of directed evolution in switching the ligand specificity of a biosensor and improving HMA production.
Collapse
Affiliation(s)
- YaoYao Liang
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.,NEFU-China iGEM Team, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.,Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Juan Luo
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.,NEFU-China iGEM Team, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Chenhao Yang
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.,NEFU-China iGEM Team, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Shuning Guo
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.,NEFU-China iGEM Team, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Bowen Zhang
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.,NEFU-China iGEM Team, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Fengqianrui Chen
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.,NEFU-China iGEM Team, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Kairui Su
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.,NEFU-China iGEM Team, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yulong Zhang
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.,NEFU-China iGEM Team, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yi Dong
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.,NEFU-China iGEM Team, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Zhihao Wang
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.,NEFU-China iGEM Team, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hongda Fu
- NEFU-China iGEM Team, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Guangchao Sui
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China. .,Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China. .,NEFU-China iGEM Team, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China. .,Northeast Forestry University, No. 26 Hexing Road, Harbin, 150000, People's Republic of China.
| | - Pengchao Wang
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China. .,Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China. .,NEFU-China iGEM Team, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China. .,Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, Heilongjiang, 150040, People's Republic of China. .,Northeast Forestry University, No. 26 Hexing Road, Harbin, 150000, People's Republic of China.
| |
Collapse
|
13
|
Zhou S, Alper HS, Zhou J, Deng Y. Intracellular biosensor-based dynamic regulation to manipulate gene expression at the spatiotemporal level. Crit Rev Biotechnol 2022; 43:646-663. [PMID: 35450502 DOI: 10.1080/07388551.2022.2040415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of intracellular, biosensor-based dynamic regulation strategies to regulate and improve the production of useful compounds have progressed significantly over previous decades. By employing such an approach, it is possible to simultaneously realize high productivity and optimum growth states. However, industrial fermentation conditions contain a mixture of high- and low-performance non-genetic variants, as well as young and aged cells at all growth phases. Such significant individual variations would hinder the precise controlling of metabolic flux at the single-cell level to achieve high productivity at the macroscopic population level. Intracellular biosensors, as the regulatory centers of metabolic networks, can real-time sense intra- and extracellular conditions and, thus, could be synthetically adapted to balance the biomass formation and overproduction of compounds by individual cells. Herein, we highlight advances in the designing and engineering approaches to intracellular biosensors. Then, the spatiotemporal properties of biosensors associated with the distribution of inducers are compared. Also discussed is the use of such biosensors to dynamically control the cellular metabolic flux. Such biosensors could achieve single-cell regulation or collective regulation goals, depending on whether or not the inducer distribution is only intracellular.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.,McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
14
|
Machado LFM, Dixon N. Directed Evolution of Transcription Factor-Based Biosensors for Altered Effector Specificity. Methods Mol Biol 2022; 2461:175-193. [PMID: 35727451 DOI: 10.1007/978-1-0716-2152-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transcription factor-based biosensors are important tools in Synthetic Biology for the sensing of industrially valuable molecules and clinically important metabolites, therefore presenting applications in the bioremediation, industrial biotechnology, and biomedical fields. The directed evolution of allosteric transcription factors (aTFs) with the aim of altering effector specificity has the potential for the development of new biosensors to detect natural and nonnatural molecules, expanding the scope of available aTF-based biosensors. In this chapter, we delineate a general method for the directed evolution of aTFs. The theory of library design is discussed, along with the detailed methodology for an improved transformation of combined libraries, and the experimental search space by counterselection using fluorescence-activated cell sorting (FACS) is presented.
Collapse
|
15
|
Li Y, Reed M, Wright HT, Cropp TA, Williams GJ. Development of Genetically Encoded Biosensors for Reporting the Methyltransferase-Dependent Biosynthesis of Semisynthetic Macrolide Antibiotics. ACS Synth Biol 2021; 10:2520-2531. [PMID: 34546703 DOI: 10.1021/acssynbio.1c00151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clarithromycin is an improved semisynthetic analogue of the naturally occurring macrolide, erythromycin. The subtle modification of a methyl group on the C-6 hydroxyl group endows the molecule with improved acid stability and results in a clinically useful antibiotic. Here, we show that the effector specificity of the biosensor protein, MphR, can be evolved to selectively recognize clarithromycin and therefore report on the production of this molecule in vivo. In addition, a crystal structure of the evolved variant reveals the molecular basis for selectivity and provides a guide for the evolution of a new metabolic function using this biosensor.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
| | - Megan Reed
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - H. Tonie Wright
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - T. Ashton Cropp
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Gavin J. Williams
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
16
|
Zhang J, Pang Q, Wang Q, Qi Q, Wang Q. Modular tuning engineering and versatile applications of genetically encoded biosensors. Crit Rev Biotechnol 2021; 42:1010-1027. [PMID: 34615431 DOI: 10.1080/07388551.2021.1982858] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Genetically encoded biosensors have a diverse range of detectable signals and potential applications in many fields, including metabolism control and high-throughput screening. Their ability to be used in situ with minimal interference to the bioprocess of interest could revolutionize synthetic biology and microbial cell factories. The performance and functions of these biosensors have been extensively studied and have been rapidly improved. We review here current biosensor tuning strategies and attempt to unravel how to obtain ideal biosensor functions through experimental adjustments. Strategies for expanding the biosensor input signals that increases the number of detectable compounds have also been summarized. Finally, different output signals and their practical requirements for biotechnology and biomedical applications and environmental safety concerns have been analyzed. This in-depth review of the responses and regulation mechanisms of genetically encoded biosensors will assist to improve their design and optimization in various application scenarios.
Collapse
Affiliation(s)
- Jian Zhang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingxiao Pang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qi Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
17
|
Rajale T, Miner JC, Michalczyk R, Phipps ML, Schmidt JG, Gilbertson RD, Williams RF, Strauss CEM, Martinez JS. Conformational control via sequence for a heteropeptoid in water: coupled NMR and Rosetta modelling. Chem Commun (Camb) 2021; 57:9922-9925. [PMID: 34498621 DOI: 10.1039/d1cc01992a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report a critical advance in the generation and characterization of peptoid hetero-oligomers. A library of sub-monomers with amine and carboxylate side-chains are combined in different sequences using microwave-assisted synthesis. Their sequence-structure propensity is confirmed by circular dichroism, and conformer subtypes are enumerated by NMR. Biasing the ψ-angle backbone to trans (180°) in Monte Carlo modelling favors i to i + 3 naphthyl-naphthyl stacking, and matches experimental ensemble distributions. Taken together, high-yield synthesis of heterooligomers and NMR with structure prediction enables rapid determination of sequences that induce secondary structural propensities for predictive design of hydrophilic peptidomimetic foldamers and their future libraries.
Collapse
Affiliation(s)
- Trideep Rajale
- Center for Integrated Nanotechnologies, (CINT), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jacob C Miner
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.,Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ryszard Michalczyk
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - M Lisa Phipps
- Center for Integrated Nanotechnologies, (CINT), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jurgen G Schmidt
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Robert D Gilbertson
- Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Robert F Williams
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Charlie E M Strauss
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jennifer S Martinez
- Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, Arizona 86011, USA. .,Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, Arizona 86011, USA
| |
Collapse
|
18
|
Meng Q, Ramírez-Palacios C, Capra N, Hooghwinkel ME, Thallmair S, Rozeboom HJ, Thunnissen AMWH, Wijma HJ, Marrink SJ, Janssen DB. Computational Redesign of an ω-Transaminase from Pseudomonas jessenii for Asymmetric Synthesis of Enantiopure Bulky Amines. ACS Catal 2021; 11:10733-10747. [PMID: 34504735 PMCID: PMC8419838 DOI: 10.1021/acscatal.1c02053] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Indexed: 01/19/2023]
Abstract
![]()
ω-Transaminases
(ω-TA) are attractive biocatalysts
for the production of chiral amines from prochiral ketones via asymmetric synthesis. However, the substrate scope of
ω-TAs is usually limited due to steric hindrance at the active
site pockets. We explored a protein engineering strategy using computational
design to expand the substrate scope of an (S)-selective
ω-TA from Pseudomonas jessenii (PjTA-R6) toward the production of bulky amines. PjTA-R6 is attractive for use in applied biocatalysis due
to its thermostability, tolerance to organic solvents, and acceptance
of high concentrations of isopropylamine as amino donor. PjTA-R6 showed no detectable activity for the synthesis of six bicyclic
or bulky amines targeted in this study. Six small libraries composed
of 7–18 variants each were separately designed via computational methods and tested in the laboratory for ketone to
amine conversion. In each library, the vast majority of the variants
displayed the desired activity, and of the 40 different designs, 38
produced the target amine in good yield with >99% enantiomeric
excess.
This shows that the substrate scope and enantioselectivity of PjTA mutants could be predicted in silico with high accuracy. The single mutant W58G showed the best performance
in the synthesis of five structurally similar bulky amines containing
the indan and tetralin moieties. The best variant for the other bulky
amine, 1-phenylbutylamine, was the triple mutant W58M + F86L + R417L,
indicating that Trp58 is a key residue in the large binding pocket
for PjTA-R6 redesign. Crystal structures of the two
best variants confirmed the computationally predicted structures.
The results show that computational design can be an efficient approach
to rapidly expand the substrate scope of ω-TAs to produce enantiopure
bulky amines.
Collapse
Affiliation(s)
- Qinglong Meng
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Carlos Ramírez-Palacios
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, AG Groningen 9747, Groningen, The Netherlands
| | - Nikolas Capra
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Mattijs E. Hooghwinkel
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Sebastian Thallmair
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, AG Groningen 9747, Groningen, The Netherlands
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, Frankfurt am Main 60438, Germany
| | - Henriëtte J. Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Hein J. Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Siewert J. Marrink
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, AG Groningen 9747, Groningen, The Netherlands
| | - Dick B. Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| |
Collapse
|
19
|
Flachbart LK, Gertzen CGW, Gohlke H, Marienhagen J. Development of a Biosensor Platform for Phenolic Compounds Using a Transition Ligand Strategy. ACS Synth Biol 2021; 10:2002-2014. [PMID: 34369151 DOI: 10.1021/acssynbio.1c00165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The time-consuming and laborious characterization of protein or microbial strain designs limits the development of high-performance biocatalysts for biotechnological applications. Here, transcriptional biosensors emerged as valuable tools as they allow for rapid characterization of several thousand variants within a very short time. However, for many molecules of interest, no specific transcriptional regulator determining a biosensor's specificity is available. We present an approach for rapidly engineering biosensor specificities using a semirational transition ligand approach combined with fluorescence-activated cell sorting. In this two-step approach, a biosensor is first evolved toward a more relaxed-ligand specificity before using the resulting variant as the starting point in a second round of directed evolution toward high specificity for several chemically different ligands. By following this strategy, highly specific biosensors for 4-hydroxybenzoic acid, p-coumaric acid, 5-bromoferulic acid, and 6-methyl salicylic acid were developed, starting from a biosensor for the intracellular detection of trans-cinnamic acid.
Collapse
Affiliation(s)
- Lion Konstantin Flachbart
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Christoph Gerhard Wilhelm Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| |
Collapse
|
20
|
Scherer M, Fleishman SJ, Jones PR, Dandekar T, Bencurova E. Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals. Front Bioeng Biotechnol 2021; 9:673005. [PMID: 34211966 PMCID: PMC8239229 DOI: 10.3389/fbioe.2021.673005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways.
Collapse
Affiliation(s)
- Marc Scherer
- Department of Bioinformatics, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Thomas Dandekar
- Department of Bioinformatics, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Elena Bencurova
- Department of Bioinformatics, Julius-Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Valanciene E, Jonuskiene I, Syrpas M, Augustiniene E, Matulis P, Simonavicius A, Malys N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020; 10:E874. [PMID: 32517243 PMCID: PMC7356249 DOI: 10.3390/biom10060874] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Biotechnological production of phenolic acids is attracting increased interest due to their superior antioxidant activity, as well as other antimicrobial, dietary, and health benefits. As secondary metabolites, primarily found in plants and fungi, they are effective free radical scavengers due to the phenolic group available in their structure. Therefore, phenolic acids are widely utilised by pharmaceutical, food, cosmetic, and chemical industries. A demand for phenolic acids is mostly satisfied by utilising chemically synthesised compounds, with only a low quantity obtained from natural sources. As an alternative to chemical synthesis, environmentally friendly bio-based technologies are necessary for development in large-scale production. One of the most promising sustainable technologies is the utilisation of microbial cell factories for biosynthesis of phenolic acids. In this paper, we perform a systematic comparison of the best known natural sources of phenolic acids. The advances and prospects in the development of microbial cell factories for biosynthesis of these bioactive compounds are discussed in more detail. A special consideration is given to the modern production methods and analytics of phenolic acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania; (E.V.); (I.J.); (M.S.); (E.A.); (P.M.); (A.S.)
| |
Collapse
|
22
|
Hanko EKR, Paiva AC, Jonczyk M, Abbott M, Minton NP, Malys N. A genome-wide approach for identification and characterisation of metabolite-inducible systems. Nat Commun 2020; 11:1213. [PMID: 32139676 PMCID: PMC7057948 DOI: 10.1038/s41467-020-14941-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/07/2020] [Indexed: 12/21/2022] Open
Abstract
Inducible gene expression systems are vital tools for the advancement of synthetic biology. Their application as genetically encoded biosensors has the potential to contribute to diagnostics and to revolutionise the field of microbial cell factory development. Currently, the number of compounds of biological interest by far exceeds the number of available biosensors. Here, we address this limitation by developing a generic genome-wide approach to identify transcription factor-based inducible gene expression systems. We construct and validate 15 functional biosensors, provide a characterisation workflow to facilitate forward engineering efforts, exemplify their broad-host-range applicability, and demonstrate their utility in enzyme screening. Previously uncharacterised interactions between sensors and compounds of biological relevance are identified by employing the largest reported library of metabolite-responsive biosensors in an automated high-throughput screen. With the rapidly growing genomic data these innovative capabilities offer a platform to vastly increase the number of biologically detectable molecules. Inducible gene expression tools have important applications as genetically encoded biosensors. Here the authors conduct a genome-wide approach to identify and utilise functional sensors.
Collapse
Affiliation(s)
- Erik K R Hanko
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ana C Paiva
- Centre for Biomolecular Sciences, School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Magdalena Jonczyk
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Matthew Abbott
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Naglis Malys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
23
|
F M Machado L, Currin A, Dixon N. Directed evolution of the PcaV allosteric transcription factor to generate a biosensor for aromatic aldehydes. J Biol Eng 2019; 13:91. [PMID: 31798685 PMCID: PMC6882365 DOI: 10.1186/s13036-019-0214-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022] Open
Abstract
Background Transcription factor-based biosensors are useful tools for the detection of metabolites and industrially valuable molecules, and present many potential applications in biotechnology and biomedicine. However, the most common approach to develop biosensors relies on employing a limited set of naturally occurring allosteric transcription factors (aTFs). Therefore, altering the ligand specificity of aTFs towards the detection of new effectors is an important goal. Results Here, the PcaV repressor, a member of the MarR aTF family, was used to develop a biosensor for the detection of hydroxyl-substituted benzoic acids, including protocatechuic acid (PCA). The PCA biosensor was further subjected to directed evolution to alter its ligand specificity towards vanillin and other closely related aromatic aldehydes, to generate the Van2 biosensor. Ligand recognition of Van2 was explored in vitro using a range of biochemical and biophysical analyses, and extensive in vivo genetic-phenotypic analysis was performed to determine the role of each amino acid change upon biosensor performance. Conclusions This is the first study to report directed evolution of a member of the MarR aTF family, and demonstrates the plasticity of the PCA biosensor by altering its ligand specificity to generate a biosensor for aromatic aldehydes.
Collapse
Affiliation(s)
- Leopoldo F M Machado
- 1Manchester Institute of Biotechnology (MIB), The University of Manchester, M1 7DN, Manchester, UK.,2Department of Chemistry, The University of Manchester, M1 7DN, Manchester, UK
| | - Andrew Currin
- 1Manchester Institute of Biotechnology (MIB), The University of Manchester, M1 7DN, Manchester, UK.,2Department of Chemistry, The University of Manchester, M1 7DN, Manchester, UK.,3SYNBIOCHEM, The University of Manchester, M1 7DN, Manchester, UK
| | - Neil Dixon
- 1Manchester Institute of Biotechnology (MIB), The University of Manchester, M1 7DN, Manchester, UK.,2Department of Chemistry, The University of Manchester, M1 7DN, Manchester, UK.,3SYNBIOCHEM, The University of Manchester, M1 7DN, Manchester, UK
| |
Collapse
|
24
|
Alvarez-Gonzalez G, Dixon N. Genetically encoded biosensors for lignocellulose valorization. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:246. [PMID: 31636705 PMCID: PMC6792243 DOI: 10.1186/s13068-019-1585-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/05/2019] [Indexed: 05/07/2023]
Abstract
Modern society is hugely dependent on finite oil reserves for the supply of fuels and chemicals. Moving our dependence away from these unsustainable oil-based feedstocks to renewable ones is, therefore, a critical factor towards the development of a low carbon bioeconomy. Lignin derived from biomass feedstocks offers great potential as a renewable source of aromatic compounds if methods for its effective valorization can be developed. Synthetic biology and metabolic engineering offer the potential to synergistically enable the development of cell factories with novel biosynthetic routes to valuable chemicals from these sustainable sources. Pathway design and optimization is, however, a major bottleneck due to the lack of high-throughput methods capable of screening large libraries of genetic variants and the metabolic burden associated with bioproduction. Genetically encoded biosensors can provide a solution by transducing the target metabolite concentration into detectable signals to provide high-throughput phenotypic read-outs and allow dynamic pathway regulation. The development and application of biosensors in the discovery and engineering of efficient biocatalytic processes for the degradation, conversion, and valorization of lignin are paving the way towards a sustainable and economically viable biorefinery.
Collapse
Affiliation(s)
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, UK
| |
Collapse
|
25
|
Guo X, Li Z, Wang X, Wang J, Chala J, Lu Y, Zhang H. De novo phenol bioproduction from glucose using biosensor‐assisted microbial coculture engineering. Biotechnol Bioeng 2019; 116:3349-3359. [DOI: 10.1002/bit.27168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaoyun Guo
- Department of Chemical and Biochemical EngineeringXiamen University Siming South Road, Xiamen Fujian China
- Department of Chemical and Biochemical Engineering, RutgersThe State University of New Jersey Piscataway New Jersey
| | - Zhenghong Li
- Department of Chemical and Biochemical Engineering, RutgersThe State University of New Jersey Piscataway New Jersey
| | - Xiaonan Wang
- Department of Chemical and Biochemical Engineering, RutgersThe State University of New Jersey Piscataway New Jersey
| | - Jing Wang
- Department of Chemical and Biochemical Engineering, RutgersThe State University of New Jersey Piscataway New Jersey
| | - Juan Chala
- Department of Biochemistry, RutgersThe State University of New Jersey Piscataway New Jersey
| | - Yinghua Lu
- Department of Chemical and Biochemical EngineeringXiamen University Siming South Road, Xiamen Fujian China
| | - Haoran Zhang
- Department of Chemical and Biochemical Engineering, RutgersThe State University of New Jersey Piscataway New Jersey
| |
Collapse
|
26
|
Jang S, Jang S, Im DK, Kang TJ, Oh MK, Jung GY. Artificial Caprolactam-Specific Riboswitch as an Intracellular Metabolite Sensor. ACS Synth Biol 2019; 8:1276-1283. [PMID: 31074964 DOI: 10.1021/acssynbio.8b00452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Caprolactam is a monomer used for the synthesis of nylon-6, and a recombinant microbial strain for biobased production of nylon-6 was recently developed. An intracellular biosensor for caprolactam can facilitate high-throughput metabolic engineering of recombinant microbial strains. Because of the mixed production of caprolactam and valerolactam in the recombinant strain, a caprolactam biosensor should be highly specific for caprolactam. However, a highly specific caprolactam sensor has not been reported. Here, we developed an artificial riboswitch that specifically responds to caprolactam. This riboswitch was prepared using a coupled in vitro- in vivo selection strategy with a heterogeneous pool of RNA aptamers obtained from in vitro selection to construct a riboswitch library used in in vivo selection. The caprolactam riboswitch successfully discriminated caprolactam from valerolactam. Moreover, the riboswitch was activated by 3.36-fold in the presence of 50 mM caprolactam. This riboswitch enabled caprolactam-dependent control of cell growth, which will be useful for improving caprolactam production and is a valuable tool for metabolic engineering.
Collapse
Affiliation(s)
- Sungyeon Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sungho Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Dae-Kyun Im
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| | - Taek Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, 30 Pildong-Ro 1-Gil, Jung-Gu, Seoul 04620, Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
27
|
Jha RK, Narayanan N, Pandey N, Bingen JM, Kern TL, Johnson CW, Strauss CEM, Beckham GT, Hennelly SP, Dale T. Sensor-Enabled Alleviation of Product Inhibition in Chorismate Pyruvate-Lyase. ACS Synth Biol 2019; 8:775-786. [PMID: 30861344 DOI: 10.1021/acssynbio.8b00465] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Product inhibition is a frequent bottleneck in industrial enzymes, and testing mutations to alleviate product inhibition via traditional methods remains challenging as many variants need to be tested against multiple substrate and product concentrations. Further, traditional screening methods are conducted in vitro, and resulting enzyme variants may perform differently in vivo in the context of whole-cell metabolism and regulation. In this study, we address these two problems by establishing a high-throughput screening method to alleviate product inhibition in an industrially relevant enzyme, chorismate pyruvate-lyase (UbiC). First, we engineered a highly specific, genetically encoded biosensor for 4-hydroxybenzoate (4HB) in an industrially relevant host, Pseudomonas putida KT2440. We subsequently applied the biosensor to detect the activity of a heterologously expressed UbiC that converts chorismate into 4HB and pyruvate. By using benzoate as a product surrogate that inhibits UbiC without activating the biosensor, we were able to efficiently create and screen a diversified library for UbiC variants with reduced product inhibition. Introduction of the improved UbiC enzyme variant into an experimental production strain for the industrial precursor cis,cis-muconic acid (muconate), enabled a >2-fold yield improvement for glucose to muconate conversion when the new UbiC variant was expressed from a plasmid and a 60% yield increase when the same UbiC variant was genomically integrated into the strain. Overall, this work demonstrates that by coupling a library of enzyme variants to whole-cell catalysis and biosensing, variants with reduced product inhibition can be identified, and that this improved enzyme can result in increased titers of a downstream molecule of interest.
Collapse
Affiliation(s)
- Ramesh K. Jha
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Niju Narayanan
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Naresh Pandey
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jeremy M. Bingen
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Theresa L. Kern
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Christopher W. Johnson
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Charlie E. M. Strauss
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Gregg T. Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Scott P. Hennelly
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Taraka Dale
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
28
|
Bertolani SJ, Siegel JB. A new benchmark illustrates that integration of geometric constraints inferred from enzyme reaction chemistry can increase enzyme active site modeling accuracy. PLoS One 2019; 14:e0214126. [PMID: 30947258 PMCID: PMC6448891 DOI: 10.1371/journal.pone.0214126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/07/2019] [Indexed: 01/06/2023] Open
Abstract
Enzymes play a critical role in a wide array of industrial, medical, and research applications and with the recent explosion of genomic sequencing, we now have sequences for millions of enzymes for which there is no known structure. In order to utilize modern computational design tools for constructing inhibitors or engineering novel catalysts, the ability to accurately model enzymes is critical. A popular approach for modeling enzymes are comparative modeling techniques which can often accurately predict the global structural features. However, achieving atomic accuracy of an active site remains a challenge and is an issue when trying to utilize the molecular details for designing inhibitors or enhanced catalysts. Here we explore integrating knowledge about the required geometric orientation of conserved catalytic residues into the comparative modeling process in order to improve modeling accuracy. In order to investigate the utility of adding this information, we first carefully construct a benchmark set of reference structures to use. Consistent with previous findings, our benchmark demonstrates that the geometry between catalytic residues across an enzyme family is conserved and does not tend to deviate by more than 0.5Å. We then find that by integrating these geometric constraints during modeling, we can double the number of atomic level accuracy models (<1Å RMSD to the crystal structure ligand) within our benchmarking dataset, even for targets with templates as low as 20-30% sequence identity. Catalytic residues within an enzyme family are highly conserved and can often be readily identified through comparative sequence analysis to a known structure within the enzyme family. Therefore utilizing this readily available information has the potential to significantly improve drug design and enzyme engineering efforts for which there is no known structure for the enzyme of interest.
Collapse
Affiliation(s)
- Steve J. Bertolani
- Department of Chemistry, University of California Davis, Davis, California, United States of America
| | - Justin B. Siegel
- Department of Chemistry, University of California Davis, Davis, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
| |
Collapse
|
29
|
De Paepe B, Maertens J, Vanholme B, De Mey M. Chimeric LysR-Type Transcriptional Biosensors for Customizing Ligand Specificity Profiles toward Flavonoids. ACS Synth Biol 2019; 8:318-331. [PMID: 30563319 DOI: 10.1021/acssynbio.8b00326] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Transcriptional biosensors enable key applications in both metabolic engineering and synthetic biology. Due to nature's immense variety of metabolites, these applications require biosensors with a ligand specificity profile customized to the researcher's needs. In this work, chimeric biosensors were created by introducing parts of a donor regulatory circuit from Sinorhizobium meliloti, delivering the desired luteolin-specific response, into a nonspecific biosensor chassis from Herbaspirillum seropedicae. Two strategies were evaluated for the development of chimeric LysR-type biosensors with customized ligand specificity profiles toward three closely related flavonoids, naringenin, apigenin, and luteolin. In the first strategy, chimeric promoter regions were constructed at the biosensor effector module, while in the second strategy, chimeric transcription factors were created at the biosensor detector module. Via both strategies, the biosensor repertoire was expanded with luteolin-specific chimeric biosensors demonstrating a variety of response curves and ligand specificity profiles. Starting from the nonspecific biosensor chassis, a shift from 27.5% to 95.3% luteolin specificity was achieved with the created chimeric biosensors. Both strategies provide a compelling, faster, and more accessible route for the customization of biosensor ligand specificity, compared to de novo design and construction of each biosensor circuit for every desired ligand specificity.
Collapse
Affiliation(s)
- Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University − VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
30
|
The evolving interface between synthetic biology and functional metagenomics. Nat Chem Biol 2018; 14:752-759. [DOI: 10.1038/s41589-018-0100-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
|
31
|
In vivo biosensors: mechanisms, development, and applications. ACTA ACUST UNITED AC 2018; 45:491-516. [DOI: 10.1007/s10295-018-2004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/30/2017] [Indexed: 01/09/2023]
Abstract
Abstract
In vivo biosensors can recognize and respond to specific cellular stimuli. In recent years, biosensors have been increasingly used in metabolic engineering and synthetic biology, because they can be implemented in synthetic circuits to control the expression of reporter genes in response to specific cellular stimuli, such as a certain metabolite or a change in pH. There are many types of natural sensing devices, which can be generally divided into two main categories: protein-based and nucleic acid-based. Both can be obtained either by directly mining from natural genetic components or by engineering the existing genetic components for novel specificity or improved characteristics. A wide range of new technologies have enabled rapid engineering and discovery of new biosensors, which are paving the way for a new era of biotechnological progress. Here, we review recent advances in the design, optimization, and applications of in vivo biosensors in the field of metabolic engineering and synthetic biology.
Collapse
|
32
|
A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution. Metab Eng Commun 2018; 6:33-38. [PMID: 29765865 PMCID: PMC5949891 DOI: 10.1016/j.meteno.2018.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/03/2018] [Accepted: 03/03/2018] [Indexed: 11/27/2022] Open
Abstract
Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sensitivity and dynamic range of sensing often occur, limiting the application of a biosensor across hosts. Here we demonstrate the optimization of an Escherichia coli-based biosensor in a robust microbial strain for the catabolism of aromatic compounds, Pseudomonas putida KT2440, through a generalizable approach of modulating interactions at the protein-DNA interface in the promoter and the protein-protein dimer interface. The high-throughput biosensor optimization approach demonstrated here is readily applicable towards other allosteric regulators. A biosensor optimized for a robust, industrially useful P. putida strain. Modulation of protein-DNA and protein-protein interactions pursued. Offers a generalized optimization protocol for transcription factor-based sensors. Intracellular metabolite production and detection made possible in P. putida. Functional biosensor in P. putida will allow high throughput strain evolution.
Collapse
|
33
|
Schomburg KT, Nittinger E, Meyder A, Bietz S, Schneider N, Lange G, Klein R, Rarey M. Prediction of protein mutation effects based on dehydration and hydrogen bonding - A large-scale study. Proteins 2017; 85:1550-1566. [DOI: 10.1002/prot.25315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Karen T. Schomburg
- Universität Hamburg, ZBH - Center for Bioinformatics; Bundestrasse 43 Hamburg 20146 Germany
| | - Eva Nittinger
- Universität Hamburg, ZBH - Center for Bioinformatics; Bundestrasse 43 Hamburg 20146 Germany
| | - Agnes Meyder
- Universität Hamburg, ZBH - Center for Bioinformatics; Bundestrasse 43 Hamburg 20146 Germany
| | - Stefan Bietz
- Universität Hamburg, ZBH - Center for Bioinformatics; Bundestrasse 43 Hamburg 20146 Germany
| | - Nadine Schneider
- Universität Hamburg, ZBH - Center for Bioinformatics; Bundestrasse 43 Hamburg 20146 Germany
| | - Gudrun Lange
- Bayer CropScience AG, Industriepark Hoechst; G836 Frankfurt am Main 65926 Germany
| | - Robert Klein
- Bayer CropScience AG, Industriepark Hoechst; G836 Frankfurt am Main 65926 Germany
| | - Matthias Rarey
- Universität Hamburg, ZBH - Center for Bioinformatics; Bundestrasse 43 Hamburg 20146 Germany
| |
Collapse
|
34
|
Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications. Biotechnol Adv 2017; 35:950-970. [PMID: 28723577 DOI: 10.1016/j.biotechadv.2017.07.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/07/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Abstract
Within the Design-Build-Test Cycle for strain engineering, rapid product detection and selection strategies remain challenging and limit overall throughput. Here we summarize a wide variety of modalities that transduce chemical concentrations into easily measured absorbance, luminescence, and fluorescence signals. Specifically, we cover protein-based biosensors (including transcription factors), nucleic acid-based biosensors, coupled enzyme reactions, bioorthogonal chemistry, and fluorescent and chromogenic dyes and substrates as modalities for detection. We focus on the use of these methods for strain engineering and enzyme discovery and conclude with remarks on the current and future state of biosensor development for application in the metabolic engineering field.
Collapse
|
35
|
Computational design of ligand-binding proteins. Curr Opin Struct Biol 2016; 45:67-73. [PMID: 27951448 DOI: 10.1016/j.sbi.2016.11.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 02/07/2023]
Abstract
Custom-designed ligand-binding proteins with novel functions hold the potential for numerous applications. In recent years, the developments of computational methods together with high-throughput experimental screening techniques have led to the generation of novel, high-affinity ligand-binding proteins for given ligands. In addition, naturally occurring ligand-binding proteins have been computationally designed to recognize new ligands while keeping their original biological functions at the same time. Furthermore, metalloproteins have been successfully designed for novel functions and applications. Though much has been learned in these successful design cases, advances in our understanding of protein dynamics and functions related to ligand binding and development of novel computational strategies are necessary to further increase the success rate of computational protein-ligand binding design.
Collapse
|
36
|
De Paepe B, Peters G, Coussement P, Maertens J, De Mey M. Tailor-made transcriptional biosensors for optimizing microbial cell factories. J Ind Microbiol Biotechnol 2016; 44:623-645. [PMID: 27837353 DOI: 10.1007/s10295-016-1862-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/30/2016] [Indexed: 12/24/2022]
Abstract
Monitoring cellular behavior and eventually properly adapting cellular processes is key to handle the enormous complexity of today's metabolic engineering questions. Hence, transcriptional biosensors bear the potential to augment and accelerate current metabolic engineering strategies, catalyzing vital advances in industrial biotechnology. The development of such transcriptional biosensors typically starts with exploring nature's richness. Hence, in a first part, the transcriptional biosensor architecture and the various modi operandi are briefly discussed, as well as experimental and computational methods and relevant ontologies to search for natural transcription factors and their corresponding binding sites. In the second part of this review, various engineering approaches are reviewed to tune the main characteristics of these (natural) transcriptional biosensors, i.e., the response curve and ligand specificity, in view of specific industrial biotechnology applications, which is illustrated using success stories of transcriptional biosensor engineering.
Collapse
Affiliation(s)
- Brecht De Paepe
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Gert Peters
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pieter Coussement
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jo Maertens
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
37
|
Jha RK, Kern TL, Kim Y, Tesar C, Jedrzejczak R, Joachimiak A, Strauss CEM. A microbial sensor for organophosphate hydrolysis exploiting an engineered specificity switch in a transcription factor. Nucleic Acids Res 2016; 44:8490-500. [PMID: 27536006 PMCID: PMC5041483 DOI: 10.1093/nar/gkw687] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/25/2016] [Indexed: 01/31/2023] Open
Abstract
A whole-cell biosensor utilizing a transcription factor (TF) is an effective tool for sensitive and selective detection of specialty chemicals or anthropogenic molecules, but requires access to an expanded repertoire of TFs. Using homology modeling and ligand docking for binding pocket identification, assisted by conservative mutations in the pocket, we engineered a novel specificity in an Acinetobacter TF, PobR, to ‘sense’ a chemical p-nitrophenol (pNP) and measured the response via a fluorescent protein reporter expressed from a PobR promoter. Out of 107 variants of PobR, four were active when dosed with pNP, with two mutants showing a specificity switch from the native effector 4-hydroxybenzoate (4HB). One of the mutants, pNPmut1 was then used to create a smart microbial cell responding to pNP production from hydrolysis of an insecticide, paraoxon, in a coupled assay involving phosphotriesterase (PTE) enzyme expressed from a separate promoter. We show the fluorescence of the cells correlated with the catalytic efficiency of the PTE variant expressed in each cell. High selectivity between similar molecules (4HB versus pNP), high sensitivity for pNP detection (∼2 μM) and agreement of apo- and holo-structures of PobR scaffold with predetermined computational models are other significant results presented in this work.
Collapse
Affiliation(s)
- Ramesh K Jha
- Bioscience Division, PO Box 1663, Los Alamos National Laboratory, Los Alamos NM 87545, USA
| | - Theresa L Kern
- Bioscience Division, PO Box 1663, Los Alamos National Laboratory, Los Alamos NM 87545, USA
| | - Youngchang Kim
- The Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Christine Tesar
- The Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Robert Jedrzejczak
- The Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Andrzej Joachimiak
- The Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637, USA
| | - Charlie E M Strauss
- Bioscience Division, PO Box 1663, Los Alamos National Laboratory, Los Alamos NM 87545, USA
| |
Collapse
|
38
|
Libis V, Delépine B, Faulon JL. Sensing new chemicals with bacterial transcription factors. Curr Opin Microbiol 2016; 33:105-112. [PMID: 27472026 DOI: 10.1016/j.mib.2016.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/15/2016] [Accepted: 07/06/2016] [Indexed: 11/30/2022]
Abstract
Bacteria rely on allosteric transcription factors (aTFs) to sense a wide range of chemicals. The variety of effectors has contributed in making aTFs the most used input system in synthetic biological circuits. Considering their enabling role in biotechnology, an important question concerns the size of the chemical space that can potentially be detected by these biosensors. From digging into the ever changing repertoire of natural regulatory circuits, to advances in aTF engineering, we review here different strategies that are pushing the boundaries of this chemical space. We also review natural and synthetic cases of indirect sensing, where aTFs work in combination with metabolism to enable detection of new molecules.
Collapse
Affiliation(s)
- Vincent Libis
- iSSB, Genopole, CNRS, UEVE, Université Paris Saclay, 91000 Évry, France; Micalis Institute, INRA, AgroParisTech, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Baudoin Delépine
- iSSB, Genopole, CNRS, UEVE, Université Paris Saclay, 91000 Évry, France; Micalis Institute, INRA, AgroParisTech, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Jean-Loup Faulon
- iSSB, Genopole, CNRS, UEVE, Université Paris Saclay, 91000 Évry, France; Micalis Institute, INRA, AgroParisTech, Université Paris Saclay, 78350 Jouy-en-Josas, France; SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
39
|
Delépine B, Libis V, Carbonell P, Faulon JL. SensiPath: computer-aided design of sensing-enabling metabolic pathways. Nucleic Acids Res 2016; 44:W226-31. [PMID: 27106061 PMCID: PMC5741204 DOI: 10.1093/nar/gkw305] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/04/2016] [Accepted: 04/12/2016] [Indexed: 12/17/2022] Open
Abstract
Genetically-encoded biosensors offer a wide range of opportunities to develop advanced synthetic biology applications. Circuits with the ability of detecting and quantifying intracellular amounts of a compound of interest are central to whole-cell biosensors design for medical and environmental applications, and they also constitute essential parts for the selection and regulation of high-producer strains in metabolic engineering. However, the number of compounds that can be detected through natural mechanisms, like allosteric transcription factors, is limited; expanding the set of detectable compounds is therefore highly desirable. Here, we present the SensiPath web server, accessible at http://sensipath.micalis.fr SensiPath implements a strategy to enlarge the set of detectable compounds by screening for multi-step enzymatic transformations converting non-detectable compounds into detectable ones. The SensiPath approach is based on the encoding of reactions through signature descriptors to explore sensing-enabling metabolic pathways, which are putative biochemical transformations of the target compound leading to known effectors of transcription factors. In that way, SensiPath enlarges the design space by broadening the potential use of biosensors in synthetic biology applications.
Collapse
Affiliation(s)
- Baudoin Delépine
- iSSB, Genopole, CNRS, UEVE, Université Paris Saclay, 91000 Évry, France Micalis Institute, INRA, AgroParisTech, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Vincent Libis
- iSSB, Genopole, CNRS, UEVE, Université Paris Saclay, 91000 Évry, France Micalis Institute, INRA, AgroParisTech, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Pablo Carbonell
- SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, M1 7DN Manchester, UK
| | - Jean-Loup Faulon
- iSSB, Genopole, CNRS, UEVE, Université Paris Saclay, 91000 Évry, France Micalis Institute, INRA, AgroParisTech, Université Paris Saclay, 78350 Jouy-en-Josas, France SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, M1 7DN Manchester, UK
| |
Collapse
|
40
|
Schukur L, Fussenegger M. Engineering of synthetic gene circuits for (re-)balancing physiological processes in chronic diseases. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:402-22. [DOI: 10.1002/wsbm.1345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/12/2016] [Accepted: 04/26/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Lina Schukur
- Department of Biosystems Science and Engineering; ETH Zurich; Basel Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering; ETH Zurich; Basel Switzerland
- Faculty of Science; University of Basel; Basel Switzerland
| |
Collapse
|
41
|
de los Santos ELC, Meyerowitz JT, Mayo SL, Murray RM. Engineering Transcriptional Regulator Effector Specificity Using Computational Design and In Vitro Rapid Prototyping: Developing a Vanillin Sensor. ACS Synth Biol 2016; 5:287-95. [PMID: 26262913 DOI: 10.1021/acssynbio.5b00090] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pursuit of circuits and metabolic pathways of increasing complexity and robustness in synthetic biology will require engineering new regulatory tools. Feedback control based on relevant molecules, including toxic intermediates and environmental signals, would enable genetic circuits to react appropriately to changing conditions. In this work, variants of qacR, a tetR family repressor, were generated by computational protein design and screened in a cell-free transcription-translation (TX-TL) system for responsiveness to a new targeted effector. The modified repressors target vanillin, a growth-inhibiting small molecule found in lignocellulosic hydrolysates and other industrial processes. Promising candidates from the in vitro screen were further characterized in vitro and in vivo in a gene circuit. The screen yielded two qacR mutants that respond to vanillin both in vitro and in vivo. While the mutants exhibit some toxicity to cells, presumably due to off-target effects, they are prime starting points for directed evolution toward vanillin sensors with the specifications required for use in a dynamic control loop. We believe this process, a combination of the generation of variants coupled with in vitro screening, can serve as a framework for designing new sensors for other target compounds.
Collapse
Affiliation(s)
- Emmanuel L. C. de los Santos
- Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Joseph T. Meyerowitz
- Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Stephen L. Mayo
- Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Richard M. Murray
- Division of Biology and Biological
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
42
|
Rogers JK, Taylor ND, Church GM. Biosensor-based engineering of biosynthetic pathways. Curr Opin Biotechnol 2016; 42:84-91. [PMID: 26998575 DOI: 10.1016/j.copbio.2016.03.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/21/2016] [Accepted: 03/03/2016] [Indexed: 01/18/2023]
Abstract
Biosynthetic pathways provide an enzymatic route from inexpensive renewable resources to valuable metabolic products such as pharmaceuticals and plastics. Designing these pathways is challenging due to the complexities of biology. Advances in the design and construction of genetic variants has enabled billions of cells, each possessing a slightly different metabolic design, to be rapidly generated. However, our ability to measure the quality of these designs lags by several orders of magnitude. Recent research has enabled cells to report their own success in chemical production through the use of genetically encoded biosensors. A new engineering discipline is emerging around the creation and application of biosensors. Biosensors, implemented in selections and screens to identify productive cells, are paving the way for a new era of biotechnological progress.
Collapse
Affiliation(s)
- Jameson K Rogers
- Wyss Institute for Biologically Inspired Engineering Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Noah D Taylor
- Wyss Institute for Biologically Inspired Engineering Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Engineering an allosteric transcription factor to respond to new ligands. Nat Methods 2015; 13:177-83. [PMID: 26689263 DOI: 10.1038/nmeth.3696] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Abstract
Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.
Collapse
|
44
|
Cress BF, Trantas EA, Ververidis F, Linhardt RJ, Koffas MAG. Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways. Curr Opin Biotechnol 2015; 36:205-14. [DOI: 10.1016/j.copbio.2015.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/31/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022]
|