1
|
Wu D, Hong L, Xu S, Zhong Z, Gong Q, Wang Q, Yan L. Integrating network pharmacology and experimental validation via PPAR signaling to ameliorate rheumatoid arthritis: Insights from Corydalis Decumbentis Rhizoma (Xiatianwu). Fitoterapia 2025; 183:106541. [PMID: 40239773 DOI: 10.1016/j.fitote.2025.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Corydalis Decumbentis Rhizoma (Xiatianwu, XTW) exhibits a positive effect in treating rheumatoid arthritis (RA). However, the precise molecular mechanisms underlying its effects remain unclear. In this study, TNF-α was used to induce inflammation and establish and in vitro RA model. Network pharmacology was employed to identify the important active components and targets in the treatment of XTW on RA. CCK-8 was used to investigate the cell viability. GW9662 (a PPARG antagonist) was applied to validate the network pharmacology prediction. ELISA was used to measure pro-inflammatory cytokines (IL-6, IL-1β, and INF-γ) and oxidative stress markers (MMP-2, MDA, and ROS). HPLC-MS was conducted to validate the four important active ingredients (bicuculline, ferulic acid, berberine, and jatrorrhizine) in XTW. Western blotting was carried out to detect the protein levels of PPAR-γ. In vitro experiments demonstrated that XTW exerted dose-dependent anti-RA effects by downregulating pro-inflammatory cytokines and oxidative stress markers. Through Network pharmacology, three targets (RXRA, PPARG, and PPARA) and four active ingredients (bicuculline, ferulic acid, berberine, and jatrorrhizine) were demonstrated important in the treatment of XTW on RA. Besides, PPAR signaling pathway may be a therapeutic target for XTW treating RA. Further experiments confirmed that XTW administration significantly inhibited inflammation and oxidative stress by upregulating the PPAR signaling pathway. In conclusion, XTW modulates RXRA, PPARG, and PPARA through the PPAR signaling pathway, thereby mitigating inflammation and oxidative stress in RA.
Collapse
Affiliation(s)
- Dongjiao Wu
- Department of Rheumatology, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, No.819 Liyuan North Road, Haishu District, Ningbo 315010, China
| | - Lu Hong
- Department of Rheumatology, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, No.819 Liyuan North Road, Haishu District, Ningbo 315010, China.
| | - Shuyi Xu
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhao Zhong
- Department of Rheumatology, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, No.819 Liyuan North Road, Haishu District, Ningbo 315010, China
| | - Qiongyao Gong
- Department of Rheumatology, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, No.819 Liyuan North Road, Haishu District, Ningbo 315010, China
| | - Qi Wang
- Department of Rheumatology, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, No.819 Liyuan North Road, Haishu District, Ningbo 315010, China
| | - Linjun Yan
- Department of Rheumatology, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, No.819 Liyuan North Road, Haishu District, Ningbo 315010, China
| |
Collapse
|
2
|
Gu Y, Luo H, Zhu J, Ma H, Zhang Y, Xing J, Liu Y, Cai Y, Sun W, Luo P. In vitro and in vivo assessment of diosmetin-loaded lactoferrin-modified liposomes for brain delivery in intracerebral hemorrhage therapy. Drug Deliv Transl Res 2025:10.1007/s13346-025-01826-8. [PMID: 40089650 DOI: 10.1007/s13346-025-01826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Intracerebral hemorrhage (ICH) is a serious cerebrovascular disease with high morbidity, mortality, and disability rates, largely due to neuroinflammation. Diosmetin, a natural flavonoid, has known neuroprotective effects in cerebral ischemia/reperfusion models but has been less studied in ICH. Our previous study developed diosmetin-loaded lactoferrin-modified long-circulating liposomes (Lf-Dios-Lcl), which penetrate the BBB and improve diosmetin bioavailability and brain distribution. In this study, we found that diosmetin reduced the levels of proinflammatory cytokines (IL-1β and TNF-α) and increased the level of the anti-inflammatory cytokine IL-10 in LPS-induced BV2 cells, promoting microglial polarization toward the anti-inflammatory M2 phenotype. In ICH model rats, Lf-Dios-Lcl (1 mg/kg) effectively reduced neuroinflammation, decreased IL-1β and TNF-α levels, increased IL-10 levels, and increased the proportion of CD206-positive microglia in brain tissues. Moreover, Lf-Dios-Lcl significantly downregulated p-p38 expression, suggesting that p38 signaling activation was inhibited. Overall, Lf-Dios-Lcl demonstrated brain-targeting properties and antineuroinflammatory effects by modulating microglial polarization via the p38 pathway.
Collapse
Affiliation(s)
- Yingjiang Gu
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China.
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Hanyue Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China
| | - Jun Zhu
- Traditional Chinese Medicine Hospital of Meishan, Meishan, 620020, China
| | - Hao Ma
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China
| | - Yang Zhang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yuzhou Liu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yu Cai
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Wenxia Sun
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan Province, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
3
|
Tian-Liang, Yu J, Uranghai X, Yu H, Guo G, Xu W, Liu B, Borjigidai A. Comprehensive metabolic profiling of three plants of Ardisia based on UPLC-QTOF-MS coupled with bioactivity assays. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119327. [PMID: 39761835 DOI: 10.1016/j.jep.2025.119327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/12/2024] [Accepted: 01/03/2025] [Indexed: 02/16/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ardisia is a large genus of Primulaceae, 734 accepted species worldwide, and most species are used as ethnomedicines for the treatment of bruises, rheumatism, tuberculosis, and various inflammatory diseases. According to our previous ethnobotanical survey, Ardisia gigantifolia Stapf, Ardisia hanceana Mez (Da-luo-san), and Ardisia crenata Sims (Xiao-luo-san) are commonly used in folk medicine for the treatment of rheumatism. Among them, A. hanceana and A. crenata in folklore has "Use Da-luo-san and Xiao-luo-san together for better rheumatism treatment". These three plants can be referred to as the characteristic herbs of Ardisia. AIM OF THE STUDY To characterize the metabolites of three plants of Ardisia, clarify the metabolites differences, validate the traditional folk applications, and identify potential biomarkers. MATERIALS AND METHODS UPLC-QTOF-MS and UPLC-QTRAP-MS metabolomics analysis techniques were utilized to reveal the metabolites of three plants of Ardisia. Combined with multivariate statistical analysis, differentially accumulated metabolites (DAMs) and biomarkers were screened. The inhibition of NO production was measured, and the p_value was determined using one-way ANOVA with Fisher's LSD test, to validate folk traditional application. RESULTS A total of 328 metabolites were identified from the three plants' roots using UPLC-QTOF-MS, and 86 DAMs were screened by OPLS-DA. Among them, flavonoids are the main DAMs, especially between Zou-ma-tai group (A. gigantifolia) and the Luo-san group (A. hanceana and A. crenata). UPLC-QTRAP-MS was used to quantify the three DAMs, and it was found that the contents of (+/-)-catechin and gallic acid were higher in the Luo-san group. To verify the traditional application of the three plants, it was found that the activity of the three plants was better at 0.2 mg/mL, and the activity of the Luo-san group was significantly stronger than that of the Zou-ma-tai (p<0.001). Further, 16 potential anti-inflammatory active biomarkers were screened by the two groups, and the relative contents of flavonoids was significantly higher in the Luo-san group, which was inferred to be a possible key active ingredient in the Luo-san group for the treatment of rheumatic diseases. Further network pharmacological methods verified that these flavonoid components may exert their therapeutic effects on rheumatic diseases by modulating multiple signaling pathways such as TNF, 1L-17, NF-κB, and T-cell receptor through key targets such as PTGS2, ESR1, ALOX5, CA2, XDH, and AKR1B1. CONCLUSION This study identified the main active metabolites of the three plants of Ardisia, verified the local folklore that "Use Da-luo-san and Xiao-luo-san together for better rheumatism treatment", and spread the folk traditional knowledge. It is indicated that the Luo-san group have important potential medicinal value and development prospects. It further provides a scientific basis for the conservation and utilization of Ardisia resources as well as sustainable development.
Collapse
Affiliation(s)
- Tian-Liang
- Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China; Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, 530001, China; Sanya Research institute of Chinese Academy of Tropical Agricultural Science, Sanya, 572000, China
| | - Jiaoneng Yu
- Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
| | - Xorgan Uranghai
- Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
| | - Hongzhen Yu
- Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
| | - Guangying Guo
- Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
| | - Weiwei Xu
- Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
| | - Bo Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China; Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, 530001, China.
| | - Almaz Borjigidai
- Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China; Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, 530001, China.
| |
Collapse
|
4
|
Żurawek D, Pydyn N, Major P, Szade K, Trzos K, Kuś E, Pośpiech E, Małczak P, Radkowiak D, Budzyński A, Chłopicki S, Jura J, Kotlinowski J. Diosmetin alleviates TNFα-induced liver inflammation by improving liver sinusoidal endothelial cell dysfunction. Biomed Pharmacother 2025; 183:117843. [PMID: 39813788 DOI: 10.1016/j.biopha.2025.117843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
Sterile inflammation contributes to the development of many liver diseases including non-alcoholic fatty liver disease. Tumor necrosis factor alpha (TNFα) is a key cytokine driving liver inflammation primarily through pro-inflammatory activation of liver sinusoidal endothelial cells (LSEC). The knowledge of whether modulating LSEC activation can alleviate liver inflammation is scarce. This study aims to establish and validate an animal model mimicking LSEC dysfunction observed in obese patients with elevated plasma levels of TNFα, and explore whether vasoactive flavonoid diosmetin could serve as a therapeutic agent for liver inflammation by modulation of LSEC dysfunction. Obese patients with elevated plasma levels of TNFα, LSEC dysfunction and liver inflammation had also reduced Mcpip1 expression in peripheral blood mononuclear cells. Mcpip1 is a protein that negatively regulates the levels of pro-inflammatory cytokines. To model this, we generated mice with Mcpip1 knock-out in myeloid cells (Mcpip1fl/flLysMCre), which displayed systemic and liver inflammation like that observed in patients. Diosmetin treatment efficiently reduced TNFα-dependent LSEC activation in vitro and in vivo, and reduced liver inflammation in Mcpip1fl/flLysMCre mice without affecting systemic inflammation. Diosmetin's effects may stem from inhibiting NF-κB pathway in TNFα-activated endothelial cells. Our findings demonstrate that the Mcpip1fl/flLysMCre mouse model is useful for studying new anti-inflammatory therapies for the liver. We show that diosmetin, a vasoactive flavonoid used in the clinic to treat chronic venous insufficiency, also has strong anti-inflammatory properties in the liver. These results indicate that diosmetin has the potential to be further investigated as a supportive therapy for liver inflammation in humans.
Collapse
Affiliation(s)
- Dariusz Żurawek
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, Kraków 30-387, Poland; Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montreal, QC H4H 1R3, Canada.
| | - Natalia Pydyn
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, Kraków 30-387, Poland
| | - Piotr Major
- Jagiellonian University Medical College, 2nd Department of General Surgery, Jakubowskiego 2, Kraków 30-688, Poland
| | - Krzysztof Szade
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Stem Cell Biology, Gronostajowa 7, Kraków 30-387, Poland
| | - Katarzyna Trzos
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, Kraków 30-387, Poland
| | - Edyta Kuś
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14, Kraków 30-348, Poland
| | - Ewelina Pośpiech
- Department of Genomics and Forensic Genetics, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-204, Szczecin, Poland
| | - Piotr Małczak
- Jagiellonian University Medical College, 2nd Department of General Surgery, Jakubowskiego 2, Kraków 30-688, Poland
| | - Dorota Radkowiak
- Jagiellonian University Medical College, 2nd Department of General Surgery, Jakubowskiego 2, Kraków 30-688, Poland
| | - Andrzej Budzyński
- Jagiellonian University Medical College, 2nd Department of General Surgery, Jakubowskiego 2, Kraków 30-688, Poland
| | - Stefan Chłopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14, Kraków 30-348, Poland
| | - Jolanta Jura
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, Kraków 30-387, Poland
| | - Jerzy Kotlinowski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, Kraków 30-387, Poland.
| |
Collapse
|
5
|
Zhang MY, Wang MQ, Huang Y, Gu SL, Zhou MY, Xu ZS, Li LL, Lv M, Cai L, Li R. Silencing aquaporin 1 inhibits autophagy to exert anti-rheumatoid arthritis effects in TNF-α-induced fibroblast-like synoviocytes and adjuvant-induced arthritis rats. Inflamm Res 2025; 74:12. [PMID: 39774992 DOI: 10.1007/s00011-024-01966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE Fibroblast-like synoviocytes (FLS) are key players in rheumatoid arthritis (RA) by resisting apoptosis via increased autophagy. Elevated synovial aquaporin 1 (AQP1) affects RA FLS behaviors, but its relationship with FLS autophagy is unclear. We aim to clarify that silencing AQP1 inhibits autophagy to exert its anti-RA effects. METHODS We studied the effects and mechanisms of AQP1 silencing on autophagy in TNF-α-induced RA FLS and examined the crucial role of autophagy inhibition in its impacts on RA FLS pathogenic behaviors. We explored whether silencing synovial AQP1 relieved rat adjuvant-induced arthritis (AIA) by reducing synovial autophagy. RESULTS TNF-α stimulation increased AQP1 expression and autophagy levels in RA FLS, with a positive correlation between them. AQP1 silencing inhibited autophagy in TNF-α-stimulated RA FLS, along with suppressing proliferation, promoting apoptosis, and mitigating inflammation. Notably, the inhibitory effects of AQP1 silencing on RA FLS pathogenic behaviors were cancelled by autophagy activation with rapamycin (Rapa) but enhanced by autophagy inhibition using 3-Methyladenine. Mechanistically, silencing AQP1 enhanced the binding of Bcl-2 to Beclin1 by decreasing Beclin1-K63 ubiquitination, thus inhibiting RA FLS autophagy. In vivo, silencing synovial AQP1 relieved the severity and development of rat AIA, alongside reducing Ki67 expression, promoting apoptosis, and decreasing autophagy within AIA rat synovium. Expectedly, the Rapa co-administration nullified the anti-AIA effects of silencing synovial AQP1. CONCLUSION These findings reveal that silencing AQP1 inhibits RA FLS pathogenic behaviors and attenuates rat AIA through autophagy inhibition. This study may help clarify the pathogenic role of AQP1 in enhancing autophagy during RA development.
Collapse
Affiliation(s)
- Man-Yu Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Meng-Qing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Sheng-Long Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ze-Shan Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ling-Ling Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Min Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui Province, China.
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230026, Anhui Province, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
6
|
Dong X, Wang Z, Fu Y, Tian Y, Xue P, Wang Y, Yang F, Li G, Wang R. From Tea to Functional Foods: Exploring Caryopteris mongolica Bunge for Anti-Rheumatoid Arthritis and Unraveling Its Potential Mechanisms. Nutrients 2024; 16:4311. [PMID: 39770932 PMCID: PMC11680032 DOI: 10.3390/nu16244311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Caryopteris mongolica Bunge (CM) shows promising potential for managing rheumatoid arthritis (RA) and digestive disorders, attributed to its rich content of bioactive compounds such as polyphenols and flavonoids. Despite its common use in herbal tea, the specific mechanisms underlying CM's anti-inflammatory and joint-protective effects remain unclear, limiting its development as a functional food. This study investigated the effects of aqueous CM extract on RA in collagen-induced arthritis (CIA) rats and explored the underlying mechanisms. METHODS Forty-eight female Sprague-Dawley rats were randomly assigned to six groups (n = 8): normal control, CIA model, methotrexate (MTX), and CM high-, middle-, and low-dose groups. Anti-inflammatory and joint-protective effects were evaluated using biochemical and histological analyses. To elucidate the mechanisms, we applied metabolomics, network pharmacology, and transcriptomics approaches. RESULTS The results demonstrated that CM extract effectively suppressed synovial inflammation in CIA rats, reducing joint degradation. CM's anti-inflammatory effects were mediated through the TNF signaling pathway, modulating glycerophospholipid and amino acid metabolism, including reduced levels of tryptophan, LysoPC, and asparagine. Molecular docking identified scutellarin and apigenin as key bioactive compounds. Additionally, immunofluorescence analysis revealed CM's therapeutic effects via TNF signaling inhibition and suppression of M1 macrophage polarization. CONCLUSIONS These findings highlight the therapeutic potential of CM for RA and support its development as a functional food or pharmaceutical product.
Collapse
Affiliation(s)
- Xin Dong
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.D.); (F.Y.); (G.L.)
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, China; (Z.W.); (Y.F.); (Y.T.); (P.X.); (Y.W.)
| | - Zhi Wang
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, China; (Z.W.); (Y.F.); (Y.T.); (P.X.); (Y.W.)
| | - Yao Fu
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, China; (Z.W.); (Y.F.); (Y.T.); (P.X.); (Y.W.)
| | - Yuxin Tian
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, China; (Z.W.); (Y.F.); (Y.T.); (P.X.); (Y.W.)
| | - Peifeng Xue
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, China; (Z.W.); (Y.F.); (Y.T.); (P.X.); (Y.W.)
| | - Yuewu Wang
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot 010110, China; (Z.W.); (Y.F.); (Y.T.); (P.X.); (Y.W.)
| | - Feiyun Yang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.D.); (F.Y.); (G.L.)
| | - Guojing Li
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.D.); (F.Y.); (G.L.)
| | - Ruigang Wang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.D.); (F.Y.); (G.L.)
| |
Collapse
|
7
|
Liao H, Zheng J, Lu J, Shen HL. NF-κB Signaling Pathway in Rheumatoid Arthritis: Mechanisms and Therapeutic Potential. Mol Neurobiol 2024:10.1007/s12035-024-04634-2. [PMID: 39560902 DOI: 10.1007/s12035-024-04634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease that imposes a heavy economic burden on patients and society. Bone and cartilage destruction is considered an important factor leading to RA, and inflammation, oxidative stress, and mitochondrial dysfunction are closely related to bone erosion and cartilage destruction in RA. Currently, there are limitations in the clinical treatment methods for RA, which urgently necessitates finding new effective treatments for patients. Nuclear transcription factor-κB (NF-κB) is a signaling transcription factor that is widely present in various cells. It plays an important role as a stress source in the cellular environment and regulates gene expression in processes such as immunity, inflammation, cell proliferation, and apoptosis. NF-κB has long been recognized as a pathogenic factor of RA, and its activation can exacerbate RA by promoting inflammation, oxidative stress, mitochondrial dysfunction, and bone destruction. Conversely, inhibiting the activity of the NF-κB pathway effectively inhibits these pathological processes, thereby alleviating RA. Therefore, NF-κB may be a potential therapeutic target for RA. This article describes the physiological structure of NF-κB and its important role in RA through the regulation of oxidative stress, inflammatory response, mitochondrial function, and bone destruction. Meanwhile, we also summarized the impact of NF-κB crosstalk with other signaling pathways on RA and the effect of related drugs or inhibitors targeting NF-κB on RA. The purpose of this article is to provide evidence for the role of NF-κB in RA and to emphasize its significant role in RA by elucidating the mechanisms, so as to provide a theoretical basis for targeting the NF-κB pathway as a treatment for RA.
Collapse
Affiliation(s)
- Haiyang Liao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jianxiong Zheng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jinyue Lu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Hai-Li Shen
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
8
|
Guo M, Yu X, Yang Z, Zheng H, Zhang J, Wang J, Liao Y, Huang W, Lin Z, Yan Y, Qiu N, Chen J, Yu Y. Levamisole Ameliorates Rheumatoid Arthritis by Downregulating the PI3K/Akt Pathway in SD Rats. Pharmaceuticals (Basel) 2024; 17:1504. [PMID: 39598415 PMCID: PMC11597538 DOI: 10.3390/ph17111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Rheumatoid arthritis (RA) is a systemic chronic autoimmune disease characterized by a protracted course, high rates of morbidity, and disability yet lacks effective therapeutic modalities. Levamisole (LVM), an immunomodulatory drug, has been clinically reported for its potential in RA treatment, while its therapeutic mechanism toward RA remains to be elucidated. Hence, this study provides theoretical support for the application of LVM in the treatment of RA. Methods: This study employed male Sprague-Dawley (SD) rats to construct the adjuvant-induced arthritis (AIA) model, administering LVM orally (5 mg/kg, 15 mg/kg, and 45 mg/kg) for 25 days. An evaluation of LVM's therapeutic effects on RA was conducted through arthritis index scores, paw pad thickness, paw volume, hematoxylin and eosin (H&E) staining, 3D microcomputed tomography (micro-CT) scans, serum levels of pro-/anti-inflammatory cytokines, and serum biochemical indicators. Western blotting and immunohistochemistry staining were utilized to measure the expression levels of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) proteins in synovial and ankle joint tissues. Results: Treatment with the median dose of LVM (15 mg/kg, M-LVM) significantly reduced the arthritis index (p < 0.01), paw pad thickness (p < 0.001), and paw volume (p < 0.01) without affecting body weight. Additionally, M-LVM alleviated inflammatory lesions in the synovium and ankle joints and also normalized serum levels of interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta (TGF-β). The Model group exhibited significant increases in serum levels of alkaline phosphatase (ALP) (p < 0.01), creatine kinase (CK) (p < 0.05), and glucose (GLU) (p < 0.001) compared with the Control group; however, M-LVM effectively regulated these parameters to normal levels. Western blotting and immunohistochemistry staining revealed that PI3K-/Akt-related proteins were highly expressed in the synovial and ankle joint tissues of rats in the Model group, while treatment with M-LVM significantly reduced the expression of these proteins. Furthermore, histological examination of major organs (heart, liver, lungs, kidneys, and thymus) showed no significant pathological changes, with the exception of the spleen, where M-LVM ameliorated splenic lesions. Conclusions: We demonstrate that LVM at an optimal dose substantially relieves synovitis and bone erosion in AIA rats by inhibiting the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Mu Guo
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (M.G.); (X.Y.); (Z.Y.); (H.Z.); (J.Z.); (J.W.); (W.H.); (Z.L.); (Y.Y.); (N.Q.)
- Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| | - Xiangbin Yu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (M.G.); (X.Y.); (Z.Y.); (H.Z.); (J.Z.); (J.W.); (W.H.); (Z.L.); (Y.Y.); (N.Q.)
- Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| | - Zesheng Yang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (M.G.); (X.Y.); (Z.Y.); (H.Z.); (J.Z.); (J.W.); (W.H.); (Z.L.); (Y.Y.); (N.Q.)
- Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| | - Hanlu Zheng
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (M.G.); (X.Y.); (Z.Y.); (H.Z.); (J.Z.); (J.W.); (W.H.); (Z.L.); (Y.Y.); (N.Q.)
- Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| | - Jiahui Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (M.G.); (X.Y.); (Z.Y.); (H.Z.); (J.Z.); (J.W.); (W.H.); (Z.L.); (Y.Y.); (N.Q.)
- Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| | - Junxiang Wang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (M.G.); (X.Y.); (Z.Y.); (H.Z.); (J.Z.); (J.W.); (W.H.); (Z.L.); (Y.Y.); (N.Q.)
- Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| | - Yiqi Liao
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (M.G.); (X.Y.); (Z.Y.); (H.Z.); (J.Z.); (J.W.); (W.H.); (Z.L.); (Y.Y.); (N.Q.)
- Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| | - Weirui Huang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (M.G.); (X.Y.); (Z.Y.); (H.Z.); (J.Z.); (J.W.); (W.H.); (Z.L.); (Y.Y.); (N.Q.)
- Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| | - Zhaolong Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (M.G.); (X.Y.); (Z.Y.); (H.Z.); (J.Z.); (J.W.); (W.H.); (Z.L.); (Y.Y.); (N.Q.)
- Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| | - Yingxue Yan
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (M.G.); (X.Y.); (Z.Y.); (H.Z.); (J.Z.); (J.W.); (W.H.); (Z.L.); (Y.Y.); (N.Q.)
- Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| | - Nengfu Qiu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (M.G.); (X.Y.); (Z.Y.); (H.Z.); (J.Z.); (J.W.); (W.H.); (Z.L.); (Y.Y.); (N.Q.)
- Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| | - Jianmin Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (M.G.); (X.Y.); (Z.Y.); (H.Z.); (J.Z.); (J.W.); (W.H.); (Z.L.); (Y.Y.); (N.Q.)
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, School of Pharmacy and Medical Technology, Putian University, Putian 351100, China
| | - Yue Yu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (M.G.); (X.Y.); (Z.Y.); (H.Z.); (J.Z.); (J.W.); (W.H.); (Z.L.); (Y.Y.); (N.Q.)
- Fujian Center for New Drug Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
9
|
Guo Q, Wang J, Ni C, Pan J, Zou J, Shi Y, Sun J, Zhang X, Wang D, Luan F. Research progress on the natural products in the intervention of myocardial infarction. Front Pharmacol 2024; 15:1445349. [PMID: 39239656 PMCID: PMC11374734 DOI: 10.3389/fphar.2024.1445349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Coronary heart disease is a prevalent cardiovascular ailment globally, with myocardial infarction (MI) being one of its most severe manifestations. The morbidity and mortality of MI are escalating, showing an increasing trend among younger, highly educated individuals, thereby posing a serious threat to public health. Currently, thrombolysis, percutaneous coronary intervention, and coronary artery bypass grafting are the primary clinical treatments for MI. Although these methods significantly reduce patient mortality, complications often result in poor prognoses. Due to limitations in chemical synthetic drug research, the focus has shifted towards developing herbs based on natural substances. Natural medicines represent a novel approach for safer and more effective MI management and treatment. They can control multiple pathogenic variables by targeting various pathways and systems. This paper investigates the molecular mechanisms of MI and evaluates the application of natural products and medicinal plants in MI treatment over the past 5 years, demonstrating their specific good therapeutic potential and superior tolerance. These natural therapies have been shown to mitigate myocardial cell damage caused by MI through mechanisms such as oxidative stress, inflammation, apoptosis, angiogenesis, myocardial fibrosis, autophagy, endoplasmic reticulum stress, mitophagy, and pyroptosis. This review offers the latest insights into the application of natural products and medicinal plants in MI treatment, elucidating their mechanisms of action and serving as an important reference for MI prevention.
Collapse
Affiliation(s)
- Qiuting Guo
- College of Pharmacy, Xianyang Polytechnic Institute, Xianyang, China
| | - Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Caixia Ni
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Deng Wang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Sun Z, Liu K, Liang C, Wen L, Wu J, Liu X, Li X. Diosmetin as a promising natural therapeutic agent: In vivo, in vitro mechanisms, and clinical studies. Phytother Res 2024; 38:3660-3694. [PMID: 38748620 DOI: 10.1002/ptr.8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 07/12/2024]
Abstract
Diosmetin, a natural occurring flavonoid, is primarily found in citrus fruits, beans, and other plants. Diosmetin demonstrates a variety of pharmacological activities, including anticancer, antioxidant, anti-inflammatory, antibacterial, metabolic regulation, cardiovascular function improvement, estrogenic effects, and others. The process of literature search was done using PubMed, Web of Science and ClinicalTrials databases with search terms containing Diosmetin, content, anticancer, anti-inflammatory, antioxidant, pharmacological activity, pharmacokinetics, in vivo, and in vitro. The aim of this review is to summarize the in vivo, in vitro and clinical studies of Diosmetin over the last decade, focusing on studies related to its anticancer, anti-inflammatory, and antioxidant activities. It is found that DIO has significant therapeutic effects on skin and cardiovascular system diseases, and its research in pharmacokinetics and toxicology is summarized. It provides the latest information for researchers and points out the limitations of current research and areas that should be strengthened in future research, so as to facilitate the relevant scientific research and clinical application of DIO.
Collapse
Affiliation(s)
- Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Hai-Na Z, Jun-Jie J, Guang-Meng X. Peptides derived from growth factors: Exploring their diverse impact from antimicrobial properties to neuroprotection. Biomed Pharmacother 2024; 176:116830. [PMID: 38824833 DOI: 10.1016/j.biopha.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Growth factor-derived peptides are bioactive molecules that play a crucial role in various physiological processes within the human body. Over the years, extensive research has revealed their diverse applications, ranging from antimicrobial properties to their potential in neuroprotection and treating various diseases. These peptides exhibit innate immune responses and have been found to possess potent antimicrobial properties against a wide range of pathogens. Growth factor-derived peptides have demonstrated the ability to promote neuronal survival, prevent cell death, and stimulate neural regeneration. As a result, they hold immense promise in the treatment of various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, as well as in the management of traumatic brain injuries. Moreover, growth factor-derived peptides have shown potential for supporting tissue repair and wound healing processes. By enhancing cell proliferation and migration, these peptides contribute to the regeneration of damaged tissues and promote a more efficient healing response. The applications of growth factor-derived peptides extend beyond their therapeutic potential in health; they also have a role in various disease conditions. For example, researchers have explored their influence on cancer cells, where some peptides have demonstrated anti-cancer properties, inhibiting tumor growth and promoting apoptosis in cancer cells. Additionally, their immunomodulatory properties have been investigated for potential applications in autoimmune disorders. Despite the immense promise shown by growth factor-derived peptides, some challenges need to be addressed. Nevertheless, ongoing research and advancements in biotechnology offer promising avenues to overcome these obstacles. The review summarizes the foundational biology of growth factors and the intricate signaling pathways in various physiological processes as well as diseases such as cancer, neurodegenerative disorders, cardiovascular ailments, and metabolic syndromes.
Collapse
Affiliation(s)
- Zhang Hai-Na
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Jiang Jun-Jie
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Xu Guang-Meng
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, PR China.
| |
Collapse
|
12
|
Yang D, Peng M, Fu F, Zhao W, Zhang B. Diosmetin ameliorates psoriasis-associated inflammation and keratinocyte hyperproliferation by modulation of PGC-1α / YAP signaling pathway. Int Immunopharmacol 2024; 134:112248. [PMID: 38749332 DOI: 10.1016/j.intimp.2024.112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Psoriasis, characterized by aberrant epidermal keratinocyte proliferation and differentiation, is a chronic inflammatory immune-related skin disease. Diosmetin (Dios), derived from citrus fruits, exhibits anti-inflammatory and anti-proliferative properties. In this study, IL-17A-induced HaCaT cell model and Imiquimod (IMQ)-induced mouse model were utilized to investigate the effects of Dios against psoriasis. The morphology and biomarkers of psoriasis were regarded as the preliminary evaluation including PASI score, skin thickness, H&E staining, EdU staining and inflammatory factors. Transcriptomics analysis revealed PGC-1α as a key target for Dios in ameliorating psoriasis. Specifically, Dios, through PGC-1α, suppressed YAP-mediated proliferation and inflammatory responses in psoriatic keratinocytes. In conclusion, Dios shows promise in psoriasis treatment and holds potential for development as targeted medications for application in psoriasis.
Collapse
Affiliation(s)
- Dailin Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Mingwei Peng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Fengping Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Wenjuan Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China.
| |
Collapse
|
13
|
Elkhawas Y, Gad HA, AbdelRazek MMM, Mandour AA, Bishr MM, Al Musayeib NM, Ashour ML, Khalil N. LC-ESI-MS/MS-Based Comparative Metabolomic Study, Antioxidant and Antidiabetic Activities of Three Lobelia Species: Molecular Modeling and ADMET Study. ACS OMEGA 2024; 9:20477-20487. [PMID: 38737064 PMCID: PMC11079896 DOI: 10.1021/acsomega.4c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
The hydroethanol (70%) extracts of three Lobelia species (L. nicotianifolia, L. sessilifolia, and L. chinensis) were analyzed using LC-ESI-MS/MS. Forty-five metabolites were identified, including different flavonoids, coumarin, polyacetylenes, and alkaloids, which were the most abundant class. By applying Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) based on LC-ESI-MS/MS analysis, the three species were completely segregated from each other. In addition, the three Lobelia extracts were tested for their antioxidant activities using a DPPH assay and as antidiabetic agents against α-glycosidase and α-amylase enzymes. L. chinensis extract demonstrated significant antioxidant activity with an IC50 value of 1.111 mg/mL, while L. nicotianifolia showed mild suppressing activity on the α-glycosidase activity with an IC50 value of 270.8 μg/mL. A molecular simulation study was performed on the main compounds to predict their potential antidiabetic activity and pharmacokinetic properties. The molecular docking results confirmed the α-glycosidase inhibitory activity of the tested compounds, as seen in their binding mode to the key amino acid residues at the binding site compared to that of the standard drug acarbose. Furthermore, the predictive ADMET results revealed good pharmacokinetic properties of almost all of the tested compounds. The biological evaluation results demonstrated the promising activity of the tested compounds, aligned with the in silico results.
Collapse
Affiliation(s)
- Yasmin
A. Elkhawas
- Department
of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Haidy A. Gad
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain
Shams University, Cairo 11566, Egypt
| | - Mohamed M. M. AbdelRazek
- Department
of Pharmacognosy, Faculty of Pharmacy, Badr
University in Cairo (BUC), Cairo 11829, Egypt
| | - Asmaa A. Mandour
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Mokhtar M. Bishr
- Plant
General Manager and Technical Director, Mepaco Co., Enshas AR Raml, Bilbeis, Sharkeiya 11361, Egypt
| | - Nawal M. Al Musayeib
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11495, Saudi Arabia
| | - Mohamed L. Ashour
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain
Shams University, Cairo 11566, Egypt
| | - Noha Khalil
- Department
of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| |
Collapse
|
14
|
Wang B, Shen J, Wang X, Hou R. Biomimetic nanoparticles for effective Celastrol delivery to targeted treatment of rheumatoid arthritis through the ROS-NF-κB inflammasome axis. Int Immunopharmacol 2024; 131:111822. [PMID: 38503010 DOI: 10.1016/j.intimp.2024.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
Previous study has indicated that Celastrol (Cel) has various physiological and pharmacological effects, including antibacterial, antioxidant, pro-apoptotic, anticancer and anti-rheumatoid arthritis (RA) effects. However, low water solubility, low oral bioavailability, narrow treatment window, and high incidence of systemic adverse reactions still limit the further clinical application of Cel. Here, aiming at effectively overcome those shortcomings of Cel to boost its beneficial effects for treating RA, we developed the leukosome (LEUKO) coated biomimetic nanoparticles (NPs) for the targeted delivery of Cel to arthritis injury area in RA. LEUKO were synthesized using membrane proteins purified from activated J774 macrophage. LEUKO and Cel-loaded LEUKO (Cel@LEUKO) were characterized using dynamic light scattering and transmission electron microscopy. Our results demonstrated that Cel@LEUKO can inhibit the inflammatory response of lipopolysaccharide (LPS) induced mouse monocyte macrophage leukemia cells (RAW264.7 cells) and human rheumatoid arthritis synovial fibroblasts (MH7A) cells through the inhibition of reactive oxygen species (ROS)-NF-κB pathway. In addition, research has shown that LEUKO effectively targets and transports Cel to the inflammatory site of RA, increased drug concentration in affected areas, reduced systemic toxicity of Cel, and reduced clinical symptoms, inflammatory infiltration, bone erosion, and serum inflammatory factors in collagen-induced arthritis (CIA) rats.
Collapse
Affiliation(s)
- Bo Wang
- Department of Orthopaedics, Suzhou Ruihua Orthopedic Hospital Affiliated Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215000, China; Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, China.
| | - Jiquan Shen
- Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, China
| | - Xinggao Wang
- Department of Orthopaedics, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, China
| | - Ruixing Hou
- Department of Orthopaedics, Suzhou Ruihua Orthopedic Hospital Affiliated Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
15
|
Fang Y, Xiang W, Cui J, Jiao B, Su X. Anti-Inflammatory Properties of the Citrus Flavonoid Diosmetin: An Updated Review of Experimental Models. Molecules 2024; 29:1521. [PMID: 38611801 PMCID: PMC11013832 DOI: 10.3390/molecules29071521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Inflammation is an essential contributor to various human diseases. Diosmetin (3',5,7-trihydroxy-4'-methoxyflavone), a citrus flavonoid, can be used as an anti-inflammatory agent. All the information in this article was collected from various research papers from online scientific databases such as PubMed and Web of Science. These studies have demonstrated that diosmetin can slow down the progression of inflammation by inhibiting the production of inflammatory mediators through modulating related pathways, predominantly the nuclear factor-κB (NF-κB) signaling pathway. In this review, we discuss the anti-inflammatory properties of diosmetin in cellular and animal models of various inflammatory diseases for the first time. We have identified some deficiencies in current research and offer suggestions for further advancement. In conclusion, accumulating evidence so far suggests a very important role for diosmetin in the treatment of various inflammatory disorders and suggests it is a candidate worthy of in-depth investigation.
Collapse
Affiliation(s)
- Yangyang Fang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Wei Xiang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Jinwei Cui
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Bining Jiao
- Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China;
| | - Xuesu Su
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| |
Collapse
|
16
|
Rufino AT, Freitas M, Proença C, Ferreira de Oliveira JMP, Fernandes E, Ribeiro D. Rheumatoid arthritis molecular targets and their importance to flavonoid-based therapy. Med Res Rev 2024; 44:497-538. [PMID: 37602483 DOI: 10.1002/med.21990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, chronic, autoimmune, inflammatory, and systemic condition that primarily affects the synovial joints and adjacent tissues, including bone, muscle, and tendons. The World Health Organization recognizes RA as one of the most prevalent chronic inflammatory diseases. In the last decade, there was an expansion on the available RA therapeutic options which aimed to improve patient's quality of life. Despite the extensive research and the emergence of new therapeutic approaches and drugs, there are still significant unwanted side effects associated to these drugs and still a vast number of patients that do not respond positively to the existing therapeutic strategies. Over the years, several references to the use of flavonoids in the quest for new treatments for RA have emerged. This review aimed to summarize the existing literature about the flavonoids' effects on the major pathogenic/molecular targets of RA and their potential use as lead compounds for the development of new effective molecules for RA treatment. It is demonstrated that flavonoids can modulate various players in synovial inflammation, regulate immune cell function, decrease synoviocytes proliferation and balance the apoptotic process, decrease angiogenesis, and stop/prevent bone and cartilage degradation, which are all dominant features of RA. Although further investigation is necessary to determine the effectiveness of flavonoids in humans, the available data from in vitro and in vivo models suggest their potential as new disease-modifying anti-rheumatic drugs. This review highlights the use of flavonoids as a promising avenue for future research in the treatment of RA.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José M P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, Açores, Portugal
| |
Collapse
|
17
|
In II, Deng W. Construction and validation of a diagnostic model for rheumatoid arthritis based on mitochondrial autophagy-related genes. Heliyon 2024; 10:e24818. [PMID: 38327427 PMCID: PMC10847616 DOI: 10.1016/j.heliyon.2024.e24818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease associated with an increased risk of disability. Due to its slow progression, timely diagnosis and treatment during the early stages can effectively decelerate disease advancement. Consequently, there is a pressing need to investigate additional biomarkers and therapeutic targets relevant to RA diagnosis. Mitochondrial autophagy, a biological process that regulates the quantity of mitochondria, is intricately linked to the development of tumor diseases. However, the role of autophagy in RA remains unclear. To address this, transcriptome data from the GEO database were collected for RA and its controls and subjected to differential expression analysis. The differentially expressed genes obtained were then intersected with mitochondrial autophagy-related genes. Subsequently, the overlapping genes were further intersected with genes from critical modules obtained through the weighted co-expression network algorithm. Diagnostic genes were identified, and diagnostic models were constructed for the resulting genes using the random forest and LASSO algorithms. The model achieved an AUC of 0.916 in the GSE93272 dataset and 0.951 in the GSE17755 dataset. Additionally, qPCR experiments were conducted on the diagnostic genes. Finally, we explored the correlation between the abundance of immune cell infiltration and diagnostic genes, constructing a drug-gene interaction network. The diagnostic genes identified in this study can serve as a reference for early diagnosis and the discovery of therapeutic targets in RA.
Collapse
Affiliation(s)
- Iong Iok In
- Department of Rheumatology, Kiang Wu Hospital, Rua de Coelho do Amaral 60–70, Macao, SAR, China
| | - Weiming Deng
- Department of Rheumatology, Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Guangdong, China
| |
Collapse
|
18
|
Varshney KK, Gupta JK, Srivastava R. Unveiling the Molecular Mechanism of Diosmetin and its Impact on Multifaceted Cellular Signaling Pathways. Protein Pept Lett 2024; 31:275-289. [PMID: 38629379 DOI: 10.2174/0109298665294109240323033601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Diosmetin is an O-methylated flavone and the aglycone part of the flavonoid glycosides diosmin that occurs naturally in citrus fruits. Pharmacologically, diosmetin is reported to exhibit anticancer, antimicrobial, antioxidant, oestrogenic, and anti-inflammatory activities. OBJECTIVE This comprehensive review was aimed to critically explore diverse pharmacological activities exhibited by diosmetin. Along with that, this review can also identify potential research areas with an elucidation of the multifactorial underlying signaling mechanism of action of diosmetin in different diseases. METHODS A comprehensive collection of evidence and insights was obtained from scientific journals and books from physical libraries and electronic platforms like Google Scholar and PubMed. The time frame selected was from year 1992 to July 2023. RESULTS The review delves into diosmetin's impact on cellular signaling pathways and its potential in various diseases. Due to its ability to modulate signaling pathways and reduce oxidative stress, it can be suggested as a potential versatile therapeutic agent for mitigating oxidative stressassociated pathogenesis. CONCLUSION The amalgamation of the review underscores diosmetin's promising role as a multifaceted therapeutic agent, highlighting its potential for drug development and clinical applications.
Collapse
Affiliation(s)
| | | | - Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
19
|
Varshney KK, Gupta JK, Srivastava R. Investigating In silico and In vitro Therapeutic Potential of Diosmetin as the Anti-Parkinson Agent. Protein Pept Lett 2024; 31:714-735. [PMID: 39323333 DOI: 10.2174/0109298665333333240909104354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024]
Abstract
AIM This study aimed to investigate how diosmetin interacts with seven target receptors associated with oxidative stress (OS) and validate its antioxidant properties for the potential management of Parkinson's disease (PD). BACKGROUND In PD, the degeneration of dopaminergic cells is strongly influenced by OS. This stressor is intricately connected to various mechanisms involved in neurodegeneration, such as mitochondrial dysfunction, neuroinflammation, and excitotoxicity induced by nitric oxide. OBJECTIVE The aim of this research was to establish a molecular connection between diosmetin and OS-associated target receptors was the goal, and it investigated how this interaction can lessen PD. METHODS Seven molecular targets - Adenosine A2A (AA2A), Peroxisome Proliferator-Activated Receptor Gamma (PPARγ), Protein Kinase AKT1, Nucleolar Receptor NURR1, Liver - X Receptor Beta (LXRβ), Monoamine Oxidase - B (MAO-B) and Tropomyosin receptor kinase B (TrkB) were obtained from RCSB. Molecular docking software was employed to determine molecular interactions, while antioxidant activity was assessed through in vitro assays against various free radicals. RESULTS Diosmetin exhibited interactions with all seven target receptors at their binding sites. Notably, it showed superior interaction with AA2A and NURR1 compared to native ligands, with binding energies of -7.55, and -6.34 kcal/mol, respectively. Additionally, significant interactions were observed with PPARγ, AKT1, LXRβ, MAO-B, and TrkB with binding energies of -8.34, -5.42, -7.66, -8.82, -8.45 kcal/mol, respectively. Diosmetin also demonstrated antioxidant activity against various free radicals, particularly against hypochlorous acid (HOCl) and nitric oxide (NO) free radicals. CONCLUSION Diosmetin possibly acts on several target receptors linked to the pathophysiology of PD, demonstrating promise as an OS inhibitor and scavenger.
Collapse
Affiliation(s)
| | | | - Rajnish Srivastava
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
20
|
Zhang F, Luo H. Diosmetin inhibits the growth and invasion of gastric cancer by interfering with M2 phenotype macrophage polarization. J Biochem Mol Toxicol 2023; 37:e23431. [PMID: 37377034 DOI: 10.1002/jbt.23431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Overturning M2 phenotype macrophage polarization is a promising therapeutic strategy for gastric cancer (GC). Diosmetin (DIO) is a natural flavonoid with antitumor effect. The aim of this study was to investigate the effect of DIO on polarization of M2 phenotype macrophages in GC. THP-1 cells were induced to M2 phenotype macrophages and co-cultured with AGS cells. The effects of DIO were determined by flow cytometry, qRT-PCR, CCK-8, Transwell, and western blot. To explore the mechanisms, THP-1 cells were transfected with adenoviral vectors containing tumor necrosis factor receptor-associated factor 2 (TRAF2) or si-TRAF2. DIO (0, 5, 10, and 20 μM) restrained the M2 phenotype macrophage polarization. In addition, DIO (20 μM) reversed the increased viability and invasion of AGS cells induced by the co-culture of M2 macrophages. Mechanistically, TRAF2 knockdown inhibited the effect of M2 phenotype macrophages on AGS cells' growth and invasion. Furthermore, DIO (20 μM) was found to decrease TRAF2/NF-κB activity in GC cells. However, TRAF2 overexpressed reversed the inhibitory effect of DIO on the co-culture system. The in vivo study confirmed that DIO treatment (50 mg/kg) could repress the growth of GC. DIO treatment markedly reduced the expressions of Ki-67 and N-cadherin, and decreased the protein levels of TRAF2 and p-NF-κB/NF-κB. In conclusion, DIO inhibited the growth and invasion of GC cells by interfering with M2 phenotype macrophage polarization through repression of the TRAF2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Faqiang Zhang
- Department of General Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Huan Luo
- Department of General Surgery, Yubei District Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
21
|
Tong Y, Li X, Deng Q, Shi J, Feng Y, Bai L. Advances of the small molecule drugs regulating fibroblast-like synovial proliferation for rheumatoid arthritis. Front Pharmacol 2023; 14:1230293. [PMID: 37547337 PMCID: PMC10400780 DOI: 10.3389/fphar.2023.1230293] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is a type of chronic autoimmune and inflammatory disease. In the pathological process of RA, the alteration of fibroblast-like synoviocyte (FLS) and its related factors is the main influence in the clinic and fundamental research. In RA, FLS exhibits a uniquely aggressive phenotype, leading to synovial hyperplasia, destruction of the cartilage and bone, and a pro-inflammatory environment in the synovial tissue for perpetuation and progression. Evidently, it is a highly promising way to target the pathological function of FLS for new anti-RA drugs. Based on this, we summed up the pathological mechanism of RA-FLS and reviewed the recent progress of small molecule drugs, including the synthetic small molecule compounds and natural products targeting RA-FLS. In the end, there were some views for further action. Compared with MAPK and NF-κB signaling pathways, the JAK/STAT signaling pathway has great potential for research as targets. A small number of synthetic small molecule compounds have entered the clinic to treat RA and are often used in combination with other drugs. Meanwhile, most natural products are currently in the experimental stage, not the clinical trial stage, such as triptolide. There is an urgent need to unremittingly develop new agents for RA.
Collapse
Affiliation(s)
- Yitong Tong
- Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Liu J, Fu L, Yin F, Yin L, Song X, Guo H, Liu J. Diosmetin Maintains Barrier Integrity by Reducing the Expression of ABCG2 in Colonic Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37269551 DOI: 10.1021/acs.jafc.3c00912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Crohn's disease (CD) is a relapsing and chronic inflammatory bowel disease. Recent advances have highlighted that dysfunction of the barrier function formed by a polarized monolayer of columnar epithelial cells plays a crucial role in the pathophysiology of CD. At present, we reported that diosmetin increased cell viability by reducing the levels of TNFα and IL-6 in lipopolysaccharide (LPS)-treated colonic epithelial Caco-2 cells. Meanwhile, diosmetin conferred a direct effect on maintaining barrier integrity by reducing epithelial permeability and increasing the expression of proteins associated with tight junctions, including zonula occludens-l (ZO-1), occludin, and claudin-1, in LPS-treated Caco-2 cells and in 2,4,6-trinitrobenzene sulfonic acid-induced CD mice. Additionally, diosmetin decreased the protein content of adenosine triphosphate-binding cassette efflux transporter G2 (ABCG2) in vitro and in vivo. Over-expression of ABCG2 had an important impact on the epithelial permeability and barrier-related protein levels induced by LPS in Caco-2 cells. At the same time, Ko143, a specific ABCG2 inhibitor, dramatically enhanced the role of diosmetin in ZO-1 and occludin proteins in LPS-treated Caco-2 cells. Mechanically, diosmetin significantly attenuated the role of LPS in the phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (PKB/AKT), and cAMP-response element binding protein (CREB) in Caco-2 cells. The AMPK inhibitor Compound C obviously prevented the effect of diosmetin on ZO-1 and occludin expression in LPS-treated Caco-2 cells. Taken together, the results of this study suggest that AMPK/AKT/CREB-mediated ABCG2 expression plays a crucial role in diosmetin, improving the barrier dysfunction in CD.
Collapse
Affiliation(s)
- Jinfan Liu
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Lu Fu
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Fei Yin
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| | - Li Yin
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| | - Xiaomei Song
- Department of Gastroenterology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, People's Republic of China
| | - Hong Guo
- Department of Gastroenterology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, People's Republic of China
| | - Jianhui Liu
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| |
Collapse
|
23
|
Ahmad T, Khan T, Kirabo A, Shah AJ. Antioxidant Flavonoid Diosmetin Is Cardioprotective in a Rat Model of Myocardial Infarction Induced by Beta 1-Adrenergic Receptors Activation. Curr Issues Mol Biol 2023; 45:4675-4686. [PMID: 37367046 PMCID: PMC10297416 DOI: 10.3390/cimb45060297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Myocardial infarction (MI) is a common and life-threatening manifestation of ischemic heart diseases (IHD). The most important risk factor for MI is hypertension. Natural products from medicinal plants have gained considerable attention globally due to their preventive and therapeutic effects. Flavonoids have been found to be efficacious in ischemic heart diseases (IHD) by alleviating oxidative stress and beta-1 adrenergic activation, but the mechanistic link is not clear. We hypothesized that antioxidant flavonoid diosmetin is cardioprotective in a rat model of MI induced by beta 1-adrenergic receptor activation. To test this hypothesis, we evaluated the cardioprotective potential of diosmetin on isoproterenol-induced MI in rats by performing lead II electrocardiography (ECG), cardiac biomarkers including troponin I (cTnI) and creatinine phosphokinase (CPK), CK-myocardial band, (CK-MB), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and aspartate aminotranferase (AST) by using biolyzer 100, as well as histopathological analysis. We found that diosmetin (1 and 3 mg/kg) attenuated isoproterenol-induced elevation in the T-wave and deep Q-wave on the ECG, as well as heart-to-body weight ratio and infarction size. In addition, pretreatment with diosmetin attenuated the isoproterenol-induced increase in serum troponin I. These results demonstrate that flavonoid diosmetin may provide therapeutic benefit in myocardial infarction.
Collapse
Affiliation(s)
- Taseer Ahmad
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, University Road, Abbottabad 22060, Pakistan
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taous Khan
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Abdul Jabbar Shah
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
| |
Collapse
|
24
|
Liu FY, Wang MQ, Liu MM, Li T, Wang XH, Jiang F, Wu XJ, Cheng J, Cai L, Li R. Therapeutic effects of shikonin on adjuvant-induced arthritis in rats and cellular inflammation, migration and invasion of rheumatoid fibroblast-like synoviocytes via blocking the activation of Wnt/β-catenin pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154857. [PMID: 37163904 DOI: 10.1016/j.phymed.2023.154857] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Shikonin (SKN), the main bioactive component isolated from Lithospermum erythrorhizon Sieb et Zucc, has multiple activities including anti-rheumatic effect, but its specific roles and the precise mechanisms in regulating biological properties of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) are unclear and need further clarification. PURPOSE This study explored the therapeutic roles of SKN on rat adjuvant-induced arthritis (AIA) and cellular inflammation, migration and invasion of TNF-α-induced RA FLS (MH7A cells), and further demonstrated the involved mechanisms. METHODS SKN was intraperitoneally given to AIA rats and its therapeutic role was valued. The effects of SKN in vivo and in vitro on the production of pro-inflammatory factors were examined by ELISA and western blot. Wound-healing, transwell and phalloidin staining assay were carried out to evaluate the effects of SKN on TNF-α-induced migration and invasion in RA FLS. The involvement of Wnt/β-catenin pathway was checked by immunohistochemistry or immunofluorescence assay for β-catenin and western blot for pathway-related proteins. RESULTS SKN treatment in AIA rats reduced paw swelling, arthritis index and pathological damage of ankle joints, indicating its anti-arthritic effect in vivo. SKN had anti-inflammatory roles in vivo and in vitro, evidenced by inhibiting the production of pro-inflammatory factors (like IL-1β, IL-6, IL-8, TNF-α, MMP-2 and MMP-9) in sera and synovium of AIA rats, and in TNF-α-induced MH7A cells. Gelatin zymography result revealed the suppression of SKN on TNF-α-induced MMP-2 activity in vitro. Moreover, SKN inhibited TNF-α-induced migration, invasion and cytoskeletal reorganization in MH7A cells. Mechanistically, SKN suppressed the activation of Wnt/β-catenin signaling in AIA rat synovium and in TNF-α-induced MH7A cells, indicated by the reduced protein levels of Wnt1, p-GSK-3β (Ser9) and β-catenin, the raised protein level of GSK-3β and the decreased nuclear translocation of β-catenin. Interestingly, the combination of LiCl (Wnt/β-catenin agonist) canceled the therapeutic functions of SKN on cellular inflammation, migration and invasion in TNF-α-induced MH7A cells, whereas XAV939 (Wnt/β-catenin inhibitor) enhanced the therapeutic roles of SKN. CONCLUSION SKN showed therapeutic effects on rat AIA and cellular inflammation, migration and invasion of TNF-α-stimulated RA FLS via interrupting Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Fang-Yuan Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China
| | - Meng-Qing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China
| | - Tao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China
| | - Xiao-Hua Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China
| | - Fei Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China
| | - Xin-Jie Wu
- The First Clinical Medical College, Anhui Medical University, Hefei, Anhui Province 230032, PR China
| | - Juan Cheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, PR China
| | - Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China; Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui Province 230032, PR China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032, PR China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui Province 230026, PR China.
| |
Collapse
|
25
|
Li K, Zhang Y, Hao X, Xie D, Wang C, Zhang H, Jin P, Du Q. Improved Stability and In Vitro Anti-Arthritis Bioactivity of Curcumin-Casein Nanoparticles by Ultrasound-Driven Encapsulation. Nutrients 2022; 14:nu14235192. [PMID: 36501222 PMCID: PMC9740927 DOI: 10.3390/nu14235192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Curcumin possesses beneficial biological functions, namely anti-inflammation and anti-diabetic functions. However, due to its low solubility and crystallinity, its applications are limited. In this work, curcumin was encapsulated in casein micelles in order to form curcumin-casein nanoparticles by ultrasound treatment (5 min). The ultrasound treatment induced the entry of the hydrophobic groups to the inner micelles and the polar sulfydryl groups to the surface of the micelles in order to form compact curcumin-casein nanoparticles of an appropriate size (100-120 nm) for cellular endocytosis. The product exhibited excellent stability during 8 months of cold storage, 6 days at room temperature, and 2 days at body temperature. Advanced in vitro experiments demonstrated that curcumin-casein nanoparticles displayed significantly greater inhibitory activity against the proliferation and proinflammatory cytokines of human fibroblast-like synoviocyte-osteo arthritis (HFLS-OA) cells and HFLS-rheumatoid (RA) cells than native curcumin due to better cellular uptake as a result of the low crystallinity and the appropriate nano-size of the nano-form. The results provide a reference for the use of ultrasound treatment to encapsulate other drug molecules and curcumin-casein nanoparticles as potential treatment for arthritis.
Collapse
|
26
|
Yang YP, Jian YQ, Liu YB, Xie QL, Yu HH, Wang B, Li B, Peng CY, Wang W. Heilaohuacid G, a new triterpenoid from Kadsura coccinea inhibits proliferation, induces apoptosis, and ameliorates inflammation in RA-FLS and RAW 264.7 cells via suppressing NF-𝜅B pathway. Phytother Res 2022; 36:3900-3910. [PMID: 36104304 DOI: 10.1002/ptr.7527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 11/11/2022]
Abstract
Heilaohu, the roots of Kadsura coccinea, has been used in Tujia ethnomedicine to treat rheumatic arthritis (RA). Heilaohuacid G (1), a new 3,4-seco-lanostane type triterpenoid isolated from the ethanol extract of Heilaohu, whose structure was determined using HR-ESI-MS data, NMR spectroscopic analyses, and ECD calculations. In this study, our purpose is to elucidate the mechanisms of Heilaohuacid G in the treatment of RA by inhibited proliferation of rheumatoid arthritis-fibroblastoid synovial (RA-FLS) cells and inhibited the inflammatory reactions in LPS-induced RA-FLS and RAW 264.7 cell lines via inhibiting NF-κB pathway. The biological activity screening experiments indicated that Heilaohuacid G significantly inhibited proliferation of RA-FLS cells with IC50 value of 8.16 ± 0.47 μM. CCK-8 assay, ELISA, flow cytometry assay, and Western blot were used to measure the changes of cell viability, apoptosis, and the release of inflammatory cytokines. Heilaohuacid G was found not only induced RA-FLS cell apoptosis, but also inhibited the inflammatory reactions in LPS-induced RA-FLS and RAW 264.7 cell lines via inhibiting NF-κB pathway. Furthermore, Heilaohuacid G (p.o.) at doses of 3.0, 6.0, and 12.0 mg/kg and the ethanol extracts of Heilaohu (p.o.) at doses of 200, 400, and 800 mg/kg both were confirmed antiinflammatory effects on xylene-induced ear mice edema model.
Collapse
Affiliation(s)
- Yu-Pei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yu-Qing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yong-Bei Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Qing-Ling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Huang-He Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Bin Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Cai-Yun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| |
Collapse
|
27
|
Sun M, Zhao H, Liu Y, Ma Y, Tian Z, Wang H, Wei S, Guo Q, Gu Z, Jiang H. Deciphering the pharmacological mechanisms of Chaenomeles Fructus against rheumatoid arthritis by integrating network pharmacology and experimental validation. Food Sci Nutr 2022; 10:3380-3394. [PMID: 36249962 PMCID: PMC9548373 DOI: 10.1002/fsn3.2938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/11/2022] Open
Abstract
Chaenomeles Fructus is a plant that can be used for both food and medicine. Modern studies have shown that Chaenomeles Fructus has anti-inflammatory and immunosuppressive effects on arthritis. However, the mechanism of action of Chaenomeles Fructus on rheumatoid arthritis (RA) and its main active ingredients are still unclear. This study was aimed at devising an integrated strategy for investigating the bioactivity constituents and possible pharmacological mechanisms of Chaenomeles Fructus against RA. The components of Chaenomeles Fructus were analyzed using UPLC-Q-Exactive orbitrap MS techniques and applied to screen the active components of Chaenomeles Fructus according to their oral bioavailability and drug-likeness index. Then, we speculated on the potential molecular mechanisms of Chaenomeles Fructus against RA through a network pharmacology analysis. Finally, the potential molecular mechanisms of Chaenomeles Fructus against RA were validated in a complete Freund's adjuvant (CFA)-induced RA rat model. We identified 48 components in Chaenomeles Fructus and screened seven bioactive ingredients. The results of the network pharmacology prediction and the experimental verification results were analyzed by Venn analysis, and the experimental results concluded that Chaenomeles Fructus mainly interferes with the inflammation of RA by inhibiting arachidonic acid metabolism and the MAPK signaling pathway. This study identified the ingredients of Chaenomeles Fructus by UPLC-Q-Exactive orbitrap MS and explained the possible mechanisms of Chaenomeles Fructus against RA by integrating network pharmacology and experimental validation.
Collapse
Affiliation(s)
- Mengjia Sun
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanChina
| | - Haijun Zhao
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Yuecheng Liu
- Shandong Academy of Traditional Chinese MedicineJinanChina
| | - Yanni Ma
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanChina
| | - Zhenhua Tian
- Experiment Center, Shandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of EducationShandong University of Traditional Chinese MedicineJinanChina
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic ResearchShandong University of Traditional Chinese MedicineJinanChina
| | - Huanjun Wang
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Sheng Wei
- Experiment Center, Shandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of EducationShandong University of Traditional Chinese MedicineJinanChina
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic ResearchShandong University of Traditional Chinese MedicineJinanChina
| | - Qingmei Guo
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanChina
| | - Zhengwei Gu
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanChina
| | - Haiqiang Jiang
- Experiment Center, Shandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of EducationShandong University of Traditional Chinese MedicineJinanChina
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic ResearchShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
28
|
Cai L, Zhou MY, Hu S, Liu FY, Wang MQ, Wang XH, Jiang F, Feng XW, Liu XS, Li R. Umbelliferone Inhibits Migration, Invasion and Inflammation of Rheumatoid Arthritis Fibroblast-Like Synoviocytes and Relieves Adjuvant-Induced Arthritis in Rats by Blockade of Wnt/β-Catenin Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1945-1962. [PMID: 35997647 DOI: 10.1142/s0192415x22500835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Umbelliferone (UMB), a natural coumarin compound, has been reported to possess anti-rheumatic effects on rheumatoid arthritis (RA) experimental models, but its potential role of UMB in regulating migration, invasion and inflammation of RA fibroblast-like synoviocytes (FLS) remain unclear. Herein, MTT assay was performed to confirm the non-cytotoxic concentrations (10, 20, and 40[Formula: see text][Formula: see text]M) and the treatment time (24[Formula: see text]h) of UMB on TNF-[Formula: see text]-stimulated RA FLS (MH7A cells) in vitro. Results of wound-healing, transwell and phalloidin staining assays revealed that UMB inhibited TNF-[Formula: see text]-induced migration, invasion and F-actin cytoskeletal reorganization in MH7A. Results of ELISA, western blot and gelatin zymography indicated that UMB decreased the productions of pro-inflammatory factors, including IL-1[Formula: see text], IL-6, IL-8, MMP-2 and MMP-9, and inhibited MMP-2 activity in TNF-[Formula: see text]-stimulated MH7A cells. In vivo, UMB (25[Formula: see text]mg/kg and 50[Formula: see text]mg/kg) relieved the joint damage and synovial inflammation in rats with adjuvant-induced arthritis (AIA). Mechanistically, UMB could suppress Wnt/[Formula: see text]-catenin signaling both in TNF-[Formula: see text]-induced MH7A cells and in AIA rat synovium, evidenced by decreasing Wnt1 protein level, activating GSK-3[Formula: see text] kinase by blocking GSK-3[Formula: see text] (Ser9) phosphorylation, and reducing the protein level and nuclear translocation of [Formula: see text]-catenin. Importantly, combined use of lithium chloride (a Wnt/[Formula: see text]-catenin signaling agonist) eliminated the inhibitory effects of UMB on migration, invasion and inflammation in vitro and the anti-arthritic effects of UMB in vivo. We concluded that UMB inhibited TNF-[Formula: see text]-induced migration, invasion and inflammation of RA FLS and attenuated the severity of rat AIA through its ability to block Wnt/[Formula: see text]-catenin signaling pathway.
Collapse
Affiliation(s)
- Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Shuang Hu
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Fang-Yuan Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Meng-Qing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Xiao-Hua Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Fei Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Xiao-Wen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Xue-Song Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, P. R. China
| |
Collapse
|
29
|
Liu Y, Wang J, Zhang X. An Update on the Multifaceted Role of NF-kappaB in Endometriosis. Int J Biol Sci 2022; 18:4400-4413. [PMID: 35864971 PMCID: PMC9295070 DOI: 10.7150/ijbs.72707] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/12/2022] [Indexed: 11/14/2022] Open
Abstract
Endometriosis remains a common but challenging gynecological disease among reproductive-aged women with an unclear pathogenesis and limited therapeutic options. Numerous pieces of evidence suggest that NF-κB signaling, a major regulator of inflammatory responses, is overactive in endometriotic lesions and contributes to the onset, progression, and recurrence of endometriosis. Several factors, such as estrogen, progesterone, oxidative stress, and noncoding RNAs, can regulate NF-κB signaling in endometriosis. In the present review, we discuss the mechanisms by which these factors regulate NF-κB during endometriosis progression and provide an update on the role of NF-κB in affecting endometriotic cells, peritoneal macrophages (PMs) as well as endometriosis-related symptoms, such as pain and infertility. Furthermore, the preclinical drugs for blocking NF-κB signaling in endometriosis are summarized, including plant-derived medicines, NF-κB inhibitors, other known drugs, and the potential anti-NF-κB drugs predicted through the Drug-Gene Interaction Database. The present review discusses most of the studies concerning the multifaceted role of NF-κB signaling in endometriosis and provides a summary of NF-κB-targeted treatment in detail.
Collapse
Affiliation(s)
- Yuanmeng Liu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Jianzhang Wang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Xinmei Zhang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China.,Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
30
|
Fu CC, Xu FY, Qian YC, Koo HL, Duan YF, Weng GM, Fan TP, Chen MX, Zhu FY. Secondary Metabolites of Osmanthus fragrans: Metabolism and Medicinal Value. Front Pharmacol 2022; 13:922204. [PMID: 35924042 PMCID: PMC9340074 DOI: 10.3389/fphar.2022.922204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Osmanthus fragrans (scientific name: Osmanthus fragrans (Thunb.) Lour.) is a species of the Osmanthus genus in the family Oleaceae, and it has a long history of cultivation in China. O. fragrans is edible and is well known for conferring a natural fragrance to desserts. This flowering plant has long been cultivated for ornamental purposes. Most contemporary literature related to O. fragrans focuses on its edible value and new species discovery, but the functional use of O. fragrans is often neglected. O, fragrans has many properties that are beneficial to human health, and its roots, stems, leaves, flowers and fruits have medicinal value. These characteristics are recorded in the classics of traditional Chinese medicine. Studies on the metabolites and medicinal value of O. fragrans published in recent years were used in this study to evaluate the medicinal value of O. fragrans. Using keywords such as metabolites and Osmanthus fragrans, a systematic and nonexhaustive search of articles, papers and books related to the medicinal use of Osmanthus fragrans metabolites was conducted. Fifteen metabolites were identified through this literature search and classified into three categories according to their properties and structure: flavonoids, terpenes and phenolic acids. It was found that the pharmacological activities of these secondary metabolites mainly include antioxidant, anticancer, anti-inflammatory and antibacterial activities and that these metabolites can be used to treat many human diseases, such as cancer, skin diseases, cardiovascular diseases, and neurological diseases. Most of the reports that are currently available and concern the secondary metabolites of Osmanthus fragrans have limitations. Some reports introduce only the general classification of compounds in Osmanthus fragrans, and some reports introduce only a single compound. In contrast, the introduction section of this paper includes both the category and the functional value of each compound. While reviewing the data for this study, the authors found that the specific action sites of these compounds and their mechanisms of action in plants are relatively weak, and in the future, additional research should be conducted to investigate this topic further.
Collapse
Affiliation(s)
- Chen-Chen Fu
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- International Cultivar Registration Center for Osmanthus, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Fa-Ying Xu
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yu-Chen Qian
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- International Cultivar Registration Center for Osmanthus, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hoi-Lun Koo
- RCI Research Institute Limited, Hong Kong, China
| | - Yi-Fan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- International Cultivar Registration Center for Osmanthus, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Geng-Min Weng
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- International Cultivar Registration Center for Osmanthus, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- International Cultivar Registration Center for Osmanthus, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
31
|
Cheng Z, Ye F, Xu C, Liang Y, Zhang Z, Chen X, Dai X, Ou Y, Mou Z, Li W, Chen Y, Zhou Q, Zou L, Mao S, Jiang H. The potential mechanism of Longsheyangquan Decoction on the treatment of bladder cancer: Systemic network pharmacology and molecular docking. Front Pharmacol 2022; 13:932039. [PMID: 35910372 PMCID: PMC9330057 DOI: 10.3389/fphar.2022.932039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022] Open
Abstract
Our goal was to explore the bioactive constituents of Longsheyangquan (LSYQ) Decoction and elucidate its mechanisms on the treatment of bladder cancer (BCa). A total of 38 compounds were selected based on their pharmacokinetic properties in three large traditional Chinese medicine (TCM) databases. 654 putative targets of LSYQ Decoction were predicted using a structure-based, reverse-docking algorithm online, of which 343 overlapped with BCa-related protein-coding genes. The protein-protein interaction (PPI) network was constructed to perform module analysis for further Gene Ontology (GO) annotations and Kyoto Encyclopedia Genes and Genomes (KEGG) pathway enrichment analysis, which identified CDK2, EGFR, MMP9 and PTGS2 as hub targets. The TCM-compound-target network and compound-target-pathway network together revealed that quercetin, diosmetin, enhydrin and luteolin were the main components of LSYQ Decoction. Finally, molecular docking showed the affinity between the key compounds and the hub target proteins to verify the accuracy of drug target prediction in the first place. The present study deciphered the core components and targets of LSYQ Decoction on the treatment of BCa in a comprehensive systemic pharmacological manner.
Collapse
Affiliation(s)
- Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheyu Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shanhua Mao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Haowen Jiang,
| |
Collapse
|
32
|
Shao F, Panahipour L, Sordi MB, Tang F, Liu R, Gruber R. Heartwood of Dalbergia cochinchinensis: 4,7,2'-Trihydroxy-4'-methoxyisoflavanol and 6,4'-Dihydroxy-7-methoxyflavane Reduce Cytokine and Chemokine Expression In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041321. [PMID: 35209110 PMCID: PMC8879141 DOI: 10.3390/molecules27041321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Dalbergia cochinchinensis has been widely used in traditional medicine because of its flavonoids; however, the impact of the flavonoids to modulate the inflammatory response to oral cells remains to be described. For this aim, we isolated 4,7,2'-trihydroxy-4'-methoxyisoflavanol (472T4MIF) and 6,4'-dihydroxy-7-methoxyflavane (64D7MF) from the heartwood of D. cochinchinensis and confirmed the chemical structure by nuclear magnetic resonance. We show here that both flavonoids are inhibitors of an inflammatory response of murine RAW 264.7 inflammatory macrophages stimulated by LPS. This is indicated by interleukin (IL)1, IL6, and chemokine CCL2 production besides the phosphorylation of p65. Consistently, in primary murine macrophages, both flavonoids decreased the inflammatory response by lowering LPS-induced IL1 and IL6 expression. To introduce oral cells, we have used human gingival fibroblasts and provoked the inflammatory response by exposing them to IL1β and TNFα. Under these conditions, 472T4MIF, but not 64D7MF, reduced the expression of chemokines CXCL1 and CXCL2. Taken together, we identified two flavonoids that can reduce the expression of cytokines and chemokines in macrophages and fibroblastic cells.
Collapse
Affiliation(s)
- Feng Shao
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (M.B.S.)
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.T.); (R.L.)
- Key Laboratory of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (F.S.); (R.G.)
| | - Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (M.B.S.)
| | - Mariane Beatriz Sordi
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (M.B.S.)
- Department of Dentistry, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil
| | - Fangrui Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.T.); (R.L.)
| | - Ronghua Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.T.); (R.L.)
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (M.B.S.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence: (F.S.); (R.G.)
| |
Collapse
|
33
|
Mahmoud AM, Sayed AM, Ahmed OS, Abdel-Daim MM, Hassanein EHM. The role of flavonoids in inhibiting IL-6 and inflammatory arthritis. Curr Top Med Chem 2022; 22:746-768. [PMID: 34994311 DOI: 10.2174/1568026622666220107105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the synovial joints. RA has well-known clinical manifestations and can cause progressive disability and premature death along with socioeconomic burdens. Interleukin-6 (IL-6) has been implicated in the pathology of RA where it can stimulate pannus formation, osteoclastogenesis, and oxidative stress. Flavonoids are plant metabolites with beneficial pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, anticancer, and others. Flavonoids are polyphenolic compounds found in a variety of plants, vegetables, and fruits. Many flavonoids have demonstrated anti-arthritic activity mediated mainly through the suppression of pro-inflammatory cytokines. This review thoroughly discusses the accumulate data on the role of flavonoids on IL-6 in RA.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| |
Collapse
|
34
|
Mei Z, Du L, Liu X, Chen X, Tian H, Deng Y, Zhang W. Diosmetin alleviated cerebral ischemia/reperfusion injury in vivo and in vitro by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway. Food Funct 2022; 13:198-212. [PMID: 34881386 DOI: 10.1039/d1fo02579a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury is caused by blood flow recovery after an ischemic stroke, and effective treatments targeting I/R injury are still insufficient. Oxidative stress is known to play a pivotal role in the pathogenesis of cerebral I/R injury. Previous studies have revealed that diosmetin could protect against oxidative stress in cerebral I/R injury, but the underlying mechanisms have not been fully revealed. The present study was undertaken to investigate the effects and mechanisms of action of diosmetin on cerebral I/R injury. In vivo, rats were orally gavaged with diosmetin for seven days, and middle cerebral artery occlusion (MCAO) was established to simulate cerebral I/R injury. The neurological deficit score, cerebral infarct volume, and cortical pathological lesions were measured. In vitro, PC12 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R). To clarify the mechanism, the SIRT1 inhibitor EX527 and the small interfering RNA (siRNA) of SIRT1 were used to downregulate the SIRT1 protein level, respectively. The contents of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and malondialdehyde (MDA) were determined with commercial kits. The protein expressions of SIRT1, total Nrf2 (T-Nrf2), nucleus Nrf2 (N-Nrf2), NQO1 and HO-1 were measured by western blotting. The results showed that diosmetin pretreatment improved neurological outcomes, decreased the cerebral infarct volume and pathological lesions, and inhibited oxidative stress in cerebral I/R rats. In PC12 cells, diosmetin increased cell viability, reduced lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) level, and inhibited oxidative stress. Besides, diosmetin increased the protein expressions of SIRT1, T-Nrf2, N-Nrf2, NQO1 and HO-1 both in vivo and in vitro. However, administration of EX527 or silencing the SIRT1 gene with its siRNA eliminated the beneficial effects of diosmetin. Meanwhile, inhibition of SIRT1 decreased the levels of Nrf2 and the protein expressions of its downstream antioxidants NQO1 and HO-1. In conclusion, our data suggested that diosmetin could attenuate cerebral I/R injury by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Zhigang Mei
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Lipeng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiaolu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiangyu Chen
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Huan Tian
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Yihui Deng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
35
|
Yang J, Zhan M, Chen Z, Li L, Lu J, Yang M, Gao X. Diosmetin ameliorates imiquimod-induced psoriasis by regulating apoptosis and inflammation via toll-like receptor 4/nuclear factor kappa B pathway. DERMATOL SIN 2022. [DOI: 10.4103/ds.ds_31_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
36
|
Cai L, Zong P, Zhou MY, Liu FY, Meng B, Liu MM, Li Z, Li R. 7-Hydroxycoumarin mitigates the severity of collagen-induced arthritis in rats by inhibiting proliferation and inducing apoptosis of fibroblast-like synoviocytes via suppression of Wnt/β-catenin signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153841. [PMID: 34752968 DOI: 10.1016/j.phymed.2021.153841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND 7-Hydroxycoumarin (7-HC) as a coumarin compound is widely found in Chinese herbs and exhibits diverse biological activities. Promoting cell apoptosis of fibroblast-like synoviocytes (FLS) is a meaningful strategy for rheumatoid arthritis (RA). Though the protective effect of 7-HC on RA experimental models has been reported, the specific mechanisms, especially the possible relationships of this effect to regulating FLS proliferation and apoptosis, still need clarification. PURPOSE This study clarified the therapeutic effects of 7-HC on collagen-induced arthritis (CIA) in rats and explored the underlying mechanisms. METHODS In vivo, 7-HC (15, 30 or 60 mg/kg) was intraperitoneally given to CIA rats, and its therapeutic effect and anti-inflammatory activity were evaluated. Ki67 immunohistochemistry, TUNEL assay and synovial proteins detection were conducted. In vitro, after treating with 7-HC (20, 40 or 80 μM) in TNF-α-stimulated RA FLS (MH7A cell line), cell proliferation and apoptosis were examined. The involvement of Wnt/β-catenin pathway was checked in vivo and in vitro. RESULTS 7-HC attenuated the severity of rat CIA, evidenced by the reduction of paw swelling, arthritis index, joint damage, collagen type II antibody serum level, and IL-1β, IL-6, TNF-α production in serum and synovium. Particularly, 7-HC in vivo had anti-proliferative and pro-apoptotic effects on CIA rat synovial cells, indicated by reduced synovial Ki67 expression, raised synovial apoptosis index, decreased Bcl-2 protein level and increased level of Bax and cleaved caspase 3 protein. Further, 7-HC in vitro suppressed proliferation and promoted apoptosis of TNF-α-stimulated MH7A cells by regulating the mitochondrial pathway. Mechanistically, 7-HC treatment inhibited Wnt/β-catenin pathway, suggested by the reduction of pathway-related proteins (e.g. Wnt1, LRP6, p-GSK-3β (Ser9), β-catenin, cyclin D1 and c-Myc), the recovery of GSK-3β activity and the inhibition of β-catenin nuclear translocation. As expected, combined use of lithium chloride, an activator of Wnt/β-catenin signaling, reversed the anti-proliferative and pro-apoptotic effects of 7-HC in vitro. CONCLUSION 7-HC relieved the severity of rat CIA by inhibiting cell proliferation and inducing apoptosis of rheumatoid FLS via inhibition of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China; Department of Pathology, School of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China
| | - Pan Zong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China; Department of Pharmacy, the First Affiliated Hospital of University of Science and Technology of China, 17 Lujiang Road, Hefei 230026, Anhui Province, P.R. China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China
| | - Fang-Yuan Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China
| | - Bo Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China.
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, P.R. China.
| |
Collapse
|
37
|
Ma Z, Wei Y, Zhang L, Shi X, Xing R, Liao T, Yang N, Li X, Jie L, Wang P. GCTOF-MS Combined LC-QTRAP-MS/MS Reveals Metabolic Difference Between Osteoarthritis and Osteoporotic Osteoarthritis and the Intervention Effect of Erxian Decoction. Front Endocrinol (Lausanne) 2022; 13:905507. [PMID: 35966099 PMCID: PMC9365991 DOI: 10.3389/fendo.2022.905507] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE OP and OA are chronic bone diseases with high incidence in the middle-aged and elderly populations. The latest research shows that the pathological environment of OP may be involved in the aggravation of the pathological process of OA, and the pathological state of OP plays an important role in the aggravation of OA pathology. EXD is a traditional Chinese medicine decoction that has been used to treat osteoporosis. Therefore, we further study whether OA will be aggravated in the OP environment and whether EXD can alleviate OA by intervening in the OP environment. The purpose of this study was to analyze the effect of OP on OA metabolites by using metabolomic methods and to explore the intervention mechanism of EXD on osteoporotic OA. METHOD Thirty-two SD rats were randomly divided into normal group, OA group, OP-OA group, and EXD group. EXD was administered by gavage. Histopathological evaluation of cartilage tissue was performed using Saffron fast green and HE staining. Western blot and qRT-PCR were used to detect the expression levels of chondrogenesis genes SOX9, COL2A1, and COMP in cartilage tissue. GC-TOFMS and LC-QTRAP-MS/MS metabolomics methods were used to analyze the changes of metabolites in serum samples of rats in each group. RESULT The slice results showed that the cartilage damage in the OP-OA group was more serious than that in the OA group, which was significantly relieved after EXD intervention, indicating that the cartilage damage in the OP-OA group was more severe than that in the OA group and further reduced the protein and gene expressions of cartilage markers SOX9, COL2A1, and COMP. Thirty-seven substances were identified, and gentiopicroside, emodin, quercetin, and diosmetin were analyzed as possible active components of EXD. EXD treatment significantly reduced cartilage damage and reversed the expression of these markers. Metabolomics showed that EXD attenuated cartilage destruction by modulating the expression of cystine, chenodeoxycholate, and D-Turanose, involving glycolysis/gluconeogenesis, pantothenate, and CoA biosynthesis metabolic pathways. CONCLUSION The OP environment may promote the progression of OA through metabolic factors. The benign intervention of EXD in osteoporotic OA involves cystine, chenodeoxycholate, and D-Turanose, and their associated glycolysis/gluconeogenesis, pantothenate, and CoA biosynthesis metabolic pathways. Therefore, we have a deep understanding of the metabolic-related intervention of EXD in osteoporotic OA and are eager to better understand the mechanism of multi-targeted intervention of EXD in bone metabolic lesions.
Collapse
Affiliation(s)
- Zhenyuan Ma
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yibao Wei
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoqing Shi
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Runlin Xing
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Taiyang Liao
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nan Yang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaochen Li
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Lishi Jie
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- *Correspondence: Peimin Wang,
| |
Collapse
|
38
|
Ning R, Chen G, Fang R, Zhang Y, Zhao W, Qian F. Diosmetin inhibits cell proliferation and promotes apoptosis through STAT3/c-Myc signaling pathway in human osteosarcoma cells. Biol Res 2021; 54:40. [PMID: 34922636 PMCID: PMC8684101 DOI: 10.1186/s40659-021-00363-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diosmetin is a bioflavonoid compound naturally abundant in citrus fruits. It is found to perform a variety of activities, while its antitumor property in osteosarcoma, a malignant tumor with unmet clinical treatment, remained unknown. METHODS Colony formation assay, cell cycle analysis and apoptosis analysis were conducted respectively to observe the effect of diosmetin on cell proliferation and apoptosis in human osteosarcoma cells. Western blot and immunoprecipitation were used to detect the expression of apoptotic molecules and activation of STAT3/c-Myc pathway in Saos-2 and U2SO cells. RESULTS Diosmetin significantly inhibited cell proliferation, induced cell cycle arrest at G2/M phase and promoted cell apoptosis in both Saos-2 and U2SO cells. Moreover, Diosmetin downregulated the expression of anti-apoptotic protein Bcl-xL while upregulated the levels of pro-apoptotic proteins including cleaved Caspase-3, cleaved-PARP and Bax. Furthermore, diosmetin dose-dependently inhibited STAT3 phosphorylation, reduced the expression of its downstream protein c-Myc and impeded the interaction between STAT3 molecules. CONCLUSIONS These results suggest that diosmetin exerts anti-osteosarcoma effects by suppressing cell proliferation and inducing apoptosis via inhibiting the activation of STAT3/c-Myc signaling pathway, which provide the possibility for diosmetin to be a chemotherapeutic candidate for osteosarcoma.
Collapse
Affiliation(s)
- Rende Ning
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, 390 Huaihe Road, Hefei, 230031, China.
| | - Guang Chen
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, 390 Huaihe Road, Hefei, 230031, China
| | - Run Fang
- Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, 390 Huaihe Road, Hefei, 230031, China
| | - Yanhui Zhang
- Department of Otolaryngology Head and Neck Surgery, Shanghai General Hospital, 85 Wu Jin Road, Shanghai, 200080, China
| | - Wenjuan Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
39
|
Cai L, Mu YR, Liu MM, Zhou MY, Meng B, Liu FY, Li R. Penta-acetyl Geniposide Suppresses Migration, Invasion, and Inflammation of TNF-α-Stimulated Rheumatoid Arthritis Fibroblast-Like Synoviocytes Involving Wnt/β-Catenin Signaling Pathway. Inflammation 2021; 44:2232-2245. [PMID: 34101073 DOI: 10.1007/s10753-021-01495-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/09/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
We previously reported that penta-acetyl geniposide ((Ac)5GP, an active derivative of geniposide) showed anti-arthritic effect on adjuvant-induced arthritis (AIA) rats by promoting the apoptosis of AIA fibroblast-like synoviocyte (FLS). This study aimed to demonstrate the effects of (Ac)5GP on migration, invasion, and inflammation of TNF-α-stimulated rheumatoid arthritis (RA) FLS (MH7A cell) and to explore the involved mechanisms. MTT assay was used to determine the applied non-cytotoxic doses of (Ac)5GP (12.5, 25, 50 μM) in vitro. Results of wound-healing, transwell, and phalloidin staining assays indicated that (Ac)5GP reduced the migration, invasion, and F-actin cytoskeletal reorganization of TNF-α-stimulated MH7A. Results of ELISA and western blot assays confirmed that (Ac)5GP reduced TNF-α-induced production of pro-inflammatory cytokines (like IL-1β, IL-6, IL-8) and matrix metalloproteinases (MMPs, such as MMP-2 and MMP-9). Moreover, (Ac)5GP inhibited TNF-α-induced activation of Wnt/β-catenin pathway, evidenced by reducing the protein levels of Wnt1, p-GSK-3β (Ser9), and β-catenin and preventing β-catenin nuclear translocation. Importantly, the combination of XAV939 (an inhibitor of Wnt/β-catenin) promoted the actions of (Ac)5GP on TNF-α-induced migration, invasion, and inflammation, further revealing the involvement of Wnt/β-catenin pathway underlying the therapeutic effects of (Ac)5GP on TNF-α-stimulated MH7A. In vivo, (Ac)5GP relieved the progression and severity of rat collagen-induced arthritis, related to reducing the levels of IL-1β, IL-6, IL-8, MMP-2, and MMP-9 as well as inhibiting Wnt/β-catenin pathway in synovial tissues. Collectively, (Ac)5GP could suppress TNF-α-induced migration, invasion, and inflammation in RA FLS involving Wnt/β-catenin pathway and (Ac)5GP might be as a candidate agent for RA treatment.
Collapse
Affiliation(s)
- Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
- Department of Pathology, School of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Yu-Rong Mu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Bo Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Fang-Yuan Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China.
| |
Collapse
|
40
|
Pan L, Feng F, Wu J, Li L, Xu H, Yang L, Xu K, Wang C. Diosmetin inhibits cell growth and proliferation by regulating the cell cycle and lipid metabolism pathway in hepatocellular carcinoma. Food Funct 2021; 12:12036-12046. [PMID: 34755740 DOI: 10.1039/d1fo02111g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diosmetin (DSM), a newly discovered natural flavonoid, found in citrus plants and olive leaves, has been reported to inhibit the progression of cancer when used as a food supplement. This study aimed to investigate DSM's anti-hepatocellular carcinoma (HCC) properties and possible molecular mechanisms. Hep3B and HCCLM3 cells were selected to evaluate the anti-HCC properties of DSM in vitro. RNA sequencing (RNA-seq) was used to identify the possible molecular targets and pathways. Gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of DSM treatment on the primary metabolites of HCCLM3 cells. Tumor xenograft was performed in nude mice to examine the anti-HCC properties of DSM in vivo. The results showed that DSM inhibited the proliferation and migration of HCC cells in vitro in a dose-dependent manner. RNA-seq identified 4459 differentially expressed genes (DEGs) that were highly enriched in the cell cycle pathway. In addition, DSM regulated cell growth by arresting the cell cycle in the G1 phase by decreasing the expression of BCL2, CDK1, and CCND1. Furthermore, metabolomics analysis revealed that DSM interfered with the lipid metabolism pathway of HCC cells by significantly inhibiting the synthesis of metabolites, such as acetic acid, decanoic acid, glycerol, and L-proline. Subcutaneous tumor formation experiments revealed that DSM significantly reduced the tumor volume and weight when compared to the control. Immunohistochemical analysis further revealed that DSM treatment significantly decreased the expression of the proliferative marker KI67. Our findings demonstrated that DSM exhibited antitumor effects on HCC cells by inhibiting cell proliferation via cell cycle arrest and interfering with lipid metabolism.
Collapse
Affiliation(s)
- Lianhong Pan
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China. .,Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, China
| | - Fan Feng
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Jiaqin Wu
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Li Yang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Chunli Wang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
41
|
Risk assessment of the inhibition of hydroxygenkwanin on human and rat cytochrome P450 by cocktail method. Toxicol In Vitro 2021; 79:105281. [PMID: 34843882 DOI: 10.1016/j.tiv.2021.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/14/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
Hydroxygenkwanin (HGK), a natural flavonoid extracted from the buds of Daphne genkwa Sieb.et Zucc. (Thymelaeaceae), possesses a wide range of pharmacological activities, including anti-inflammatory, antibacterial and anticancer. However, the inhibitory effect of HGK on cytochrome P450 (CYP) remains unclear. This study investigated the potential inhibitory effects of HGK on CYP1A2, 2B1/6, 2C9/11, 2D1/6, 2E1 and 3A2/4 enzymes in human and rat liver microsomes (HLMs and RLMs) by the cocktail approach. HGK exhibited no time-dependent inhibition of CYP activities in HLMs and RLMs. Enzyme inhibition kinetics indicated that HGK was not only a competitive inhibitor of human CYP1A2 and 2C9, but also competitively inhibited rat CYP1A2 and 2C11 activities, with Ki value at 0.84 ± 0.03, 8.09 ± 0.44, 2.68 ± 0.32 and 8.35 ± 0.31 μM, respectively. Further studies showed that the inhibitory effect of HGK on CYP enzymes was weaker than that of diosmetin, which may be related to the substitution of hydroxyl and methoxy in the A and B rings of the flavone skeleton. Therefore, the low Ki values of HGK for CYP1A2 and 2C may lead to potential drug-drug interactions and toxicity.
Collapse
|
42
|
Xie B, Pan D, Liu H, Liu M, Shi X, Chu X, Lu J, Zhu M, Xia B, Wu J. Diosmetin Protects Against Obesity and Metabolic Dysfunctions Through Activation of Adipose Estrogen Receptors in Mice. Mol Nutr Food Res 2021; 65:e2100070. [PMID: 34223710 DOI: 10.1002/mnfr.202100070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/28/2021] [Indexed: 12/19/2022]
Abstract
SCOPE Obesity is a major public health and economic problem of global significance. Here, we investigate the role of diosmetin, a natural flavonoid presents mainly in citrus fruits, in the regulation of obesity and metabolic dysfunctions in mice. METHODS AND RESULTS Eight-week-old male C57BL/6 mice fed a high-fat diet (HFD) or 5-week-old male ob/ob mice fed a normal diet are treated with diosmetin (50 mg kg-1 daily) or vehicle for 8 weeks. Diosmetin treatment decreases body weight and fat mass, improves glucose tolerance and insulin resistance in obese mice. These metabolic benefits are mainly attributed to increase energy expenditure via enhancing thermogenesis in brown adipose tissue (BAT) and browning of white adipose tissue (WAT). Mechanistically, diosmetin acts as an agonist for estrogen receptors (ERs), and subsequently elevates adipose expressions of ERs in mice and in cultured adipocytes. When ERs are blocked by their antagonist fulvestrant in mice, diosmetin loses its beneficial effects, suggesting that ERs are indispensable for the metabolic benefits of diosmetin. CONCLUSION The results indicate that diosmetin may be a potential anti-obesity nutritional supplement and could be explored for low ERs-related obesity populations.
Collapse
Affiliation(s)
- Baocai Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dengke Pan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaochen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyi Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junfeng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengqing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiangwei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
43
|
Meephat S, Prasatthong P, Rattanakanokchai S, Bunbupha S, Maneesai P, Pakdeechote P. Diosmetin attenuates metabolic syndrome and left ventricular alterations via the suppression of angiotensin II/AT 1 receptor/gp 91phox/p-NF-κB protein expression in high-fat diet fed rats. Food Funct 2021; 12:1469-1481. [PMID: 33449987 DOI: 10.1039/d0fo02744h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diosmetin, a monomethoxyflavone, is isolated from citrus fruits. The objective of this research was to test the biological role of diosmetin on parameters of metabolic syndrome (MS) and left ventricular (LV) alterations in rats fed with a high-fat (HF) diet. MS was induced by feeding male Sprague-Dawley rats with a HF diet plus 15% fructose in drinking water for 16 weeks. MS rats were given diosmetin (20 or 40 mg per kg per day) or metformin (100 mg per kg per day) for the final four weeks. Diosmetin attenuated signs of MS including, hypertension, hyperglycemia, insulin resistance, and dyslipidemia in rats that received the HF diet (p < 0.05). A decreased stroke volume, ejection fraction, fractional shortening, LV hypertrophy and fibrosis present in the MS group were alleviated by diosmetin treatment (p < 0.05). Diosmetin also suppressed angiotensin-converting enzyme activity, plasma angiotensin II (Ang II) levels and angiotensin II type 1 (AT1) receptor protein expression in MS rats. Increases in superoxide (O2˙-) formation, plasma malondialdehyde, plasma nitrate and nitrite and gp91phox expression induced by a HF diet were ameliorated in the diosmetin treated group. Inflammation indicated by an increased phospho nuclear factor kappa B (p-NF-κB) protein expression and cardiac TNF-α concentration was reduced in MS rats receiving diosmetin (p < 0.05). Metformin also attenuated MS, cardiac abnormalities relevant to decreasing the renin-angiotensin system stimulation, reactive oxygen species and inflammation in MS rats (p < 0.05). Diosmetin alleviated MS and LV dysfunction and remodeling in HF diet-induced MS rats. These results could be associated with the suppression of the Ang II/AT1 receptor/gp91phox/p-NF-κB protein pathway.
Collapse
Affiliation(s)
- Sariya Meephat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Patoomporn Prasatthong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | | | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Mahasarakham, 44000, Thailand.
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. and Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
44
|
Tang M, Gao X, Geng T, Chen X, Wang J, Shen C, Gao H, Qian M, Wang Z, Cao L, Xiao W. Metabolomics analysis of the therapeutic effects of Qiwei Tongbi oral liquid on rheumatoid arthritis in rats. J Pharm Biomed Anal 2021; 202:114166. [PMID: 34052551 DOI: 10.1016/j.jpba.2021.114166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Qiwei Tongbi oral liquid (QWTB), a classical traditional Chinese medicine (TCM) formula, has a good therapeutic effect on rheumatoid arthritis (RA) and is widely used in China. To comprehensively elucidate the therapeutic mechanism of QWTB in the treatment of RA, the effects of QWTB on biomarkers and metabolic pathways in a rat model of kidney deficiency arthritis were investigated in this study. The effects of QWTB on pharmacodynamic indicators, including paw swelling, arthritis score; interleukin-1β, interleukin-6, interleukin-17 F, tumor necrosis factor-α, tartrate-resistant acid phosphatase 5b, bone alkaline phosphatase, bone-specific alkaline phosphatase, bone glaprotein, urea, and creatinine levels; and histopathology, suggested that QWTB significantly improved renal function, inhibited the inflammatory response, and reduced bone loss. In total, 39 differential metabolites were screened by comparing the endogenous components between blank and model rat plasma, among which 16 metabolites were altered by QWTB. The metabolism pathway analysis revealed that α-linolenic acid metabolism, phenylalanine metabolism, sphingolipid metabolism, histidine metabolism and glycerophospholipid metabolism were greatly disturbed. Thus, the biomarkers investigated included (1) α-linolenic acid, (2) hippuric acid, (3) phosphatidylethanolamine (15:0/22:2(13Z,16Z)), (4) phenylpyruvic acid, (5) sphinganine, and (6) urocanic acid. QWTB affected three abnormal biomarkers: (3), (4), and (6). Phenylphruvic acid, sphinganine and urocanic acid were significantly associated with pharmacodynamic indicators, as shown by Pearson correlation analysis. These results indicated that RA-related biomarkers had certain reliability and biological significance. In summary, QWTB regulated the metabolic disorders in rats with RA. Its therapeutic mechanism may involve the regulation of phenylalanine metabolism, histidine metabolism, and glycerophospholipid metabolism. The results of this study are useful for understanding the therapeutic mechanisms of TCM.
Collapse
Affiliation(s)
- Ming Tang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China; China Pharmaceutical University, Nanjing, 210009, China
| | - Xia Gao
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Ting Geng
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China.
| | - Xialin Chen
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Jiajia Wang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Canjie Shen
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China; China Pharmaceutical University, Nanjing, 210009, China
| | - Huifang Gao
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Mengyu Qian
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Zhenzhong Wang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Liang Cao
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China.
| | - Wei Xiao
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-Doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China.
| |
Collapse
|
45
|
Zhou MY, Cai L, Feng XW, Mu YR, Meng B, Liu FY, Li R. Lentivirus-Mediated Overexpression or Silencing of Aquaporin 1 Affects the Proliferation, Migration and Invasion of TNF-α-Stimulated Rheumatoid Arthritis Fibroblast-Like Synoviocytes by Wnt/β-Catenin Signaling Pathway. J Inflamm Res 2021; 14:1945-1957. [PMID: 34017191 PMCID: PMC8131072 DOI: 10.2147/jir.s312783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction Previous studies have confirmed the pathologic role of synovial aquaporin 1 (AQP1) in rheumatoid arthritis (RA), but its associations with the abnormal biologic behaviors of fibroblast-like synoviocytes (FLS) remain unclear. Herein, we examined the roles of AQP1 in the proliferation, migration and invasion of TNF-α-stimulated RA FLS (MH7A cells) and explored the underlying mechanisms. Materials and Methods Lentivirus-mediated AQP1 overexpression or silencing MH7A cells was constructed. Assays of MTT, flow cytometry (PI staining and Annexin V-PE/7-AAD staining), TMRM staining, wound-healing, transwell and phalloidin staining were performed to detect cell proliferation, cycle distribution, apoptosis, migration and invasion. The involvement of Wnt/β-catenin pathway was revealed by Western blot and β-catenin immunofluorescence staining. Results AQP1 overexpression promoted cell proliferation of TNF-α-stimulated MH7A by facilitating transformation from G0/G1 to S phase and inhibiting cell apoptosis (ie, reduced apoptosis rates, raised mitochondrial membrane potential, increased Bcl-2 protein level and decreased levels of Bax and cleaved caspase 3 protein). Also, AQP1 overexpression increased the migration index as well as the numbers of migrated and invasive cells. Furthermore, AQP1 overexpression promoted the activation of Wnt/β-catenin pathway, and XAV939, an inhibitor of Wnt/β-catenin, canceled the above effects of AQP1 overexpression on MH7A cells. As expected, AQP1 silencing exhibited the opposite effects on TNF-α-stimulated MH7A cells, which could be reversed by LiCl, an activator of Wnt/β-catenin. Conclusion AQP1 can affect the proliferation, migration and invasion of MH7A cells by Wnt/β-catenin signaling pathway, and AQP1 can be as a crucial determiner that can regulate RA FLS biologic behaviors.
Collapse
Affiliation(s)
- Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China.,Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Xiao-Wen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Yu-Rong Mu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Bo Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Fang-Yuan Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| |
Collapse
|
46
|
Yang L, Liu R, Ouyang S, Zou M, Duan Y, Li L, Guan T, Zhang T, He J. Compounds DRG and DAG, Two Phenol Glycosides, Inhibit TNF-α-stimulated Inflammatory Response through Blocking NF-kB/AKT/JNK Signaling Pathways in MH7A Cells. Inflammation 2021; 44:1762-1770. [PMID: 33768402 DOI: 10.1007/s10753-021-01452-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Fourteen constituents were recently isolated from the roots of Dendropanax dentiger with cyclooxygenase-2 (COX-2) inhibitory effects. However, the effect of 14 constituents on rheumatoid arthritis (RA) and their action mechanism remain unclear. The study aimed to explore the anti-RA effect and potential mechanism of these constituents in tumor necrosis factor α (TNF-α)-stimulated human RA fibroblast-like synoviocytes (MH7A cells). The cell viability, nitric oxide (NO) production, inflammatory cytokine levels, and protein expressions were measured by cell counting kit-8 (CCK-8), Griess reagent, ELISA, and Western blot assays, respectively. Results showed that 14 constituents (40 μM) have no cytotoxicity for MH7A cells. Among them, two phenols including 3,4-dimethoxyphenyl-1-O-α-L-rhamnopyranosyl-(1→6)-O-β-D-glucopyranoside (DRG) and 3,4-dimethoxyphenol-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (DAG) were shown to significantly inhibit the NO production with IC50 values of 5.25±0.34 and 5.35±0.31 μM, respectively. They also remarkably decreased the release of interleukin (IL)-2, 6, 8, and interferon (IFN)-γ, as well as prominently reduced the phosphorylation protein levels of p65, IkBα, AKT, and JNK at a concentration of 10 μM. Taken together, DRG and DAG could inhibit TNF-α-induced inflammatory response through blocking NF-kB/AKT/JNK signaling pathways in MH7A cells, thus could be promising against RA and other inflammation-related agents.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Ronghua Liu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Sheng Ouyang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Meng Zou
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Yelin Duan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Longmei Li
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Tao Guan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Ting Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China.
| |
Collapse
|
47
|
Yang L, Liu R, Fang Y, He J. Anti-inflammatory effect of phenylpropanoids from Dendropanax dentiger in TNF-α-induced MH7A cells via inhibition of NF-κB, Akt and JNK signaling pathways. Int Immunopharmacol 2021; 94:107463. [PMID: 33618295 DOI: 10.1016/j.intimp.2021.107463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
The root of Dendropanax dentiger (Harms) Merr. has been used for centuries as an empirical treatment for rheumatoid arthritis (RA) in China without scientific validation. In our recent study, nineteen phenylpropanoids (1-19) with cyclooxygenase-2 inhibitory activities from the ethanol extract of D. dentiger roots, indicated to have a potential anti-RA effect. This study, evaluated the anti-RA effect of 19 phenylpropanoids on tumor necrosis factor (TNF)-α induced inflammation in MH7A cells and clarified their underlying mechanisms. As a result, 16 compounds remarkably suppressed nitric oxide (NO) production at a concentration of 40 μM in TNF-α-induced MH7A cells. Among them, pinoresinol (12) and dendrocoumarin A (1) were the most effective substances, which showed significant inhibitory effect on NO production, with IC50 values of 6.25 ± 0.42 and 7.87 ± 0.67 μM, respectively. Furthermore, pinoresinol and dendrocoumarin A remarkably decreased the levels of interleukin (IL)-2, 6, 8, and interferon-gamma (IFN-γ), as well as prominently reduced the phosphorylation protein levels of nuclear factor kappa B (NF-κB) p65, I-kappa-B-alpha (IkBα), protein kinase B (Akt), and c-Jun N-terminal kinase (JNK) by Western blot analysis. Taken together, our findings suggest that pinoresinol and dendrocoumarin A may offer new and safe anti-RA candidates by inhibiting NF-kB, Akt and JNK signaling pathways.
Collapse
Affiliation(s)
- Li Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ronghua Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yiwei Fang
- First Affilated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Junwei He
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
48
|
Zhang Q, Duan HX, Li RL, Sun JY, Liu J, Peng W, Wu CJ, Gao YX. Inducing Apoptosis and Suppressing Inflammatory Reactions in Synovial Fibroblasts are Two Important Ways for Guizhi-Shaoyao-Zhimu Decoction Against Rheumatoid Arthritis. J Inflamm Res 2021; 14:217-236. [PMID: 33542641 PMCID: PMC7851583 DOI: 10.2147/jir.s287242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Background and Objectives Guizhi-Shaoyao-Zhimu decoction (GSZD) is often applied to control rheumatoid arthritis (RA), gout, osteoarthritis, etc. In this study, bioinformatic analysis and experimental verification were used to uncover the integral mechanism profile of GSZD against RA. Materials and Methods The chemical compositions of GSZD were identified by UPLC-QTOF-MS/MS. MH7A cell model was established to screen active compounds in GSZD, and potential targets of these compounds were predicted through online database retrieval. The differential expression genes (DEGs) in synovial tissue of RA patients and normal controls were retrieved from the GEO database. DEGs and the predicated compounds targets were overlapped, and the overlapped genes were subsequently enriched by GO and KEGG analysis. The pathways with significant enrichments were further experimentally verified. Results A total of 19 constituents were identified from GSZD, and 11 compounds showed obviously antiproliferative effects on MH7A cells with IC50 < 100 μg/mL. Bioinformatic analysis indicated that IL-1β, IL-6, MAPK8, JAK2, CXCL8, and CASP3 were the main targets of GSZD, and the integral pharmacological mechanisms profile of GSZD might be related to anti-inflammation and proapoptosis. GSZD can promote the loss of mitochondrial membrane potential (MOMP) and induce apoptosis in MH7A cells. Furthermore, in vitro experiments showed GSZD can not only downregulate mRNA expressions of IL-1β (p<0.05), IL-6 (p<0.05), MMPs (p<0.05) and CCL5 (p<0.05) but also inhibit the nuclear transcription of NF-κB. GSZD also reduced the expressions of Bcl-2 (p<0.05), JAK2 (p<0.05), STAT-3 (p<0.05), whereas increase Bax (p<0.05), Caspase-3 (p<0.05) and caspase-9 (p<0.05). Conclusion Collectively, inducing synovial fibroblast apoptosis and inhibiting inflammatory response are two important ways for GSZD to RA, and our study proved bioinformatic analysis combined with experimental verification is a feasible method to explore the drug targets and mechanism of actions of TCMs.
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, People's Republic of China
| | - Hu-Xinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, People's Republic of China
| | - Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, People's Republic of China
| | - Jia-Yi Sun
- Innovation Research Institute, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, People's Republic of China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, People's Republic of China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, People's Republic of China
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, People's Republic of China
| | - Yong-Xiang Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, People's Republic of China
| |
Collapse
|
49
|
Wang Y, Gao W. Effects of TNF-α on autophagy of rheumatoid arthritis fibroblast-like synoviocytes and regulation of the NF-κB signaling pathway. Immunobiology 2021; 226:152059. [PMID: 33561598 DOI: 10.1016/j.imbio.2021.152059] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/20/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune disease, which seriously harms human health. The hyperplastic growth of fibroblast-like synoviocytes (FLSs) plays a key role in the pathogenesis of RA. However, the pathogenesis of RA remains unclear. In this experiment, we confirmed that Tumor necrosis factor alpha (TNF-α) could activate the autophagy of RA-FLSs. 3-Methyladenine (3-MA) and Chloroquine (CQ), two types of autophagy blocker, combined with TNF-α were used to treat FLSs. The results showed that this treatment caused a reduction in the level of autophagy-related protein, significant increases in the expression of apoptosis-related protein and the apoptosis rate, and significant inhibition of the proliferation-promoting ability of TNF-α. Ammonium pyrrolidinedithiocarbamate (PDTC), a specific nuclear factor kappa-B (NF-κB) activity blocker, significantly inhibited autophagy induced by TNF-α. Collectively, these findings showed, for the first time, that TNF-α can up-regulate autophagy activity and activate the NF-κB signal pathway. Inhibition of autophagy can improve the imbalance of proliferation/apoptosis of FLSs aggravated by TNF-α to some extent, thus delaying the progression of RA. The NF-κB signal pathway may be involved in the regulation of FLSs autophagy by TNF-α.
Collapse
Affiliation(s)
- Yu Wang
- Department of Rheumatology, the First Affiliated Hospital of Jinzhou Medical University, Liaoning, Jinzhou 121000, China
| | - Wei Gao
- Department of Rheumatology, the First Affiliated Hospital of Jinzhou Medical University, Liaoning, Jinzhou 121000, China.
| |
Collapse
|
50
|
Yang L, Liu R, Fan A, Zhao J, Zhang Y, He J. Chemical Composition of Pterospermum heterophyllum Root and its Anti-Arthritis Effect on Adjuvant-Induced Arthritis in Rats via Modulation of Inflammatory Responses. Front Pharmacol 2020; 11:584849. [PMID: 33362544 PMCID: PMC7759541 DOI: 10.3389/fphar.2020.584849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease without effective and beneficial drugs. Many traditional folk medicines have been proven to be effective in treating RA. Among these, the root of Pterospermum heterophyllum Hance has been widely used as a traditional remedy against RA in China, but there is no scientific basis yet. The aim of this study was to investigate for the first time the chemical compositions and therapeutic effect of P. heterophyllum on adjuvant-induced arthritis (AIA) model in rats. 73 compounds were identified from P. heterophyllum based on ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-qTOF-MS/MS), and flavonoids may be partly responsible for the major anti-arthritic effect. In parallel, the P. heterophyllum extract at 160, 320, and 640 mg/kg/day were orally administered to rats for 22 days after post-administration adjuvant. The results showed that P. heterophyllum remarkably ameliorated histological lesions of the knee joint, increased body weight growth, decreased arthritis score, reduced thymus and spleen indices in model rats. Moreover, P. heterophyllum treatment persuasively downregulated the levels of rheumatoid factor (RF), C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-17, cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) and matrix metalloproteinase-2 (MMP-2), and observably upregulated IL-4 and IL-10 levels in model rats. These findings suggest that P. heterophyllum has a prominent anti-RA effect on AIA rats by modulating the inflammatory responses, and supports the traditional folk use of this plant.
Collapse
Affiliation(s)
- Li Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ronghua Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Aiguo Fan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jingjing Zhao
- Department of Pharmacy, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yong Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junwei He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|