1
|
Cai XX, Huang YH, Lin YCD, Huang HY, Chen YG, Zhang DP, Zhang T, Liu Y, Zuo HL, Huang HD. A comprehensive review of small molecules, targets, and pathways in ulcerative colitis treatment. Eur J Med Chem 2025; 291:117645. [PMID: 40279769 DOI: 10.1016/j.ejmech.2025.117645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Ulcerative colitis (UC), a chronic inflammatory bowel disease (IBD), poses significant clinical challenges because of its complex pathophysiology, long-term nature, and the limited efficacy of existing treatments. Small-molecule compounds, particularly those that are able to modulate inflammation-related signaling pathways and, in many cases, occur in nature, offer a promising alternative or supplement to conventional therapies. Studies on molecules for UC therapeutics reported in 1394 publications over the past 30 years were collected from the Web of Science (WOS) database. Only studies that verified therapeutic efficacy through animal experiments were included. Through an analysis of the molecular classes, structures, common targets, and pathways using network pharmacology, we identified 14 classes of compounds, 5 direct-target modules, and 3 crucial downstream pathways. Alkaloids, phenylpropanoids, flavonoids, and terpenes (and their derivatives) appeared most frequently and mainly targeted lipid metabolism, oxidative stress, immune regulation, signaling transduction, and cancer-related pathways. Notably, there has been an increasing trend of applying naturally sourced compounds in both preclinical and clinical trials, especially flavonoids, over the last five years. Although progress in UC research has been made, the majority of studies have focused on the overall therapeutic effects and biomarker alterations, with limited emphasis on the direct targets and underlying mechanisms. These findings highlight the need to explore novel small-molecule therapeutic strategies for UC, focusing on clearly defined targets and precise modes of action.
Collapse
Affiliation(s)
- Xiao-Xuan Cai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Yi-Han Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Yi-Gang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Da-Peng Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Tao Zhang
- R&D center, Better Way (Shanghai) Cosmetics Co., Ltd., Shanghai, 201103, PR China
| | - Yue Liu
- R&D center, Better Way (Shanghai) Cosmetics Co., Ltd., Shanghai, 201103, PR China
| | - Hua-Li Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China.
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
| |
Collapse
|
2
|
Famurewa AC, Akhigbe RE, George MY, Adekunle YA, Oyedokun PA, Akhigbe TM, Fatokun AA. Mechanisms of ferroptotic and non-ferroptotic organ toxicity of chemotherapy: protective and therapeutic effects of ginger, 6-gingerol and zingerone in preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4747-4778. [PMID: 39636404 PMCID: PMC11985630 DOI: 10.1007/s00210-024-03623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Chemotherapy (CT) is one of the flagship options for the treatment of cancers worldwide. It involves the use of cytotoxic anticancer agents to kill or inhibit the proliferation of cancer cells. However, despite its clinical efficacy, CT triggers side effect toxicities in several organs, which may impact cancer patient's quality of life and treatment outcomes. While the side effect toxicity is consistent with non-ferroptotic mechanisms involving oxidative stress, inflammation, mitochondrial impairment and other aberrant signalling leading to apoptosis and necroptosis, recent studies show that ferroptosis, a non-apoptotic, iron-dependent cell death pathway, is also involved in the pathophysiology of CT organ toxicity. CT provokes organ ferroptosis via system Xc-/GPX-4/GSH/SLC7A11 axis depletion, ferritinophagy, iron overload, lipid peroxidation and upregulation of ferritin-related proteins. Cisplatin (CP) and doxorubicin (DOX) are common CT drugs indicated to induce ferroptosis in vitro and in vivo. Studies have explored natural preventive and therapeutic strategies using ginger rhizome and its major bioactive compounds, 6-gingerol (6G) and zingerone (ZG), to combat mechanisms of CT side effect toxicity. Ginger extract, 6G and ZG mitigate non-ferroptotic oxidative inflammation, apoptosis and mitochondrial dysfunction mechanisms of CT side effect toxicity, but their effects on CT-induced ferroptosis remain unclear. Systematic investigations are, therefore, needed to unfold the roles of ginger, 6G and ZG on ferroptosis involved in CT side effect toxicity, as they are potential natural agents for the prevention of CT toxicity. This review reveals the ferroptotic and non-ferroptotic toxicity mechanisms of CT and the protective mechanisms of ginger, 6G and ZG against CT-induced, ferroptotic and non-ferroptotic organ toxicities.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Nigeria.
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Roland E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Yemi A Adekunle
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Precious A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Tunmise M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
| | - Amos A Fatokun
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
3
|
Mattioli LB, Frosini M, Corazza I, Fiorino S, Zippi M, Micucci M, Budriesi R. Long COVID-19 gastrointestinal related disorders and traditional Chinese medicine: A network target-based approach. Phytother Res 2024; 38:2323-2346. [PMID: 38421118 DOI: 10.1002/ptr.8163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
The significant number of individuals impacted by the pandemic makes prolonged symptoms after COVID-19 a matter of considerable concern. These are numerous and affect multiple organ systems. According to the World Health Organization (WHO), prolonged gastrointestinal issues are a crucial part of post-COVID-19 syndrome. The resulting disruption of homeostasis underscores the need for a therapeutic approach based on compounds that can simultaneously affect more than one target/node. The present review aimed to check for nutraceuticals possessing multiple molecular mechanisms helpful in relieving Long COVID-19-specific gastrointestinal symptoms. Specific plants used in Keywords Chinese Medicine (TCM) expected to be included in the WHO Global Medical Compendium were selected based on the following criteria: (1) they are widely used in the Western world as natural remedies and complementary medicine adjuvants; (2) their import and trade are regulated by specific laws that ensure quality and safety (3) have the potential to be beneficial in alleviating intestinal issues associated with Long COVID-19. Searches were performed in PubMed, Elsevier, Google Scholar, Scopus, Science Direct, and ResearchGate up to 2023. Cinnamomum cassia, Glycyrrhiza uralensis, Magnolia officinalis, Poria cocos, Salvia miltiorrhiza, Scutellaria baicalensis, and Zingiber officinalis were identified as the most promising for their potential impact on inflammation and oxidative stress. Based on the molecular mechanisms of the phytocomplexes and isolated compounds of the considered plants, their clinical use may lead to benefits in gastrointestinal diseases associated with Long COVID-19, thanks to a multiorgan and multitarget approach.
Collapse
Affiliation(s)
- Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Frosini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Ivan Corazza
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sirio Fiorino
- Internal Medicine Unit, Azienda USL, Budrio Hospital, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology & Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Matteo Micucci
- Department of Biomolecular Sciences, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Xiang S, Jian Q, Chen W, Xu Q, Li J, Wang C, Wang R, Zhang D, Lin J, Zheng C. Pharmacodynamic components and mechanisms of ginger (Zingiber officinale) in the prevention and treatment of colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117733. [PMID: 38218504 DOI: 10.1016/j.jep.2024.117733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginger is a "medicine-food homology" natural herb and has a longstanding medicinal background in treating intestinal diseases. Its remarkable bioactivities, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, and anticancer properties, make it a promising natural medicine for colorectal cancer (CRC) prevention and treatment. AIM OF THE REVIEW The purpose is to review the relevant literature on ginger and pharmacodynamic components for CRC prevention and treatment, summarize the possible mechanisms of ginger from clinical studies and animal and in vitro experiments, to provide theoretical support for the use of ginger preparations in the daily prevention and clinical treatment of CRC. MATERIALS AND METHODS Literatures about ginger and CRC were searched from electronic databases, such as PubMed, Web of Science, ScienceDirect, Google Scholar and China National Knowledge Infrastructure (CNKI). RESULTS This article summarizes the molecular mechanisms of ginger and its pharmacodynamic components in the prevention and treatment of CRC, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, inhibit CRC cell proliferation, induce CRC cell cycle blockage, promote CRC cell apoptosis, suppress CRC cell invasion and migration, enhance the anticancer effect of chemotherapeutic drugs. CONCLUSIONS Ginger has potential for daily prevention and clinical treatment of CRC.
Collapse
Affiliation(s)
- Sirui Xiang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qin Jian
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Wu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Qi Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jia Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chuchu Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Rongrong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
5
|
Wang Y, Zhang T, Liu J, Huang X, Yan X. Investigations of the gingerol oil colon targeting pellets for the treatment of ulcerative colitis. Fitoterapia 2023; 169:105607. [PMID: 37442485 DOI: 10.1016/j.fitote.2023.105607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The clinical treatment of ulcerative colitis (UC) faces great challenges due to lifetime medication. In this study, Gingerol oil was extracted and purified by the process easily scale-up and cost effective, with productivity 2.72 ± 0.38% (w/w, versus crude drugs). The quality control of gingerol oil was fully established by HPLC fingerprint with 4 common peaks identified as 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol. The similarities of 6 batches of gingerol oil are within 0.931-0.999. The protective effects of gingerol oil are equivalent to or even stronger than that of 6-gingerol on inflammation and oxidative stress of HT-29 cells induced by lipopolysaccharide and H2O2, as well as on UC in mice caused by dextran sulfate sodium salt (DSS). Our research conclusions coincide well with the holistic view of Traditional Chinese Medicine and network pharmacology. The absorption kinetics of gingerol oil were conducted using the in situ intestinal perfusion in rats and comparable absorption were achieved in the jejunum, ileum and colon segments within 2 h. Thus, gingerol oil colon targeting pellets were prepared by extrusion-spherization technique. The cumulative dissolution behaviors and mechanisms were observed and analyzed by fitting to dissolution model. Our studies provided reliable theoretical and experimental support for the gingerol oil as reliable therapeutic choice of UC.
Collapse
Affiliation(s)
- Yajing Wang
- Department of Pharmacy, Changzhou University. Changzhou, China
| | - Tao Zhang
- Department of Pharmacy, Changzhou University. Changzhou, China
| | - Jie Liu
- Department of Pharmacy, Changzhou University. Changzhou, China
| | - Xianfeng Huang
- Department of Pharmacy, Changzhou University. Changzhou, China.
| | - Xiaojing Yan
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital affiliated to Nanjing University of Chinese Medicine, Changzhou, China.
| |
Collapse
|
6
|
Zhu MZ, Yang MF, Song Y, Xu HM, Xu J, Yue NN, Zhang Y, Tian CM, Shi RY, Liang YJ, Yao J, Wang LS, Nie YQ, Li DF. Exploring the efficacy of herbal medicinal products as oral therapy for inflammatory bowel disease. Biomed Pharmacother 2023; 165:115266. [PMID: 37541177 DOI: 10.1016/j.biopha.2023.115266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) encompasses a collection of idiopathic diseases characterized by chronic inflammation in the gastrointestinal (GI) tract. Patients diagnosed with IBD often experience necessitate long-term pharmacological interventions. Among the multitude of administration routes available for treating IBD, oral administration has gained significant popularity owing to its convenience and widespread utilization. In recent years, there has been extensive evaluation of the efficacy of orally administered herbal medicinal products and their extracts as a means of treating IBD. Consequently, substantial evidence has emerged, supporting their effectiveness in IBD treatment. This review aimed to provide a comprehensive summary of recent studies evaluating the effects of herbal medicinal products in the treatment of IBD. We delved into the regulatory role of these products in modulating immunity and maintaining the integrity of the intestinal epithelial barrier. Additionally, we examined their impact on antioxidant activity, anti-inflammatory properties, and the modulation of intestinal flora. By exploring these aspects, we aimed to emphasize the significant advantages associated with the use of oral herbal medicinal products in the treatment of IBD. Of particular note, this review introduced the concept of herbal plant-derived exosome-like nanoparticles (PDENs) as the active ingredient in herbal medicinal products for the treatment of IBD. The inclusion of PDENs offers distinct advantages, including enhanced tissue penetration and improved physical and chemical stability. These unique attributes not only demonstrate the potential of PDENs but also pave the way for the modernization of herbal medicinal products in IBD treatment.
Collapse
Affiliation(s)
- Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yang Song
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Rui-Yue Shi
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
7
|
Ferreira FCS, Clementino M, Rodrigues FAP, Veras HN, Martins DS, Queiroga ML, Lima MA, Silva DO, de Freitas TM, Ribeiro SA, Mota MRL, da Silva JA, Lima AAM, Havt A. [8] and [10]-Gingerol reduces urothelial damage in ifosfamide-induced hemorrhagic cystitis via JAK/STAT/FOXO signaling pathway via IL-10. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1773-1786. [PMID: 36843129 DOI: 10.1007/s00210-023-02436-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/19/2023] [Indexed: 02/28/2023]
Abstract
Acrolein is the main toxic metabolite of ifosfamide (IFO) that causes urothelial damage by oxidative stress and inflammation. Here, we investigate the molecular mechanism of action of gingerols, Zingiber officinale bioactive molecules, as an alternative treatment for ifosfamide-induced hemorrhagic cystitis. Female Swiss mice were randomly divided into 5 groups: control; IFO; IFO + Mesna; and IFO + [8]- or [10]-gingerol. Mesna (80 mg/kg, i.p.) was given 5 min before, 4 and 8 h after IFO (400mg/kg, i.p.). Gingerols (25 mg/kg, p.o.) were given 1 h before and 4 and 8 h after IFO. Animals were euthanized 12 h after IFO injection. Bladders were submitted to macroscopic and histological evaluation. Oxidative stress and inflammation were assessed by malondialdehyde (MDA) or myeloperoxidase assays, respectively. mRNA gene expression was performed to evaluate mesna and gingerols mechanisms of action. Mesna was able to protect bladder tissue by activating NF-κB and NrF2 pathways. However, we demonstrated that gingerols acted as an antioxidant and anti-inflammatory agent stimulating the expression of IL-10, which intracellularly activates JAK/STAT/FOXO signaling pathway.
Collapse
Affiliation(s)
- Francisco C S Ferreira
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Marco Clementino
- Institute of Biomedicine for Brazilian Semiarid, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Herlice N Veras
- Institute of Biomedicine for Brazilian Semiarid, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Dainesy S Martins
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Marcus L Queiroga
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Mikael A Lima
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Dayara O Silva
- Institute of Biomedicine for Brazilian Semiarid, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thiago M de Freitas
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Samilly A Ribeiro
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Mario R L Mota
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, CE, Brazil
| | - James A da Silva
- Department of Pharmacy, Federal University of Sergipe, Lagarto, SE, Brazil
| | - Aldo A M Lima
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
- Institute of Biomedicine for Brazilian Semiarid, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Alexandre Havt
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil.
- Institute of Biomedicine for Brazilian Semiarid, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
8
|
Aloliqi AA. Therapeutic Potential of 6-Gingerol in Prevention of Colon Cancer Induced by Azoxymethane through the Modulation of Antioxidant Potential and Inflammation. Curr Issues Mol Biol 2022; 44:6218-6228. [PMID: 36547085 PMCID: PMC9776754 DOI: 10.3390/cimb44120424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
A polyphenolic component of ginger, 6-gingerol, is widely reported to possess antioxidant, anti-inflammatory and anticancer activities. In the current study, it was aimed to investigate the anticancer effects of 6-gingerol (6-Gin) on azoxymethane (AOM)-induced colon cancer in rats. The results reveal that 6-Gin treatment significantly improves the antioxidant status disturbed by AOM intoxication. The 6-Gin treatment animal group showed enhanced activity of catalase (CAT) (46.6 ± 6.4 vs. 23.3 ± 4.3 U/mg protein), superoxide dismutase (SOD) (81.3 ± 7.6 vs. 60.4 ± 3.5 U/mg protein) and glutathione-S-transferase (GST) (90.3 ± 9.4 vs. 53.8 ± 10 mU/mg protein) (p < 0.05) as compared to the disease control group. Furthermore, the results reveal that AOM significantly enhances the inflammatory response and 6-gingerol potentially attenuates this response, estimated by markers, such as tumor necrosis factor-α (TNF-α) (1346 ± 67 vs. 1023 ± 58 pg/g), C-reactive protein (CRP) (1.12 ± 0.08 vs. 0.92 ± 0.7 ng/mL) and interleukin-6 (IL-6) (945 ± 67 vs. 653 ± 33 pg/g). In addition, the lipid peroxidation estimated in terms of malondialdehyde (MDA) provoked by AOM exposure is significantly reduced by 6-gingerol treatment (167 ± 7.5 vs. 128.3 nmol/g). Furthermore, 6-gingerol significantly maintains the colon tissue architecture disturbed by the AOM treatment. Loss of tumor suppressor protein, phosphatase and tensin homolog (PTEN) expression was noticed in the AOM treated group, whereas in the animals treated with 6-gingerol, the positivity of PTEN expression was high. In conclusion, the current findings advocate the health-promoting effects of 6-gingerol on colon cancer, which might be due to its antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- Abdulaziz A Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
9
|
Ajeigbe OF, Maruf OR, Anyebe DA, Opafunso IT, Ajayi BO, Farombi EO. 6- shogaol suppresses AOM/DSS-mediated colorectal adenoma through its antioxidant and anti-inflammatory effects in mice. J Food Biochem 2022; 46:e14422. [PMID: 36125935 DOI: 10.1111/jfbc.14422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 01/13/2023]
Abstract
Colorectal adenoma appears as benign lesions and is a precursor of colorectal adenocarcinoma. The effect of 6-Shogaol (6-[S]), a bioactive agent from ginger, in early colonic adenoma growth is unknown. As a result, this study examines the effect of 6-[S] in a mouse colorectal adenoma model induced by Azoxymethane (AOM) and dextran sulfate sodium (DSS). Adult male mice served as control in Group 1. Group 2 was treated orally with 6-[S] extract (20 mg/kg BW). Group 3 was exposed to AOM (25 mg/kg BW, ip) and one cycle of DSS (2.5%) in drinking water alone while Group 4 was co-treated with 6-[S] for twenty-one (21) days. The body weight gain, organ weight and length, oxidative stress indices, inflammatory markers and histological examination were estimated. Our findings show that 6-[S] co-treatment reversed AOM/DSS-induced elevation in colon weight, colon length, nitric oxide (NO), myeloperoxidase (MPO), hydrogen peroxidase (H2 O2 ), and tumor necrosis factor-alpha (TNF-α). However, the antioxidant enzyme activities measured namely catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione-S-transferase were significantly increased in 6-[S] treated mice. Taken together, the protective effect of 6-[S] on oxidative burden, inflammation, and histological aberration observed in the colon of the AOM/DSS model of adenoma growth in mice is mediated primarily owing to its anti-inflammatory and anti-oxidative properties. Thus, this study reveals 6-[S] as a useful agent in the possible clinical intervention of colorectal adenoma. PRACTICAL APPLICATIONS: Certain spices have been reported to have numerous phytochemicals with numerous medicinal purposes. However, no studies have been conducted to investigate the role of 6-[S], a phytochemical found in ginger, in the treatment of colorectal adenoma. The study's findings show that 6-[S] is protective in early colonic cancer development, as it manages colorectal adenoma cancer models of AOM/DSS. As a result, 6-[S]'s ability to reduce oxidative stress and inflammation in the colon may be a potential nutritional therapeutic adjuvant for colorectal adenoma.
Collapse
Affiliation(s)
- Olufunke Florence Ajeigbe
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Opeyemi Rabiat Maruf
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Daniel Abu Anyebe
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa Tobi Opafunso
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Babajide Oluwaseun Ajayi
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer Olatunde Farombi
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
10
|
Yücel Ç, Karatoprak GŞ, Açıkara ÖB, Akkol EK, Barak TH, Sobarzo-Sánchez E, Aschner M, Shirooie S. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front Pharmacol 2022; 13:902551. [PMID: 36133811 PMCID: PMC9483099 DOI: 10.3389/fphar.2022.902551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe), a member of the Zingiberaceae family, is one of the most popular spices worldwide, known since ancient times, and used both as a spice and a medicinal plant. The phenolic compounds found in ginger are predominantly gingerols, shogaols, and paradols. Gingerols are the major phenolic compounds found in fresh ginger and contain mainly 6-gingerol as well as 4-, 5-, 8-, 10-, and 12-gingerols. Gingerols possess a wide array of bioactivities, such as antioxidant and anticancer, among others. Regarding the different array of biological activities and published data on the mechanisms underlying its action, the complex interaction between three key events, including inflammation, oxidative stress, and immunity, appears to contribute to a plethora of pharmacological activities of this compound. Among these, the immunomodulatory properties of these compounds, which attract attention due to their effects on the immune system, have been the focus of many studies. Gingerols can alleviate inflammation given their ability to inhibit the activation of protein kinase B (Akt) and nuclear factor kappa B (NF-κB) signaling pathways, causing a decrease in proinflammatory and an increase in anti-inflammatory cytokines. However, given their low bioavailability, it is necessary to develop new and more effective strategies for treatment with gingerols. In order to overcome this problem, recent studies have addressed new drug delivery systems containing gingerols. In this review, the immunomodulatory activities of gingerol and its underlying mechanisms of action combined with the contributions of developed nanodrug delivery systems to this activity will be examined.
Collapse
Affiliation(s)
- Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | | | | | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
- *Correspondence: Esra Küpeli Akkol, ; Eduardo Sobarzo-Sánchez,
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Eduardo Sobarzo-Sánchez
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- *Correspondence: Esra Küpeli Akkol, ; Eduardo Sobarzo-Sánchez,
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Park Avenue Bronx, NY, United States
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
Zhai L, Peng J, Zhuang M, Chang YY, Cheng KW, Ning ZW, Huang T, Lin C, Wong HLX, Lam YY, Tan HY, Xiao HT, Bian ZX. Therapeutic effects and mechanisms of Zhen-Wu-Bu-Qi Decoction on dextran sulfate sodium-induced chronic colitis in mice assessed by multi-omics approaches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154001. [PMID: 35240530 DOI: 10.1016/j.phymed.2022.154001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zhen-Wu-Bu-Qi Decoction (ZWBQD), a traditional Chinese medicine formula comprising Poria, Radix Paeoniae Alba, Rhizoma Atractylodis Macrocephalae, Rhizoma Zingiberis Recens, Radix Codonopsis and Rhizoma Coptidis, is used for treating ulcerative colitis (UC). In a previous study, we have reported ZWBQD mitigates the severity of dextran sulfate sodium (DSS)-induced colitis in mice. HYPOTHESIS In this study, we aimed to understand the systemic actions and underlying mechanisms of ZWBQD on experimental colitis in mice. METHODS We used multi-omics techniques and immunoblotting approach to study the pharmacological actions and mechanisms of ZWBQD in DSS-induced chronic colitic mice. RESULTS We showed that ZWBQD exhibited potent anti-inflammatory properties and significantly protected DSS-induced colitic mice against colon injury by regulating the PI3K-AKT, MAPK signaling pathway and NF-κB signaling pathways. We also revealed that ZWBQD significantly ameliorated gut microbiota dysbiosis and abnormalities of tryptophan catabolites induced by DSS. CONCLUSIONS We demonstrated that the therapeutic effects of ZWBQD on experimental colitis are mediated by regulating multiple signaling pathways and modulation of gut microbiota. Our study employed an integrative strategy to elucidate novel mechanisms of ZWBQD, which provides new insights into the development of Chinese herbal medicine-based therapeutics for UC.
Collapse
Affiliation(s)
- Lixiang Zhai
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jiao Peng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China; Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China; School of Pharmacy, Guiyang Medical University, Guiyang 550004, China
| | - Min Zhuang
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yao-Yao Chang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ka Wing Cheng
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zi-Wan Ning
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Tao Huang
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hoi Leong Xavier Wong
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yan Y Lam
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hor Yue Tan
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hai-Tao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
12
|
Zou Q, Feng J, Li T, Cheng G, Wang W, Rao G, He H, Li Y. Antioxidation and anti-inflammatory actions of the extract of Nitraria Tangutorum Bobr. fruits reduce the severity of ulcerative colitis in a dextran sulphate sodium-induced mice model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Chen YS, Lian YZ, Chen WC, Chang CC, Tinkov AA, Skalny AV, Chao JCJ. Lycium barbarum Polysaccharides and Capsaicin Inhibit Oxidative Stress, Inflammatory Responses, and Pain Signaling in Rats with Dextran Sulfate Sodium-Induced Colitis. Int J Mol Sci 2022; 23:ijms23052423. [PMID: 35269566 PMCID: PMC8910612 DOI: 10.3390/ijms23052423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory disease with chronic relapsing symptoms. This study investigated the effects of Lycium barbarum polysaccharides (LBP) and capsaicin (CAP) in dextran sulfate sodium (DSS)-induced UC rats. Rats were divided into normal, DSS-induced UC, and UC treated with 100 mg LBP/kg bw, 12 mg CAP/kg bw, or 50 mg LBP/kg bw and 6 mg CAP/kg bw. Rats were fed LBP or CAP orally by gavage for 4 weeks, and UC model was established by feeding 5% DSS in drinking water for 6 days during week 3. Oral CAP and mixture significantly reduced disease activity index. Oral LBP significantly decreased serum malondialdehyde, interleukin (IL)-6, colonic tumor necrosis factor (TNF)-α levels, and protein expression of transient receptor potential cation channel V1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1), but increased serum catalase activity. Oral CAP significantly suppressed serum IL-6, colonic TRPV1 and TRPA1 protein expression, but elevated IL-10 levels, serum superoxide dismutase and catalase activities. The mixture of LBP and CAP significantly reduced serum IL-6, colonic TNF-α and TRPA1 protein. In conclusion, administration of LBP and/or CAP attenuate DSS-induced UC symptoms through inhibiting oxidative stress, proinflammatory cytokines, and protein expression of TRPV1 and TRPA1.
Collapse
Affiliation(s)
- Yu-Shan Chen
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan; (Y.-S.C.); (Y.Z.L.)
- Department of Dietetics, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan
| | - Yu Zhi Lian
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan; (Y.-S.C.); (Y.Z.L.)
| | - Wen-Chao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan; (W.-C.C.); (C.-C.C.)
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan; (W.-C.C.); (C.-C.C.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
| | - Alexey A. Tinkov
- Laboratory of Molecular Dietetics, I.M. Sechenov First Moscow State Medical University, 2–4 Bolshaya Pirogovskaya Street, 119435 Moscow, Russia; (A.A.T.); (A.V.S.)
- Institute of Bioelementology, Orenburg State University, Pobedy Avenue, 13, 460018 Orenburg, Russia
| | - Anatoly V. Skalny
- Laboratory of Molecular Dietetics, I.M. Sechenov First Moscow State Medical University, 2–4 Bolshaya Pirogovskaya Street, 119435 Moscow, Russia; (A.A.T.); (A.V.S.)
- Institute of Bioelementology, Orenburg State University, Pobedy Avenue, 13, 460018 Orenburg, Russia
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 9 Yanvarya Street, 29, 460000 Orenburg, Russia
| | - Jane C.-J. Chao
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan; (Y.-S.C.); (Y.Z.L.)
- Master Program in Global Health and Development, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 6548); Fax: +886-2-2737-3112
| |
Collapse
|
14
|
Kwak MJ, Ha DJ, Choi YS, Lee H, Whang KY. Protective and restorative effects of sophorolipid on intestinal dystrophy in dextran sulfate sodium-induced colitis mouse model. Food Funct 2022; 13:161-169. [PMID: 34874374 DOI: 10.1039/d1fo03109k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The public has gradually begun to regard inflammatory bowel disease (IBD) as a crucial health issue; however, its mode of action has not been fully elucidated. Sophorolipid (SPL), a glycolipid-type biosurfactant, could be used as a potential treatment in physical intestinal dystrophy. We conducted a 2 × 2 factorial experiment to investigate the protective effect of SPL in a dextran sulfate sodium (DSS)-induced colitis mouse model (first factor, presence of SPL in feed; second factor, presence of DSS in water). Forty C57BL/6 mice (8-week-old) were used, and they were allocated to treatments according to their initial body weight. After a 7 d adjustment period, the DSS treatment was initiated in specific groups. At day 14, DSS was withdrawn from mice, and half of the mice were randomly selected and euthanized to collect colon and colon content samples. Three days after the end of DSS treatment, the rest of the mice were euthanized to investigate the therapeutic effect of SPL. Dietary SPL improved the growth performance in 3 d after DSS treatment, and the histopathological score was lower in the DSS-treated SPL group than in the DSS-treated control group. Mucosal thickness and goblet cell numbers significantly increased in the SPL-supplemented groups compared to in the control group. Similarly, SPL supplementation upregulated the gene expression levels of mucin-2, interleukin-10, and transforming growth factor-β, and increased the concentration of short chain fatty acid compared to the control groups. In conclusion, dietary supplementation with SPL attenuated the pathological response against acute and chronic inflammation by the maintenance of the mucosal barrier and wound healing capacity.
Collapse
Affiliation(s)
- Min-Jin Kwak
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea. .,Division of Interdisciplinary Program in Precision Public Health (BK21 FOUR Program), Department of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Jin Ha
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Yong-Soon Choi
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Hanbae Lee
- Pathway Intermediates, Seoul 02841, Republic of Korea.
| | - Kwang-Youn Whang
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
15
|
Song L, Yin H, Han R, Li J, Ma N, Wang Y, Guo H. Metabolism of Du Zhong Formula in rats using UPLC-Q-TOF/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4795. [PMID: 34913224 DOI: 10.1002/jms.4795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Du Zhong Formula (DZF), a traditional Chinese medicine formula derived from BeiJiQianJinYaoFang, is used to treat kidney deficiency and lumbago. In this study, ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometer (UPLC-Q-TOF/MS) technique combined with pattern recognition analysis was applied for analysis of metabolic profiles of the bioactive components of the DZF in rat biological samples. In this experiment, a total of 73 compounds, including 53 prototype components and 20 metabolites, were identified tentatively in vivo compared with blank urine, plasma, feces, and cerebrospinal fluid (CSF). The prototype ingredients in DZF include terpenoids, gingerols, phenylpropanoids, alkaloids, phenanthrenes, bibenzyls, organic acids, and other ingredients. The metabolic pathways of DZF involved reduction, demethylation, hydroxylation, desugarization, deoxygenation, glucuronidation, sulfation, and methylation. The proposed method could develop an integrated template approach to analyze screening and identification of the bioactive components in plasma, urine, feces, and CSF after oral administration of herb medicines. Additionally, this investigation might provide helpful chemical information for further pharmacology and activity mechanism of DZF.
Collapse
Affiliation(s)
- Lili Song
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongqing Yin
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Han
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingfang Li
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ningning Ma
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Formula of Traditional Chinese Medicine, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
16
|
Lashgari NA, Momeni Roudsari N, Khayatan D, Shayan M, Momtaz S, Roufogalis BD, Abdolghaffari AH, Sahebkar A. Ginger and its constituents: Role in treatment of inflammatory bowel disease. Biofactors 2022; 48:7-21. [PMID: 34882874 DOI: 10.1002/biof.1808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel diseases (IBD), with obscure etiology, are rising and are of worldwide concern. Of the various components of IBD pathogenesis and progression, irritation appears to play a major part. Investigations on the molecular and cellular pathways that activate the IBD provide the focus for the development of useful therapies. Ginger (the rhizome of Zingiber officinale) has a broad spectrum of clinical applications due to its anti-inflammatory and anti-oxidative functions. Inflammation and oxidative stress are the key pathogenic factors in many diseases, including IBD. The most established components of ginger are phenolic compounds called gingerols. A wide range of pharmacological activities of the potential therapeutic benefit of Z. officinale have been detailed. In this regard, the anti-inflammatory activity of ginger has been documented by many researchers. It was shown that ginger is a potent inhibitor of the nuclear factor kappa B (NF-κB), signal transducer of activators of transcription (STATs), Nod-like receptor family proteins (NLRPs), toll-like receptors (TLRs), mitogen-activated protein kinase (MAPKs), and mTOR (mTOR) pathways, as well as inhibiting various pro-inflammatory cytokines. In the present report, the potential application of ginger in the management of IBD is reviewed in detail, with an emphasis on the relevant properties of ginger and its bioactive components. The significance of the functions, side effects, and delivery of ginger to the digestive system for particular application in IBD are also considered.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Khayatan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
- National Institute of Complementary Medicine, Western Sydney University, Westmead, New South Wales, Australia
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Zhang Y, Yu F, Hao J, Nsabimana E, Wei Y, Chang X, Liu C, Wang X, Li Y. Study on the Effective Material Basis and Mechanism of Traditional Chinese Medicine Prescription (QJC) Against Stress Diarrhea in Mice. Front Vet Sci 2021; 8:724491. [PMID: 34671661 PMCID: PMC8520981 DOI: 10.3389/fvets.2021.724491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Stress diarrhea is a major challenge for weaned piglets and restricts pig production efficiency and incurs massive economic losses. A traditional Chinese medicine prescription (QJC) composed of Astragalus propinquus Schischkin (HQ), Zingiber officinale Roscoe (SJ), and Plantago asiatica L. (CQC) has been developed by our laboratory and shows marked anti-stress diarrhea effect. However, the active compounds, potential targets, and mechanism of this effect remain unclear and warrant further investigation. In our study, we verified the bioactive compounds of QJC and relevant mechanisms underlying the anti-stress diarrhea effect through network pharmacology and in vivo experimental studies. After establishing a successful stress-induced diarrhea model, histomorphology of intestinal mucosa was studied, and Quantitative real-time PCR (RT-qPCR) probe was used for the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway to verify the therapeutic effect of QJC on diarrhea. First, using the network pharmacology approach, we identified 35 active components and 130 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in QJC. From among these, we speculated that quercetin, luteolin, kaempferol, scutellarein, and stigmasterol were the main bioactive compounds and assumed that the anti-diarrhea effect of QJC was related to the PI3K-Akt signaling pathway. The RT-qPCR indicated that QJC and its bioactive components increased the expression levels of PI3K and Akt, inhibited the expression of phosphatase and tensin homolog (PTEN), and activated the PI3K-Akt signaling pathway to relieve stress-induced diarrhea. Furthermore, we found that QJC alleviated the pathological condition of small intestine tissue and improved the integrity of the intestinal barrier. Taken together, our study showed that the traditional Chinese medicine QJC, quercetin, luteolin, kaempferol, scutellarein, and stigmasterol alleviated the pathological condition of small intestine tissue and relieved stress-induced diarrhea by increasing the expression levels of PI3K and Akt and inhibiting the expression levels of PTEN.
Collapse
Affiliation(s)
- Yuefeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fei Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingyou Hao
- Harbin Lvda Sheng Animal Medicine Manufacture Co., Ltd., Harbin, China
| | - Eliphaz Nsabimana
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanru Wei
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaohan Chang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chang Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaozhen Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Harbin Herb and Herd Bio-Technology Co., Ltd., Harbin, China
| |
Collapse
|
18
|
Ginger Extract Modulates the Production of Chemokines CCL17, CCL20, CCL22, and CXCL10 and the Gene Expression of Their Receptors in Peripheral Blood Mononuclear Cells from Peptic Ulcer Patients Infected with Helicobacter pylori. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The imbalanced expression of chemokines plays critical role in the development of Helicobacter pylori-mediated complications. Objectives: Our aim was to determine ginger extract (GE) effects on the expression of chemokines CCL17, CCL20, CCL22, and CXCL10, as well as CCR4, CCR6, and CXCR3 receptors by peripheral blood mononuclear cells (PBMCs) from H. pylori -infected patients with peptic ulcer (PU). Methods: Peripheral blood mononuclear cells were obtained from 20 patients with H. pylori-associated PU, 20 H. pylori-infected asymptomatic subjects (HAS), and 20 non-infected healthy subjects (NHS). The PBMCs were stimulated by 10 µg/mL of H. pylori-derived crude extract (HPCE) in the presence of 0, 10, 20, and 30 µg/mL of GE. After 36 hours, the supernatant and the RNA extracted from the cells were tested for chemokine concentration and chemokine receptor expression using ELISA and real-time PCR techniques, respectively. Results: In PU patients, treating HPCE-stimulated PBMCs with 10, 20, or 30 µg/mL GE reduced the production of CXCL10 (1.47, 1.5, and 1.53 folds, respectively, P < 0.001 for all), CCL20 (1.44, 1.62, and 1.65 folds, respectively, P < 0.003), and treatment with 30 µg/mL GE increased CCL17 (1.28-fold, P < 0.001) and CCL22 (1.59-fold, P < 0.001) production compared with untreated HPCE-stimulated PBMCs. In PU patients, the HPCE-stimulated PBMCs treated with 10, 20, or 30 µg/mL GE expressed lower levels of CXCR3 (1.9, 3, and 3.5 folds, respectively, P < 0.001) and CCR6 (2.3, 2.7, and 2.8 folds, respectively, P < 0.002) while treating with 10 µg/mL GE upregulated CCR4 (1.7 fold, P = 0.003) compared with untreated HPCE-stimulated PBMCs. Conclusions: Ginger extract modulated the expression of chemokines and their receptors in the PBMCs derived from H. pylori-infected PU patients. The therapeutic potentials of ginger for treating HP-related complications need to be further explored.
Collapse
|
19
|
Adetuyi BO, Farombi EO. 6-Gingerol, an active constituent of ginger, attenuates lipopolysaccharide-induced oxidation, inflammation, cognitive deficits, neuroplasticity, and amyloidogenesis in rat. J Food Biochem 2021; 45:e13660. [PMID: 33624846 DOI: 10.1111/jfbc.13660] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/31/2021] [Indexed: 01/23/2023]
Abstract
This study examined the protective effect of 6-Gingerol (6G) against lipopolysaccharide (LPS)-induced cognitive impairments, oxidative stress, neuroplasticity, amyloidogenesis, and inflammation. Male rats were allocated into six groups in this manner; Group I placed on normal saline only. Group II was treated for 7 days with LPS alone intraperitoneally at 250 µg/kg body weight (bw). Group III received 6G alone at 50 mg/kg bw orally for 14 days. Groups IV and V received 6G at 20 and 50 mg/kg bw for 7 days, respectively, and LPS for another 7 days to induce neurotoxicity. Group VI received 5 mg/kg bw of donepezil for 7 days and LPS for 7 days. Pretreatment with 20 and 50 mg/kg bw of 6G protected against LPS-mediated learning and memory function, and also locomotor and motor deficits. Besides, 20 and 50 mg/kg bw 6G mitigated LPS-induced alteration in markers of oxidative stress. Furthermore, induction of amyloidogenesis associated with disruption of histoarchitecture and high expression of interleukin 1β, inducible nitric oxide synthase, amyloid precursor protein (APP), β-secretase 1, and brain-derived neurotrophic factor by LPS was mitigated by the two doses of 6G in the rat hippocampus and cerebral cortex region of the brain. 6G pretreatment at the two doses mitigated LPS-mediated histopathological changes in the hippocampus and cerebral cortex of rats. Overall, our results demonstrate that the protective effect of 6G is mediated through the reversal of neurobehavioral deficit, oxidative stress, inflammation, and amyloidogenesis, thus making 6G a possible chemoprophylactic agent against brain injury as a result of LPS exposure. PRACTICAL APPLICATIONS: In the search for a holistic prevention of inflammation-associated neurodegeneration, nutraceuticals are becoming prominent. Hence, this study presents 6G, an active constituent of ginger, as a chemoprotective, antioxidant, and anti-inflammatory agent, which is able to ameliorate cognitive impairments, oxidative stress, neuroplasticity, amyloidogenesis, and inflammation in LPS-induced rat model of neuroinflammation.
Collapse
Affiliation(s)
- Babatunde Oluwafemi Adetuyi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer Olatunde Farombi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
20
|
Erukainure OL, Narainpersad N, Salau VF, Singh M, Koorbanally NA, Islam MS. Phytochemical constituents of sterol-rich fraction from Allium cepa L. and its cytotoxic effect on human embryonic kidney (HEK293) cells. J Food Biochem 2020; 45:e13586. [PMID: 33326625 DOI: 10.1111/jfbc.13586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/15/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023]
Abstract
The present study investigates the cytotoxic effect of the chemical fractions of Allium cepa (yellow variety) on Human Embryonic Kidney (HEK293) cells. Allium cepa was blended into paste and macerated in distilled water before subjecting to liquid-liquid fractionation, yielding the dichloromethane, ethyl acetate (EtOAc), butanol, and aqueous fractions. Their cytotoxicity on HEK293 cells were evaluated via MTT assay. The cytotoxic fraction (EtOAc) was further evaluated for its oxidative, pro-inflammatory, and apoptotic effects on the cells. The incubation of cells with EtOAc led to depleted level of GSH, SOD, and catalase activities, and elevated levels of malondialdehyde, nitric oxide, and myeloperoxidase as well as apoptotic activities. GC-MS analysis of EtOAc revealed allyl ionone, pentadecanoic acid, and phytol acetate as the predominant fatty acids, while ergost-7-en-3β-ol, campesterol, cycloartenol-3β acetate, sitosterol, and fucosterol as the predominant sterols. These results portray the cytotoxic effect of the EtOAc fraction of A. cepa on HEK293 cells. PRACTICAL APPLICATIONS: There have been increasing concerns in the toxicity and safety of foods. Allium cepa (onions) is among the common globally grown and consumed plant food. This study investigated its cytotoxic effect on normal Human Embryonic Kidney (HEK293) Cells. Although only the ethyl acetate fraction was cytotoxic against the cell line, it, however, portrays a need for caution in its usage.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Nicholisha Narainpersad
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moganavelli Singh
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
21
|
Huang C, Dong J, Jin X, Ma H, Zhang D, Wang F, Cheng L, Feng Y, Xiong X, Jiang J, Hu L, Lei M, Wu B, Zhang G. Intestinal anti-inflammatory effects of fuzi-ganjiang herb pair against DSS-induced ulcerative colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:112951. [PMID: 32574670 DOI: 10.1016/j.jep.2020.112951] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzi and ganjiang are widely used as traditional Chinese medicines (TCM) in China, Korea, Japan, and many other southeast Asian countries for treating ulcerative colitis (UC), emesis and heart failure for more than 1800 years. However, the underlying mechanism of fuzi, ganjiang and fuzi-ganjiang herb pair is still unclear. In our study, we explored the therapeutic effects of fuzi, ganjiang and fuzi-ganjiang herb pair against dextran sulfate sodium (DSS)-induced UC in mice model, along with the relevant mechanism. MATERIALS AND METHODS The contents of each marker compound in fuzi decoction (FD), ganjiang decoction (GD) and fuzi-ganjiang decoction (FGD) were determined using LC-MS/MS. During the experiment, bodyweight changes in each group were monitored every 5 days. On the day of sacrifice, colonic length, disease activity index (DAI) and spleen weight were also evaluated and histopathological examination was performed through hematoxylin & eosin (H&E) staining. The levels of myeloperoxidase (MPO) and inflammatory cytokines in colon tissues were determined by enzyme-linked immunosorbent assay (ELISA), and then the relative mRNA productions of inflammatory mediators, such as MPO, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were measured by real-time polymerase chain reaction (PCR). Involvement of MAPK, STAT3 and NF-κB signaling pathways in the pathogenesis of UC was determined in each group using Western Blot (WB) analysis. RESULTS Compared with fuzi and ganjiang single decoction, the content of the alkaloids derived from fuzi (especially the diester alkaloid with strong toxicity, hypaconitine) in fuzi-ganjiang herb pair decoction was reduced. Additionally, the 6-gingerol, which was not found in ganjiang single decoction, was retained in fuzi-ganjiang herb pair decoction. FD, GD, and FGD significantly restored the bodyweight reduction, colon shortening, DAI elevation, splenomegaly and histological score in DSS-induced UC mice. Furthermore, except for the failure of low dosage of ganjiang decoction (GD-L) on IL-17A, all FD, GD and FGD significantly inhibited the production of MPO and inflammatory cytokines, such as IFN-γ, TNF-α, IL-1β, IL-6, IL-10 and IL-17A, and suppressed the relative expression of inflammatory mediators, such as MPO, iNOS and COX-2 mRNA in colon tissues of DSS-induced mice. According to WB analysis, fuzi, ganjiang and fuzi-ganjiang combination inhibited the activation of MAPK, NF-κB and STAT3 signaling pathways. CONCLUSIONS Our study demonstrated that fuzi, ganjiang and fuzi-ganjiang combination possess prominent anti-inflammatory activities against DSS-induced UC mice; the involved mechanism may be related to inhibition the activation of MAPK, NF-κB, and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Chuanqi Huang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Junli Dong
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Xiaoqi Jin
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China; College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Haoran Ma
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Dan Zhang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Fuqian Wang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Lu Cheng
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Yan Feng
- Department of Pathology, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Xin Xiong
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Jie Jiang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Lei Hu
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Mi Lei
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin Wu
- Department of Transfusion Medicine, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China
| | - Geng Zhang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, China.
| |
Collapse
|
22
|
Mousavi T, Hadizadeh N, Nikfar S, Abdollahi M. Drug discovery strategies for modulating oxidative stress in gastrointestinal disorders. Expert Opin Drug Discov 2020; 15:1309-1341. [PMID: 32749894 DOI: 10.1080/17460441.2020.1791077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Taraneh Mousavi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Hadizadeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Erukainure OL, Sanni O, Salau VF, Koorbanally NA, Islam MS. Cola Nitida (Kola Nuts) Attenuates Hepatic Injury in Type 2 Diabetes by Improving Antioxidant and Cholinergic Dysfunctions and Dysregulated Lipid Metabolism. Endocr Metab Immune Disord Drug Targets 2020; 21:688-699. [PMID: 32600241 DOI: 10.2174/1871530320666200628030138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/29/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The therapeutic effect of Cola nitida hot infusion against diabetes hepatic injury was investigated in livers of diabetic rats. Cola nitida was infused in boiling water and concentrated. METHODS The concentrated infusion was administered to T2D rats at low and high doses (150 and 300 mg/kg body weight (bw), respectively). The normal group (positive control) and another diabetic group (negative control) were administered distilled water, while metformin served as the standard drug. A toxic group that consists of normal rats administered a high dose of C. nitida. After 6 weeks, the rats were sacrificed, and their livers were collected. They were assayed for oxidative stress markers, myeloperoxidase, acetylcholinesterase and ATPase activities. Hepatic lipid metabolites were profiled with GC-MS and their metabolic pathways were analyzed using the MetaboAnalyst 4.0 online server. RESULTS Treatment with C. nitida caused a significant elevation of glutathione level and SOD activity, while concomitantly inhibiting lipid peroxidation, myeloperoxidase, acetylcholinesterase and ATPase activities in hepatic tissues of the rats. Treatment with C. nitida also caused significant depletion of diabetes-generated lipid metabolites, with concomitant generation of fatty esters and steroids as well as inactivation of diabetes-activated pathways. CONCLUSION These data demonstrate the therapeutic effect of C. nitida against diabetic hepatotoxicity in diabetic rats.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Olakunle Sanni
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| |
Collapse
|
24
|
6-Gingerol delays tumorigenesis in benzo[a]pyrene and dextran sulphate sodium-induced colorectal cancer in mice. Food Chem Toxicol 2020; 142:111483. [PMID: 32512025 DOI: 10.1016/j.fct.2020.111483] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) has been linked to dietary consumption of benzo[a]pyrene (B[a]P). 6-Gingerol (6-G), a component of ginger has been reported to possess anti-inflammatory and antioxidant activities, but little is known regarding the mechanism of 6-G in CRC chemoprevention. We therefore investigated the effect of 6-G on B[a]P. and dextran sulphate sodium (DSS) induced CRC in mice. Mice in Group I and Group II received corn oil and 6-G orally at 2 ml/kg and 100 mg/kg, respectively for 126 days. Group III were administered 125 mg/kg of B[a]P for 5 days followed by 3 cycles of 4% dextran sulphate sodium (DSS). Group IV received 6-G for 7 days followed by co-administration with 125 mg/kg of B[a]P. for 5 days and 3 cycles of 4% DSS. Tumor formation was reduced and expression of Ki-67, WNT3a, DVL-2 and β-catenin following 6-G exposure. Also, 6-G increases expression of APC, P53, TUNEL positive nuclei and subsequently decreased the expression of TNF-α, IL-1β, INOS, COX-2 and cyclin D1. 6-G inhibited angiogenesis by decreasing the concentration of VEGF, Angiopoietin-1, FGF and GDF-15 in the colon of B[a]P. and DSS exposed mice. Overall, 6-G attenuated B[a]P and DSS-induced CRC in mice via anti-inflammatory, anti-proliferative and apoptotic mechanisms.
Collapse
|
25
|
Rondanelli M, Lamburghini S, Faliva MA, Peroni G, Riva A, Allegrini P, Spadaccini D, Gasparri C, Iannello G, Infantino V, Alalwan TA, Perna S, Miccono A. A food pyramid, based on a review of the emerging literature, for subjects with inflammatory bowel disease. ACTA ACUST UNITED AC 2020; 68:17-46. [PMID: 32499202 DOI: 10.1016/j.endinu.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/14/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Emerging literature suggests that diet plays an important modulatory role in inflammatory bowel disease (IBD) through the management of inflammation and oxidative stress. The aim of this narrative review is to evaluate the evidence collected up till now regarding optimum diet therapy for IBD and to design a food pyramid for these patients. The pyramid shows that carbohydrates should be consumed every day (3 portions), together with tolerated fruits and vegetables (5 portions), yogurt (125ml), and extra virgin olive oil; weekly, fish (4 portions), white meat (3 portions), eggs (3 portions), pureed legumes (2 portions), seasoned cheeses (2 portions), and red or processed meats (once a week). At the top of the pyramid, there are two pennants: the red one means that subjects with IBD need some personalized supplementation and the black one means that there are some foods that are banned. The food pyramid makes it easier for patients to decide what they should eat.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, Pavia 27100, Italy
| | - Silvia Lamburghini
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Milena A Faliva
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Gabriella Peroni
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Antonella Riva
- Research and Development Unit, Indena, Milan 20146, Italy
| | | | - Daniele Spadaccini
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Clara Gasparri
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Giancarlo Iannello
- General Management, Azienda di Servizi alla Persona "Istituto Santa Margherita", Pavia 27100, Italy
| | - Vittoria Infantino
- University of Bari Aldo Moro, Department of Biomedical Science and Human Oncology, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy.
| | - Tariq A Alalwan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P.O. Box 32038, Bahrain
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P.O. Box 32038, Bahrain
| | - Alessandra Miccono
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| |
Collapse
|
26
|
Sheng Y, Wu T, Dai Y, Ji K, Zhong Y, Xue Y. The effect of 6-gingerol on inflammatory response and Th17/Treg balance in DSS-induced ulcerative colitis mice. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:442. [PMID: 32395486 PMCID: PMC7210157 DOI: 10.21037/atm.2020.03.141] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Ulcerative colitis (UC) is a non-specific chronic intestinal inflammatory disease with unclear etiology. Previous studies have suggested that the imbalance of Treg/Thl7 cells may be involved in the development of UC. It was found that 6-gingerol can alleviate the intestinal inflammatory damage and improve the weight loss of colitis mice. However, whether 6-gingerol can regulate the balance of Th17/Treg cells and inhibit the intestinal inflammatory response remains to be clarified. Methods In this study, a dextran sulfate sodium (DSS)-induced colitis mouse model was established, and the effects of 6-gingerol on cytokines and the balance of Th17/Treg cells were observed usingserial assays, including enzyme-linked immunosorbent assay (ELISA), quantitative real time-polymerase chain reaction (qPCR), and Western blotting. Results DSS caused the damage of bowel tissue and a 100% weight loss rate in colitis mice. The treatment of 6-gingerol can significantly relieve bowel damage and reduce incidence of weight loss to 16.7% at a low or high dose (P<0.05), which was similar to the therapeutic effect of mesalazine. It was found that DSS can up-regulate the mRNA levels of IL-6 and IL-17 in serum (by qPCR), and the serum and bowel levels of IL-6 and IL-17 (by ELISA); these levels were significantly different from those of the blank group (P<0.05). Furthermore, 6-gingerol was found to inhibit the increase of mRNA levels and serum and bowel levels of IL-6 and IL-17 induced by DSS, which is similar with mesalazine. It was also found that DSS can down-regulate the mRNA level of IL-10 in serum, along with the serum and bowel level of IL-10, with this being significantly different from the levels of the blank group (P<0.05). 6-gingerol could also inhibit the decrease of mRNA levels and serum and bowel levels of IL-10 induced by DSS, which is also similar to mesalazine. In addition, DSS could increase Th17 cell count and decrease Treg cell count in blood, with significant difference from that of the blank group (P<0.05). 6-gingerol could significantly (P<0.05) inhibit the increase of Th17 cells and the decrease of Treg cells induced by DSS, which is similar to the effect of mesalazine. The detection of expression levels of transcription factors RORγT for Th17 and FOXP3 for Treg at both mRNA and protein levels showed that DSS can up-regulate the mRNA and protein levels of RORγT, and down-regulate the mRNA and protein levels of FOXP3. Furthermore, 6-gingerol could significantly (P<0.05) inhibit the up-regulation of RORγT mRNA and protein, and the down-regulation of FOXP3 mRNA and protein induced by DSS, which is similar to the effect of mesalazine. Conclusions 6-gingerol showed efficacy in the treatment of DSS-induced UC in mice, by regulating the cell balance of Th17/Treg, and by relieving inflammatory responses both systematically and locally.
Collapse
Affiliation(s)
- Yingyue Sheng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Tielong Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Yuanyuan Dai
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Ke Ji
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Yao Zhong
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| |
Collapse
|
27
|
Shayesteh F, Haidari F, Shayesteh AA, Mohammadi-Asl J, Ahmadi-Angali K. Ginger in patients with active ulcerative colitis: a study protocol for a randomized controlled trial. Trials 2020; 21:278. [PMID: 32183895 PMCID: PMC7079449 DOI: 10.1186/s13063-020-4193-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND As a lifetime disorder, ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that affects quality of life and also demands long-term interventions. In spite of considerable side effects and sometimes restricted uses, efficient medications are available for UC treatment. Some in vitro and in vivo examinations have correspondingly introduced ginger and its active components with antioxidant, anti-inflammatory, and anti-ulcerative properties. Therefore, this trial aims to evaluate the effect of ginger supplementation on patients with active UC. METHODS This study will be a 12-week, double-blind, parallel-group, randomized, controlled trial (RCT) in which 44 patients will be allocated to ginger and placebo groups receiving basic routine treatments plus ginger or placebo capsules, respectively. The primary outcomes are inflammatory markers (TNF-α and hs-CRP) and total antioxidant capacity. DISCUSSION The findings of this trial will provide evidence on the effect of ginger on patients with active UC. TRIAL REGISTRATION Iranian Registry of Clinical Trials, IRCT20190129042552N1. Registered on 21 June 2019.
Collapse
Affiliation(s)
- Forough Shayesteh
- Department of Nutrition, Nutrition, and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Haidari
- Department of Nutrition, Nutrition, and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Shayesteh
- Alimentary Tract Research Center, Imam Khomeini Hospital, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Javad Mohammadi-Asl
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Ahmadi-Angali
- Faculty of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
28
|
Discovery of small-molecule candidates against inflammatory bowel disease. Eur J Med Chem 2020; 185:111805. [DOI: 10.1016/j.ejmech.2019.111805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022]
|
29
|
Zeeshan M, Ali H, Khan S, Mukhtar M, Khan MI, Arshad M. Glycyrrhizic acid-loaded pH-sensitive poly-(lactic-co-glycolic acid) nanoparticles for the amelioration of inflammatory bowel disease. Nanomedicine (Lond) 2019; 14:1945-1969. [DOI: 10.2217/nnm-2018-0415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: To fabricate and evaluate the therapeutic efficacy of glycyrrhizic acid (GA)-loaded pH-sensitive nanoformulations that specifically target and combat mucosal inflammation of the colon. Methods: GA-loaded Eudragit® S100/poly-(lactic-co-glycolic acid) nanoparticles were developed through modified double-emulsion evaporation coupled with solvent evaporation coating techniques and analyzed for physicochemical characteristics, surface chemistry, release kinetics, site-retention and therapeutic effectiveness. Results: Nanoparticles have a particle size of approximately 200 nm, high encapsulation efficiency, desired surface chemistry with pH-dependent and sustained drug release behavior following the Gompertz kinetic model. In vivo retention and therapeutic effectiveness in the inflamed colon tissues were confirmed by macroscopic and microscopic indices, cytokine analysis and antioxidant assays. Conclusion: GA-loaded Eudragit S100/poly-(lactic-co-glycolic acid) nanoparticles could efficiently deliver GA to the colon and ameliorate the mucosal inflammation for a prolonged duration.
Collapse
Affiliation(s)
- Mahira Zeeshan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mahwash Mukhtar
- Department of Pharmaceutical Technology, University of Szeged, Eötvös u. 6, 6720, Hungary
| | - Muhammad Ijaz Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Pharmacy, University of Swabi, Anbar-23561, Swabi, Pakistan
| | - Muhammad Arshad
- Department of Nanoscience & Technology, National Centre for Physics, Quaid-i-Azam University campus, Islamabad, Pakistan
| |
Collapse
|
30
|
Lau CBS, Yue GGL, Lau KM, Chan YY, Shaw PC, Kwok HF, Wong LS. Method establishment for upgrading chemical markers in pharmacopoeia to bioactive markers for biological standardization of traditional Chinese medicine. J Tradit Complement Med 2019; 9:179-183. [PMID: 31193936 PMCID: PMC6544610 DOI: 10.1016/j.jtcme.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/21/2018] [Accepted: 09/11/2018] [Indexed: 11/20/2022] Open
Abstract
Quality surveillance on authentication, safety and efficacy of proprietary Chinese medicines (pCm) are certainly the top priorities for the industries. Nowadays, the quality control system adopted is mainly chemical marker-oriented, concerning basically the correct use of raw material and safety issues, while the biological activities of the chemical marker(s) are seldom considered. Hence, there is an undefined relationship between the amount of chemical markers and the claimed pharmacological activities. In view of the need in identifying appropriate markers for biological standardization of pCm products, the present study aimed to establish a systematic methodology for verifying whether the chemical marker of a traditional Chinese medicine (TCM) listed in Chinese Pharmacopoeia could be upgraded to a bioactive marker with certain efficacy in treating a particular disease. Our proposed methodology included a series of work on extraction, quantification, literature search and in vivo pharmacological experiments, in which the water extractability, biological effects at theoretical dose and oral bioavailability of the candidate chemical markers were all taken into consideration. The feasibility and implication of this bioactive markers verification methodology were further elaborated. Our findings will serve as the foundation for further research and development of biological standardization of TCM.
Collapse
Affiliation(s)
- Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- Corresponding author. Rm E205, Science Centre East Block, Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kit-Man Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yuk-Yu Chan
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Pang-Chui Shaw
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Hin-Fai Kwok
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Lok-Sze Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
31
|
Ajayi BO, Adedara IA, Farombi EO. 6-Gingerol abates benzo[a]pyrene-induced colonic injury via suppression of oxido-inflammatory stress responses in BALB/c mice. Chem Biol Interact 2019; 307:1-7. [PMID: 31004597 DOI: 10.1016/j.cbi.2019.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/27/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Exposure to benzo[a]pyrene (BaP), the most toxic polycyclic aromatic hydrocarbon and a procarcinogen, is a global health concern which necessitates preventive measures. [6]-Gingerol (6-G), the most pharmacologically active constituent of ginger has been reported to promote gut health in various experimental settings. This study investigated the role of 6-G in BaP-induced colonic oxidative and inflammatory stress responses in mice. Experimental mice were randomly assigned into five groups of eight mice each and were orally gavage with BaP (125 mg/kg) singly or in combination with 6-G at 50 and 100 mg/kg for 14 consecutive days. Following sacrifice, the colonic activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), myeloperoxidase (MPO) as well as levels of glutathione (GSH), nitrites and lipid peroxidation (LPO) were assessed spectrophotometrically. Moreover, colonic concentration of epoxide hydrolase (EPXH), tumor necrosis factor alpha (TNF-α), interleukin-1 β (IL-1β), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were assessed using ELISA. Administration of 6-G augmented BaP detoxification and colonic antioxidant status by increasing the EPXH, GST, SOD and CAT activities, GSH level with concomitant decrease in MDA level when compared with BaP alone group. In addition, 6-G suppressed BaP-induced colonic inflammation by decreasing MPO activity as well as nitrites, TNF-α, IL-1β, COX-2 and iNOS levels when compared with BaP alone group. In conclusion, 6-G protected against a decrease in colonic epoxide detoxifying enzymes and antioxidant defense mechanisms caused by BaP.
Collapse
Affiliation(s)
- Babajide O Ajayi
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism & Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
32
|
Nikkhah-Bodaghi M, Maleki I, Agah S, Hekmatdoost A. Zingiber officinale and oxidative stress in patients with ulcerative colitis: A randomized, placebo-controlled, clinical trial. Complement Ther Med 2019; 43:1-6. [PMID: 30935515 DOI: 10.1016/j.ctim.2018.12.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/22/2018] [Accepted: 12/29/2018] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES Oxidative stress plays an essential role in ulcerative colitis (UC) initiation and severity. We aimed to investigate the effect of ginger as a well-known antioxidant agent on the quality of life, disease activity index and oxidative stress in patients with UC. METHODS Forty six patients with active mild to moderate UC randomly assigned to consume 2000 mg/day dried ginger powder in 4 capsules or similar placebo capsules for 12 weeks. Disease activity index, quality of life and some oxidative stress factors were measured before, at the middle and at the end of the intervention through valid and reliable questionnaires and blood sampling. RESULTS Ginger reduced Malondialdehyde (MDA) significantly after 6 weeks (p = 0.003) and 12 weeks (p < 0.001) of intervention, whereas it did not affect serum total anti-oxidant capacity (TAC). The scores of severity of disease activity at 12th week was significantly improved in ginger group in comparison to placebo (p = 0.017). Moreover, ginger increased patients quality of life significantly at 12th week (p = 0.039). CONCLUSION Our data indicate that ginger supplementation can improve treatment of patients with UC. Further clinical trials with different dosages and duration of ginger or its standard extract supplementation are needed to obtain firm conclusion.
Collapse
Affiliation(s)
- Mehrnaz Nikkhah-Bodaghi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iradj Maleki
- Gut and Liver Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Truong VL, Bak MJ, Jeong WS. Chemopreventive Activity of Red Ginseng Oil in a Mouse Model of Azoxymethane/Dextran Sulfate Sodium-Induced Inflammation-Associated Colon Carcinogenesis. J Med Food 2019; 22:578-586. [PMID: 30864851 DOI: 10.1089/jmf.2018.4328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our previous studies have demonstrated antioxidant and cytoprotective properties of red ginseng oil (RGO). However, the role of RGO in models of intestinal inflammation has not been elucidated. In this study, we evaluated the chemopreventive effect of RGO in a mouse model of azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colitis and explored its underlying mechanisms. Male C57BL/6 mice were intraperitoneally injected with a single dose of AOM (10 mg/kg), followed by 1.5% DSS in drinking water for 7 days to produce colon carcinogenesis. RGO at 10 or 100 mg/kg was orally given for 17 weeks. RGO supplementation reduced the plasma nitric oxide (NO) concentration as well as lipid peroxidation and inhibited the production of proinflammatory factors such as inducible NO synthase, cyclooxygenase-2, interleukin 1β, IL-6, and tumor necrosis factor-α in the mouse colitis tissue. Increased phosphorylation levels of p65 and IκB by AOM/DSS exposure were attenuated by the presence of RGO. In addition, RGO supplementation induced the activity of primary antioxidant enzymes such as superoxide dismutase and catalase as well as the expression of nuclear factor erythroid 2-related factor 2-mediated antioxidant enzyme hemeoxygenase-1 in the colons of AOM/DSS-treated mice. These findings indicate that RGO may be a potent natural chemopreventive agent for ameliorating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Van-Long Truong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea
| | - Min Ji Bak
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea.,2 Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Woo-Sik Jeong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea
| |
Collapse
|
34
|
Cao SY, Ye SJ, Wang WW, Wang B, Zhang T, Pu YQ. Progress in active compounds effective on ulcerative colitis from Chinese medicines. Chin J Nat Med 2019; 17:81-102. [PMID: 30797423 DOI: 10.1016/s1875-5364(19)30012-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Indexed: 02/09/2023]
Abstract
Ulcerative colitis (UC), a chronic inflammatory disease affecting the colon, has a rising incidence worldwide. The known pathogenesis is multifactorial and involves genetic predisposition, epithelial barrier defects, dysregulated immune responses, and environmental factors. Nowadays, the drugs for UC include 5-aminosalicylic acid, steroids, and immunosuppressants. Long-term use of these drugs, however, may cause several side effects, such as hepatic and renal toxicity, drug resistance and allergic reactions. Moreover, the use of traditional Chinese medicine (TCM) in the treatment of UC shows significantly positive effects, low recurrence rate, few side effects and other obvious advantages. This paper summarizes several kinds of active compounds used in the experimental research of anti-UC effects extracted from TCM, mainly including flavonoids, acids, terpenoids, phenols, alkaloids, quinones, and bile acids from some animal medicines. It is found that the anti-UC activities are mainly focused on targeting inflammation or oxidative stress, which is associated with increasing the levels of anti-inflammatory cytokine (IL-4, IL-10, SOD), suppressing the levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-23, NF-κB, NO), reducing the activity of MPO, MDA, IFN-γ, and iNOS. This review may offer valuable reference for UC-related studies on the compounds from natural medicines.
Collapse
Affiliation(s)
- Si-Yu Cao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sheng-Jie Ye
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Wei Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Qiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
35
|
Nikkhah-Bodaghi M, Darabi Z, Agah S, Hekmatdoost A. The effects of Nigella sativa on quality of life, disease activity index, and some of inflammatory and oxidative stress factors in patients with ulcerative colitis. Phytother Res 2019; 33:1027-1032. [PMID: 30666747 DOI: 10.1002/ptr.6296] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/08/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
The aim of this study was to evaluate the effects of Nigella sativa (NS) supplementation in patients with ulcerative colitis. Two grams of NS powder or placebo were consumed for 6 weeks by 46 patients with active mild to moderate ulcerative colitis. Using valid and common questionnaires of colitis severity and blood sampling, we estimated disease activity index, quality of life, and some of inflammatory and oxidative stress factors at baseline and after 6 weeks of supplementation. NS-elevated tumor necrosis factor-alpha and high-sensitivity-c-reactive-protein as well as reduced malondialdehyde (p = 0.01, p = 0.02, and p = 0.005, respectively) compared with placebo. There was no significant difference between the two groups in serum total antioxidant capacity and nuclear factor kB levels. Total scores of Simple Clinical Colitis Activity Index Questionnaire and Inflammatory Bowel Disease Questionnaire-9 were not different between the two groups; however, stool frequency score decreased significantly in NS group. Further clinical trials with different pattern of NS administration (the amount of total and divided daily doses, either powder type or standard extracts/oil and different time arrangement) are needed to clarify the vision.
Collapse
Affiliation(s)
- Mehrnaz Nikkhah-Bodaghi
- Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Darabi
- Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Lian L, Zhang S, Yu Z, Ge H, Qi S, Zhang X, Long L, Xiong X, Chu D, Ma X, Li X, Gao H. The dietary freeze-dried fruit powder of Actinidia arguta ameliorates dextran sulphate sodium-induced ulcerative colitis in mice by inhibiting the activation of MAPKs. Food Funct 2019; 10:5768-5778. [DOI: 10.1039/c9fo00664h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oral administration freeze-dried Actinidia arguta powder could ameliorate ulcerative colitis disease via inhibiting the activation of MAPKs pathway.
Collapse
|
37
|
Farombi EO, Abolaji AO, Adetuyi BO, Awosanya O, Fabusoro M. Neuroprotective role of 6-Gingerol-rich fraction of Zingiber officinale (Ginger) against acrylonitrile-induced neurotoxicity in male Wistar rats. J Basic Clin Physiol Pharmacol 2018; 30:jbcpp-2018-0114. [PMID: 30864424 DOI: 10.1515/jbcpp-2018-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Background Acrylonitrile (AN) is a neurotoxin that is widely used to manufacture synthetic fibres, plastics and beverage containers. Recently, we reported the ameliorative role of 6-gingerol-rich fraction from Zingiber officinale (Ginger, GRF) on the chlorpyrifos-induced toxicity in rats. Here, we investigated the protective role of GRF on AN-induced brain damage in male rats. Methods Male rats were orally treated with corn oil (2 mL/kg, control), AN (50 mg/kg, Group B), GRF (200 mg/kg, Group C), AN [50 mg/kg+GRF (100 mg/kg) Group D], AN [(50 mg/kg)+GRF (200 mg/kg) Group E] and AN [(50 mg/kg)+N-acetylcysteine (AC, 50 mg/kg) Group F] for 14 days. Then, we assessed the selected markers of oxidative damage, antioxidant status and inflammation in the brain of rats. Results The results indicated that GRF restored the AN-induced elevations of brain malondialdehyde (MDA), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and Nitric Oxide (NO) levels. GRF also prevented the AN-induced depletion of brain glutathione (GSH) level and the activities of Glutathione S-transferase (GST), glutathione peroxidase (GPx) and superoxide dismutase (SOD) in rats (p<0.05). Furthermore, GRF prevented the AN-induced cerebral cortex lesion and increased brain immunohistochemical expressions of Caspases-9 and -3. Conclusions Our data suggest that GRF may be a potential therapeutic agent in the treatment of AN-induced model of brain damage.
Collapse
Affiliation(s)
- Ebenezer Olatunde Farombi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria, Phone: +2348023470333, Fax: 234-2-8103043
| | - Amos Olalekan Abolaji
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Babatunde Oluwafemi Adetuyi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olaide Awosanya
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mobolaji Fabusoro
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
38
|
Vanden Braber NL, Novotny Nuñez I, Bohl L, Porporatto C, Nazar FN, Montenegro MA, Correa SG. Soy genistein administered in soluble chitosan microcapsules maintains antioxidant activity and limits intestinal inflammation. J Nutr Biochem 2018; 62:50-58. [PMID: 30245183 DOI: 10.1016/j.jnutbio.2018.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/29/2018] [Accepted: 08/24/2018] [Indexed: 12/17/2022]
Abstract
We used water-soluble Chitosan obtained by Maillard reaction with glucosamine to microencapsulate soy genistein (Ge) and preserve its biological activity for oral administration. Release of Ge was pH dependent with a super Case II mechanism at pH 1.2 and an anomalous transport with non-Fickian kinetics at pH 6.8. Microencapsulated Ge retained its antioxidant properties in vitro and its daily administration to mice attenuated clinical signs of acute colitis, limited inflammatory reaction and reduced oxidative stress and tissue injury as well. Remarkably, after feeding microencapsulated Ge the production of IL-10 in colonic tissue was restored to levels of untreated controls. According to statistical multivariate analysis, this cytokine was the parameter with the highest influence on the inflammatory/oxidative status. Microencapsulation of Ge with derivatized Chitosan becomes an interesting alternative to develop therapeutic approaches for oxidative inflammatory diseases; our findings suggest that the soy isoflavone could be incorporated into any functional food for application in intestinal inflammation.
Collapse
Affiliation(s)
- Noelia L Vanden Braber
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Villa María, Córdoba, Argentina
| | - Ivanna Novotny Nuñez
- Centro de Investigación en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luciana Bohl
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Villa María, Córdoba, Argentina
| | - Carina Porporatto
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Villa María, Córdoba, Argentina
| | - F Nicolás Nazar
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana A Montenegro
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Villa María, Córdoba, Argentina
| | - Silvia G Correa
- Centro de Investigación en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
39
|
Cakir U, Tayman C, Serkant U, Yakut HI, Cakir E, Ates U, Koyuncu I, Karaogul E. Ginger (Zingiber officinale Roscoe) for the treatment and prevention of necrotizing enterocolitis. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:297-308. [PMID: 30005955 DOI: 10.1016/j.jep.2018.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Necrotizing enterocolitis (NEC) is the most important gastrointestinal emergency affecting especially preterm infants and causes severe morbidities and mortality. However, there is no cure. Oxidant stress, inflammation, apoptosis, as well as prematurity are believed to responsible in the pathogenesis of the disease. Ginger and its compounds have anti-inflammatory, antimicrobial, anti-oxidant properties and immunomodulatory, cytoprotective/regenerative actions. AIM OF THE STUDY This study aimed to evaluate the beneficial effects of ginger on the intestinal damage in an experimental rat model of NEC. MATERIALS AND METHODS Thirty newborn Wistar rats were divided into three groups: NEC, NEC + ginger and control in this experimental study. NEC was induced by injection of intraperitoneal lipopolysaccharide, feeding with enteral formula, hypoxia-hyperoxia and cold stress exposure. The pups in the NEC + ginger group were orally administered ginger at a dose of 1000 mg/kg/day. Proximal colon and ileum were excised. Histopathological, immunohistochemical (TUNEL for apoptosis, caspase 3 and 8) and biochemical assays including xanthine oxidase (XO), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malonaldehyde (MDA) and myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), interleukin1β (IL-1β), and interleukin 6 (IL-6) activity were evaluated. RESULTS Compared with the NEC group, the rat pups in the NEC + ginger group had better clinical disease scores and weight gain (p < 0.05). Macroscopic evaluation, Histopathologic and apoptosis assessment (TUNEL, caspase 3 and 8) releaved that severity of intestinal damage were significantly lower in the NEC + ginger group (p < 0.05). The levels of TNF-α, IL-1β and IL-6 in the ginger treated group were significantly decreased (P < 0.05). The GSH-Px and SOD levels of the ginger treated group were significantly preserved in the NEC + ginger group (p < 0.05). The tissue XO, MDA and MPO levels of the NEC + ginger group were significantly lower than those in the NEC group (P < 0.05). CONCLUSION Ginger therapy efficiently ameliorated the severity of intestinal damage in NEC and may be a promising treatment option.
Collapse
Affiliation(s)
- Ufuk Cakir
- Department of Neonatology, Health Sciences University, Zekai Tahir Burak Maternity Education and Research Hospital, Ankara, Turkey.
| | - Cuneyt Tayman
- Health Sciences University, Zekai Tahir Burak Maternity Education and Research Hospital, Ankara, Turkey.
| | - Utku Serkant
- Department of Biochemistry, Golbası Public Hospital, Ankara, Turkey.
| | - Halil Ibrahim Yakut
- Department of Pediatrics, Health Sciences University, Ankara Hematology Oncology Children Education and Research Hospital, Ankara, Turkey.
| | - Esra Cakir
- Health Sciences University, Anesthesiology and Clinical of Critical Care, Ankara Numune Education and Research Hospital, Ankara, Turkey.
| | - Ufuk Ates
- Department of Pediatric Surgery, Ankara University Faculty of Medicine, Ankara, Turkey.
| | - Ismail Koyuncu
- Harran University Faculty of Medicine Department of Biochemistry, Sanlıurfa, Turkey.
| | - Eyyup Karaogul
- Harran University Engineering Faculty Food Science and Technology, Sanlıurfa, Turkey.
| |
Collapse
|
40
|
Ajayi BO, Adedara IA, Farombi EO. Protective mechanisms of 6-gingerol in dextran sulfate sodium-induced chronic ulcerative colitis in mice. Hum Exp Toxicol 2018; 37:1054-1068. [PMID: 29350052 DOI: 10.1177/0960327117751235] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Ulcerative colitis (UC) is a relapsing and remitting inflammatory disease of the colon, with an increasing incidence worldwide. 6-Gingerol (6G) is a bioactive constituent of Zingiber officinale, which has been reported to possess various biological activities. This study was designed to evaluate the role of 6G in chronic UC. Chronic UC was induced in mice by three cycles of 2.5% dextran sulfate sodium (DSS) in drinking water. Each cycle consisted of 7 days of 2.5% DSS followed by 14 days of normal drinking water. 6G (100 mg/kg) and a reference anti-colitis drug sulfasalazine (SZ) (100 mg/kg) were orally administered daily to the mice throughout exposure to three cycles of 2.5% DSS. Administration of 6G and SZ significantly prevented disease activity index and aberrant crypt foci formation in DSS-treated mice. Furthermore, 6G and SZ suppresses immunoexpression of tumor necrosis factor alpha, interleukin-1β, inducible nitric oxide synthase, Regulated on activation, normal T cell expressed and secreted (RANTES), and Monocyte chemoattractant protein-1 (MCP-1) in the DSS-treated mice. 6G effectively protected against colonic oxidative damage by augmenting the antioxidant status with marked decrease in lipid peroxidation levels in DSS-treated mice. Moreover, 6G significantly inhibited nuclear factor kappa B (P65), p38, cyclooxygenase-2, and β-catenin whereas it enhanced IL-10 and adenomatous polyposis coli expression in DSS-treated mice. In conclusion, 6G prevented DSS-induced chronic UC via anti-inflammatory and antioxidative mechanisms and preservation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- B O Ajayi
- Department of Biochemistry, Drug Metabolism & Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - I A Adedara
- Department of Biochemistry, Drug Metabolism & Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - E O Farombi
- Department of Biochemistry, Drug Metabolism & Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
41
|
Ajayi BO, Adedara IA, Ajani OS, Oyeyemi MO, Farombi EO. [6]-Gingerol modulates spermatotoxicity associated with ulcerative colitis and benzo[a]pyrene exposure in BALB/c mice. J Basic Clin Physiol Pharmacol 2018; 29:247-256. [PMID: 29902912 DOI: 10.1515/jbcpp-2017-0140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The deterioration of male reproductive health may represent an outcome of an active disease and environmental factors. The present study investigated the modulatory role of [6]-gingerol in spermatotoxicity resulting from colitis and benzo[a]pyrene (B[a]P), an environmental and food-borne pollutant. METHODS Group I (control) mice received corn oil alone, while group II ([6]-gingerol alone) mice orally received [6]-gingerol alone at 100 mg/kg body weight. Group III [benzo[a]pyrene+dextran sulfate sodium (BDS) alone] mice were orally exposed to B[a]P at 125 mg/kg for 7 days followed by three cycles of 4% dextran sulfate sodium (DSS) in drinking water. A cycle consisted of seven consecutive days of exposure to DSS-treated water followed by 14 consecutive days of normal drinking water. Group IV (BDS+[6]-gingerol) mice were orally treated daily with 100 mg/kg of [6]-gingerol during exposure to B[a]P and DSS in the same manner as those of group III. RESULTS [6]-Gingerol significantly abrogated BDS-mediated increase in disease activity index and restored the colon wet weight, colon length and colon mass index to near normal when compared to BDS alone group. Moreover, [6]-gingerol significantly prevented BDS-induced decreases in the daily sperm production (DSP), testicular sperm number (TSN), epididymal sperm number, sperm progressive motility and sperm membrane integrity when compared with the control. [6]-Gingerol markedly increased the sperm antioxidant enzymes activities and decreased the sperm head, mid-piece and tail abnormalities as well as suppressed oxidative stress and inflammatory biomarkers in BDS-exposed mice. CONCLUSIONS [6]-Gingerol protected against spermatotoxicity in experimental model of interaction of colitis with environmental pollutant B[a]P.
Collapse
Affiliation(s)
- Babajide O Ajayi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumide S Ajani
- Department of Veterinary Surgery and Reproduction, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Matthew O Oyeyemi
- Department of Veterinary Surgery and Reproduction, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
42
|
6-Gingerol Ameliorates Behavioral Changes and Atherosclerotic Lesions in ApoE−/− Mice Exposed to Chronic Mild Stress. Cardiovasc Toxicol 2018; 18:420-430. [DOI: 10.1007/s12012-018-9452-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Adedara IA, Ajayi BO, Awogbindin IO, Farombi EO. Interactive effects of ethanol on ulcerative colitis and its associated testicular dysfunction in pubertal BALB/c mice. Alcohol 2017; 64:65-75. [PMID: 28965657 DOI: 10.1016/j.alcohol.2017.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/02/2017] [Accepted: 06/08/2017] [Indexed: 01/01/2023]
Abstract
Available epidemiological reports have indicated an increase in the incidence of ulcerative colitis, as well as alcohol consumption, globally. The present study investigated the possible interactive effects of ethanol consumption on ulcerative colitis and its associated testicular dysfunction using six groups of 12 pubertal mice each. Group I (Control) mice received drinking water alone. Group II mice received ethanol alone at 5 g/kg body weight. Group III mice received 2.5% dextran sulphate sodium (DSS) in drinking water followed by normal drinking water. Groups IV, V, and VI mice received DSS followed by ethanol at 1.25, 2.5, and 5 g/kg, respectively. Administration of ethanol to mice with ulcerative colitis intensified the disease-activity index with marked reduction in colon length, colon mass index, body weight gain, and organo-somatic indices of testes and epididymis when compared with the DSS-alone group. Moreover, ethanol exacerbated colitis-mediated decrease in enzymatic and non-enzymatic antioxidants but increased the oxidative stress and inflammatory biomarkers in the testes and epididymis. The diminution in luteinizing hormone, follicle stimulating hormone, and testosterone levels was intensified following administration of ethanol to mice with ulcerative colitis that were administered 5 g/kg ethanol alone. The decrease in sperm functional parameters and testicular spermatogenic indices as well as histopathological damage in colon, testes, and epididymis was aggravated following administration of ethanol to mice with ulcerative colitis. In conclusion, the exacerbating effects of ethanol on ulcerative colitis-induced testicular dysfunction are related to increased oxidative stress and inflammation in the treated mice.
Collapse
|
44
|
Zhang F, Ma N, Gao YF, Sun LL, Zhang JG. Therapeutic Effects of 6-Gingerol, 8-Gingerol, and 10-Gingerol on Dextran Sulfate Sodium-Induced Acute Ulcerative Colitis in Rats. Phytother Res 2017; 31:1427-1432. [DOI: 10.1002/ptr.5871] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Feng Zhang
- Institute of pharmacology; Taishan Medical University; Taian 271016 China
| | - Na Ma
- Institute of pharmacology; Taishan Medical University; Taian 271016 China
| | - Yong-Feng Gao
- Institute of pharmacology; Taishan Medical University; Taian 271016 China
| | - Li-Li Sun
- Institute of pharmacology; Taishan Medical University; Taian 271016 China
| | - Ji-Guo Zhang
- Institute of pharmacology; Taishan Medical University; Taian 271016 China
| |
Collapse
|
45
|
Salihu M, Ajayi BO, Adedara IA, de Souza D, Rocha JBT, Farombi EO. 6-Gingerol-rich fraction from Zingiber officinale ameliorates carbendazim-induced endocrine disruption and toxicity in testes and epididymis of rats. Andrologia 2017; 49:e12658. [PMID: 27546232 DOI: 10.1111/and.12658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 11/29/2022] Open
Abstract
This study evaluated the protective effects of 6-gingerol-rich fraction (6-GRF) from Zingiber officinale on carbendazim (CBZ)-induced reproductive toxicity in rats. Adult male rats were treated with either CBZ (50 mg/kg) alone or in combination with 6-GRF (50, 100 and 200 mg/kg) for 14 consecutive days. Gas chromatography-mass spectrometry (GCMS) analysis revealed that 6-GRF consists of ten bioactive chemical components with 6-gingerol being the most abundant (30.76%). Administration of 6-GRF significantly (p < .05) prevented CBZ-mediated increase in absolute and relative testes weights as well as restored the sperm quantity and quality in the treated rats to near control. In testes and epididymis, 6-GRF significantly abolished CBZ-mediated increase in oxidative damage as well as augmented antioxidant enzymes activities and glutathione level in the treated rats. Moreover, CBZ administration alone significantly decreased plasma levels of testosterone, thyrotropin, triiodothyronine and tetraiodothyronine, whereas follicle-stimulating hormone was significantly elevated without affecting luteinising hormone and prolactin levels when compared with the control. Conversely, 6-GRF ameliorated the disruption in the hormonal levels and restored their levels to near normalcy in CBZ-treated rats. Collectively, 6-GRF inhibited the adverse effects of CBZ on the antioxidant defence systems, hormonal balance and histology of the testes and epididymis in rats.
Collapse
Affiliation(s)
- M Salihu
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - B O Ajayi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - I A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - D de Souza
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - J B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - E O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
46
|
Abolaji AO, Ojo M, Afolabi TT, Arowoogun MD, Nwawolor D, Farombi EO. Protective properties of 6-gingerol-rich fraction from Zingiber officinale (Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. Chem Biol Interact 2017; 270:15-23. [PMID: 28373059 DOI: 10.1016/j.cbi.2017.03.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022]
Abstract
Chlorpyrifos (CPF) is an organophosphorus pesticide widely used in agricultural applications and household environments. 6-Gingerol-rich fraction from Zingiber officinale (Ginger, 6-GRF) has been reported to possess potent anti-oxidative, anti-inflammatory and anti-apoptotic properties. Here, we investigated the protective properties of 6-GRF on CPF-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. Five groups of rats containing 14 rats/group received corn oil (control), CPF (5 mg/kg), 6-GRF (100 mg/kg), CPF (5 mg/kg) + 6-GRF (50 mg/kg) and CPF (5 mg/kg) + 6-GRF (100 mg/kg) through gavage once per day for 35 days respectively. The results showed that 6-GRF protected against CPF-induced increases in oxidative stress ((hydrogen peroxide (H2O2) and malondialdehyde (MDA)), inflammatory (myeloperoxidase (MPO), nitric oxide (NO) and tumour necrosis factor-α (TNF- α)), and apoptotic (caspase-3) markers. Also, 6-GRF improved the activities of antioxidant enzymes catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) as well as glutathione (GSH) level in the brain, ovary and uterus of rats exposed to CPF (p < 0.05). Overall, the protective effects of 6-GRF on CPF-induced toxicity in the brain and reproductive organs of rats may be due to its potent antioxidative, anti-inflammatory and antiapoptotic properties.
Collapse
Affiliation(s)
- Amos O Abolaji
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Mercy Ojo
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tosin T Afolabi
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mary D Arowoogun
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Darlinton Nwawolor
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
47
|
Kim Y, Kim DM, Kim JY. Ginger Extract Suppresses Inflammatory Response and Maintains Barrier Function in Human Colonic Epithelial Caco-2 Cells Exposed to Inflammatory Mediators. J Food Sci 2017; 82:1264-1270. [PMID: 28369951 DOI: 10.1111/1750-3841.13695] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 12/31/2022]
Abstract
The beneficial effects of ginger in the management of gastrointestinal disturbances have been reported. In this study, the anti-inflammatory potential of ginger extract was assessed in a cellular model of gut inflammation. In addition, the effects of ginger extract and its major active compounds on intestinal barrier function were evaluated. The response of Caco-2 cells following exposure to a mixture of inflammatory mediators [interleukin [IL]-1β, 25 ng/mL; lipopolysaccharides [LPS], 10 ng/mL; tumor necrosis factor [TNF]-α, 50 ng/mL; and interferon [INF]-γ, 50 ng/mL] were assessed by measuring the levels of secreted IL-6 and IL-8. In addition, the mRNA levels of cyclooxygenase-2 and inducible nitric oxide synthase were measured. Moreover, the degree of nuclear factor (NF)-κB inhibition was examined, and the intestinal barrier function was determined by measuring the transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran transfer. It was observed that ginger extract and its constituents improved inflammatory responses by decreasing the levels of nitrite, PGE2, IL-6, and IL-8 via NF-κB inhibition. The ginger extract also increased the TEER and decreased the transfer of FITC-dextran from the apical side of the epithelium to the basolateral side. Taken together, these results show that ginger extract may be developed as a functional food for the maintenance of gastrointestinal health.
Collapse
Affiliation(s)
- Yunyoung Kim
- Dept. of Food Science and Technology, Seoul Natl. Univ. of Science and Technology, Seoul, 139-743, Republic of Korea
| | - Dong-Min Kim
- Dept. of Food Science and Technology, Seoul Natl. Univ. of Science and Technology, Seoul, 139-743, Republic of Korea
| | - Ji Yeon Kim
- Dept. of Food Science and Technology, Seoul Natl. Univ. of Science and Technology, Seoul, 139-743, Republic of Korea
| |
Collapse
|
48
|
Farombi EO, Adedara IA, Ajayi BO, Idowu TE, Eriomala OO, Akinbote FO. 6-Gingerol improves testicular function in mice model of chronic ulcerative colitis. Hum Exp Toxicol 2017; 37:358-372. [DOI: 10.1177/0960327117703689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- EO Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - IA Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - BO Ajayi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - TE Idowu
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - OO Eriomala
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - FO Akinbote
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
49
|
Salihu M, Ajayi BO, Adedara IA, Farombi EO. 6-Gingerol-rich fraction prevents disruption of histomorphometry and marker enzymes of testicular function in carbendazim-treated rats. Andrologia 2017; 49. [DOI: 10.1111/and.12782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
- M. Salihu
- Drug Metabolism and Toxicology Research Laboratories; Department of Biochemistry; College of Medicine; University of Ibadan; Ibadan Nigeria
| | - B. O. Ajayi
- Drug Metabolism and Toxicology Research Laboratories; Department of Biochemistry; College of Medicine; University of Ibadan; Ibadan Nigeria
| | - I. A. Adedara
- Drug Metabolism and Toxicology Research Laboratories; Department of Biochemistry; College of Medicine; University of Ibadan; Ibadan Nigeria
| | - E. O. Farombi
- Drug Metabolism and Toxicology Research Laboratories; Department of Biochemistry; College of Medicine; University of Ibadan; Ibadan Nigeria
| |
Collapse
|
50
|
Farombi EO, Adedara IA, Awoyemi OV, Njoku CR, Micah GO, Esogwa CU, Owumi SE, Olopade JO. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats. Food Funct 2016; 7:913-21. [PMID: 26691887 DOI: 10.1039/c5fo01228g] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study investigated the antioxidant and anti-inflammatory effects of dietary protocatechuic acid (PCA), a simple hydrophilic phenolic compound commonly found in many edible vegetables, on dextran sulphate sodium (DSS)-induced ulcerative colitis and its associated hepatotoxicity in rats. PCA was administered orally at 10 mg kg(-1) to dextran sulphate sodium exposed rats for five days. The result revealed that administration of PCA significantly (p < 0.05) prevented the incidence of diarrhea and bleeding, the decrease in the body weight gain, shortening of colon length and the increase in colon mass index in DSS-treated rats. Furthermore, PCA prevented the increase in the plasma levels of pro-inflammatory cytokines, markers of liver toxicity and markedly suppressed the DSS-mediated elevation in colonic nitric oxide concentration and myeloperoxidase activity in the treated rats. Administration of PCA significantly protected against colonic and hepatic oxidative damage by increasing the antioxidant status and concomitantly decreased hydrogen peroxide and lipid peroxidation levels in the DSS-treated rats. Moreover, histological examinations confirmed PCA chemoprotection against colon and liver damage. Immunohistochemical analysis showed that PCA significantly inhibited cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in the colon of DSS-treated rats. In conclusion, the effective chemoprotective role of PCA in colitis and the associated hepatotoxicity is related to its intrinsic anti-inflammatory and anti-oxidative properties.
Collapse
Affiliation(s)
- Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Omolola V Awoyemi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Chinonye R Njoku
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Gabriel O Micah
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Cynthia U Esogwa
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Unit, Department of Biochemistry, College of Medicine, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Nigeria
| |
Collapse
|