1
|
Johnson KA, Douglas RK, Bradshaw MJ, Brannen PM, Jurick WM, Villani SM. Colletotrichum Species Causing Glomerella Leaf Spot and Apple Bitter Rot in the Southeastern United States Exhibit Disparities in Relative Frequency, Morphological Phenotype, and Quinone Outside Inhibitor Sensitivity. PLANT DISEASE 2025; 109:579-592. [PMID: 39283270 DOI: 10.1094/pdis-05-24-1006-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Glomerella leaf spot (GLS), Glomerella fruit rot (GFR), and apple bitter rot (ABR), caused by Colletotrichum spp., are among the most devastating apple diseases in the southeastern United States. Although several species have been identified as causal pathogens of GLS, GFR, and ABR, their relative frequency and fungicide sensitivity status in the southeastern United States is unknown. In total, 381 Colletotrichum isolates were obtained from symptomatic leaves and fruit from 18 conventionally managed apple orchards and two baseline populations in western North Carolina and Georgia in 2016 and 2017. Multilocus DNA sequence analysis revealed that C. chrysophilum was the predominant cause of GLS and GFR and C. fioriniae was the causal agent of ABR. Baseline and commercial populations of Colletotrichum spp. were evaluated for sensitivity to pyraclostrobin and trifloxystrobin, and no statistical differences in sensitivity between the two species were observed for conidial germination. However, the effective concentration that inhibited growth by 50% values were significantly lower for C. fioriniae compared with C. chrysophilum for both fungicides regarding mycelial inhibition. Isolates recovered from commercial orchards revealed that five populations of C. chrysophilum and one population of C. fioriniae had reduced sensitivity to trifloxystrobin, and one C. fioriniae population had reduced sensitivity to pyraclostrobin via conidial germination assays. The cytb gene for 27 isolates of C. fioriniae, C. chrysophilum, and C. fructicola with different quinone outside inhibitor (QoI) sensitivities revealed the G143A mutation in a single isolate of C. chrysophilum with insensitivity to both fungicides. The results of these studies suggest that two Colletotrichum spp. predominantly cause GLS and ABR in the southeastern United States and that a reduction in sensitivity to some QoI fungicides may be responsible for control failures. This study also provides a basis for monitoring shifts in QoI sensitivity in Colletotrichum spp. causing disease on apple in the southeastern United States.
Collapse
Affiliation(s)
- Kendall A Johnson
- Technical Services Division, UPL North America, Wenatchee, WA 98801, U.S.A
| | - Rachel K Douglas
- North Carolina Cooperative Extension, Haywood County Center, Waynesville, NC 28786, U.S.A
| | - Michael J Bradshaw
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Phillip M Brannen
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, U.S.A
| | - Wayne M Jurick
- USDA-ARS, Food Quality Laboratory, Beltsville, MD 20705, U.S.A
| | - Sara M Villani
- Department of Entomology and Plant Pathology, North Carolina State University, Mills River, NC 28759, U.S.A
| |
Collapse
|
2
|
Ou M, Hu K, Li M, Liu S, Zhang X, Lu X, Zhan X, Liao X, Li M, Li R. Resistance risk assessment of Rhizoctonia solani to four fungicides. PEST MANAGEMENT SCIENCE 2025; 81:867-883. [PMID: 39425558 DOI: 10.1002/ps.8490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Hexaconazole, thifluzamide, difenoconazole and azoxystrobin are widely used fungicides for the control of Rhizoctonia solani in China. However, few studies have assessed the sensitivity and resistance risk of R. solani to these four fungicides. RESULTS The sensitivities of 126 R. solani isolates to hexaconazole, thifluzamide, difenoconazole and azoxystrobin were determined, with average half maximal effective concentration (EC50) values of 0.0386, 0.0659, 0.663 and 1.508 μg mL-1, respectively. Field resistance monitoring of the four fungicides showed that the three isolates had moderate resistance to difenoconazole. Resistant mutants to the four fungicides were obtained by fungicide adaptation, and resistance could be stably inherited by most mutants. Compared with those of the parent isolates, the biological characteristics of hexaconazole-resistant mutants exhibited enhanced or similar compound fitness index (CFI), whereas most of the other mutants displayed reduced or comparable CFI. There was evidence of positive cross-resistance between hexaconazole and difenoconazole. In the presence of fungicides, the expression of the CYP51 genes in hexaconazole- and difenoconazole-resistant mutants significantly increased, the expression of SDH genes in thifluzamide-resistant mutants significantly decreased, and the expression of the Cyt b gene in azoxystrobin-resistant mutants did not significantly change. CONCLUSION Based on these data, we speculated that R. solani had a low-to-medium resistance risk to four fungicides. The change of target gene expression may be one of the reasons for fungicide resistance in R. solani. This study provides a theoretical basis for monitoring resistance emergence and developing resistance management strategies to control R. solani. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Minggui Ou
- Institute of Crop Protection, Guizhou University, Guiyang, PR China
| | - Ke Hu
- Institute of Crop Protection, Guizhou University, Guiyang, PR China
| | - Min Li
- Institute of Crop Protection, Guizhou University, Guiyang, PR China
| | - Shijiang Liu
- Institute of Crop Protection, Guizhou University, Guiyang, PR China
| | - Xinchun Zhang
- Institute of Crop Protection, Guizhou University, Guiyang, PR China
| | - Xuemei Lu
- Institute of Crop Protection, Guizhou University, Guiyang, PR China
| | - Xingyu Zhan
- Institute of Crop Protection, Guizhou University, Guiyang, PR China
| | - Xun Liao
- Institute of Crop Protection, Guizhou University, Guiyang, PR China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, PR China
| | - Ming Li
- Institute of Crop Protection, Guizhou University, Guiyang, PR China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, PR China
| | - Rongyu Li
- Institute of Crop Protection, Guizhou University, Guiyang, PR China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, PR China
| |
Collapse
|
3
|
Wong TW, Quesada-Ocampo LM. Sensitivity of Meloidogyne incognita, Fusarium oxysporum f. sp. niveum, and Stagonosporopsis citrulli to Succinate Dehydrogenase Inhibitors Used for Control of Watermelon Diseases. PLANT DISEASE 2024; 108:1762-1768. [PMID: 38243181 DOI: 10.1094/pdis-12-22-2922-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Watermelon is affected by diseases such as Fusarium wilt, gummy stem blight, and root-knot nematode (RKN). Succinate dehydrogenase inhibitors (SDHIs) with potential fungicide and nematicide activity provide the opportunity to control multiple diseases with one compound. In this study, we aimed to determine the sensitivity of Meloidogyne incognita race 4 (MI4), Fusarium oxysporum f. sp. niveum (FON), and Stagonosporopsis citrulli (SCIT) to existing SDHIs: benzovindiflupyr, fluopyram, cyclobutrifluram, and pydiflumetofen. All SDHIs had fungicidal activity against 19 SCIT isolates in mycelial growth assays, but isolates were most sensitive to pydiflumetofen (median EC50 = 0.41 μg/ml). Most of the 50 FON isolates tested were sensitive to cyclobutrifluram for mycelial growth (median EC50 = 4.04 μg/ml) and conidial germination (median EC50 = 0.2 μg/ml) assays but were not sensitive to fluopyram. MI4 was most sensitive to cyclobutrifluram for egg hatch (mean EC50 = 0.0019 μg/ml) and J2 motility (mean EC50 = 1.16 μg/ml) assays but was not sensitive to pydiflumetofen. Significant positive correlations between the sensitivity of SCIT (mycelial growth) and FON (mycelial growth and conidial germination) for cyclobutrifluram and benzovindiflupyr (SCIT r = 0.88; FON r = 0.7; P < 0.0001) and cyclobutrifluram and pydiflumetofen (SCIT r = 0.83; FON r = 0.67 and 0.77; P < 0.0001) indicate a potential for cross-resistance between these SDHIs for these fungal pathogens. Overall, results suggest that cyclobutrifluram may be used for managing RKN, whereas it should be used judiciously for Fusarium wilt of watermelon and gummy stem blight due to the existence of insensitive isolates to the fungicide.
Collapse
Affiliation(s)
- T W Wong
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825
| | - L M Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825
| |
Collapse
|
4
|
Mao X, Wu Z, Zhao F, Yang X, Zhou M, Hou Y. Bioactivity and Resistance Risk of Fluxapyroxad, a Novel SDHI Fungicide, in Didymella bryoniae. PLANT DISEASE 2024; 108:658-665. [PMID: 37773329 DOI: 10.1094/pdis-07-23-1374-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Gummy stem blight, caused by Didymella bryoniae, is an important disease in watermelon in China. Fluxapyroxad, a new succinate dehydrogenase inhibitor fungicide, shows strong inhibition of the mycelia growth of D. bryoniae. However, its resistance risk in D. bryoniae is unclear. In this research, the sensitivities of 60 D. bryoniae strains to fluxapyroxad were investigated. The average EC50 value and MIC values of 60 D. bryoniae strains against fluxapyroxad were 0.022 ± 0.003 μg/ml and ≤0.1 μg/ml for mycelial growth, respectively. Eight fluxapyroxad-resistant mutants with medium resistance levels were acquired from three wild-type parental strains. The mycelial growth and dry weight of mycelia of most mutants were significantly lower than those of their parental strains. However, four resistant mutants showed a similar phenotype in pathogenicity compared with their parental strains. The above results demonstrated that there was a medium resistance risk for fluxapyroxad in D. bryoniae. The cross-resistance assay showed that there was positive cross-resistance between fluxapyroxad and pydiflumetofen, thifluzamide, and boscalid, but there was no cross-resistance between fluxapyroxad and tebuconazole and mepronil. These results will contribute to evaluating the resistance risk of fluxapyroxad for managing diseases caused by D. bryoniae and further increase our understanding about the mode of action of fluxapyroxad.
Collapse
Affiliation(s)
- Xuewei Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhiwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feifei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xin Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Keinath AP, Rennberger G, Wechter P. Widespread Resistance to Tebuconazole and Cross-Resistance to Other DMI Fungicides in Stagonosporopsis citrulli Isolated from Watermelon in South Carolina. PLANT DISEASE 2023; 107:3896-3905. [PMID: 37311227 DOI: 10.1094/pdis-03-23-0478-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tebuconazole, a demethylation-inhibitor (DMI) fungicide, is widely used on watermelon and muskmelon because it is inexpensive and has been effective against Stagonosporopsis citrulli, the primary causal agent of gummy stem blight in the southeastern United States. Most isolates (94% of 251) collected from watermelon in South Carolina in 2019 and 2021 were moderately resistant to tebuconazole at 3.0 mg/liter in vitro. Ninety isolates were identified as S. citrulli, and no isolates of S. caricae were found in this study. On watermelon and muskmelon seedlings treated with the field rate of tebuconazole, sensitive, moderately resistant, and highly resistant isolates were controlled 99, 74, and 45%, respectively. In vitro, tebuconazole-sensitive isolates were moderately resistant to tetraconazole and flutriafol but sensitive to difenoconazole and prothioconazole, while highly resistant isolates were highly resistant to tetraconazole and flutriafol and moderately resistant to difenoconazole and prothioconazole. On watermelon seedlings treated with field rates of five DMI fungicides in the greenhouse, severity of gummy stem blight did not differ significantly from the nontreated control when seedlings were inoculated with a highly resistant isolate, while severity was lower with all DMIs on seedlings inoculated with a sensitive isolate, although severity was greater with tetraconazole than with the other four DMIs. In the field, tetraconazole rotated with mancozeb did not reduce severity of gummy stem blight caused by a tebuconazole-sensitive isolate when compared to the nontreated control, while the other four DMIs did. With a highly resistant isolate, all DMIs rotated with mancozeb reduced severity of gummy stem blight compared to the nontreated control, but severity with tetraconazole and tebuconazole was greater than with mancozeb alone, and severity with flutriafol, difenoconazole, prothioconazole, and difenoconazole plus cyprodinil did not differ from mancozeb applied alone. Results from in vitro, greenhouse, and field experiments with the five DMI fungicides were highly correlated with each other. Thus, determining relative colony diameters with a discriminatory dose of 3 mg/liter of tebuconazole is an effective way to identify isolates of S. citrulli highly resistant to tebuconazole.
Collapse
Affiliation(s)
- Anthony P Keinath
- Coastal Research and Education Center, Department of Plant and Environmental Sciences, Clemson University, Charleston, SC 29414
| | - Gabriel Rennberger
- U.S. Vegetable Laboratory, USDA Agricultural Research Service, Charleston, SC 29414
| | - Patrick Wechter
- Coastal Research and Education Center, Department of Plant and Environmental Sciences, Clemson University, Charleston, SC 29414
| |
Collapse
|
6
|
Pearce TL, Scott JB, Wilson CR, Gent DH. Evolution of the Genetic Structure of the Didymella tanaceti Population During Development of Succinate Dehydrogenase Inhibitor Resistance. PHYTOPATHOLOGY 2023; 113:1946-1958. [PMID: 37129263 DOI: 10.1094/phyto-10-22-0385-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Emergence of pathogens with decreased sensitivity to succinate dehydrogenase inhibitor fungicides is a global agronomical issue. Analysis of Didymella tanaceti isolates (n = 173), which cause tan spot of pyrethrum (Tanacetum cinerariifolium), collected prior to (2004 to 2005) and after (2009, 2010, 2012, and 2014) the commercial implementation of boscalid in Tasmanian pyrethrum fields identified that insensitivity developed over time and has become widespread. To evaluate temporal change, isolates were characterized for frequency of mutations in the succinate dehydrogenase (Sdh) B, C, and D subunits associated with boscalid resistance, mating type, and SSR genotype. All isolates from 2004 and 2005 exhibited wild-type (WT) Sdh alleles. Seven known Sdh substitutions were identified in isolates collected from 2009 to 2014. In 2009, 60.7% had Sdh substitutions associated with boscalid resistance in D. tanaceti. The frequency of WT isolates decreased over time, with no WT isolates identified in 2014. The frequency of the SdhB-H277Y genotype increased from 10.7 to 77.8% between 2009 and 2014. Genotypic evidence suggested that a shift in the population structure occurred between 2005 and 2009, with decreases in gene diversity (uh; 0.51 to 0.34), genotypic evenness (E5; 0.96 to 0.67), genotypic diversity (G; 9.3 to 6.8), and allele frequencies. No evidence was obtained to support the rapid spread of Sdh genotypes by clonal expansion of the population. Thus, insensitivity to boscalid has developed and become widespread within a diverse population within 4 years of usage. These results suggest that D. tanaceti can disperse insensitivity through repeated frequent mutation, sexual recombination, or a combination of both.
Collapse
Affiliation(s)
- Tamieka L Pearce
- Tasmanian Institute of Agriculture, College of Sciences and Engineering, University of Tasmania, Burnie, Tasmania 7320, Australia
| | - Jason B Scott
- Tasmanian Institute of Agriculture, College of Sciences and Engineering, University of Tasmania, Burnie, Tasmania 7320, Australia
| | - Calum R Wilson
- Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005
| | - David H Gent
- U.S. Department of Agriculture-Agriculture Research Service, Forage Seed and Cereal Research Unit, Corvallis, OR 97331
| |
Collapse
|
7
|
Seblani R, Keinath AP, Munkvold G. Gummy stem blight: One disease, three pathogens. MOLECULAR PLANT PATHOLOGY 2023; 24:825-837. [PMID: 37129449 PMCID: PMC10346371 DOI: 10.1111/mpp.13339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Gummy stem blight (GSB) is a major disease of cucurbits worldwide. It is caused by three fungal species that are morphologically identical and have overlapping geographic and host ranges. Controlling GSB is challenging due to the lack of resistant cultivars and the pathogens' significant ability to develop resistance to systemic fungicides. The causal agent of GSB is recognized as a complex of three phylogenetically distinct species belonging to domain Eukaryota, kingdom Fungi, phylum Ascomycota, subphylum Pezizomycotina, class Dothideomycetes, subclass Pleosporomycetida, order Pleosporales, family Didymellaceae, genus Stagonosporopsis, species cucurbitacearum, citrulli, and caricae. Pycnidia are tan with dark rings of cells around the ostiole measuring 120-180 μm in diameter. Conidia are 6-13 μm long, hyaline, cylindrical with round ends, and non- or monoseptate. Pseudothecia are black and globose in shape and have a diameter of 125-213 μm. Ascospores are 14-18 × 4-6 μm long, hyaline, ellipsoidal with round ends, and monoseptate with a distinct constriction at the septum. Eight ascospores are found per ascus. The upper end of the apical cell is pointed, whereas the lower end of the bottom cell is blunt. Species-specific PCR primers that can be used in a multiplex conventional PCR assay are available. The GSB species complex is pathogenic to 37 species of cucurbits from 21 different genera. S. cucurbitacearum and S. citrulli are specific to cucurbits, while S. caricae is also pathogenic to papaya and babaco-mirim (Vasconcellea monoica), a related fruit. Under favourable environmental conditions, symptoms can appear 3-12 days after spore germination. Leaf spots often start at the leaf margin or extend to the margins. Spots expand and coalesce, resulting in leaf blighting. Active lesions are typically water-soaked. Cankers are observed on crowns, main stems, and vines. Red to amber gummy exudates are often seen on the stems after cankers develop on cortical tissue.
Collapse
Affiliation(s)
- Rewa Seblani
- Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
| | | | - Gary Munkvold
- Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
| |
Collapse
|
8
|
Alzohairy SA, Heger L, Nikzainalalam N, Miles TD. Cross-Resistance of Succinate Dehydrogenase Inhibitors (SDHI) in Botrytis cinerea and Development of Molecular Diagnostic Tools for SDHI Resistance Detection. PHYTOPATHOLOGY 2023; 113:998-1009. [PMID: 36596212 DOI: 10.1094/phyto-09-22-0346-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) are keystone synthetic fungicides used to manage Botrytis cinerea in several hosts. In this study, we investigated the cross-resistance between five new SDHIs (pyraziflumid, isofetamid, benzovindiflupyr, fluxapyroxad, and pydiflumetofen) with commonly used SDHIs boscalid and fluopyram. Different mutations were detected in the sdhB gene in B. cinerea collected from Michigan grapes, and their frequency and EC50 value were determined. Among 216 B. cinerea boscalid-resistant isolates, five different mutations were detected, including H272R/Y, P225F/H, and N230I, at frequencies of 82.6, 4.3, 11.5, 0.4, and 5.3%, respectively. Five isolates of each genotype were used to screen the cross-resistance of the SDHIs. We classified the resistance profile of our mutants into five patterns. We report that all tested mutants were sensitive to benzovindiflupyr, indicating that it can be used as an effective fungicide against all B. cinerea mutants identified in this study. In addition, fluopyram, pydiflumetofen, and isofetamid can provide effective control according to which type of mutation is present in the field. We also developed and compared two molecular diagnostic tools, rhAMP and TaqMan assays, for rapid detection of SDHI resistance-associated mutants in B. cinerea. We report that the TaqMan assay was more successful than the rhAMP assay in detecting the B. cinerea mutant DNA at ≤10 pg and in a single assay was capable of monitoring two amino acid positions. Our results provide essential information about new SDHIs and provide molecular tools for monitoring SDHI resistance mutations, which will assist in gray mold disease control.
Collapse
Affiliation(s)
- S A Alzohairy
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - L Heger
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - N Nikzainalalam
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - T D Miles
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
9
|
Zhou C, Sun X, Fu W, Li Z, Cheng J, Maienfisch P. Rational Exploration of Novel SDHI Fungicide through an Amide-β-ketonitrile Bioisosteric Replacement Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5483-5495. [PMID: 36975160 DOI: 10.1021/acs.jafc.2c08606] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The identification of succinate dehydrogenase inhibitor (SDHI) fungicides bearing a novel scaffold is of great importance to control pathogenic fungi. Difluoromethyl-pyrazole β-ketonitrile derivatives were rationally designed through an innovative amide-β-ketonitrile bioisosteric replacement strategy and evaluated for their antifungal activities. In preliminary fungicidal screening, our new β-ketonitrile compounds showed outstanding in vitro activity. Compounds A7 and A14 exhibited EC50 values of 0.116 and 0.165 μg/mL against Sclerotinia sclerotiorum, respectively, and A14 also displayed an EC50 of 0.0774 μg/mL against Rhizoctonia solani. Furthermore, A14 exhibited moderate in vivo protective activity against rice sheath blight on rice plants. Results from SDH enzymatic assays demonstrated that A14 possesses significant inhibitory effect toward porcine heart SDH, with an IC50 value of 0.183 μM, which was 20-fold more potent than that of fluxapyroxad (IC50 = 3.76 μM). A docking study indicated that H-bonds, cation-π interactions, and edge-to-face π-π interactions play key roles in the binding of A14 with R. solani SDH. The CoMSIA model guided the approach to further structural optimizations and indicated that hydrophobic and steric substituents on the benzene ring have decisive effects on the fungicidal activity against R. solani. The present work describes for the first time the successful bioisosteric replacement of the common SDHI amide moiety by a β-ketonitrile group and highlights the potential of β-ketonitriles as an innovative novel SDHI subclass.
Collapse
Affiliation(s)
- Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xujuan Sun
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- CreInSol MCB, Aegertenstrasse 21, Rodersdorf CH-4118, Switzerland
| |
Collapse
|
10
|
Jiang W, Zhang T, Wang J, Cheng W, Lu T, Yan Y, Tang X. Design, Synthesis, Inhibitory Activity, and Molecular Modeling of Novel Pyrazole-Furan/Thiophene Carboxamide Hybrids as Potential Fungicides Targeting Succinate Dehydrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:729-738. [PMID: 36562616 DOI: 10.1021/acs.jafc.2c05054] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To discover new fungicides targeting succinate dehydrogenase (SDH), 36 new furan/thiophene carboxamides containing 4,5-dihydropyrazole rings were designed, synthesized, and characterized. The crystal structure of compound 5l was determined with the X-ray diffraction (XRD) of single crystals. The antifungal activity of these compounds was studied against Botrytis cinerea, Pyricularia oryzae, Erysiphe graminis, Physalospora piricola, and Penicillium digitatum. Bioassay results were that most compounds had obvious inhibitory activity at 20 μg/mL. Compounds 5j, 5k, and 5l possessed outstanding inhibitory activity against B. cinerea. Their EC50 values were 0.540, 0.676, and 0.392 μg/mL, respectively. They owned better effects than fluxapyroxad (EC50 = 0.791 μg/mL). In the meantime, the inhibitory activity of 16 compounds was evaluated against SDH. It turned out that these compounds displayed excellent activity. The IC50 values of compounds 5j, 5k, and 5l reached 0.738, 0.873, and 0.506 μg/mL, respectively, whereas the IC50 value of fluxapyroxad was 1.031 μg/mL. The results of molecular dynamics (MD) simulation showed that compound 5l possessed a stronger affinity to SDH than fluxapyroxad.
Collapse
Affiliation(s)
- Wenjing Jiang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Tingting Zhang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Jingwen Wang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Wei Cheng
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Tong Lu
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Yingkun Yan
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Xiaorong Tang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
11
|
Novel 4,5-dihydro-1H-pyrazole derivatives as potential succinate dehydrogenase inhibitors: design, synthesis, crystal structure, biological activity and molecular modeling. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Chen C, Wang YX, Li SB, Wu QY. 3,5-Diaryl substituted sclerotiorin: a novel scaffold of succinate-ubiquinone oxidoreductase inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01869a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel and potent inhibitors targeting succinate-ubiquinone oxidoreductase were discovered from the natural product sclerotiorin for the first time.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yu-Xia Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Song-Bo Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qiong-You Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
13
|
Gleason J, Peng J, Proffer TJ, Slack SM, Outwater CA, Rothwell NL, Sundin GW. Resistance to Boscalid, Fluopyram and Fluxapyroxad in Blumeriella jaapii from Michigan (U.S.A.): Molecular Characterization and Assessment of Practical Resistance in Commercial Cherry Orchards. Microorganisms 2021; 9:microorganisms9112198. [PMID: 34835322 PMCID: PMC8621041 DOI: 10.3390/microorganisms9112198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022] Open
Abstract
Management of cherry leaf spot disease, caused by the fungus Blumeriella jaapii, with succinate dehydrogenase inhibitor (SDHI) fungicides has been ongoing in Michigan tart cherry orchards for the past 17 years. After boscalid-resistant B. jaapii were first isolated from commercial orchards in 2010, premixes of SDHI fungicides fluopyram or fluxapyroxad with a quinone outside inhibitor were registered in 2012. Here, we report widespread resistance to fluopyram (FluoR), fluxapyroxad (FluxR), and boscalid (BoscR) in commercial orchard populations of B. jaapii in Michigan from surveys conducted between 2016 and 2019. A total of 26% of 1610 isolates from the 2016-2017 surveys exhibited the fully-resistant BoscR FluoR FluxR phenotype and only 7% were sensitive to all three SDHIs. Practical resistance to fluopyram and fluxapyroxad was detected in 29 of 35 and 14 of 35 commercial tart cherry orchards, respectively, in surveys conducted in 2018 and 2019. Sequencing of the SdhB, SdhC, and SdhD target genes from 22 isolates with varying resistance phenotypes showed that BoscS FluoR FluxS isolates harbored either an I262V substitution in SdhB or an S84L substitution in SdhC. BoscR FluoR FluxR isolates harbored an N86S substitution in SdhC, or contained the N86S substitution with the additional I262V substitution in SdhB. One BoscR FluoR FluxR isolate contained both the I262V substitution in SdhB and the S84L substitution in SdhC. These mutational analyses suggest that BoscR FluoR FluxR isolates evolved from fully sensitive BoscS, FluoS, FluxS isolates in the population and not from boscalid-resistant isolates that were prevalent in the 2010-2012 time period.
Collapse
Affiliation(s)
- Jacqueline Gleason
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, E. Lansing, MI 48824, USA; (J.G.); (J.P.); (T.J.P.); (S.M.S.); (C.A.O.)
| | - Jingyu Peng
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, E. Lansing, MI 48824, USA; (J.G.); (J.P.); (T.J.P.); (S.M.S.); (C.A.O.)
| | - Tyre J. Proffer
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, E. Lansing, MI 48824, USA; (J.G.); (J.P.); (T.J.P.); (S.M.S.); (C.A.O.)
| | - Suzanne M. Slack
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, E. Lansing, MI 48824, USA; (J.G.); (J.P.); (T.J.P.); (S.M.S.); (C.A.O.)
| | - Cory A. Outwater
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, E. Lansing, MI 48824, USA; (J.G.); (J.P.); (T.J.P.); (S.M.S.); (C.A.O.)
| | - Nikki L. Rothwell
- Northwest Michigan Horticultural Research Center, Traverse City, MI 49684, USA;
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, E. Lansing, MI 48824, USA; (J.G.); (J.P.); (T.J.P.); (S.M.S.); (C.A.O.)
- Correspondence:
| |
Collapse
|
14
|
Resistance to the SDHI Fungicides Boscalid and Fluopyram in Podosphaera xanthii Populations from Commercial Cucurbit Fields in Spain. J Fungi (Basel) 2021; 7:jof7090733. [PMID: 34575771 PMCID: PMC8464660 DOI: 10.3390/jof7090733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 01/23/2023] Open
Abstract
Powdery mildew is caused by Podosphaera xanthii, and is one of the most important diseases that attacks Spanish cucurbit crops. Fungicide application is the primary control tool; however, its effectiveness is hampered by the rapid development of resistance to these compounds. In this study, the EC50 values of 26 isolates were determined in response to the succinate dehydrogenase inhibitor (SDHI) fungicides boscalid and fluopyram. From these data, the discriminatory doses were deduced and used for SDHI resistance monitoring during the 2018 and 2019 growing seasons. Of the 298 isolates analysed, 37.9% showed resistance to boscalid and 44% to fluopyram. Although different phenotypes were observed in leaf disc assays, the resistant isolates showed the same phenotype in plant assays. Compared to sensitive isolates, two amino acid changes were found in the SdhC subunit, A86V and G151R, which are associated mostly with resistance patterns to fluopyram and boscalid, respectively. Furthermore, no significant differences were observed in terms of fitness cost between the selected sensitive and resistant isolates analysed here. Lastly, a loop-mediated isothermal amplification (LAMP) assay was developed to detect A86V and G151R mutations using conidia obtained directly from infected material. Our results show that growers could continue to use boscalid and fluopyram, but resistance management practices must be implemented.
Collapse
|
15
|
Wang M, Du Y, Ling C, Yang Z, Jiang B, Duan H, An J, Li X, Yang X. Design, synthesis and antifungal/anti-oomycete activity of pyrazolyl oxime ethers as novel potential succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2021; 77:3910-3920. [PMID: 33871901 DOI: 10.1002/ps.6418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Succinate dehydrogenase inhibitors (SDHIs) play an increasingly important role in controlling plant diseases. However, the similar structures of SDHIs result in rapid development of cross-resistance development and a clear bottleneck of poor activity against oomycetes, therefore the need to seek new SDHI fungicides with novel structures is urgent. RESULTS Innovative pyrazolyl oxime ethers were designed by replacing amide with oxime ether based on the succinate dehydrogenase (SDH) structure, and 19 pairs of Z- and E-isomers were efficiently prepared for the discovery of SDHI compounds with a novel bridge. Their biological activities against four fungi and two oomycetes were evaluated, and substantial differences were observed between the Z- and E- isomers of the title compounds. Furthermore, most of these compounds exhibited remarkable activities against Rhizoctonia solani with EC50 values of less than 10 mg L-1 in vitro, and bioassay in vivo further confirmed that E-I-6 exhibited good protective efficacy (76.12%) at 200 mg L-1 . In addition, Z-I-12 provided better activity against the oomycetes Pythium aphanidermatum and Phytophthora capsici (EC50 = 1.56 and 0.93 mg L-1 ) than those of boscalid. Moreover, E-I-12 exhibited excellent SDH inhibition (IC50 = 0.21 mg L-1 ) thanks to its good binding ability to the SDH by hydrogen-bonding interactions, π-cation interaction and hydrophobic interactions. CONCLUSION Novel pyrazolyl oxime ethers have the potential as SDHI compounds for future development, and the strategy of replacing an amide bond with oxime ether may offer an alternative option in SDHI fungicide discovery.
Collapse
Affiliation(s)
- Minlong Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Ying Du
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chen Ling
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhaokai Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Biaobiao Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xinghai Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
|
17
|
Jones JG, Korir RC, Walter TL, Everts KL. Reducing Chlorothalonil Use in Fungicide Spray Programs for Powdery Mildew, Anthracnose, and Gummy Stem Blight in Melons. PLANT DISEASE 2020; 104:3213-3220. [PMID: 33079017 DOI: 10.1094/pdis-04-20-0712-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fungicides are applied to nearly 80% of U.S. melon acreage to manage the numerous foliar and fruit diseases that threaten yield. Chlorothalonil is the most widely used fungicide but has been associated with negative effects on human and bee health. We designed alternative fungicide programs to examine the impact of reducing chlorothalonil use (Bravo Weather Stik) on watermelon, cantaloupe, and honeydew melon in 2016, 2017, and 2018 in Maryland. Chlorothalonil was replaced in the tank mix of weekly sprays of targeted fungicides with either polyoxin D zinc salt (Oso) or an extract of Reynoutria sachalinensis (Regalia). Powdery mildew (PM; Podosphaera xanthii), gummy stem blight (GSB; Stagonosporopsis spp.), and anthracnose (Colletotrichum orbiculare) were the most prevalent diseases to occur in the 3 years. Replacing chlorothalonil with the biopesticides as the tank-mix component of the fungicide spray program was successful in reducing GSB and PM severity in cantaloupe, honeydew melon, and watermelon compared with the untreated control, with the exception of GSB in 2017 in cantaloupe, and similar to the program including chlorothalonil in all cases, except anthracnose in watermelon. Anthracnose disease severity was not significantly reduced compared with the untreated control when chlorothalonil was replaced with the biopesticides and yields were not improved over the chlorothalonil-alone treatment in any of the trials. Therefore, replacement of chlorothalonil may not fully address its loss as a fungicide resistance management tool but efficacy can be maintained when polyoxin D is alternated with R. sachalinensis as a tank mix with targeted fungicides to manage PM and GSB.
Collapse
Affiliation(s)
- Jake G Jones
- Department of Plant Science and Landscape Architecture, Lower Eastern Shore Research and Education Center, University of Maryland, Salisbury, MD 21801, U.S.A
| | - Robert C Korir
- Department of Plant Science and Landscape Architecture, Lower Eastern Shore Research and Education Center, University of Maryland, Salisbury, MD 21801, U.S.A
| | - Taylor L Walter
- Department of Plant Science and Landscape Architecture, Lower Eastern Shore Research and Education Center, University of Maryland, Salisbury, MD 21801, U.S.A
| | - Kathryne L Everts
- Department of Plant Science and Landscape Architecture, Wye Research and Education Center, University of Maryland, Queenstown, MD 21658, U.S.A
| |
Collapse
|
18
|
Mao X, Wang Y, Hou Y, Zhou M. Activity of the Succinate Dehydrogenase Inhibitor Fungicide Penthiopyrad Against Sclerotinia sclerotiorum. PLANT DISEASE 2020; 104:2696-2703. [PMID: 32729795 DOI: 10.1094/pdis-10-19-2253-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In present study, the morphological and physiological characteristics of Sclerotinia sclerotiorum (Lib.) de Bary to a novel succinate dehydrogenase inhibitor (SDHI) fungicide penthiopyrad has been reported. The baseline sensitivity of S. sclerotiorum to penthiopyrad was determined using 119 strains by inhibition of mycelial growth. The median effective concentration (EC50) values for penthiopyrad ranged from 0.0096 to 0.2606 μg/ml, and the mean value was 0.0578 (±0.0626) μg/ml. After 1 μg/ml penthiopyrad treatment, mycelia of S. sclerotiorum strains showed increased apical branching and were denser compared with control, and cell membrane permeability significantly increased. In addition, glycerol content, oxalic acid (OA), and exopolysaccharide (EPS) content decreased markedly and mycelial respiration was distinctly inhibited. The number and dry weight of sclerotia significantly decreased after being treated with 2 μg/ml penthiopyrad. Penthiopyrad exhibited both protective and curative activity on the detached rapeseed leaves. Importantly, the above results will provide us more information on penthiopyrad for management of diseases caused by S. sclerotiorum and increase our understanding of action of penthiopyrad against S. sclerotiorum.
Collapse
Affiliation(s)
- Xuewei Mao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Nanjing, Jiangsu Province, 210095, China
| | - Yingfan Wang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Nanjing, Jiangsu Province, 210095, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Nanjing, Jiangsu Province, 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Nanjing, Jiangsu Province, 210095, China
| |
Collapse
|
19
|
Mao X, Wu Z, Bi C, Wang J, Zhao F, Gao J, Hou Y, Zhou M. Molecular and Biochemical Characterization of Pydiflumetofen-Resistant Mutants of Didymella bryoniae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9120-9130. [PMID: 32806116 DOI: 10.1021/acs.jafc.0c03690] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gummy stem blight (GSB), caused by Didymella bryoniae, is a devastating disease on watermelon. Pydiflumetofen belongs to succinate dehydrogenase inhibitor (SDHI) fungicide, which is effective in controlling many plant diseases. The EC50 values of 69 D. bryoniae isolates to pydiflumetofen ranged from 0.0018 to 0.0071 μg/mL, and the minimal inhibitory concentration (MIC) value of all strains to pydiflumetofen was <0.05 μg/mL. Eight pydiflumetofen-resistant mutants were obtained, and the level of resistance was stable. The mycelial growth, dry weight of mycelia, hyphal morphology, and pathogenicity of most resistant mutants did not change significantly compared with their parental strains, which indicated that the resistance risk of D. bryoniae to pydiflumetofen would be medium to high. Sequencing alignment showed that five resistant mutants presented a mutation at codon 277 (H277Y) in the SdhB gene. The point mutants FgSdhBH248Y/R exhibited decreased sensitivity to pydiflumetofen in Fusarium graminearum, which indicated that the point mutants of SdhB could reduce sensitivity to pydiflumetofen. These results further increase our understanding about the mode of action and the resistance mechanism of pydiflumetofen.
Collapse
Affiliation(s)
- Xuewei Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Zhiwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Feifei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Jing Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
20
|
Storelli A, Keiser A, Eder R, Jenni S, Kiewnick S. Evaluation of fluopyram for the control of Ditylenchus dipsaci in sugar beet. J Nematol 2020; 52:1-10. [PMID: 32722906 PMCID: PMC8015291 DOI: 10.21307/jofnem-2020-071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 11/11/2022] Open
Abstract
Fluopyram, a succinate dehydrogenase inhibitor fungicide, has shown potential in controlling Meloidogyne incognita and Rotylenchus reniformis in tomato. The effectiveness of this compound for the control of Ditylenchus dipsaci in sugar beet was evaluated. In this study, laboratory, growth chamber, glasshouse, and field experiments were conducted. In a motility bioassay, the EC50 value was determined with 3.00 μg/ml a.i. after 72 h exposure to fluopyram. The growth chamber experiment did not show any effects on D. dipsaci penetration rate; however, field experiments revealed a positive effect of fluopyram applied at planting in reducing D. dipsaci infectivity. The glasshouse experiment confirmed a limited effect of fluopyram on D. dipsaci population development. Under field conditions, despite a reduction of D. dipsaci penetration rates in spring, fluopyram was not effective in reducing the population development until harvest. Consequently, D. dipsaci densities in plant tissue and soil were high at harvest and not different among treatments. However, root-rot symptoms were significantly reduced at harvest. Fluopyram applied at planting showed good potential to reduce root-rot symptoms caused by D. dipsaci in sugar beet. However, for the long-term reduction of nematode populations in soil, further integrated control measures are needed to reduce the risks of substantial yield losses by D. dipsaci. Fluopyram, a succinate dehydrogenase inhibitor fungicide, has shown potential in controlling Meloidogyne incognita and Rotylenchus reniformis in tomato. The effectiveness of this compound for the control of Ditylenchus dipsaci in sugar beet was evaluated. In this study, laboratory, growth chamber, glasshouse, and field experiments were conducted. In a motility bioassay, the EC50 value was determined with 3.00 μg/ml a.i. after 72 h exposure to fluopyram. The growth chamber experiment did not show any effects on D. dipsaci penetration rate; however, field experiments revealed a positive effect of fluopyram applied at planting in reducing D. dipsaci infectivity. The glasshouse experiment confirmed a limited effect of fluopyram on D. dipsaci population development. Under field conditions, despite a reduction of D. dipsaci penetration rates in spring, fluopyram was not effective in reducing the population development until harvest. Consequently, D. dipsaci densities in plant tissue and soil were high at harvest and not different among treatments. However, root-rot symptoms were significantly reduced at harvest. Fluopyram applied at planting showed good potential to reduce root-rot symptoms caused by D. dipsaci in sugar beet. However, for the long-term reduction of nematode populations in soil, further integrated control measures are needed to reduce the risks of substantial yield losses by D. dipsaci.
Collapse
Affiliation(s)
- Alan Storelli
- School of Agricultural, Forest and Food Sciences (HAFL), Bern University of Applied Sciences (BFH), Zollikofen, Switzerland
| | - Andreas Keiser
- School of Agricultural, Forest and Food Sciences (HAFL), Bern University of Applied Sciences (BFH), Zollikofen, Switzerland
| | - Reinhard Eder
- National Competence Centre for Nematology, Agroscope, Wädenswil, Switzerland
| | - Samuel Jenni
- Swiss Sugar Beet National Competence Centre (SFZ/CBS), Aarberg, Switzerland
| | - Sebastian Kiewnick
- National Competence Centre for Nematology, Agroscope, Wädenswil, Switzerland
- Julius Kuehn Institute, Federal Research Center for Cultivated Plants, Institute for Plant Protection in Field Crops and Grassland, Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
21
|
Newark MJ, Li P, Yang XP, Paret ML, Dufault NS. Comparing Stagonosporopsis spp. Fungicide Resistance Profiles in Florida and East China Cucurbit Production Systems. PLANT DISEASE 2020; 104:129-136. [PMID: 31747352 DOI: 10.1094/pdis-02-19-0370-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gummy stem blight, caused by Stagonosporopsis spp., is a major disease of cucurbits in the United States and China that is managed primarily through the use of fungicides. The objective of this study was to monitor and compare the recent fungicide resistance profiles of Stagonosporopsis spp. in Florida open-field and East China protected-structure production systems. Isolates of Stagonosporopsis spp. were evaluated for sensitivity to the commonly used fungicides azoxystrobin, boscalid, tebuconazole, and thiophanate-methyl at discriminatory rates of 0.096, 0.034, 0.128, and 100 mg/liter, respectively. Isolates were collected from Jiangsu, Jiangxi, Zhejiang, and Anhui provinces in China (n = 69), 12 counties in Florida (n = 89), and one county in Georgia (n = 6). More than 50% of isolates from Florida and East China were resistant to thiophanate-methyl. Boscalid resistance was detected in both isolate collections but was two times more frequent in China. Resistance to azoxystrobin was detected in 66% of isolates in Florida but only 7% in China. Tebuconazole was effective in controlling the mycelia growth of Stagonosporopsis spp. in both collections. The results indicate that both production systems currently face similar challenges related to the development of fungicide resistance in Stagonosporopsis spp. However, the resistance profiles are unique for both production systems.
Collapse
Affiliation(s)
- Mason J Newark
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, U.S.A
| | - Pingfang Li
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing-Ping Yang
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mathews L Paret
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, U.S.A
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, U.S.A
| | - Nicholas S Dufault
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, U.S.A
| |
Collapse
|
22
|
Hay FS, Sharma S, Hoepting C, Strickland D, Luong K, Pethybridge SJ. Emergence of Stemphylium Leaf Blight of Onion in New York Associated With Fungicide Resistance. PLANT DISEASE 2019; 103:3083-3092. [PMID: 31596693 DOI: 10.1094/pdis-03-19-0676-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A complex of foliar diseases affects onion production in New York, including Botrytis leaf blight (Botrytis squamosa), purple blotch (Alternaria porri), Stemphylium leaf blight (SLB; Stemphylium vesicarium), and downy mildew (Peronospora destructor). Surveys were conducted in 2015 and 2016 to evaluate the cause of severe premature foliar dieback in New York onion fields. SLB was the most prevalent disease among fields with the greatest incidence, surpassing downy mildew, purple blotch, and Botrytis leaf blight. Sequencing of the internal transcribed spacer region of ribosomal DNA and the glyceraldedyhe-3-phosphate dehydrogenase and calmodulin genes identified S. vesicarium as the species most commonly associated with SLB. S. vesicarium was typically associated with a broad range of necrotic symptoms but, most commonly, dieback of leaf tips and asymmetric lesions that often extended over the entire leaf. Because of the intensive use of fungicides for foliar disease control in onion crops in New York, the sensitivity of S. vesicarium populations to various fungicides with site-specific modes of action was evaluated. Sensitivity of S. vesicarium isolates collected in 2016 to the quinone outside inhibitor (QoI) fungicide, azoxystrobin, was tested using a conidial germination assay. Isolates representing a broad range of QoI sensitivities were selected for sequencing of the cytochrome b gene to evaluate the presence of point mutations associated with insensitivity to azoxystrobin. The G143A mutation was detected in all 74 S. vesicarium isolates with an azoxystrobin-insensitive phenotype (effective concentrations reducing conidial germination by 50%, EC50 = 0.2 to 46.7 µg of active ingredient [a.i.]/ml) and was not detected in all 31 isolates with an azoxystrobin-sensitive phenotype (EC50 = 0.01 to 0.16 µg a.i./ml). The G143A mutation was also associated with insensitivity to another QoI fungicide, pyraclostrobin. Sensitivity to other selected fungicides commonly used in onion production in New York was evaluated using a mycelial growth assay and identified isolates with insensitivity to boscalid, cyprodinil, and pyrimethanil, but not difenoconazole. The frequency of isolates sensitive to iprodione, fluxapyroxad, and fluopyram was high (93.5 to 93.6%). This article discusses the emergence of SLB as dominant in the foliar disease complex affecting onion in New York and the complexities of management posed by resistance to fungicides with different modes of action.
Collapse
Affiliation(s)
- Frank S Hay
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Sandeep Sharma
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Christy Hoepting
- Cornell Vegetable Program, Cornell Cooperative Extension, Albion, NY 14411
| | - David Strickland
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Karen Luong
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Sarah J Pethybridge
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| |
Collapse
|
23
|
Li HX, Nuckols TA, Harris D, Stevenson KL, Brewer MT. Differences in fungicide resistance profiles and multiple resistance to a quinone-outside inhibitor (QoI), two succinate dehydrogenase inhibitors (SDHI), and a demethylation inhibitor (DMI) for two Stagonosporopsis species causing gummy stem blight of cucurbits. PEST MANAGEMENT SCIENCE 2019; 75:3093-3101. [PMID: 30924240 DOI: 10.1002/ps.5426] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/08/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Gummy stem blight (GSB) is a devastating disease of cucurbits that has been effectively managed with fungicide applications. However, the Stagonosporopsis spp. that cause GSB have rapidly evolved resistance to multiple classes of fungicides. To better understand the evolution and persistence of fungicide resistance in field populations, resistance profiles of unique and clonal genotypes of 113 Stagonosporopsis citrulli and 19 S. caricae isolates to four different fungicides were determined based on in vitro mycelial growth assays and molecular markers based on genes encoding fungicide targets. RESULTS All 19 S. caricae isolates screened were resistant to tebuconazole and azoxystrobin, and sensitive to boscalid and fluopyram. All 113 S. citrulli isolates were sensitive to tebuconazole and sensitive to fluopyram, with one exception that was fluopyram-resistant. All isolates of S. citrulli except two were resistant to azoxystrobin. Phenotypic differences in response to boscalid were detected among S. citrulli isolates, but the phenotypes were not associated with multilocus genotypes (MLG) determined by 16 microsatellite loci. Additionally, isolates sharing the same MLG varied by SdhB genotype. A unique mutation of I229V in SdhB, a target of succinate dehydrogenase inhibitor fungicides, was detected for the fluopyram-resistant isolate of S. citrulli. CONCLUSION Both the lack of association of fungicide resistance profiles with genetic similarity of isolates based on microsatellite loci and the finding that widely distributed MLG varied in fungicide resistance profiles suggest that independent evolutionary events for resistance to boscalid have likely occurred. Frequent genetic recombination within populations may be responsible for resistance to multiple fungicides. This study provides useful information for effectively managing both species of GSB fungi present in the southeastern USA and understanding the evolution of fungicide resistance within populations of plant-pathogenic fungi. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao-Xi Li
- Department of Plant Pathology, University of Georgia, Athens, GA, USA
| | - Thomas A Nuckols
- Department of Plant Pathology, University of Georgia, Athens, GA, USA
| | - Devon Harris
- Department of Plant Pathology, University of Georgia, Athens, GA, USA
| | | | - Marin T Brewer
- Department of Plant Pathology, University of Georgia, Athens, GA, USA
| |
Collapse
|
24
|
Multiple mutations across the succinate dehydrogenase gene complex are associated with boscalid resistance in Didymella tanaceti in pyrethrum. PLoS One 2019; 14:e0218569. [PMID: 31220147 PMCID: PMC6586343 DOI: 10.1371/journal.pone.0218569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/04/2019] [Indexed: 11/19/2022] Open
Abstract
Failures in control of tan spot of pyrethrum, caused by Didymella tanaceti, has been associated with decreased sensitivity within the pathogen population to the succinate dehydrogenase inhibitor (SDHI) fungicide boscalid. Sequencing the SdhB, SdhC, and SdhD subunits of isolates with resistant and sensitive phenotypes identified 15 mutations, resulting in three amino acid substitutions in the SdhB (H277Y/R, I279V), six in the SdhC (S73P, G79R, H134R, H134Q, S135R and combined H134Q/S135R), and two in the SdhD (D112E, H122R). In vitro testing of their boscalid response and estimation of resistance factors (RF) identified isolates with wild-type (WT) Sdh genotypes were sensitive to boscalid. Isolates with SdhB-I279V, SdhC-H134Q and SdhD-D112E exhibited moderate resistance phenotypes (10 ≥ RF < 100) and isolates with SdhC-H134R exhibited very high resistance phenotypes (RF ≥ 1000). All other substitutions were associated with high resistance phenotypes (100 ≥ RF < 1000). High-resolution melt assays were designed and used to estimate the frequencies of substitutions in four field populations (n = 774) collected in August (pre-boscalid application) and November (post-boscalid application) 2012. The SdhB-H277Y, SdhC-H134R and SdhB-H277R genotypes were most frequently observed across populations at 56.7, 19.0, and 10.3%, respectively. In August 92.9% of D. tanaceti contained a substitution associated with decreased sensitivity. Following boscalid application, this increased to 98.9%, with no WT isolates detected in three fields. Overlaying previously obtained microsatellite and mating-type data revealed that all ten recurrent substitutions were associated with multiple genotypes. Thus, boscalid insensitivity in D. tanaceti appears widespread and not associated with clonal spread of a limited pool of individuals.
Collapse
|
25
|
Outwater CA, Proffer TJ, Rothwell NL, Peng J, Sundin GW. Boscalid Resistance in Blumeriella jaapii: Distribution, Effect on Field Efficacy, and Molecular Characterization. PLANT DISEASE 2019; 103:1112-1118. [PMID: 30995420 DOI: 10.1094/pdis-09-18-1555-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cherry leaf spot (CLS), caused by the fungus Blumeriella jaapii, is a major disease of tart cherry (Prunus cerasus L.) trees, leading to early defoliation that results in uneven ripening and poor fruit quality in the current season, reduced fruit set in the following season, and increased potential for winter injury and tree death. Pristine (BASF Corporation, Research Triangle Park, NC), a commonly used fungicide for CLS management in Michigan, is a premix of boscalid, a succinate dehydrogenase inhibitor, and pyraclostrobin, a quinone outside inhibitor. Reduced efficacy of Pristine for CLS control was observed in field trials and commercial orchards and highlights the importance of fungicide resistance monitoring. A total of 1,189 isolates from 31 commercial orchards in Michigan, 111 isolates from nontreated trees (four locations in Michigan and two locations in Ohio), and 133 isolates from a research orchard were collected during 2010, 2011, and 2012 and assayed on boscalid-amended media at concentrations ranging from 0 to 25 μg ml-1. Because of the very slow growth rate of B. jaapii in culture, we determined the minimum inhibitory concentration (MIC) of boscalid as opposed to the effective concentration that inhibits mycelial growth to 50% of the control. Isolates from nontreated trees had MIC values ranging from 0.1 to 0.5 μg ml-1; the MIC of isolates from commercial orchards ranged from 0.1 to >25 μg ml-1, and isolates from the research orchard ranged from 2.5 to >25 μg ml-1. Isolates with MIC values ≥25 μg ml-1 were considered boscalid resistant and comprised 0% of the nontreated isolates, 30.4% of the commercial isolates, and 42.1% of the research orchard isolates. Sequencing of the sdhB gene of resistant isolates led to the detection of the amino acid mutation H260R, which is known to confer boscalid resistance in other phytopathogenic fungi. Our results indicate that the occurrence of the H260R mutation in Michigan populations of B. jaapii is correlated with the reduction in sensitivity to boscalid observed in commercial orchards.
Collapse
Affiliation(s)
- Cory A Outwater
- 1 Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Tyre J Proffer
- 1 Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
- 2 Department of Biological Sciences, Kent State University, Salem, OH 44460; and
| | - Nikki L Rothwell
- 3 Northwest Michigan Horticultural Research Center, Traverse City, MI 49684
| | - Jingyu Peng
- 1 Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - George W Sundin
- 1 Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
26
|
Zhu F, Shi Y, Xie X, Chai A, Li B. Occurrence, Distribution, and Characteristics of Boscalid-Resistant Corynespora cassiicola in China. PLANT DISEASE 2019; 103:69-76. [PMID: 30451584 DOI: 10.1094/pdis-11-17-1760-re] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Corynespora blight, caused by Corynespora cassiicola (Berk. & M.A. Curtis) C.T. Wei, has become an important disease affecting cucumber in China. Its management mainly depends on fungicides; however, no research has been conducted to assess the sensitivity of C. cassiicola in China to boscalid, a succinate dehydrogenase inhibitor (SDHI). To facilitate boscalid resistance monitoring, baseline sensitivity was established. The EC50 value (i.e., the concentration that results in 50% mycelial growth inhibition) frequency distribution was unimodal with a right-hand tail; with the means 0.95 ± 0.51 μg/ml and the range 0.03 to 2.85 μg/ml. We then assessed the sensitivity of C. cassiicola to boscalid using discriminatory doses and EC50 values. In total, 27.8% of the 798 isolates were resistant, distributed in five provinces and two municipalities. Thirty-seven isolates with different resistance levels to boscalid were also evaluated for their sensitivity to carboxin, fluopyram, and penthiopyrad. Seven SDHI resistance patterns were observed (i.e., I: BosMRFluoMRPenLRCarSS; II: BosVHRFluoSSPenMRCarR; III: BosLRFluoMRPenLRCarR; IV: BosMRFluoMRPenMRCarR; V: BosHRFluoMRPenHRCarR; VI: BosHRFluoHRPenHRCarR; and VII: BosHRFluoSSPenLR CarR, VHR: very highly resistant; HR: highly resistant; MR: moderately resistant; LR: low resistant; R: resistant; SS: supersensitive), corresponding to seven mutations in sdhB/C/D genes, respectively.
Collapse
Affiliation(s)
- Fadi Zhu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
27
|
Popko JT, Sang H, Lee J, Yamada T, Hoshino Y, Jung G. Resistance of Sclerotinia homoeocarpa Field Isolates to Succinate Dehydrogenase Inhibitor Fungicides. PLANT DISEASE 2018; 102:2625-2631. [PMID: 30307834 DOI: 10.1094/pdis-12-17-2025-re] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sclerotinia homoeocarpa isolates were collected from golf courses in Japan and the United States (2016-2017). Japan isolates were collected during a monitoring study and the U.S. isolates were collected due to field failure. Five succinate dehydrogenase inhibitor (SDHI) active ingredients (boscalid, fluopyram, fluxapyroxad, isofetamid, and penthiopyrad) were examined using in vitro sensitivity assays to determine cross-resistance. Sequence analysis revealed a point mutation leading to an amino acid substitution (H267Y) and a silent mutation (CTT to CTC) at codon 181 in the SdhB subunit gene. Isolates with the B-H267Y (n = 10) mutation were resistant to boscalid and penthiopyrad and had increased sensitivity to fluopyram. SdhB silent mutation 181C>T isolates (n = 2) were resistant to boscalid, isofetamid, and penthiopyrad. Sequence analysis revealed 3 mutations leading to an amino acid substitution (G91R, n = 5; G150R, n = 1; G159W, n = 1) in the SdhC subunit gene. Isolates harboring the SdhC (G91R or G150R) mutations were resistant to boscalid, fluxapyroxad, isofetamid, and penthiopyrad. A genetic transformation system was used to generate mutants from a SDHI sensitive isolate to confirm the B-H267Y and C-G91R mutations were direct determinants of SDHI resistance and associated with in vitro sensitivity assay results.
Collapse
Affiliation(s)
- James T Popko
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003
| | - Hyunkyu Sang
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Jaemin Lee
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003
| | - Toshihiko Yamada
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido 0606-0808, Japan
| | - Yoichiro Hoshino
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido 0606-0808, Japan
| | - Geunhwa Jung
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003; and Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido 0606-0808, Japan
| |
Collapse
|
28
|
Bauske MJ, Gudmestad NC. Parasitic Fitness of Fungicide-Resistant and -Sensitive Isolates of Alternaria solani. PLANT DISEASE 2018; 102:666-673. [PMID: 30673487 DOI: 10.1094/pdis-08-17-1268-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Resistance to chemistries of the succinate dehydrogenase inhibiting (SDHI) and quinone outside inhibiting (QoI) fungicides has developed rapidly in populations of Alternaria solani, the cause of early blight of potato. Reduced sensitivity to the anilinopyrimidine (AP) fungicide pyrimethanil has also been identified recently, determining that resistance to three chemical classes of fungicides is present within the A. solani population. Although no mutations have been characterized to confer resistance to APs, in A. solani five point mutations on three AsSdh genes have been determined to convey resistance to SDHIs, and the substitution of phenylalanine with leucine at position 129 (F129L) in the cytb gene confers resistance to QoIs. The objective of this study was to investigate the parasitic fitness of A. solani isolates with resistance to one or more of these chemical classes. A total of 120 A. solani isolates collected from various geographical locations around the United States were chosen for in vitro assessment, and 60 of these isolates were further evaluated in vivo. Fitness parameters measured were (i) spore germination in vitro, (ii) mycelial expansion in vitro, and (iii) aggressiveness in vivo. No significant differences in spore germination or mycelial expansion (P = 0.44 and 0.51, respectively) were observed among wild-type and fungicide-resistant isolates in vitro. Only A. solani isolates possessing the D123E mutation were shown to be significantly more aggressive in vivo (P < 0.0001) compared with wild-type isolates. These results indicate that fungicide-resistant A. solani isolates have no significant fitness penalties compared with sensitive isolates under the parameters evaluated regardless of the presence or absence of reduced sensitivity to multiple chemical classes. Results of these studies suggest that A. solani isolates with multiple fungicide resistances may compete successfully with wild-type isolates under field conditions.
Collapse
Affiliation(s)
- Mitchell J Bauske
- Department of Plant Pathology, North Dakota State University, Fargo, 58105
| | - Neil C Gudmestad
- Department of Plant Pathology, North Dakota State University, Fargo, 58105
| |
Collapse
|
29
|
Bauske MJ, Yellareddygari SKR, Gudmestad NC. Potential Impact of Fluopyram on the Frequency of the D123E Mutation in Alternaria solani. PLANT DISEASE 2018; 102:656-665. [PMID: 30673489 DOI: 10.1094/pdis-06-17-0853-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Succinate dehydrogenase-inhibiting (SDHI) fungicides have been widely applied in commercial potato (Solanum tuberosum L.) fields for the control of early blight, caused by Alternaria solani Sorauer. Five-point mutations on three AsSdh genes in A. solani have been identified as conferring resistance to SDHI fungicides. Recent work in our laboratory determined that A. solani isolates possessing the D123E mutation, or the substitution of aspartic acid for glutamic acid at position 123 in the AsSdhD gene, were collected at successively higher frequencies throughout a 3-year survey. In total, 118 A. solani isolates previously characterized as possessing the D123E mutation were evaluated in vitro for boscalid and fluopyram sensitivity. Over 80% of A. solani isolates with the D123E mutation evaluated were determined to be highly resistant to boscalid in vitro. However, effective concentration at which the fungal growth is inhibited by 50% values of isolates with the D123E mutation to fluopyram, ranging from 0.2 to 3 µg/ml, were sensitive and only slightly higher than those of baseline isolates to fluopyram, which ranged from 0.1 to 0.6 µg/ml. Five A. solani isolates with the D123E mutation were further evaluated in vivo for percent disease control obtained from boscalid and fluopyram compared with two wild-type isolates, three isolates possessing the F129L mutation, two isolates possessing the H134R mutation, two isolates possessing the H133R mutation, and one isolate with the H278R mutation. Relative area under the dose response curve values for boscalid and fluopyram were significantly lower for all five D123E-mutant isolates, demonstrating reduced disease control in vivo. In field trials, the frequency of A. solani isolates with the D123E mutation recovered from treatments receiving an in-furrow application of fluopyram ranged from 5 to 37%, which was significantly higher compared with treatments receiving foliar applications of standard protectants, in which the frequency of the D123E mutation in isolates ranged from 0 to 2.5%. Results suggest that A. solani isolates possessing the D123E mutation have a selective advantage under the application of fluopyram compared with SDHI-sensitive isolates, as well as isolates possessing other mutations conferring SDHI resistance. These data illustrate the importance of implementing fungicide resistance management strategies and cautions the use of fluopyram for in-furrow applications that target other pathogens of potato.
Collapse
Affiliation(s)
- Mitchell J Bauske
- Department of Plant Pathology, North Dakota State University, Fargo 58105
| | | | - Neil C Gudmestad
- Department of Plant Pathology, North Dakota State University, Fargo 58105
| |
Collapse
|
30
|
Bauske MJ, Mallik I, Yellareddygari SKR, Gudmestad NC. Spatial and Temporal Distribution of Mutations Conferring QoI and SDHI Resistance in Alternaria solani Across the United States. PLANT DISEASE 2018; 102:349-358. [PMID: 30673534 DOI: 10.1094/pdis-06-17-0852-re] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The application of succinate dehydrogenase inhibiting (SDHI) and quinone outside inhibiting (QoI) fungicide chemistries is a primary tactic in the management of early blight of potato, caused by Alternaria solani. Resistance to QoIs in A. solani has been attributed to the F129L mutation, while resistance to SDHIs is conferred by five different known point mutations on three AsSdh genes. In total, 1,323 isolates were collected from 2013 through 2015 across 11 states to determine spatial and temporal frequency distribution of these mutations. A real-time polymerase chain reaction (PCR) was used to detect the presence of the F129L mutation. Molecular detection of SDHI-resistant isolates was performed using SDH multiplex PCR specific for point mutations in AsSdhB, AsSdhC, or AsSdhD genes and mismatch amplification analysis PCR detecting the point mutations in AsSdhB. Previous work in our research group determined that substitutions of histidine for tyrosine (H278Y) or arginine (H278R) at codon 278 on the AsSdhB gene were the most prevalent mutations, detected in 46 and 21% of A. solani isolates, respectively, collected in 2011 to 2012, and uniformly distributed among six sampled states. In contrast, the substitution of histidine for arginine (H134R) at codon 134 in the AsSdhC gene was the most prevalent mutation in 2013 through 2015, identified in 36% of isolates, compared with 7.5% of isolates recovered in 2011 to 2012. Substitutions of histidine for arginine (H133R) at codon 133 and aspartic acid for glutamic acid (D123E) at codon 123 in the AsSdhD gene were detected in 16 and 12%, respectively, in the A. solani population by 2015 and were recovered across a wide range of states, compared with 15 and 1.5% of isolates collected in 2011 to 2012, respectively. Overall, SDHI- and QoI-resistant isolates were detected at high frequencies across all years, with evidence of significant spatial variability. Future research will investigate whether these results are due to differences in parasitic fitness.
Collapse
Affiliation(s)
- Mitchell J Bauske
- Department of Plant Pathology, North Dakota State University, Fargo 58105
| | - Ipsita Mallik
- Department of Plant Pathology, North Dakota State University, Fargo 58105
| | | | - Neil C Gudmestad
- Department of Plant Pathology, North Dakota State University, Fargo 58105
| |
Collapse
|
31
|
Iftikhar S, Shahid AA, Halim SA, Wolters PJ, Vleeshouwers VGAA, Khan A, Al-Harrasi A, Ahmad S. Discovering Novel Alternaria solani Succinate Dehydrogenase Inhibitors by in Silico Modeling and Virtual Screening Strategies to Combat Early Blight. Front Chem 2017; 5:100. [PMID: 29204422 PMCID: PMC5698277 DOI: 10.3389/fchem.2017.00100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/30/2017] [Indexed: 01/09/2023] Open
Abstract
Alternaria blight is an important foliage disease caused by Alternaria solani. The enzyme Succinate dehydrogenase (SDH) is a potential drug target because of its role in tricarboxylic acid cycle. Hence targeting Alternaria solani SDH enzyme could be efficient tool to design novel fungicides against A. solani. We employed computational methodologies to design new SDH inhibitors using homology modeling; pharmacophore modeling and structure based virtual screening. The three dimensional SDH model showed good stereo-chemical and structural properties. Based on virtual screening results twelve commercially available compounds were purchased and tested in vitro and in vivo. The compounds were found to inhibit mycelial growth of A. solani. Moreover in vitro trials showed that inhibitory effects were enhanced with increase in concentrations. Similarly increased disease control was observed in pre-treated potato tubers. Hence the applied in silico strategy led us to identify novel fungicides.
Collapse
Affiliation(s)
- Sehrish Iftikhar
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Ahmad A. Shahid
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sobia A. Halim
- Department of Biochemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Pieter J. Wolters
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | | | - Ajmal Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
- UoN Chair of Oman Medicinal Plants and Marine Products, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- UoN Chair of Oman Medicinal Plants and Marine Products, University of Nizwa, Nizwa, Oman
| | - Shahbaz Ahmad
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
32
|
Lv XH, Ren ZL, Liu P, Li BX, Li QS, Chu MJ, Cao HQ. Design, synthesis and biological evaluation of novel nicotinamide derivatives bearing a substituted pyrazole moiety as potential SDH inhibitors. PEST MANAGEMENT SCIENCE 2017; 73:1585-1592. [PMID: 27860139 DOI: 10.1002/ps.4488] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/08/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Succinate dehydrogenase (SDH) plays an important role in the Krebs cycle, which is considered as an attractive target for development of succinate dehydrogenase inhibitors (SDHIs) based on antifungal agents. Thus, in order to discover novel molecules with high antifungal activities, SDH as the target for a series of novel nicotinamide derivatives bearing substituted pyrazole moieties were designed and synthesised via a one-pot reaction. RESULTS The biological assay data showed that compound 3 l displayed the most potent antifungal activity with EC50 values of 33.5 and 21.4 µm against Helminthosporium maydis and Rhizoctonia cerealis, respectively. Moreover, 3 l exhibited the best inhibitory ability against SDH enzymes. The results of docking simulation showed that 3 l was deeply embedded into the SDH binding pocket, and the binding model was stabilised by a cation-π interaction with Arg 43, Tyr 58 and an H-bond with Trp 173. CONCLUSION The study suggests that the pyrazole nicotinamide derivative 3 l may serve as a potential SDHI that can be used as a novel antifungal agent, and provides valuable clues for the further design and optimisation of SDH inhibitors. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xian-Hai Lv
- School of Plant Protection, Anhui Agricultural University, Hefei, P.R. China
- School of Science, Anhui Agricultural University, Hefei, P.R. China
| | - Zi-Li Ren
- School of Plant Protection, Anhui Agricultural University, Hefei, P.R. China
| | - Peng Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, P.R. China
| | - Bing-Xin Li
- School of Plant Protection, Anhui Agricultural University, Hefei, P.R. China
| | - Qing-Shan Li
- School of Medical Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Ming-Jie Chu
- School of Science, Anhui Agricultural University, Hefei, P.R. China
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, P.R. China
| |
Collapse
|
33
|
Fernández-Ortuño D, Pérez-García A, Chamorro M, de la Peña E, de Vicente A, Torés JA. Resistance to the SDHI Fungicides Boscalid, Fluopyram, Fluxapyroxad, and Penthiopyrad in Botrytis cinerea from Commercial Strawberry Fields in Spain. PLANT DISEASE 2017; 101:1306-1313. [PMID: 30682955 DOI: 10.1094/pdis-01-17-0067-re] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gray mold, caused by the necrotrophic fungus Botrytis cinerea., is one of the most economically important diseases of strawberry. Gray mold control involves the application of fungicides throughout the strawberry growing season; however, B. cinerea isolates resistant to multiple classes of site-specific fungicides have been recently reported in the Spanish gray mold population. Succinate dehydrogenase inhibitors (SDHI) constitute a relatively novel class of fungicides registered for gray mold control representing new alternatives for strawberry growers. In the present study, 37 B. cinerea isolates previously characterized for their sensitivity to boscalid and amino acid changes in the SdhB protein were used to determine the effective concentration that reduces mycelial growth by 50% (EC50) to fluopyram, fluxapyroxad, and penthiopyrad. The present study was also conducted to obtain discriminatory doses to monitor SDHI fungicide resistance in 580 B. cinerea isolates collected from 27 commercial fields in Spain during 2014, 2015, and 2016. The EC50 values ranged from 0.01 to >100 μg/ml for fluopyram, <0.01 to 4.19 μg/ml for fluxapyroxad, and, finally, <0.01 to 59.65 μg/ml for penthiopyrad. Based on these results, as well as findings from a previous publication, the discriminatory doses chosen to examine sensitivities to boscalid, fluopyram, fluxapyroxad, and penthiopyrad were 100, 15, 1, and 6 μg/ml, respectively. Over the course of the 3-year monitoring period, the overall frequencies of resistance to the four SDHI were 56.9, 6.9, 12.9, and 24.6%, respectively. The frequency of boscalid-resistant isolates decreased from 73 to 41% over the years; however, the fluopyram-resistant isolates increased from 5 to 10% after 1 year of registration. Four SDHI resistance patterns were observed in our population, which included patterns I (30%; resistance to boscalid), II (13.8%; resistance to boscalid and penthiopyrad), III (5.7%; boscalid, fluxapyroxad, and penthiopyrad), and IV (7.9%; resistance to boscalid, fluopyram, fluxapyroxad, and penthiopyrad). Patterns I and II were associated with the amino acid substitutions H272R and H272Y; pattern III was associated only with the H272Y mutation; and, finally, pattern IV was associated with the N230I allele in the SdhB subunit. For gray mold management, it is suggested that the simultaneous use of boscalid and penthiopyrad should be limited to one application per season; however, fluxapyroxad and, especially, fluopyram could be used as valid SDHI alternatives for gray mold control, although they should be applied with caution.
Collapse
Affiliation(s)
- Dolores Fernández-Ortuño
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa (Málaga), Spain; and IHSM-UMA-CSIC, Departmento de Microbiología, Campus de Teatinos, 29071 Málaga, Spain
| | | | - Manuel Chamorro
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, 41012 Seville, Spain
| | | | | | | |
Collapse
|
34
|
Piotrowska MJ, Fountaine JM, Ennos RA, Kaczmarek M, Burnett FJ. Characterisation of Ramularia collo-cygni laboratory mutants resistant to succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2017; 73:1187-1196. [PMID: 27644008 DOI: 10.1002/ps.4442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Ramularia collo-cygni (Rcc) is responsible for Ramularia leaf spot (RLS), a foliar disease of barley contributing to serious economic losses. Protection against the disease has been almost exclusively based on fungicide applications, including succinate dehydrogenase inhibitors (SDHIs). In 2015, the first field isolates of Rcc with reduced sensitivity to SDHIs were recorded in some European countries. In this study we established baseline sensitivity of Rcc to SDHIs in the United Kingdom and characterised mutations correlating with resistance to SDHIs in UV-generated mutants. RESULTS Five SDHI-resistant isolates were generated by UV mutagenesis. In four of these mutants a single amino acid change in a target succinate dehydrogenase (Sdh) protein was associated with decrease in sensitivity to SDHIs. Three of these mutations were stably inherited in the absence of SDHI fungicide, and resistant isolates did not demonstrate a fitness penalty. There were no detectable declines in sensitivity in field populations in the years 2010-2012 in the United Kingdom. CONCLUSIONS SDHIs remained effective in controlling Rcc in the United Kingdom in the years 2010-2012. However, given that the first isolates of Rcc with reduced sensitivity appeared in other European countries in 2015, robust antiresistance strategies need to be continuously implemented to maintain effective disease control. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marta J Piotrowska
- Crop and Soil Systems Research Group, Scotland's Rural College, Edinburgh, UK
| | - James M Fountaine
- Crop and Soil Systems Research Group, Scotland's Rural College, Edinburgh, UK
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Richard A Ennos
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Maciej Kaczmarek
- Crop and Soil Systems Research Group, Scotland's Rural College, Edinburgh, UK
- Forest Research, Farnham, Surrey, UK
| | - Fiona J Burnett
- Crop and Soil Systems Research Group, Scotland's Rural College, Edinburgh, UK
| |
Collapse
|
35
|
Malandrakis AA, Vattis KN, Markoglou AN, Karaoglanidis GS. Characterization of boscalid-resistance conferring mutations in the SdhB subunit of respiratory complex II and impact on fitness and mycotoxin production in Penicillium expansum laboratory strains. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 138:97-103. [PMID: 28456312 DOI: 10.1016/j.pestbp.2017.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 05/12/2023]
Abstract
Laboratory mutants of Penicillium expansum highly resistant (Rfs: 90 to >500, based on EC50s) to Succinate Dehydrogenase Inhibitors (SDHIs) were isolated after UV-mutagenesis and selection on media containing boscalid. A positive correlation was found between sensitivity of isolates to boscalid and other SDHIs such as isopyrazam and carboxin but not to fungicides affecting other cellular pathways or processes, such as the triazole flusilazole, the phenylpyrrole fludioxonil, the anilinopyrimidine cyprodinil and the benzimidazole benomyl. Most of the boscalid-resistant strains were more sensitive to the SDHI fluopyram and the QoI pyraclostrobin. In order to investigate the mechanism responsible for the observed resistance profiles, part of the SdhB subunit isolated the wild type and boscalid-resistant isolates, was genetically characterized. Comparison of the deduced amino-acid sequence between resistant and wild-type isolates revealed two point mutations at a position corresponding to codon 272 of the respective SdhB protein in Botrytis cinerea. The substitution of histidine by arginine was found in boscalid-resistant isolates which were equally sensitive to fluopyram compared with the wild-type whereas the replacement of histidine by tyrosine was found in strains with increased sensitivity to fluopyram. No adverse effects of resistance mutations were observed on fitness determining parameters such as osmotic sensitivity, sporulation and pathogenicity, while mycelial growth rate and spore germination was negatively affected in some of the mutants studied. P. expansum mutant strains displayed significantly perturbed patulin and citrinin levels as compared to the wild-type parent strain both in vitro and in vivo as revealed by thin layer (TLC) and high performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Anastasios A Malandrakis
- Pesticide Science Laboratory, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece.
| | - Konstantinos N Vattis
- Pesticide Science Laboratory, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece
| | - Anastasios N Markoglou
- Pesticide Science Laboratory, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece
| | - George S Karaoglanidis
- Plant Pathology Laboratory, Faculty of Agriculture, Aristotelian University of Thessaloniki, PO Box 269, 54124 Thessaloniki, Greece
| |
Collapse
|
36
|
Xiong L, Li H, Jiang LN, Ge JM, Yang WC, Zhu XL, Yang GF. Structure-Based Discovery of Potential Fungicides as Succinate Ubiquinone Oxidoreductase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1021-1029. [PMID: 28110534 DOI: 10.1021/acs.jafc.6b05134] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A series of diphenyl ether-containing pyrazole-carboxamide derivatives was designed and synthesized as new succinate ubiquinone oxidoreductase (SQR) inhibitors. This highly potent molecular scaffold was developed from a moderately activie hit 3, obtained from our previous pharmacophore-linked fragment virtual screening (PFVS) method. The results of greenhouse tests indicated that some analogues showed good SQR inhibitory activity, with promising fungicidal activity against Rhizoctonia solani and Sphaerotheca fuliginea at a dosage of 200 mg/L. Most surprisingly, compound 62 showed the highest SQR inhibitory activity with a Ki value of 0.081 μM, about 4-fold more potent than penthiopyrad (Ki = 0.307 μM). In addition, compounds 43 and 62 displayed excellent fungicidal activity even at a dosage as low as 6.25 mg/L, which was superior to thifluzamide. Moreover, compound 62 exhibited excellent protection effect against R. solani and provided about 81.2% protective control efficancy after 21 days with two sprayings. The present work indicated that these two compounds could be used as potential agricultural fungicides targeting SQR.
Collapse
Affiliation(s)
- Li Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Hua Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Li-Na Jiang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Jing-Ming Ge
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Xiao Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071, People's Republic of China
| |
Collapse
|
37
|
Wei P, Liu Y, Li W, Qian Y, Nie Y, Kim D, Wang M. Metabolic and Dynamic Profiling for Risk Assessment of Fluopyram, a Typical Phenylamide Fungicide Widely Applied in Vegetable Ecosystem. Sci Rep 2016; 6:33898. [PMID: 27654708 PMCID: PMC5031996 DOI: 10.1038/srep33898] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/06/2016] [Indexed: 01/07/2023] Open
Abstract
Fluopyram, a typical phenylamide fungicide, was widely applied to protect fruit vegetables from fungal pathogens-responsible yield loss. Highly linked to the ecological and dietary risks, its residual and metabolic profiles in the fruit vegetable ecosystem still remained obscure. Here, an approach using modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction combined with GC-MS/MS analysis was developed to investigate fluopyram fate in the typical fruit vegetables including tomato, cucumber, pepper under the greenhouse environment. Fluopyram dissipated in accordance with the first-order rate dynamics equation with the maximum half-life of 5.7 d. Cleveage of fluopyram into 2-trifluoromethyl benzamide and subsequent formation of 3-chloro-5-(trifluoromethyl) pyridine-2-acetic acid and 3-chloro-5-(trifluoromethyl) picolinic acid was elucidated to be its ubiquitous metabolic pathway. Moreover, the incurrence of fluopyram at the pre-harvest interval (PHI) of 7-21 d was between 0.0108 and 0.1603 mg/kg, and the Hazard Quotients (HQs) were calculated to be less than 1, indicating temporary safety on consumption of the fruit vegetables incurred with fluopyram, irrespective of the uncertain toxicity of the metabolites. Taken together, our findings reveal the residual essential of fluopyram in the typical agricultural ecosystem, and would advance the further insight into ecological risk posed by this fungicide associated with its metabolites.
Collapse
Affiliation(s)
- Peng Wei
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yanan Liu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wenzhuo Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yuan Qian
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yanxia Nie
- South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Guangzhou 510650, China
| | - Dongyeop Kim
- Biofilm Research Labs, Divisions of Pediatric Dentistry & Community Oral Health, University of Pennsylvania, PA 19104, USA
| | - Mengcen Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
38
|
Li HX, Brewer MT. Spatial Genetic Structure and Population Dynamics of Gummy Stem Blight Fungi Within and Among Watermelon Fields in the Southeastern United States. PHYTOPATHOLOGY 2016; 106:900-908. [PMID: 27050575 DOI: 10.1094/phyto-01-16-0006-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The epidemiology of gummy stem blight (GSB) of cucurbits, particularly the sources of inoculum for epidemics, and the regional population genetic structure of the causal fungi Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae), S. citrulli, and S. caricae are not well understood. Our goal was to better understand the population structure and fine-scale spatial genetic structure of Stagonosporopsis spp. in the southeastern United States. Overall, 528 isolates collected from nine fields in 2012, 2013, and 2014 were genotyped with 16 microsatellite markers. In 2013, S. caricae was first detected in the southeastern United States; however, S. citrulli remained the dominant species, representing 96.4% of the isolates. Principal coordinates analysis, discriminant analysis of principle components, and analysis of molecular variance indicated that most populations of S. citrulli were genotypically diverse, yet dominated by widely distributed clones that contributed to regional population structure. Spatial genetic structure resulting from aggregation of clonal genotypes at distances of less than 10 meters was detected within two of three fields in which isolate location was recorded. Studies on the epidemiological and fitness differences between S. citrulli and S. caricae and of prevalent and widespread clones will provide insight into the population structure and species dynamics observed in GSB epidemics.
Collapse
Affiliation(s)
- Hao-Xi Li
- Department of Plant Pathology, University of Georgia, Athens, GA
| | | |
Collapse
|
39
|
Villani SM, Ayer K, Cox KD. Molecular Characterization of the sdhB Gene and Baseline Sensitivity to Penthiopyrad, Fluopyram, and Benzovindiflupyr in Venturia inaequalis. PLANT DISEASE 2016; 100:1709-1716. [PMID: 30686234 DOI: 10.1094/pdis-12-15-1512-re] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The succinate dehydrogenase inhibiting (SDHI) fungicides are a class of single-site fungicides that are increasingly important in the management of Venturia inaequalis. In this study, the baseline sensitivity of V. inaequalis to penthiopyrad, fluopyram, and benzovindiflupyr was investigated. In all, 35 to 70 isolates with no prior exposure to single-site fungicides were used to determine the effective concentration at which growth was inhibited by 50% (EC50). Mean EC50 values for the conidial germ tube growth stage for penthiopyrad, fluopyram, and benzovindiflupyr were 0.086, 0.176, and 0.0016 μg ml-1, respectively. Linear correlation analysis revealed a significant and positive correlation between fluopyram and penthiopyrad (P ≤ 0.0001, r = 0.66) and fluopyram and benzovindiflupyr (P = 0.0014, r = 0.52). Baseline sensitivities of V. inaequalis during the mycelial growth stage were also determined for fluopyram and benzovindiflupyr. EC50 values were higher for fluopyram and benzovindiflupyr during this stage compared with the conidial germ tube growth stage, with means of 0.043 and 2.02 μg ml-1, respectively. In addition, the sdhB gene was characterized for three isolates of V. inaequalis collected from a research, baseline, and commercial orchard population. No common mutation sites associated with SDHI resistance in other phytopathogenic fungi were discovered in these isolates or isolates that were recovered following field applications of SDHI fungicides. The results of this study suggest that SDHI fungicides have a high level of activity during the conidial germ tube elongation stage in V. inaequalis and provide a basis for phenotypic and genotypic monitoring of shifts toward resistance of V. inaequalis populations to the SDHI fungicide class.
Collapse
Affiliation(s)
- Sara M Villani
- Department of Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759
| | - Katrin Ayer
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Kerik D Cox
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
40
|
Jeschke P. Progress of modern agricultural chemistry and future prospects. PEST MANAGEMENT SCIENCE 2016; 72:433-55. [PMID: 26577980 DOI: 10.1002/ps.4190] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/27/2015] [Accepted: 11/16/2015] [Indexed: 05/25/2023]
Abstract
Agriculture is facing an enormous challenge: it must ensure that enough high-quality food is available to meet the needs of a continually growing population. Current and future agronomic production of food, feed, fuel and fibre requires innovative solutions for existing and future challenges, such as climate change, resistance to pests, increased regulatory demands, renewable raw materials or requirements resulting from food chain partnerships. Modern agricultural chemistry has to support farmers to manage these tasks. Today, the so-called 'side effects' of agrochemicals regarding yield and quality are gaining more importance. Agrochemical companies with a strong research and development focus will have the opportunity to shape the future of agriculture by delivering innovative integrated solutions. This review gives a comprehensive overview of the innovative products launched over the past 10 years and describes the progress of modern agricultural chemistry and its future prospects.
Collapse
Affiliation(s)
- Peter Jeschke
- Bayer CropScience AG, Small Molecules Research, Pest Control Chemistry, Monheim am Rhein, Germany
| |
Collapse
|
41
|
Colcol JF, Baudoin AB. Sensitivity of Erysiphe necator and Plasmopara viticola in Virginia to QoI Fungicides, Boscalid, Quinoxyfen, Thiophanate Methyl, and Mefenoxam. PLANT DISEASE 2016; 100:337-344. [PMID: 30694148 DOI: 10.1094/pdis-01-15-0012-re] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sensitivity of downy mildew (DM, Plasmopara viticola) and powdery mildew (PM, Erysiphe necator) of grape (Vitis sp.) to commonly used nondemethylation inhibitor, single-site fungicides in and near Virginia was determined from 2005 to 2007, with more limited additional sampling in subsequent years. In grape leaf disc bioassays, 92% of the P. viticola isolates were quinone outside inhibitor (QoI, azoxystrobin) resistant but none were resistant to mefenoxam. In all, 82% of the E. necator isolates were QoI resistant. Most of the QoI-resistant P. viticola and E. necator isolates contained >95% of the G143A point mutation, which confers high levels of QoI resistance. In contrast, QoI-sensitive P. viticola isolates contained less than 1% of G143A. In total, 1 of 145 and 14 of 154 QoI-resistant P. viticola and E. necator isolates (able to grow on azoxystrobin concentration ≥1 μg/ml), respectively, contained <1% G143A. In total, 61 E. necator isolates from 23 locations were tested against thiophanate methyl, and the majority grew well on leaf tissue treated with 50 and 250 μg/ml. Through 2012, none of the E. necator isolates were resistant to boscalid and quinoxyfen. However, in 2013, quinoxyfen-resistant E. necator was detected in one vineyard experiencing difficulties with powdery mildew control. No 50% effective concentration value could be calculated but these isolates tolerated labeled rates with only limited inhibition. QoI (E. necator and P. viticola) and benzimidazole (E. necator) resistance were widespread in Virginia, rendering these materials inadvisable for control of these diseases. The practical importance and current distribution of quinoxyfen resistance needs further investigation.
Collapse
Affiliation(s)
| | - Anton B Baudoin
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg 24061
| |
Collapse
|
42
|
Zhang Y, Lu J, Wang J, Zhou M, Chen C. Baseline sensitivity and resistance risk assessmemt of Rhizoctonia cerealis to thifluzamide, a succinate dehydrogenase inhibitor. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 124:97-102. [PMID: 26453237 DOI: 10.1016/j.pestbp.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 06/05/2023]
Abstract
During 2010-2012, a total of 120 isolates of Rhizoctonia cerealis were collected from wheat with symptoms of sharp eyespot in four provinces (Henan, Shandong, Anhui and Jiangsu) in China. All the isolates were determined for baseline sensitivity to thifluzamide, a succinate dehydrogenase inhibitor (SDHI) with strong antifungal activity. The sampled pathogenic populations, never exposed to SDHIs, had similar sensitivity to trifluzamide (0.025-0.359 µg/ml) in the four regions and over the two years. The baseline sensitivity was distributed as a skewed unimodal curve with a mean EC50 value (effective concentrations for 50% inhibiting mycelial growth) of 0.064 ± 0.013 µg/ml. The resistance risk of R. cerealis to thifluzamide was further evaluated in vitro. Two thifluzamide-resistant mutants of R. cerealis were obtained by culturing on thifluzamide-amended plates. The resistance factors (RF = EC50 value of a mutant/EC50 value of the wild type progenitor of the mutant) were 120 and 40 for two R. cerealis mutants, respectively. All the mutants exhibited similar fitness after 10 successive transfers when compared to their wild-type parents in mycelial growth, sclerotia production, and virulence. However, the two thifluzamide-resistant mutants differed significantly in sensitivity to boscalid and flutolanil. Therefore, a low-to-moderate risk of resistance development was recommended for thifluzamide.
Collapse
Affiliation(s)
- Yu Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingle Lu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - MingGuo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
43
|
Discovery of pyridine-based agrochemicals by using Intermediate Derivatization Methods. Bioorg Med Chem 2015; 24:342-53. [PMID: 26481150 DOI: 10.1016/j.bmc.2015.09.031] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 11/24/2022]
Abstract
Pyridine-based compounds have been playing a crucial role as agrochemicals or pesticides including fungicides, insecticides/acaricides and herbicides, etc. Since most of the agrochemicals listed in the Pesticide Manual were discovered through screening programs that relied on trial-and-error testing and new agrochemical discovery is not benefiting as much from the in silico new chemical compound identification/discovery techniques used in pharmaceutical research, it has become more important to find new methods to enhance the efficiency of discovering novel lead compounds in the agrochemical field to shorten the time of research phases in order to meet changing market requirements. In this review, we selected 18 representative known agrochemicals containing a pyridine moiety and extrapolate their discovery from the perspective of Intermediate Derivatization Methods in the hope that this approach will have greater appeal to researchers engaged in the discovery of agrochemicals and/or pharmaceuticals.
Collapse
|
44
|
Mirković B, Tanović B, Stević M, Hrustić J, Mihajlović M, Delibašić G, Vukša P. Toxicity of mancozeb, chlorothalonil, captan, fluopyram, boscalid, and difenoconazole to Didymella applanata isolates from Serbia. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 50:845-850. [PMID: 26252498 DOI: 10.1080/03601234.2015.1062648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Field isolates of Didymella applanata, the causal agent of spur blight of raspberry, were evaluated in vitro for their sensitivity to mancozeb, chlorothalonil, captan, fluopyram, boscalid and difenoconazole. A total of 10 isolates, collected during 2013 at five localities in the major raspberry growing region in Serbia, and characterized as copper hydroxide, dithianon, and tebuconazole (sensitive), pyraclostrobin (sensitive or highly resistant) and fluazinam (sensitive or moderately resistant), were used in this study. The EC50 values for the isolates ranged from 1.33 to 2.88 mg L(-1) for mancozeb, from 3.18 to 6.65 mg L(-1) for chlorothalonil, from 15.75 to 24.69 mg L(-1) for captan and from 1.80 to 8.20 mg L(-1) for fluopyram. The narrowest range of EC50 values was recorded for difenoconazole (0.23-0.49 mg L(-1)), whereas the widest range was obtained for boscalid (4.49-49.25 mg L(-1)). The calculated resistance factors showed that all D. applanata isolates were sensitive to mancozeb, chlorothalonil, captan, and difenoconazole. Four isolates were moderately resistant to boscalid, while three of them were also moderately resistant to fluopyram. This finding of moderately resistant isolates to these SDHI fungicides indicates a possible cross-resistance which should be clarified in further investigations.
Collapse
Affiliation(s)
- Biljana Mirković
- a Grantholder of the Ministry of Education, Science and Technological Development of the Republic of Serbia , Belgrade , Serbia
| | - Brankica Tanović
- b Institute of Pesticides and Environmental Protection , Belgrade , Serbia
| | - Milan Stević
- c Faculty of Agriculture , University of Belgrade , Belgrade , Serbia
| | - Jovana Hrustić
- b Institute of Pesticides and Environmental Protection , Belgrade , Serbia
| | - Milica Mihajlović
- b Institute of Pesticides and Environmental Protection , Belgrade , Serbia
| | - Goran Delibašić
- c Faculty of Agriculture , University of Belgrade , Belgrade , Serbia
| | - Petar Vukša
- c Faculty of Agriculture , University of Belgrade , Belgrade , Serbia
| |
Collapse
|
45
|
Brewer MT, Rath M, Li HX. Genetic Diversity and Population Structure of Cucurbit Gummy Stem Blight Fungi Based on Microsatellite Markers. PHYTOPATHOLOGY 2015; 105:815-824. [PMID: 25710205 DOI: 10.1094/phyto-10-14-0282-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Combining population genetics with epidemiology provides insight into the population biology of pathogens, which could lead to improved management of plant diseases. Gummy stem blight, caused by three closely related species of Stagonosporopsis-Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae), S. citrulli, and S. caricae-is a devastating disease of cucurbits worldwide. Sources of inoculum for epidemics, mechanisms of dispersal, and the mating system of these species are not well understood. To improve our knowledge of gummy stem blight epidemiology, we developed 18 polymorphic microsatellite markers by combining microsatellite motif enrichment with next-generation sequencing. When tested on 46 isolates from diverse cucurbit hosts and regions, the markers were robust for the dominant and widely distributed S. citrulli. Within this species, we found no population structure based on broad-scale geographic region or host of origin. Using the microsatellites, a rapid polymerase chain reaction-based method was developed to distinguish the three morphologically similar species causing gummy stem blight. To better understand dispersal, reproduction, and fine-scale genetic diversity of S. citrulli within and among watermelon fields, 155 isolates from two field populations in Georgia, United States were genotyped with the 18 microsatellite loci. Although dominant and widespread clones were detected, we found relatively high genotypic diversity and recombinant genotypes consistent with outcrossing. Significant population genetic structure between the two field populations demonstrated that there is regional geographic structure and limited dispersal among fields. This study provides insight into the fine-scale genetic diversity and reproductive biology of the gummy stem blight pathogen S. citrulli in the field.
Collapse
Affiliation(s)
| | - Manisha Rath
- Department of Plant Pathology, University of Georgia, Athens
| | - Hao-Xi Li
- Department of Plant Pathology, University of Georgia, Athens
| |
Collapse
|
46
|
Mirković B, Tanović B, Hrustić J, Mihajlović M, Stević M, Delibašić G, Vukša P. Toxicity of copper hydroxide, dithianon, fluazinam, tebuconazole and pyraclostrobin to Didymella applanata isolates from Serbia. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 50:175-183. [PMID: 25602150 DOI: 10.1080/03601234.2015.982414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A study of the in vitro sensitivity of 10 isolates of Didymella applanata to copper hydroxide, dithianon, fluazinam, tebuconazole and pyraclostrobin, was conducted. The isolates were derived from diseased raspberry canes sampled during 2013 at five localities in western part of Serbia, known as the main raspberry growing region of the country. Prior to sensitivity testing experimental conditions for radial growth assay were optimized. The results showed that the temperature of 22 °C, oatmeal agar medium and 12/12 hrs light/ darkness light regimen provided the best conditions for sensitivity tests. Most of D. applanata isolates were sensitive to the tested fungicides. The narrowest range of EC50 values was recorded for tebuconazole (1.42-2.66 mg L(-1)). The widest range of EC50 values was obtained for pyraclostrobin, ranging from 0.17 mg L(-1) to 55.33 mg L(-1). The EC50 values for the studied isolates were 39.48-51.19 mg L(-1) for copper hydroxide, 12.12-18.73 mg L(-1) for dithianon and 5.72-42.56 mg L(-1) for fluazinam. According to resistance factor values, all D. applanata isolates were sensitive to copper hydroxide, dithianon and tebuconazole. Among tested isolates, six were highly resistant to pyraclostrobin (RFs in the range of 207.1-325.5) and two moderately resistant to fluazinam (RFs were 3 and 7.4), respectively.
Collapse
Affiliation(s)
- Biljana Mirković
- a Grant-holder of Ministry of Education, Science and Technological Development of the Republic of Serbia , Belgrade , Serbia
| | | | | | | | | | | | | |
Collapse
|
47
|
De Miccolis Angelini RM, Masiello M, Rotolo C, Pollastro S, Faretra F. Molecular characterisation and detection of resistance to succinate dehydrogenase inhibitor fungicides in Botryotinia fuckeliana (Botrytis cinerea). PEST MANAGEMENT SCIENCE 2014; 70:1884-1893. [PMID: 24481672 DOI: 10.1002/ps.3748] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/03/2014] [Accepted: 01/26/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Succinate dehydrogenase inhibitors (SDHIs), interfering with fungal respiration, are considered to be fungicides at medium to high risk of resistance. Boscalid was the first molecule belonging to the SDHIs that was introduced for the control of Botryotinia fuckeliana. A range of different target-site mutations leading to boscalid resistance have been found in field populations of the fungus. The different types of mutation confer different cross-resistance profiles towards novel SDHIs, such as the recently introduced fungicide fluopyram. This study combines the determination of cross-resistance profiles and the setting-up of methods for fast molecular detection of the mutations. RESULTS By means of in vitro tests, a range of SdhB mutations were characterised for resistance levels towards boscalid and fluopyram. SdhB mutations conferring P225L and P225F substitutions conferred high resistance to boscalid and high or moderate resistance to fluopyram respectively. Mutants carrying the N230I replacement were moderately resistant to both SDHIs. Substitutions at position H272 responsible for a high level of resistance to boscalid conferred sensitivity (H272R), hypersensitivity (H272Y) or moderate resistance (H272V) to fluopyram. Allele-specific (AS) PCR was developed and used for genotyping 135 B. fuckeliana isolates. The assay confirmed the strict association between resistance profiles and allelic variants of the SdhB gene. Real-time AS-PCR proved to be sensitive and specific for quantitative detection of different SDHI-resistant genotypes. CONCLUSION Fluopyram-resistant mutants are currently rarely detected in the field sprayed with boscalid, but this may change with intensive exposure of the fungal population to fluopyram. PCR assays/methods developed in the study provide tools for fast monitoring of field populations and observing possible changes in population composition following fluopyram introduction, useful for the setting-up of appropriate preventive measures.
Collapse
|
48
|
Lalève A, Fillinger S, Walker AS. Fitness measurement reveals contrasting costs in homologous recombinant mutants of Botrytis cinerea resistant to succinate dehydrogenase inhibitors. Fungal Genet Biol 2014; 67:24-36. [DOI: 10.1016/j.fgb.2014.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 01/22/2023]
|
49
|
Sierotzki H, Scalliet G. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. PHYTOPATHOLOGY 2013; 103:880-887. [PMID: 23593940 DOI: 10.1094/phyto-01-13-0009-rvw] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The new broad-spectrum fungicides from the succinate dehydrogenase inhibitor (SDHI) class have been quickly adopted by the market, which may lead to a high selection pressure on various pathogens. Cases of resistance have been observed in 14 fungal pathogens to date and are caused by different mutations in genes encoding the molecular target of SDHIs, which is the mitochondrial succinate dehydrogenase (SDH) enzyme. All of the 17 marketed SDHI fungicides bind to the same ubiquinone binding site of the SDH enzyme. Their primary biochemical mode of action is the blockage of the TCA cycle at the level of succinate to fumarate oxidation, leading to an inhibition of respiration. Homology models and docking simulations explain binding behaviors and some peculiarities of the cross-resistance profiles displayed by different members of this class of fungicides. Furthermore, cross-resistance patterns among SDHIs is complex because many mutations confer full cross resistance while others do not. The nature of the mutations found in pathogen populations varies with species and the selection compound used but cross resistance between all SDHIs has to be assumed at the population level. In most of the cases where resistance has been reported, the frequency is still too low to impact field performance. However, the Fungicide Resistance Action Committee has developed resistance management recommendations for pathogens of different crops in order to reduce the risk for resistance development to this class of fungicides. These recommendations include preventative usage, mixture with partner fungicides active against the current pathogen population, alternation in the mode of action of products used in a spray program, and limitations in the total number of applications per season or per crop.
Collapse
Affiliation(s)
- Helge Sierotzki
- Syngenta Crop Protection, Research Biology, Schaffhauserstrasse, Stein, Switzerland.
| | | |
Collapse
|
50
|
Gudmestad NC, Arabiat S, Miller JS, Pasche JS. Prevalence and Impact of SDHI Fungicide Resistance in Alternaria solani. PLANT DISEASE 2013; 97:952-960. [PMID: 30722567 DOI: 10.1094/pdis-12-12-1176-re] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Early blight, caused by Alternaria solani, is an important chronic foliar disease of potato (Solanum tuberosum) present every growing season in the Midwestern United States. Most currently grown potato cultivars lack resistance to early blight; therefore, foliar fungicides are relied upon for disease management. Foliar fungicides with high efficacy against the pathogen, such as boscalid, frequently are used under high disease pressure situations, such as potatoes grown under overhead irrigation. Boscalid is a member of the succinate dehydrogenase inhibiting (SDHI) fungicide group and was registered for use on potato in 2005. Baseline sensitivity of A. solani to the SDHI fungicides boscalid, penthiopyrad, and fluopyram using a spore germination assay demonstrated similar intrinsic activity against A. solani with mean EC50 values of 0.33, 0.38, and 0.31 μg/ml, respectively. However, isolates varied in their sensitivity to each of these fungicides, resulting in very low correlations (r) among isolate sensitivity to each fungicide. Resistance to boscalid in A. solani was detected in the states of North Dakota, Minnesota, Nebraska, Texas, Idaho, Wisconsin, and Florida from early blight samples collected in 2010 and 2011. Two phenotypes of boscalid resistance were detected. Approximately 80% of all A. solani assayed were found to have some level of resistance to boscalid with about 5 and 75% of the population moderately resistant (5 to 20 μg/ml) and highly resistant (>20 μg/ml), respectively, to the fungicide. Nearly 99% of all boscalid resistant isolates possessed the F129L mutation in the cytrochrome b gene, indicating that an A. solani population with dual fungicide resistance predominates in the states surveyed. However, A. solani isolates resistant to boscalid remained sensitive to fluopyram, and a large proportion of moderately resistant and resistant isolates were sensitive to penthiopyrad. Disease control data from in vivo trials demonstrated a significant loss of fungicide efficacy when boscalid and fluxapyroxad were used to control moderately and highly resistant isolates of A. solani relative to the control these fungicides provided wild-type isolates. Fluopyram, however, controlled boscalid resistant isolates as well as it controlled wild-type isolates of A. solani. These data will assist potato growers in regions where boscalid resistance is prevalent by assisting them in avoiding fungicides that do not effectively control early blight and in selecting SDHI fungicide molecules that remain efficacious.
Collapse
Affiliation(s)
- N C Gudmestad
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - S Arabiat
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - J S Miller
- Miller Research, 426 East 200 North, Rupert, ID 83350
| | - J S Pasche
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| |
Collapse
|