1
|
Shao S, Zhang R, Liu Q, Guo G. Acute toxicity of binary and ternary mixtures of La, Ce and Dy on Daphnia magna: Toxicity patterns depend on the ratios of the components and the concentration gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177305. [PMID: 39488277 DOI: 10.1016/j.scitotenv.2024.177305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/28/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Rare earth elements (REEs) have raised significant environmental contamination concerns, yet the combined toxicity of REE mixtures remains inadequately understood. In this study, acute toxicity of individual, binary and ternary mixtures of lanthanum (La), cerium (Ce), and dysprosium (Dy) on neonatal Daphnia magna was investigated. Dy exhibited the greatest toxicity on neonatal Daphnia magna, followed by La and Ce. The concentration addition (CA) model was superior to the independent action (IA) model for predicting the toxicity of binary mixtures. The CA model indicated additive effects for LaCe mixture and antagonistic effects for LaDy and CeDy mixtures. In contrast, IA model suggested synergistic interactions for LaCe and LaDy mixtures, with antagonistic effects for CeDy mixture when considering dissolved concentration and synergistic effects when considering free-ion concentration. The nonadditive interactions and deviation parameters from the prediction of binary mixture toxicity were assessed by using MixTox model. The ternary mixture of LaCeDy exhibited antagonistic effects on Daphnia magna, and IA model slightly outperformed CA model. Overall, the type of combined toxicity in REE mixtures is influenced by constituents in the mixture and concentration levels. These findings provide scientific basis for the toxicological assessment, risk evaluation and pollution control of REE mixtures. ENVIRONMENTAL IMPLICATION: Rare earth elements (REEs) level is increasing in water environment due to wide use and exploitation. However, currently, we know little about the difference of REEs toxicity and combined toxicity of mixture to aquatic organism, which limited the assessment of toxicity and hazard risk of REEs in natural water. Here, this study demonstrates the acute toxicity of individual, binary and ternary mixtures of lanthanum, cerium, and dysprosium on neonatal Daphnia magna according to the measured data and predicted model, identifying the influence factors for combined toxicity. This discovery offers new insights for the assessment and prediction of REEs toxicity.
Collapse
Affiliation(s)
- Shuai Shao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China and Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China
| | - Ruiqing Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China and Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China.
| | - Qifeng Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China and Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China.
| | - Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Zhang H, Zhang J, Zhang H, Jiang W, Zhang Y, Huang J, He X, Wang W, He C. Coupling effects of aureomycin and zinc ion on nitrification process and nitrification enzymes during the biological nitrogen removal. CHEMOSPHERE 2024; 362:142659. [PMID: 38906185 DOI: 10.1016/j.chemosphere.2024.142659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Aureomycin and Zinc ion (Zn2+) are common antibiotics and heavy metals that exist in livestock wastewater. The coupling effects of Aureomycin and Zn2+ on the nitrification process and nitrification function enzymes are crucial for controlling nitrogen removal in livestock wastewater. However, rare studies were focused on the coupling effects of Aureomycin and Zn2+ on nitrification. This study employed a direct equipartition ray method to investigate the coupling effects of Aureomycin and Zn2+ on nitrification. The results suggested three different ratios of Aureomycin and Zn2+ affected nitrification performance differently. Ratio 1 and Ratio 2 exhibited a promotion effect with low concentrations and an inhibition effect with high concentrations on nitrification performance. The critical concentration for Ratio 1 and Ratio 2 were 5.00 mg L-1 and 1.90 mg L-1, respectively. Ratio 3 exhibited both time-dependent and concentration-dependent inhibitory effects on nitrification performance. The maximum inhibitory efficiency on nitrification performance was 90.0%, with a concentration of 34.5 mg L-1 at 96.0 h. The effects of binary mixture on nitrogen removal performance were attributed to the effects of binary mixture on nitrite oxidase activity. The qualitative evaluation of the concentration addition model and independent action model indicated Aureomycin and Zn2+ showed a synergistic effect with strong concentration-dependent and time-dependent in the whole concentration area. The synergistic effect of Aureomycin and Zn2+ on nitrite oxidase activity mainly depended on the concentration of Aureomycin. This study offers new insights into the effects of antibiotics and heavy metals on the biological nitrogen removal process.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 23009, China
| | - Jing Zhang
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 23009, China
| | - Hui Zhang
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 23009, China
| | - Wei Jiang
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 23009, China
| | - Yong Zhang
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 23009, China
| | - Jian Huang
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 23009, China
| | - Xue He
- Anhui Provincial Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science and Technology Co., Ltd., Hefei, 230022, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chunhua He
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 23009, China.
| |
Collapse
|
3
|
Zhang J, Zhang J, Zeng J, Gui Y, Xie F, Dai B, Zhao Y. Algal toxicity and food chain transport characteristics of three common bisphenols and their mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173481. [PMID: 38795983 DOI: 10.1016/j.scitotenv.2024.173481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Various bisphenols (BPs) have been frequently detected in the aquatic environment and coexist in the form of mixtures with potential huge risks. As we all know, food chain is a media by which BPs mixtures and their mixtures probably enter the organisms at different trophic levels due to their environmental persistence. As a result, the concentrations of BPs and their mixtures may continuously magnify to varying degrees, which can produce higher risks to different levels of organisms, and even human health. However, the related researches about mixtures are few due to the complexity of mixtures. So, the ternary BP mixtures were designed by the uniform design ray method using bisphenol A (BPA), bisphenol S (BPS) and bisphenol F (BPF) to investigate their food chain effects including bioconcentration and biomagnification. Here, Chlorella pyrenoidosa (C. pyrenoidosa) and Daphnia magna (D. magna) were selected to construct a food chain. The toxic effects of single BPs and their mixtures were also systematically investigated by the time-dependent microplate toxicity analysis (t-MTA) method. Toxicity interaction within the ternary mixture was analyzed by the concentration addition model (CA) and the deviation from the CA model (dCA). The results show that the C. pyrenoidosa and D. magna had obvious bioconcentration and biomagnification effects on BPs and their mixture. The mixture had the potential to enrich at higher nutrient levels. And BPF had the largest bioconcentration effect (BCF1 = 481.86, BCF2 = 772.02) and biomagnification effect (BMF = 1.6). Three BPs were toxic to C. pyrenoidosa by destroying algal cells and decreasing protein and chlorophyll contents, and their toxicity order was BPF > BPA > BPS. Moreover, their ternary mixture exhibits synergism with time/concentration-dependency. The obtained results are of significant reference value for objectively and accurately assessing the ecological and environmental risks of bisphenol pollutants.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China.
| | - Jianping Zeng
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Yixin Gui
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Fazhi Xie
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Biya Dai
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Yuanfan Zhao
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| |
Collapse
|
4
|
Zhang J, Zhang J, Huang X, Xie F, Dai B, Ma T, Zeng J. Combined toxicity and adverse outcome pathways of common pesticides on Chlorella pyrenoidosa. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:611-621. [PMID: 38329146 DOI: 10.1039/d3em00525a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pesticides due to their extensive use have entered the soil and water environment through various pathways, causing great harm to the environment. Herbicides and insecticides are common pesticides with long-term biological toxicity and bioaccumulation, which can harm the human body. The concept of the adverse outcome pathway (AOP) involves systematically analyzing the response levels of chemical mixtures to health-related indicators at the molecular and cellular levels. The AOP correlates the structures of chemical pollutants, toxic molecular initiation events and adverse outcomes of biological toxicity, providing a new model for toxicity testing, prediction, and evaluation of pollutants. Therefore, typical pesticides including diquat (DIQ), cyanazine (CYA), dipterex (DIP), propoxur (PRO), and oxamyl (OXA) were selected as research objects to explore the combined toxicity of typical pesticides on Chlorella pyrenoidosa (C. pyrenoidosa) and their adverse outcome pathways (AOPs). The mixture systems of pesticides were designed by the direct equipartition ray (EquRay) method and uniform design ray (UD-Ray) method. The toxic effects of single pesticides and their mixtures were systematically investigated by the time-dependent microplate toxicity analysis (t-MTA) method. The interactions of their mixtures were analyzed by the concentration addition model (CA) and the deviation from the CA model (dCA). The toxicity data showed a good concentration-effect relationship; the toxicities of five pesticides were different and the order was CYA > DIQ > OXA > PRO > DIP. Binary, ternary and quaternary mixture systems exhibited antagonism, while quinary mixture systems exhibited an additive effect. The AOP of pesticides showed that an excessive accumulation of peroxide in green algae cells led to a decline in stress resistance, inhibition of the synthesis of chlorophyll and protein in algal cells, destruction of the cellular structure, and eventually led to algal cell death.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xianhuai Huang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Fazhi Xie
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Biya Dai
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Tianyi Ma
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Jianping Zeng
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
5
|
Zhang J, Zhang J, Ma T, Shen H, Hong G. Differences in the response of Chlorella pyrenoidosa to three antidepressants and their mixtures in different light-dark start cycles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13501-13511. [PMID: 38261224 DOI: 10.1007/s11356-024-32073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The use of antidepressants is increasing along with the continuing spike in the prevalence of depression worldwide. As a result, more and more antidepressants are entering the water and probably does harm to the aquatic organisms and even human health. Therefore, three antidepressants, including fluoxetine (FLU), citalopram (CIT), and aspirin (APC), were selected to investigate the toxic risks of antidepressants and their mixtures to a freshwater green alga Chlorella pyrenoidosa (C. pyrenoidosa). Due light is critical for the growth of green algae, six different light-dark cycle experiments were constructed to investigate the differences in toxicity and interaction responses of C. pyrenoidosa to antidepressants and their ternary mixture designed by the uniform design ray method. The toxic effects of individual antidepressants and their mixtures on C. pyrenoidosa were systematically investigated by the time-dependent microplate toxicity analysis (t-MTA) method. Toxicity interactions (synergism or antagonism) within mixtures were analyzed by the concentration addition (CA) and the deviation from the CA model (dCA) models. The results showed that the toxicities of the three antidepressants were different, and the order was FLU > APC > CIT. Light-dark cycles obviously affect the toxicity of three antidepressants and their combined toxicity interaction. Toxicity of the three antidepressants increases with the duration of light but decreases with the duration of darkness. The ternary antidepressant mixture exhibits antagonism, and the longer the initial lighting is, the stronger the antagonism. The antagonism of the ternary mixture is also affected by exposure time and mixture components' pi as well as exposure concentration.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, 230601, China
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, 230601, China.
| | - Tianyi Ma
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, 230601, China
| | - Huiyan Shen
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, 230601, China
| | - Guiyun Hong
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, 230601, China
| |
Collapse
|
6
|
Menon R, Muglia LJ, Levin LH. Review on new approach methods to gain insight into the feto-maternal interface physiology. Front Med (Lausanne) 2023; 10:1304002. [PMID: 38098843 PMCID: PMC10720461 DOI: 10.3389/fmed.2023.1304002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Non-human animals represent a large and important feature in the history of biomedical research. The validity of their use, in terms of reproducible outcomes and translational confidence to the human situation, as well as ethical concerns surrounding that use, have been and remain controversial topics. Over the last 10 years, the communities developing microphysiological systems (MPS) have produced new approach method (NAMs) such as organoids and organs-on-a-chip. These alternative methodologies have shown indications of greater reliability and translatability than animal use in some areas, represent more humane substitutions for animals in these settings, and - with continued scientific effort - may change the conduct of basic research, clinical studies, safety testing, and drug development. Here, we present an introduction to these more human-relevant methodologies and suggest how a suite of pregnancy associated feto-maternal interface system-oriented NAMs may be integrated as reliable partial-/full animal replacements for investigators, significantly aid animal-/environmental welfare, and improve healthcare outcomes.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Louis J. Muglia
- The Burroughs Wellcome Fund, Research Triangle Park, NC, United States
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | |
Collapse
|
7
|
Wang N, Sun J, Ma X, Yang X, Wang X, Zhang Y, Zhou J, Wang J, Ge C. A study of long-term toxicity of multiple mixtures with hormetic effects by the characteristic parameter σ 2(k∙ECx) and stepwise method. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104133. [PMID: 37116630 DOI: 10.1016/j.etap.2023.104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
A previous study found that the characteristic parameter σ2(k∙ECx) (the concentration ECx and slope k of the concentrationresponse curve (CRC) at the effect x %) can predict the acute combined toxicity of multiple mixtures with S-shaped CRCs. In this paper, the competence of σ2(k∙ECx) to predict the long-term toxicity of multiple mixtures with J-shaped CRCs was explored using the Aliivibrio fischeri as the test organism. The combined toxicity was evaluated by the independent action (IA) model and the effect ratio (ERx) model. The stepwise method was used to divide J-shaped CRC into ML and MR (SL and SR). The results showed that the σ2(k∙ECx) and ERx of each segment was in good agreement with the exponential function. A new type of mixture was added to the original type A and type B, whose rules of interaction were opposite to those of type B (named opposite B, OB). This paper improves the understanding and analysis of the J-shaped CRCs in environmental risk assessment.
Collapse
Affiliation(s)
- Na Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China.
| | - Jiajing Sun
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaoyan Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xinyue Yang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yujiao Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Jinhong Zhou
- College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China
| | - Jiaxuan Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Chengmin Ge
- Shandong Dongyuan New Material Technology Co., Ltd, Dongying 257300, Shandong, China
| |
Collapse
|
8
|
Matias VA, Weber AG, Gueretz JS, Walz GC, Tagliari-Corrêa CV, Toumi H, Férard JF, Radetski CM, Somensi CA, Cotelle S. An alternative approach to assess ecotoxicological effects of agrochemical combinations used in Brazilian aquaculture farms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27414-2. [PMID: 37155099 DOI: 10.1007/s11356-023-27414-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
Agrochemicals used for treating and preventing aquaculture diseases are usually present in combination with other compounds, and the toxicity resulting from their chemical interactions presents an important reason to assess the ecotoxicity of compound mixtures in view to better understanding the joint action of chemicals and avoiding their environmental impacts. In this study, we evaluated the acute aquatic ecotoxicity of several compounds used in Brazilian fish farming (Oxytetracycline [OXT], Trichlorfon [TRC], and BioFish® [BIO]), both individually and in binary and ternary mixtures. Initial test concentrations were prepared according to the recommended concentrations for aquaculture application, and from these, a geometric dilution series was tested on two important fresh water quality indicator species, the microcrustacean Daphnia magna and the bacterium Aliivibrio fischeri. At the recommended pond application rate, TRC and BIO applied individually showed toxicity to the tested organisms in terms of the lowest-observed-effect concentration (LOEC), and D. magna was always more sensitive than A. fischeri. For the two test organisms, the results obtained with the binary mixtures showed that the TRC and BIO mixture was more toxic than TRC and OXT, which in turn was more toxic than OXT and BIO. The toxicity from all agrochemicals in the ternary mixture was more than that of the agrochemical combinations in the binary mixtures. Given the results presented in this study, it is evident that the mode of action and availability of the tested compounds undergo changes that increase toxicity when they are present in combination, and therefore, aquaculture wastewater treatment should be adopted to ensure decontamination of agrochemical residues.
Collapse
Affiliation(s)
- Vanessa A Matias
- Laboratório de Química Analítica e Ambiental, Instituto Federal Catarinense - Campus Araquari, Araquari, SC, 89245-000, Brazil
- Laboratório de Fisiologia, Universidade do Vale do Itajaí, Itajaí, SC, 88302-202, Brazil
| | - Ariana G Weber
- Laboratório de Fisiologia, Universidade do Vale do Itajaí, Itajaí, SC, 88302-202, Brazil
| | - Juliano S Gueretz
- Laboratório de Química Analítica e Ambiental, Instituto Federal Catarinense - Campus Araquari, Araquari, SC, 89245-000, Brazil
| | - Gabriel C Walz
- Curso de Mestrado em Tecnologia e Ambiente, Instituto Federal Catarinense - Campus Araquari, Araquari, SC, 89245-000, Brazil
| | - Cristiane V Tagliari-Corrêa
- Curso de Mestrado em Tecnologia e Ambiente, Instituto Federal Catarinense - Campus Araquari, Araquari, SC, 89245-000, Brazil
| | - Héla Toumi
- Faculté des Sciences de Bizerte, Laboratoire de Bio-surveillance de l'Environnement (LBE), Université de Carthage, 7021, Zarzouna, Bizerte, Tunisia
| | - Jean-François Férard
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Université de Lorraine, F-57070, Metz, France
| | - Claudemir M Radetski
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí, Itajaí, SC, 88302-202, Brazil
| | - Cleder A Somensi
- Laboratório de Química Analítica e Ambiental, Instituto Federal Catarinense - Campus Araquari, Araquari, SC, 89245-000, Brazil
- Curso de Mestrado em Tecnologia e Ambiente, Instituto Federal Catarinense - Campus Araquari, Araquari, SC, 89245-000, Brazil
| | - Sylvie Cotelle
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Université de Lorraine, F-57070, Metz, France.
| |
Collapse
|
9
|
Huang P, Wang Y, Liu SS, Wang ZJ, Xu YQ. SAHmap: Synergistic-antagonistic heatmap to evaluate the combined synergistic effect of mixtures of three pesticides on multiple endpoints of Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120378. [PMID: 36220575 DOI: 10.1016/j.envpol.2022.120378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The environmental pollution caused by toxic chemicals such as pesticides has become a global problem. The mixture of dichlorvos (DIC), dimethoate (DIM), aldicarb (ALD) poses potential risks to the environment and human health. To fully explore the interaction of complex mixtures on Caenorhabditis elegans behavioral toxicity endpoint. This study created a synergistic-antagonistic heatmap (SAHmap) based on the combination index to systematically describe the toxicological interaction prospect of the mixture system. It was shown that the three pesticides and their binary as well as ternary mixture rays have significant concentration-response relationship on three behavioral endpoints of nematodes, From the perspective of synergistic-antagonistic heatmaps, all the mixture rays in the DIC-DIM mixture system showed strong synergism on the three behavioral and lethal endpoints. In the ternary mixture system, the five mixture rays showed different interaction between the behavioral endpoint and the lethal endpoint, and showed slight synergism to two behavioral endpoints as a whole. The emergence of synergism should arouse our attention to these hazardous chemicals. In addition, the use of SAHmap and the significant linear correlation among three behavioral endpoints further improved the efficiency of the study on the behavioral toxicity of pesticide mixtures to Caenorhabditis elegans.
Collapse
Affiliation(s)
- Peng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yu Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
10
|
Fan R, Zhang W, Jia L, Luo S, Liu Y, Jin Y, Li Y, Yuan X, Chen Y. Antagonistic Effects of Enrofloxacin on Carbendazim-Induced Developmental Toxicity in Zebrafish Embryos. TOXICS 2021; 9:349. [PMID: 34941783 PMCID: PMC8704853 DOI: 10.3390/toxics9120349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Carbendazim (CAR) and enrofloxacin (ENF) are frequently detected in fruits and meat products, respectively. Since most people consume fruits, vegetables, and meat products, combined exposure is possible, necessitating further evaluation of toxic interactions. In this study, the developmental toxicity of separate and combined exposure was examined in zebrafish embryos. Carbendazim exposure at 0.79 mg/L and above significantly affected developmental parameters, while enrofloxacin alone had no substantial effects on these developmental parameters within the selected concentration range (0.10-0.40 mg/L). Surprisingly, ENF antagonized the CAR-evoked reduction in the 48 hpf (hours post-fertilization) hatching rate and the increases in the 96 hpf malformation and lethality rates. The results revealed that the antagonism might be associated with reciprocal effects of these compounds on metabolism-related genes, such as cyp7a1 and apoa1a. These results reveal a complex interaction between ENF and CAR on metabolic regulation during development and highlight the importance of combined assessment for agents with the potential for simultaneous exposure.
Collapse
Affiliation(s)
- Ruiqi Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.F.); (W.Z.); (S.L.); (Y.L.); (Y.J.); (Y.L.)
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (L.J.); (X.Y.)
| | - Wanjun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.F.); (W.Z.); (S.L.); (Y.L.); (Y.J.); (Y.L.)
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (L.J.); (X.Y.)
| | - Li Jia
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (L.J.); (X.Y.)
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.F.); (W.Z.); (S.L.); (Y.L.); (Y.J.); (Y.L.)
| | - Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.F.); (W.Z.); (S.L.); (Y.L.); (Y.J.); (Y.L.)
| | - Yongpeng Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.F.); (W.Z.); (S.L.); (Y.L.); (Y.J.); (Y.L.)
| | - Yongchen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.F.); (W.Z.); (S.L.); (Y.L.); (Y.J.); (Y.L.)
| | - Xiaoyan Yuan
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (L.J.); (X.Y.)
- School of Nursing and Health, Henan University, Kaifeng 475000, China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (R.F.); (W.Z.); (S.L.); (Y.L.); (Y.J.); (Y.L.)
| |
Collapse
|
11
|
Hsieh NH, Chen Z, Rusyn I, Chiu WA. Risk Characterization and Probabilistic Concentration-Response Modeling of Complex Environmental Mixtures Using New Approach Methodologies (NAMs) Data from Organotypic in Vitro Human Stem Cell Assays. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:17004. [PMID: 33395322 PMCID: PMC7781439 DOI: 10.1289/ehp7600] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Risk assessment of chemical mixtures or complex substances remains a major methodological challenge due to lack of available hazard or exposure data. Therefore, risk assessors usually infer hazard or risk from data on the subset of constituents with available toxicity values. OBJECTIVES We evaluated the validity of the widely used traditional mixtures risk assessment paradigms, Independent Action (IA) and Concentration Addition (CA), with new approach methodologies (NAMs) data from human cell-based in vitro assays. METHODS A diverse set of 42 chemicals was tested both individually and as mixtures for functional and cytotoxic effects in vitro. A panel of induced pluripotent stem cell (iPSCs)-derived models (hepatocytes, cardiomyocytes, endothelial, and neurons) and one primary cell type (HUVEC) were used. Bayesian concentration-response modeling of individual chemicals or their mixtures was performed for a total of 47 phenotypes to derive point-of-departure (POD) values. Probabilistic IA or CA was conducted to estimate the mixture effects based on the bioactivity profiles from the individual chemicals and compared with mixture bioactivity. RESULTS All mixtures showed significant bioactivity, even though some were constructed using individual chemical concentrations considered "low" or "safe." Even though CA is much more accurate as a predictor of mixture effects in comparison with IA, with CA-based POD typically within an order of magnitude of the actual mixture, in some cases, the bioactivity of the mixtures appeared to be much greater than that of their components under either additivity assumption. DISCUSSION These results suggest that CA is a preferred first approximation for predicting mixture toxicity when data for all constituents are available. However, because the accuracy of additivity assumptions varies greatly across phenotypes, we posit that mixtures and complex substances need to be directly tested for their hazard potential. NAMs provide a practical solution that rapidly yields highly informative data for mixtures risk assessment. https://doi.org/10.1289/EHP7600.
Collapse
Affiliation(s)
- Nan-Hung Hsieh
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Zunwei Chen
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
12
|
Tao MT, Bian ZQ, Zhang J, Wang T, Shen HY. Quantitative evaluation and the toxicity mechanism of synergism within three organophosphorus pesticide mixtures to Chlorella pyrenoidosa. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2095-2103. [PMID: 32926050 DOI: 10.1039/d0em00262c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organophosphorus pesticide (OPP) pollutants in the environment pose toxicity risks to living organisms, and the possible toxicity mechanism needs to be further clarified. Therefore, the individual and combined toxicity of three OPPs namely acephate (ACE), trichlorfon (TRI) and glyphosate (GIY) towards a freshwater green alga Chlorella pyrenoidosa (C. pyrenoidosa) was investigated by the time-dependent microplate toxicity analysis method. Here, a ternary mixture system of the three OPPs including five rays with different concentration ratios was designed by the uniform design ray method. The standard additive reference model, concentration addition (CA), was used to analyse toxicity interaction within ternary mixtures and the toxicity interaction intensity was characterized using a deviation from CA model (dCA). Besides, the effects of the three OPPs and their mixtures on the chlorophyll (CHL) content, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content of C. pyrenoidosa were also investigated to explore the possible mechanisms. The results show that toxicity of the three pesticides and their ternary mixture rays is time-dependent and the combined toxicity correlates well with the components, ACE and GLY. It is likely that there is a significant time-dependent synergism in ternary mixtures induced by ACE and GLY. The synergism intensity of the ternary mixtures is not more than 30% at the whole experimental concentration level. The CHL reduction rate and MDA content of C. pyrenoidosa increase, while the SOD activity of C. pyrenoidosa decreases with the lengthening of exposure time under the action of the three pesticides and their ternary mixtures. So, the possible mechanism of the three pesticides and their mixtures may be by affecting the photosynthesis, and then causing oxidative damage to C. pyrenoidosa cells. The results can provide reference for the combined toxicity assessment of OPPs to living organisms.
Collapse
Affiliation(s)
- Meng-Ting Tao
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China.
| | | | | | | | | |
Collapse
|
13
|
Zhang J, Tao MT, Song C, Sun B. Time-dependent synergism of five-component mixture systems of aminoglycoside antibiotics to Vibrio qinghaiensis sp.-Q67 induced by a key component. RSC Adv 2020; 10:12365-12372. [PMID: 35497594 PMCID: PMC9050847 DOI: 10.1039/d0ra00915f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/13/2020] [Indexed: 12/02/2022] Open
Abstract
A large number of antibiotics are entering the aquatic environment accompanying human and animal excreta, which will threaten the survival of aquatic organisms and even human health. It has been found that binary mixtures of aminoglycoside (AG) exhibit additive action and can be evaluated well by a classical model, concentration addition (CA) in our past study. Therefore, to investigate the toxicity interaction within multi-component mixtures of AG antibiotics, five antibiotics, kanamycin sulfate (KAN), neomycin sulfate (NEO), tobramycin (TOB), streptomycin sulfate (STS), and gentamicin sulfate (GEN), were selected to construct five-component mixture systems by a uniform design ray method. The toxic effects (luminescence inhibition) of single antibiotic and five-antibiotic mixture systems towards a photobacterium Vibrio qinghaiensis sp.-Q67 (V. qinghaiensis) in different exposure time (0.25, 2, 4, 8, and 12 h) were determined by the time-dependent microplate toxicity analysis method. The concentration-effect data were fitted by a nonlinear least square method, toxicity interaction within mixture systems was analyzed by a CA model, and the interaction intensity was characterized by deviation from the CA model (dCA). Besides, the toxicity mechanism of five antibiotics and their five-component mixtures to V. qinghaiensis was analyzed by electron microscopy. The results show that toxicity of five antibiotics and their five-component mixture systems to V. qinghaiensis is time-dependent and has strong long-term toxicity. Different from binary AG antibiotic mixture systems, five-antibiotic mixture systems exhibit obviously time-dependent synergism. In addition, toxicity of the five-antibiotic mixtures can be 1.4 times higher than that of the mixtures without synergisms at the same concentration level. According to dCA, synergism intensity (dCA) curves of rays move slowly from the high concentration region to the medium or lower one and the maximum dCA values also increase, decrease, or first increase, then decrease with the lengthening of exposure time. The inhibition activity and synergism intensity of mixture rays have good correlation with the concentration ratios of STS, the key component for synergism. The cell morphology of V. qinghaiensis indicates the strong toxicity of five antibiotics and their mixture rays is not due to the destruction of cell structure, but the inhibition of the light-emitting activity of the photobacterium.
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University Hefei 230601 PR China +86-180-1958-0589
| | - Meng-Ting Tao
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University Hefei 230601 PR China +86-180-1958-0589
| | - Chongchong Song
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University Hefei 230601 PR China +86-180-1958-0589
| | - Bai Sun
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University Hefei 230601 PR China +86-180-1958-0589
| |
Collapse
|
14
|
Ju Z, Liu SS, Xu YQ, Li K. Combined Toxicity of 2,4-Dichlorophenoxyacetic Acid and Its Metabolites 2,4-Dichlorophenol (2,4-DCP) on Two Nontarget Organisms. ACS OMEGA 2019; 4:1669-1677. [PMID: 31459423 PMCID: PMC6648169 DOI: 10.1021/acsomega.8b02282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/19/2018] [Indexed: 05/03/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D), a phenoxyalkanoic acid herbicide, is among the most widely distributed pollutants in the environment. 2,4-Dichlorophenol (2,4-DCP), as the main metabolite of 2,4-D, always accompanies 2,4-D. In this paper, we did research on the combined toxicities of 2,4-D and 2,4-DCP to Vibrio qinghaiensis sp.-Q67 (Q67) and Caenorhabditis elegans. It was found that the toxicity of 2,4-DCP is more severe than that of its parent 2,4-D at any concentration levels whether to Q67 or to C. elegans. Furthermore, 2,4-DCP to Q67 has the time-dependent toxicity. The toxicity of the mixture of 2,4-D and 2,4-DCP to Q67 is increasing with the exposure time, but that to C. elegans does not change over time. There is a good linear relationship between the pEC50/pLC50 value of binary mixture ray of 2,4-D and 2,4-DCP and the mixture ratio of 2,4-DCP, which implies the predictability of mixture toxicity of 2,4-D and 2,4-DCP. The toxicological interactions of the binary mixtures to Q67 are basically additive actions whether at 0.25 or at 12 h. However, most mixtures have antagonistic interactions against C. elegans.
Collapse
Affiliation(s)
- Zhen Ju
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, and State Key Laboratory of Pollution
Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, and State Key Laboratory of Pollution
Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
- E-mail: . Phone: (86)-021-65982767
| | - Ya-Qian Xu
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, and State Key Laboratory of Pollution
Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kai Li
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, and State Key Laboratory of Pollution
Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
15
|
Baek IH, Kim Y, Baik S, Kim J. Investigation of the Synergistic Toxicity of Binary Mixtures of Pesticides and Pharmaceuticals on Aliivibrio fischeri in Major River Basins in South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16020208. [PMID: 30642109 PMCID: PMC6352224 DOI: 10.3390/ijerph16020208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 01/26/2023]
Abstract
This work introduces the potential synergistic toxicity of binary mixtures of pesticides and pharmaceuticals, which have been detected in substantial amounts in major river basins in South Korea. Different dose-response curve functions were employed in each experimental toxicity dataset for Aliivibrio fischeri. We tested the toxicity of 30 binary mixtures at two effect concentrations: high effect concentration [EC50] and low effect concentration (EC10) ranges. Thus, the toxicological interactions were evaluated at 60 effected concentration data points in total and based on model deviation ratios (MDRs) between predicted and observed toxicity values (e.g., three types of combined effects: synergistic (MDR > 2), additive (0.5 ≤ MDR ≤ 2), and antagonistic (MDR < 0.5)). From the 60 data points, MDRs could not be applied to 17 points, since their toxicities could not be measured. The result showed 48%-additive (n = 20), 40%-antagonistic (n = 17), and 12%-synergistic (n = 6) toxicity effects from 43 binaries (excluding the 17 combinations without MDRs). In this study, EC10 ratio mixtures at a low overall effect range showed a general tendency to have more synergistic effects than the EC50 ratio mixtures at a high effect range. We also found an inversion phenomenon, which detected three binaries of the combination of synergism at low concentrations and additive antagonism at high concentrations.
Collapse
Affiliation(s)
- In-Hyuk Baek
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbruecken, Germany.
- Center for Bioinformatics, Saarland University, Campus E 2.1, 66123 Saarbruecken, Germany.
| | - Youngjun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbruecken, Germany.
- Division of Energy and Environment Technology, KIST School, University of Science and Technology, Hwarang-ro 14-gil, Seoul 02792, Korea.
| | - Seungyun Baik
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbruecken, Germany.
| | - Jongwoon Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbruecken, Germany.
- Division of Energy and Environment Technology, KIST School, University of Science and Technology, Hwarang-ro 14-gil, Seoul 02792, Korea.
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea.
| |
Collapse
|
16
|
Xu YQ, Liu SS, Fan Y, Li K. Toxicological interaction of multi-component mixtures to Vibrio qinghaiensis sp.-Q67 induced by at least three components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:432-442. [PMID: 29677669 DOI: 10.1016/j.scitotenv.2018.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 05/03/2023]
Abstract
It has been stated by researchers that the antibiotic polymyxin B sulfate (POL) is a key component inducing time-dependent antagonism in freshwater luminescent bacteria, Vibrio qinghaiensis sp.-Q67, exposed in the ternary mixture system of the ionic liquids, pesticide and antibiotics. However, the previous statement is limited to ternary and quaternary mixtures without considering situations such as the binary system. In order to prove the direct inducing of antagonism by POL in a more complete and systematic way, two categories of experiments (adding POL in non-antagonistic ternary system and decomposing antagonistic ternary system with POL into the binary system) have been conducted in this paper. The results showed that quaternary mixture systems (adding POL to non-antagonism ternary mixture, up verification) exhibit antagonistic action in a majority of rays, at some point in the experiment. However, by decomposing the antagonistic ternary mixtures with POL into binary mixtures (down verification), the combined toxicities of binary mixtures at all time points in the experiment are additive. Obviously, the POL has a significant contribution to antagonism only in the ternary and quaternary mixtures, but not in the binary mixtures. We can draw a new conclusion that the antagonism of the multi-component mixtures is induced by at least three components (including POL), with complex chemical interactions. Therefore, considering POL's influence of antagonism as an example, future environmental protection practitioners and academic researchers should construct more scenarios of mixtures when assessing the influences and reactions of certain chemicals causing pollutions.
Collapse
Affiliation(s)
- Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Ye Fan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Kai Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
17
|
Kim K, Jeon HJ, Choi SD, Tsang DCW, Oleszczuk P, Ok YS, Lee HS, Lee SE. Combined toxicity of endosulfan and phenanthrene mixtures and induced molecular changes in adult Zebrafish (Danio rerio). CHEMOSPHERE 2018; 194:30-41. [PMID: 29197246 DOI: 10.1016/j.chemosphere.2017.11.128] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/23/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Individual and combined toxicities of endosulfan (ENDO) with phenanthrene (PHE) were evaluated using zebrafish (Danio rerio) adults. The 96-h LC50 values for ENDO and PHE were 4.6 μg L-1 and 920 μg L-1, respectively. To evaluate the mixture toxicity, LC10 and LC50 concentrations were grouped into four combinations as ENDO-LC10 + PHE-LC10, ENDO-LC10 + PHE-LC50, ENDO-LC50 + PHE-LC10, and ENDO-LC50 + PHE-LC50, and their acute toxicities were determined. The combination of LC50-ENDO and LC10-PHE exhibited a synergistic effect. In addition, acetylcholinesterase activity decreased in zebrafish bodies exposed to ENDO with or without PHE. Combined treatments induced higher glutathione S-transferase activity compared to individual treatments. Carboxylesterase activity increased in both heads and bodies of ENDO-treated fishes compared with PHE-treated fishes. Using RT-qPCR technique, CYP1A gene expression significantly up-regulated in all combinations, whereas CYP3A was unchanged, suggesting that enzymes involved in defense may play different roles in the detoxification. CYP7A1 gene responsible for bile acid biosynthesis is dramatically down-regulated after exposure to the synergistic combination exposure, referring that the synergistic effect may be resulted from the reduction of bile production in zebrafishes. Among gender-related genes, CYP11A1 and CYP17A1 genes in female zebrafish decreased after treatment with ENDO alone and combination of LC50-ENDO and LC10-PHE. This might be related to a reduction in cortisol production. The overall results indicated that ENDO and PHE were toxic to zebrafish adults both individually and in combination, and that their co-presence induced changes in the expression of genes responsible for metabolic processes and defense mechanisms.
Collapse
Affiliation(s)
- Kyeongnam Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hwang-Ju Jeon
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung-Deuk Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Sklodowska-Curie University, Maria Curie-Sklodowska Square 3, 20-031, Lublin, Poland
| | - Yong Sik Ok
- O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hoi-Seon Lee
- Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
18
|
Li T, Liu SS, Qu R, Liu HL. Global concentration additivity and prediction of mixture toxicities, taking nitrobenzene derivatives as an example. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:475-481. [PMID: 28667859 DOI: 10.1016/j.ecoenv.2017.06.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 05/03/2023]
Abstract
The toxicity of a mixture depends not only on the mixture concentration level but also on the mixture ratio. For a multiple-component mixture (MCM) system with a definite chemical composition, the mixture toxicity can be predicted only if the global concentration additivity (GCA) is validated. The so-called GCA means that the toxicity of any mixture in the MCM system is the concentration additive, regardless of what its mixture ratio and concentration level. However, many mixture toxicity reports have usually employed one mixture ratio (such as the EC50 ratio), the equivalent effect concentration ratio (EECR) design, to specify several mixtures. EECR mixtures cannot simulate the concentration diversity and mixture ratio diversity of mixtures in the real environment, and it is impossible to validate the GCA. Therefore, in this paper, the uniform design ray (UD-Ray) was used to select nine mixture ratios (rays) in the mixture system of five nitrobenzene derivatives (NBDs). The representative UD-Ray mixtures can effectively and rationally describe the diversity in the NBD mixture system. The toxicities of the mixtures to Vibrio qinghaiensis sp.-Q67 were determined by the microplate toxicity analysis (MTA). For each UD-Ray mixture, the concentration addition (CA) model was used to validate whether the mixture toxicity is additive. All of the UD-Ray mixtures of five NBDs are global concentration additive. Afterwards, the CA is employed to predict the toxicities of the external mixtures from three EECR mixture rays with the NOEC, EC30, and EC70 ratios. The predictive toxicities are in good agreement with the experimental toxicities, which testifies to the predictability of the mixture toxicity of the NBDs.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Rui Qu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hai-Ling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
19
|
Mo LY, Liu J, Qin LT, Zeng HH, Liang YP. Two-Stage Prediction on Effects of Mixtures Containing Phenolic Compounds and Heavy Metals on Vibrio qinghaiensis sp. Q67. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:17-22. [PMID: 28523368 DOI: 10.1007/s00128-017-2099-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Two-stage prediction (TSP) model had been developed to predict toxicities of mixtures containing complex components, but its prediction power need to be further validated. Six phenolic compounds and six heavy metals were selected as mixture components. One mixture (M1) was built with equivalent-effect concentration ratio and four mixtures (M2-M5) were designed with fixed concentration ratio. In M1-M5, the toxicities were well predicted by TSP model, while CA overestimated and IA underestimated the toxicities. In M1-M5, compared with the actual mixture EC50 value, the prediction errors of TSP model (13.9%, 17.9%, 19.2%, and 17.3% and 15.8%, respectively) were significantly lower than those in the CA (higher than 30%) and IA models (20.9%, 33.0%, 20.6%, 21.8% and 12.5%, respectively). Thus, the TSP model performed better than the CA and IA model.
Collapse
Affiliation(s)
- Ling-Yun Mo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| | - Li-Tang Qin
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| | - Hong-Hu Zeng
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Yan-Peng Liang
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, People's Republic of China
| |
Collapse
|
20
|
Fox MA, Brewer LE, Martin L. An Overview of Literature Topics Related to Current Concepts, Methods, Tools, and Applications for Cumulative Risk Assessment (2007-2016). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14040389. [PMID: 28387705 PMCID: PMC5409590 DOI: 10.3390/ijerph14040389] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 11/26/2022]
Abstract
Cumulative risk assessments (CRAs) address combined risks from exposures to multiple chemical and nonchemical stressors and may focus on vulnerable communities or populations. Significant contributions have been made to the development of concepts, methods, and applications for CRA over the past decade. Work in both human health and ecological cumulative risk has advanced in two different contexts. The first context is the effects of chemical mixtures that share common modes of action, or that cause common adverse outcomes. In this context two primary models are used for predicting mixture effects, dose addition or response addition. The second context is evaluating the combined effects of chemical and nonchemical (e.g., radiation, biological, nutritional, economic, psychological, habitat alteration, land-use change, global climate change, and natural disasters) stressors. CRA can be adapted to address risk in many contexts, and this adaptability is reflected in the range in disciplinary perspectives in the published literature. This article presents the results of a literature search and discusses a range of selected work with the intention to give a broad overview of relevant topics and provide a starting point for researchers interested in CRA applications.
Collapse
Affiliation(s)
- Mary A Fox
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - L Elizabeth Brewer
- Office of the Science Advisor, U.S. Environmental Protection Agency, Oak Ridge Institute for Science and Education (ORISE), Washington, DC 20004, USA.
| | - Lawrence Martin
- Office of the Science Advisor, U.S. Environmental Protection Agency, Washington, DC 20004, USA.
| |
Collapse
|
21
|
Feng L, Liu SS, Li K, Tang HX, Liu HL. The time-dependent synergism of the six-component mixtures of substituted phenols, pesticides and ionic liquids to Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2017; 327:11-17. [PMID: 28033493 DOI: 10.1016/j.jhazmat.2016.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/08/2016] [Accepted: 12/17/2016] [Indexed: 05/03/2023]
Abstract
Traditional environmental risk assessment rarely focused on exposures to multi-component mixtures which may cause toxicological interactions and usually ignored that toxicity is a process in time, which may underestimate the environment risk of mixtures. In this paper, six chemicals belonging to three categories, two substituted phenols, two pesticides and two Ionic liquids, were picked to construct a six-component mixture system. To systematically examine the effects of various concentration compositions, the uniform design ray method was employed to design nine mixture rays with nine mixture ratios and for every mixture ray 12 concentration levels were specified by the fixed ratio ray design. The improved combination index was used to evaluate the combined toxicities of the mixtures to Caenorhabditis elegans (C. elegans) in the exposure times of 6, 12 and 24h. It was shown that the mixture rays display time-dependent synergism, i.e. the range of synergistic effect narrows and the strength of synergism runs down with exposure time, which illustrates that the mixture toxicity of some chemicals is not a sum of individual toxicities at some exposure times and it is necessary to consider the toxicological interaction in mixtures.
Collapse
Affiliation(s)
- Li Feng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Kai Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Han-Xiao Tang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hai-Ling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
22
|
Zhu XW, Ge HL, Cao YB. Mixture cytotoxicity assessment of ionic liquids and heavy metals in MCF-7 cells using mixtox. CHEMOSPHERE 2016; 163:544-551. [PMID: 27567154 DOI: 10.1016/j.chemosphere.2016.08.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 07/13/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
Ionic liquids (ILs) are widely used as extractants for heavy metals. However, the effect of mixtures of ILs and heavy metals is rarely understood. In this study, we tested the cytotoxicity of four ILs, four heavy metals and their mixtures on human MCF-7 cells in 96-well microplates. The toxicity of single compounds in MCF-7 cells ranges from 3.07 × 10(-6) M for Cu(II) to 2.20 × 10(-3) M for 1-ethyl-3-methylimidazolium tetrafluoroborate. The toxicity of heavy metals in MCF-7 is generally higher than the toxicity of ILs. A uniform experimental design was used to simulate environmentally realistic mixtures. Two classical reference models (concentration addition and independent action) were used to predict their mixture. The experiments to evaluate the toxicity of the mixture revealed antagonism among four ILs and four heavy metals in MCF-7 cells. Pearson correlation analysis showed that Ni(II) and 1-dodecyl-3-methylimidazolium chloride are positively correlated with the extent of antagonism, while 1-hexyl-3-methylimidazolium tetrafluoroborate showed a negative correlation. Data analysis was conducted in the R package mixtox, which integrates features such as curve fitting, experimental design, and mixture toxicity prediction. The international community of toxicologists is welcome to use this package and provide feedback as suggestions and comments.
Collapse
Affiliation(s)
- Xiang-Wei Zhu
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Hui-Lin Ge
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Yu-Bin Cao
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
23
|
Zhang HJ, Jiang XR, Mantovani G, Lumbreras AEV, Comi M, Alborali G, Savoini G, Dell’Orto V, Bontempo V. Modulation of Plasma Antioxidant Activity in Weaned Piglets by Plant Polyphenols. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2014.3242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Uniform design ray in the assessment of combined toxicities of multi-component mixtures. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-015-0925-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Liu L, Liu SS, Yu M, Chen F. Application of the combination index integrated with confidence intervals to study the toxicological interactions of antibiotics and pesticides in Vibrio qinghaiensis sp.-Q67. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:447-56. [PMID: 25589171 DOI: 10.1016/j.etap.2014.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/18/2014] [Accepted: 12/21/2014] [Indexed: 05/03/2023]
Abstract
It is necessary to explore the effect of confidence intervals on the combination index (CI) so that rationally evaluate the toxicological interaction (synergism or antagonism) which is dependent on the concentration ratio, the mixture concentration and the exposure time. To effectively detect the toxicological interaction taking place in mixtures, we combined the CI with the observation-based confidence intervals (OCI) which can characterize the uncertainty in toxicity test and in data fitting. In time scale, the short-term (15min) and long-term (12h) toxicities of three chemicals (imidacloprid (IMI), pirimicarb (PIR) and streptomycin sulfate (STR)) and their binary mixtures on Vibrio qinghaiensis sp.-Q67 were determined by the microplate toxicity analysis (MTA). The mixtures of IMI, PIR and STR have additive actions all but four IMI-PIR rays (R2-R5) at the effect levels above about 30-40% whose long-term toxicological interaction are synergism.
Collapse
Affiliation(s)
- Ling Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Mo Yu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Fu Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
26
|
Zeng HH, Lei CW, Zhang YH, Cao Y, Liu ZT. Prediction of the joint toxicity of five organophosphorus pesticides to Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1870-1877. [PMID: 25209719 DOI: 10.1007/s10646-014-1347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
The individual toxicities of five organophosphorus pesticides (dichlorvos, parathion, methyl parathion, malathion and dimethoate) to Daphnia magna were investigated in 24-h immobilization experiments. Using these toxicity data, their combined toxicities were measured in pesticide mixtures designed using either 'equivalent-effect concentration ratios' or 'uniform-design concentration ratios'. The toxicities of mixtures of similarly or dissimilarly acting toxicants are often predicted from the individual toxicities of the component compounds, using one of two distinct biometric models: concentration addition (CA) or independent action (IA). The relative accuracies of the CA and IA models were assessed using the model deviation rate (MDR), which represents the difference between the effect predicted from the individual pesticide concentrations and the observed effect. The mean MDR value of CA was 0.93 (range 0.75-1.31) and the mean value obtained by IA was 3.13 (range 2.52-4.37). We conclude that the CA model is better able to predict the joint toxicities of mixtures of organophosphorus pesticides to D. magna.
Collapse
Affiliation(s)
- Hong-Hu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Zhong X, Yan J, Li YC, Kong B, Lu HB, Liang YZ. A novel strategy for quantitative analysis of the formulated complex system using chromatographic fingerprints combined with some chemometric techniques. J Chromatogr A 2014; 1370:179-86. [DOI: 10.1016/j.chroma.2014.10.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/04/2014] [Accepted: 10/18/2014] [Indexed: 11/15/2022]
|
28
|
Zhang J, Liu SS, Xiao QF, Huang XH, Chen Q. Identifying the component responsible for antagonism within ionic liquid mixtures using the up-to-down procedure integrated with a uniform design ray method. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 107:16-21. [PMID: 24905692 DOI: 10.1016/j.ecoenv.2014.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/10/2014] [Accepted: 02/27/2014] [Indexed: 06/03/2023]
Abstract
Various chemicals in the environment always exist as mixtures. Toxicity interaction within mixtures may pose potential hazards and risks to the environmental safety and human health. Recent studies showed that toxicity interaction by ionic liquid (IL) mixtures can be related to a certain component. To identify the component, we developed a novel procedure integrating an up-to-down process with the uniform design-based ray method (UDUD) and applied it into an IL mixture system of four 1-butyl-3-methylimidazolium ILs (simply [bmim]X) where X=Cl(-), Br(-), CH3OSO3(-) and CH3(CH2)7OSO3(-). It was shown that two mixture rays in the quaternary system exhibited significant antagonistic interaction. In this paper, the UDUD was first employed to design four ternary mixture systems. The microplate toxicity analysis was used to determine the toxicities of various mixtures to a freshwater photobacterium Vibrio qinghaiensis sp.-Q67. The concentration addition was taken as an additive reference to assess the toxicity interactions taking place in mixtures. The results revealed that some ternary mixture rays including [bmim]CH3(CH2)7OSO3 display antagonism while the ternary rays without [bmim]CH3(CH2)7OSO3 exhibit additivity. On these grounds, we again designed all binary mixtures containing [bmim]CH3(CH2)7OSO3, determined their toxicities and assessed toxicity interaction. The results showed that three binary mixture systems produce antagonism. Thus, it may be concluded that [bmim]CH3(CH2)7OSO3 is indeed a key component inducing mixture antagonism.
Collapse
Affiliation(s)
- Jin Zhang
- College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Qian-Fen Xiao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xian-Huai Huang
- College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Qiong Chen
- College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| |
Collapse
|
29
|
Ge HL, Liu SS, Su BX, Qin LT. Predicting synergistic toxicity of heavy metals and ionic liquids on photobacterium Q67. JOURNAL OF HAZARDOUS MATERIALS 2014; 268:77-83. [PMID: 24468529 DOI: 10.1016/j.jhazmat.2014.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 06/03/2023]
Abstract
Results from three mathematical approaches to predict the toxicity of uniform design mixtures of four heavy metals (HMs) including Cd(II), Ni(II), Cu(II), and Zn(II) and six ionic liquids (ILs) were compared to the observed toxicity of these mixtures on Vibrio qinghaiensis sp.-Q67. Single toxicity analysis indicated that the ILs had greater toxicity than the HMs. Combined toxicities of HMs and ILs were found to be synergistic. The combined toxicities were underestimated by concentration addition (CA) and independent action (IA) models. However, the mixture toxicities were effectively predicted by the integrated CA with IA based on multiple linear regression model (ICIM). We propose that ICIM model can serve as a useful tool for predicting the toxicity of interactive mixtures.
Collapse
Affiliation(s)
- Hui-Lin Ge
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Bing-Xia Su
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Li-Tang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
30
|
Kim J, Kim S, Schaumann GE. Development of QSAR-based two-stage prediction model for estimating mixture toxicity. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:841-861. [PMID: 23941683 DOI: 10.1080/1062936x.2013.815654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Conventionally, concentration addition (CA) and independent action (IA) models based on additive toxicity are often used to estimate the mixture toxicity of similarly- and dissimilarly-acting chemicals, respectively. A two-stage prediction (TSP) model has been developed as an integrated addition model that can perform the CA and IA calculations stage by stage. However, the use of the conventional TSP model is limited if the mode of toxic action (MoA) for every mixture component is not readily known. The aim of this study was to develop and evaluate a quantitative structure-activity relationship-based TSP (QSAR-TSP) model for estimating mixture toxicity in the absence of knowledge on the MoAs of the constituents. For this purpose, different clustering methods of mixture constituents using computerized analysis based on the structural similarity between chemicals were applied as a part of the predictions of mixture toxicity. The relative importance of molecular descriptors was additionally determined by Random Forest analysis. This study highlights the prediction power of the QSAR-TSP model and its potential to overcome the limitations of the conventional TSP model, and how clustering methods of mixture components that employ chemical structural information to categorize might be applied to predict mixture toxicity effectively.
Collapse
Affiliation(s)
- J Kim
- a Institute of Environmental Sciences , University of Koblenz-Landau , Landau , Germany
| | | | | |
Collapse
|
31
|
Liu SS, Wang CL, Zhang J, Zhu XW, Li WY. Combined toxicity of pesticide mixtures on green algae and photobacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 95:98-103. [PMID: 23816361 DOI: 10.1016/j.ecoenv.2013.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/11/2013] [Accepted: 05/16/2013] [Indexed: 05/03/2023]
Abstract
Different organisms have diverse responses to the same chemicals or mixtures. In this paper, we selected the green algae Chlorella pyrenoidosa (C. pyrenoidosa) and photobacteria Vibrio qinghaiensis sp.-Q67 (V. qinghaiensis) as target organisms and determined the toxicities of six pesticides, including three herbicides (simetryn, bromacil and hexazinone), two fungicides (dodine and metalaxyl) and one insecticide (propoxur), and their mixtures by using the microplate toxicity analysis. The toxicities of three herbicides to C. pyrenoidosa are much higher than those to V. qinghaiensis, and the toxicities of metalaxyl and propoxur to V. qinghaiensis are higher than those to C. pyrenoidosa, while the toxicity of dodine to C. pyrenoidosa is similar to those to V. qinghaiensis. Using the concentration addition as an additive reference model, the binary pesticide mixtures exhibited different toxicity interactions, i.e., displayed antagonism to C. pyrenoidosa but synergism to V. qinghaiensis. However, the toxicities of the multi-component mixtures of more than two components are additive and can be predicted by the concentration addition model.
Collapse
Affiliation(s)
- Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | | | | | | | | |
Collapse
|
32
|
Chen J, Jiang Y, Xu C, Yu L, Sun D, Xu L, Hu F, Li H. Comparison of two mathematical prediction models in assessing the toxicity of heavy metal mixtures to the feeding of the nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 94:73-79. [PMID: 23721856 DOI: 10.1016/j.ecoenv.2013.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 06/02/2023]
Abstract
The combined toxicity of four heavy metals (copper, zinc, cadmium and chromium) to the nematode Caenorhabditis elegans was determined by using feeding as an endpoint. Six equivalent-effect concentration ratio (EECR) mixtures and six uniform design concentration ratio (UDCR) mixtures were designed to fully explore the combined toxicities of these heavy metals. Observed toxicities were compared with predictions calculated by two basic models, concentration addition (CA) and independent action (IA). All the concentration-response relationships of the mixtures can be well characterized and described by the Weibull function. CA provided a relatively better prediction for the mix-toxicity of the four heavy metals, which share a similar mode of action on the feeding of C. elegans, although the prediction calculated by IA was also reliable, from the viewpoint of model prediction.
Collapse
Affiliation(s)
- Jiandong Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang J, Liu SS, Zhang J, Qin LT, Deng HP. Two novel indices for quantitatively characterizing the toxicity interaction between ionic liquid and carbamate pesticides. JOURNAL OF HAZARDOUS MATERIALS 2012; 239-240:102-109. [PMID: 22999018 DOI: 10.1016/j.jhazmat.2012.07.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/17/2012] [Accepted: 07/31/2012] [Indexed: 06/01/2023]
Abstract
Compound contamination and toxicity interaction demand the development of models that have an insight into the combined toxicity of chemicals. Two novel mixture toxicity indices, concentration addition index (CAI) and effect addition index (EAI), were developed to quantitatively characterize the toxicity interaction within four binary mixture systems containing carbamate pesticides and 1-benzyl-3-methylimidazolium tetrafluoroborate (IL). To examine the applicability of CAI and EAI, we compared the indices with the other indices such as the sum of toxic unit (STU), model deviation ratio (MDR), and effect residual ratio (ERR) and isobologram approach. The results showed that CAI and EAI could more clearly and effectively characterize the toxicity interaction within IL-pesticide mixtures than the other four methods. According to CAI and EAI, IL-aldicarb, IL-baygon and IL-methomyl mixture systems displayed clear antagonism at relatively low effect regions, while IL-pirimicarb mixture systems basically exhibited additive action. The most interesting observation is that all five indices (CAI, EAI, MDR, ERR, and STU) are well correlated with the concentration ratio of IL in the mixtures.
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | | | | | | | | |
Collapse
|
34
|
Stara A, Machova J, Velisek J. Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:334-343. [PMID: 22301164 DOI: 10.1016/j.etap.2011.12.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/08/2011] [Accepted: 12/19/2011] [Indexed: 05/31/2023]
Abstract
We investigated the chronic effect of simazine, an s-triazine herbicide commonly present in aquatic environments, on the antioxidant system and oxidative stress indices in common carp (Cyprinus carpio L.). Fish were exposed to sub-lethal concentrations of 0.06 μg l(-1) (environmental concentration in Czech rivers), 2 mg l(-1), and 4 mg l(-1) for 14, 28 and 60 days. Indices of oxidative stress [reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS)], and antioxidant parameters [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced glutathione (GSH)] in fish brain, gill, muscle, liver, and intestine were measured. Chronic exposure to simazine showed the impact of the increased production of ROS leading to oxidative damage to lipids, proteins, and inhibition of antioxidant capacity. Activity of the antioxidant enzymes SOD, CAT, GPx and GSH in groups with high concentrations (2 mg l(-1), 4 mg l(-1)) increased at 14 and 28 days, but decreased after 60 days exposure (p<0.01) as compared with the control group. Changes in enzyme activity were mainly in the liver, but also in gills and brain. Prolonged exposure to simazine resulted in excess ROS formation finally resulting in oxidative damage to cell lipids and proteins and also inhibited antioxidant capacities in common carp tissue.
Collapse
Affiliation(s)
- Alzbeta Stara
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic.
| | | | | |
Collapse
|
35
|
Zhang J, Liu SS, Liu HL, Zhu XW, Mi XJ. A novel method dependent only on the mixture information (MIM) for evaluating the toxicity of mixture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:1941-1947. [PMID: 21531059 DOI: 10.1016/j.envpol.2011.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 03/04/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
Compound contamination and toxicity interaction necessitate the development of models that have an insight into the combined toxicity of chemicals. In this paper, a novel and simple model dependent only on the mixture information (MIM), was developed. Firstly, the concentration-response data of seven groups of binary and multi-component (pseudo-binary) mixtures with different mixture ratios to Vibrio qinghaiensis sp.-Q67 were determined using the microplate toxicity analysis. Then, a desirable non-linear function was selected to fit the data. It was found that there are good linear correlations between the location parameter (α) and mixture ratio (p) of a component and between the steepness (β) and p. Based on the correlations, a mixture toxicity model independent of pure component toxicity profiles was built. The model can be used to accurately estimate the toxicities of the seven groups of mixtures, which greatly simplified the predictive procedure of the combined toxicity.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | | | | | | | | |
Collapse
|
36
|
Dou RN, Liu SS, Mo LY, Liu HL, Deng FC. A novel direct equipartition ray design (EquRay) procedure for toxicity interaction between ionic liquid and dichlorvos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:734-42. [PMID: 21108009 DOI: 10.1007/s11356-010-0419-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 11/16/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND, AIM AND SCOPE Pollutants always co-exist in the environment. Determining and characterizing the interaction among chemicals is an important issue. Experimental designs (ED) play an important role in evaluating the interactions. The main aim of our study is to provide the test and analysis of the toxicity interaction with a novel ED method. MATERIALS AND METHODS A novel direct equipartition ray design (EquRay) procedure was proposed to effectively and systematically determine the toxicities of binary mixtures on Vibrio qinghaiensis sp.-Q67. Here, one component is ionic liquid, 1-butyl-2,3-dimethylimidazolium chloride (IL1), 1-butylpyridinium bromide (IL2) or N-hexylpyridinium bis(trifluoromethylsulfonyl)imide (IL3), and another is dichlorvos (DIC). The toxicity interaction was evaluated by comparing experiment and additive model together with three-dimension deviation response surface (DRS) analysis. RESULT Selecting CA as a reference model, the binary mixtures exerted less than additive (antagonism). Most of the deviations occurred in the centre portion of the DRS where the dCA (deviation from CA) values are between -15% and -26% for IL1-DIC and IL2-DIC mixtures and -10% and -15% for IL3 and DIC. Selecting IA as a additive model, IL1-DIC and IL2-DIC mixtures exhibited less than additive (antagonism) while IL3-DIC displayed an addition action and the absolute values of dIAs (deviation from IA) were less than 10%. CONCLUSION A novel EquRay procedure was developed in this study and the EquRay can provide us with the information about the toxicity interaction between binary mixture components (such as DIC and IL) in different concentration regions across different mixture ratios.
Collapse
Affiliation(s)
- Rong-Ni Dou
- College of Chemistry and Bioengineering, Guilin University of Technology, 541004, Guilin, China
| | | | | | | | | |
Collapse
|
37
|
Zhang J, Liu SS, Dou RN, Liu HL, Zhang J. Evaluation on the toxicity of ionic liquid mixture with antagonism and synergism to Vibrio qinghaiensis sp.-Q67. CHEMOSPHERE 2011; 82:1024-1029. [PMID: 21074822 DOI: 10.1016/j.chemosphere.2010.10.063] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 10/17/2010] [Accepted: 10/21/2010] [Indexed: 05/30/2023]
Abstract
Ionic liquids (ILs) are a fascinating group of new chemicals with the potential to replace the classical volatile organic solvents, stimulating many applications in chemical industry. In case ILs are released to the environment, possible combined toxicity should be taken into account and it is, however, often neglected up to now. In this paper, therefore, the concentration-response curves (CRCs) of four groups of IL mixtures with various mixture ratios to Vibrio qinghaiensis sp.-Q67 were determined using the microplate toxicity analysis and were compared to the CRCs predicted by an additive reference model, the concentration addition (CA) or independent action (IA), to identify the toxicity interaction. It is showed that most of the IL mixture rays displayed the classical addition while the remaining rays exhibited antagonism or synergism. Moreover, it is found that the pEC₅₀ values of the mixture rays exhibiting antagonism or synergism are well correlated with the mixture ratio of a certain IL therein.
Collapse
Affiliation(s)
- Jin Zhang
- Tongji University, Shanghai, PR China
| | | | | | | | | |
Collapse
|