1
|
Can I, Guraslan A, Baser OF, Yıldız GN, Toplaoglu I, Aksak Karamese S, Karamese M. The protective effects of a single dose myricetin application on CLP-induced rat sepsis model by analyzing some immune mechanisms. Immunopharmacol Immunotoxicol 2025; 47:305-316. [PMID: 39965764 DOI: 10.1080/08923973.2025.2469227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
INTRODUCTION In this study, our aim was to investigate the protective effects of myricetin (single dose-100 mg/kg) on CLP-induced rat sepsis model by analyzing some immune mechanisms including inflammation and oxidative stress by different techniques such as Immunohistochemistry, ELISA, tissue biochemistry and Western Blotting. METHODS Twenty-eight Wistar albino rats were divided into 4 groups. The pro-inflammatory and anti-inflammatory cytokine levels were measured by ELISA technique. CD68 and Nuclear-Factor-Kappa-B (NF-κB) positivity rates were detected by IHC. Some of oxidative stress parameters were measured by tissue biochemistry, while Toll-like receptor-4 (TLR4) expression others were detected by Western blot technique. RESULTS Sepsis caused a significant increase in all pro-inflammatory cytokine and oxidant levels. Also, it led to an increase in the positivity of CD68 and NF-κB markers as well as the expression levels of TNF-alpha, IL-1-beta, TLR4, Keap-1. However, single dose myricetin application normalized pro-inflammatory cytokine levels, increased anti-oxidant and anti-inflammatory cytokine levels, decreased positivity of CD68 and NF-κB and increased NRF2 and HO-1 expressions. DISCUSSION As a conclusion, the beneficial effect of myricetin on lung injury also involved inhibition of TLR4/NF-κB pathway, suppression of proinflammatory cytokines and induction of anti-inflammatory cytokine production, regulation of oxidant and anti-oxidant system parameters, and activating the NRF2/Keap1/HO-1 pathway.
Collapse
Affiliation(s)
- Ismail Can
- Faculty of Medicine, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Ali Guraslan
- Faculty of Medicine, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Omer Faruk Baser
- Faculty of Medicine, Department of Medical Biochemistry, Kafkas University, Kars, Turkey
| | - Gulfem Nur Yıldız
- Faculty of Medicine, Department of Medical Microbiology, Kafkas University, Kars, Turkey
| | - Ihsan Toplaoglu
- Faculty of Medicine, Department of Chest Diseases, Kafkas University, Kars, Turkey
| | - Selina Aksak Karamese
- Faculty of Medicine, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Murat Karamese
- Faculty of Medicine, Department of Medical Microbiology, Kafkas University, Kars, Turkey
| |
Collapse
|
2
|
Balnadupete A, Moideen FM, Varughese A, Mugaranja K, M JT, Charavu R, Bhandary Y. Beyond the pill: incrimination of nuclear factor-kappa B and their targeted phytomedicine for pulmonary fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04067-1. [PMID: 40137966 DOI: 10.1007/s00210-025-04067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Pulmonary fibrosis (PF) is a slow and irreparable damage of the lung caused by the accumulation of scar tissue, which eventually results in organ dysfunction and fatality from gas exchange failure. One of the extensively studied inflammatory pathways in PF is the NF-κB signalling pathway, which is reportedly involved in epithelial-mesenchymal transition, myofibroblast differentiation, and other cellular processes. Additionally, studies have evidence that NF-κB signalling pathways can be employed as a potential target for developing therapeutic agents against PF. In the current scenario, FDA-approved drugs, nintedanib and pirfenidone, have been used for the treatment of PF with potential side effects. Recently, the usage of bioactive compounds has attracted attention in the treatment of PF. This review focuses on the involvement of the NF-κB signalling pathway in PF and the significance of phytocompounds in regulating the NF-κB pathway. Both the in vitro and in vivo studies reveal that NF-κB-targeted plant-based bioactive compounds significantly ameliorate the PF condition as well as improve the health condition. Databases such as Scopus, PubMed, and Web of Science were used to conduct literature surveys and compile data on all the bioactive compounds. In conclusion, the plant-derived bioactive compounds are potent enough to target the NF-κB with its biological properties, and this could be a highly effective therapeutic strategy for PF in the future.
Collapse
Affiliation(s)
- Akarsha Balnadupete
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Fathimath Muneesa Moideen
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Aleena Varughese
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Kirana Mugaranja
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Jeena T M
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Rakshitha Charavu
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Yashodhar Bhandary
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
- Specialized Research Unit, Yenepoya Medical College & Hospital, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
3
|
Zheng Q, Lei FP, Hui S, Tong M, Liang LH. Ginsenoside Rb1 Relieves Cellular Senescence and Pulmonary Fibrosis by Promoting NRF2/QKI/SMAD7 Axis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2491-2509. [PMID: 39756830 DOI: 10.1142/s0192415x24500952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Cellular senescence is an adverse factor in the development of pulmonary fibrosis (PF). Ginsenoside Rb1 has been found to inhibit both cellular senescence and PF. This study aimed to elucidate the molecular mechanisms by which ginsenoside Rb1 regulates cellular senescence and PF. A PF mouse model was established by Bleomycin (BLM) administration, and a cell model of senescence was constructed using MRC-5 cells treated with Adriamycin RD (ARD) administration. Hematoxylin and Eosin (HE) staining and Masson staining were employed to evaluate cellular structure and collagen fiber content. RT-qPCR and western blotting were used to detect mRNA and protein expression of the target genes. Enzyme-linked Immunosorbent Assay (ELISA) was applied to measure the protein concentration of IL-1[Formula: see text] and IL-18. SA-[Formula: see text]-gal staining was used to evaluate cellular senescence. Our results show that ginsenoside Rb1 effectively suppressed BLM-induced PF in mice. ARD administration to induce cellular senescence reduced NRF2, QKI, and SMAD7 expression in MRC-5 cells. By inducing NRF2 overexpression, ARD-induced cellular senescence and fibrosis in MRC-5 cells were relieved. Notably, NRF2 knockdown abolished the mitigating effects of ginsenoside Rb1 on ARD-induced cellular senescence and fibrosis in MRC-5 cells. Mechanistically, NRF2 increased SMAD7 mRNA stability through the transcriptional regulation of QKI. As expected, ginsenoside Rb1 alleviated ARD-induced senescence and fibrosis in MRC-5 cells by activating the NRF2/QKI/SMAD7 axis. Therefore, it was found that ginsenoside Rb1 mitigates cellular senescence and fibrosis during PF progression by activating the NRF2/QKI/SMAD7 axis. This study provides a potential therapeutic strategy for the treatment of PF and elucidates its mechanism of action.
Collapse
Affiliation(s)
- Qing Zheng
- Department of Geriatrics, Hunan Provincial People's Hospital, (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, P. R. China
| | - Feng-Ping Lei
- Department of Geriatrics, Hunan Provincial People's Hospital, (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, P. R. China
| | - Shan Hui
- Department of Geriatrics, Hunan Provincial People's Hospital, (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, P. R. China
| | - Ming Tong
- Department of Infectious Diseases, Hunan Provincial People's Hospital, (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, P. R. China
| | - Li-Hui Liang
- Department of Geriatrics, Hunan Provincial People's Hospital, (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, P. R. China
| |
Collapse
|
4
|
Liang W, Yang H, Pan L, Wei S, Li Z, Zhang P, Li R, Wu Y, Liu M, Liu X. Ginkgo biloba Extract 50 (GBE50) Exerts Antifibrotic and Antioxidant Effects on Pulmonary Fibrosis in Mice by Regulating Nrf2 and TGF-β1/Smad Pathways. Appl Biochem Biotechnol 2024; 196:4807-4822. [PMID: 37971580 DOI: 10.1007/s12010-023-04755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a progressive lung disorder with a poor prognosis. GBE50 is a new standardized Ginkgo biloba extract that has been widely used in cardiovascular diseases. However, the protective mechanism of GBE50 against PF remains to be elucidated. METHODS C57BL/6J mice were treated with bleomycin (Bleo) to induce PF in the presence or absence of GBE50. Protein content in bronchoalveolar lavage fluid (BALF) and wet weight/dry weight ratio were examined for analysis of pulmonary edema. Hematoxylin-eosin staining and Masson trichrome staining were used for histopathological observation of murine lung tissues. Ashcroft score was used for semi-quantitation of lung fibrosis degree. RT-qPCR was utilized for assessing mRNA levels of pro-fibrotic mediators in lung tissues. TUNEL staining was implemented for cell apoptosis assessment. The levels of oxidative stress- and inflammation-related markers were evaluated by corresponding commercial assay kits. Western blotting was used to evaluate levels of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling- and transforming growth factor (TGF)-β1/SMAD signaling-related proteins. RESULTS GBE50 alleviated lung injury and severity of fibrosis, reduced collagen deposition and cell apoptosis in lung tissues, and suppressed inflammatory response and oxidative stress injury in Bleo-stimulated PF mice. GBE50 activated Nrf2 signaling pathway and inactivated TGF-β1/SMAD signaling pathway in the lungs of Bleo-induced PF mice. Inhibition of Nrf2 signaling reversed GBE50-mediated inactivation of TGF-β1/SMAD signaling and attenuation of inflammation and oxidative stress in Bleo-induced PF mice. CONCLUSION GBE50 protects against Bleo-induced PF in mice by mitigating fibrosis, inflammation and oxidative stress via Nrf2 and TGF-β1/SMAD signaling pathways.
Collapse
Affiliation(s)
- Wei Liang
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China
| | - Hongmei Yang
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Ling Pan
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China.
| | - Sizun Wei
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China.
| | - Zhanhua Li
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China
| | - Pengfei Zhang
- Department of Pulmonary and Critical Care Medicine, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, 545001, Guangxi, China
| | - Ruixiang Li
- Intensive Care Unit, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning530000, Guangxi, China
| | - Yangcong Wu
- Guangxi Traditional Chinese Medicine University, Nanning530000, Guangxi, China
| | - Maohua Liu
- Guangxi Traditional Chinese Medicine University, Nanning530000, Guangxi, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
5
|
Zhao Z, Yang X. Inhibition of SMYD2 attenuates paraquat-induced pulmonary fibrosis by inhibiting the epithelial-mesenchymal transition through the GLIPR2/ERK/p38 axis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105971. [PMID: 38879290 DOI: 10.1016/j.pestbp.2024.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
Paraquat (PQ) poisoning leads to irreversible fibrosis in the lungs with high mortality and no known antidote. In this study, we investigated the effect of the SET and MYND domain containing 2 (SMYD2) on PQ-induced pulmonary fibrosis (PF) and its potential mechanisms. We established an in vivo PQ-induced PF mouse model by intraperitoneal injection of PQ (20 mg/kg) and in vitro PQ (25 μM)-injured MLE-12 cell model. On the 15th day of administration, tissue injury, inflammation, and fibrosis in mice were evaluated using various methods including routine blood counts, blood biochemistry, blood gas analysis, western blotting, H&E staining, ELISA, Masson staining, and immunofluorescence. The findings indicated that AZ505 administration mitigated tissue damage, inflammation, and collagen deposition in PQ-poisoned mice. Mechanistically, both in vivo and in vitro experiments revealed that AZ505 treatment suppressed the PQ-induced epithelial-mesenchymal transition (EMT) process by downregulating GLI pathogenesis related 2 (GLIPR2) and ERK/p38 pathway. Further investigations demonstrated that SMYD2 inhibition decreased GLIPR2 methylation and facilitated GLIPR2 ubiquitination, leading to GLIPR2 destabilization in PQ-exposed MLE-12 cells. Moreover, rescue experiments conducted in vitro demonstrated that GLIPR2 overexpression eliminated the inhibitory effect of AZ505 on the ERK/p38 pathway and EMT. Our results reveal that the SMYD2 inhibitor AZ505 may act as a novel therapeutic candidate to suppress the EMT process by modulating the GLIPR2/ERK/p38 axis in PQ-induced PF.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
6
|
Li YF, Zhu BW, Chen T, Chen LH, Wu D, Hu JN. Construction of Magnolol Nanoparticles for Alleviation of Ethanol-Induced Acute Gastric Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7933-7942. [PMID: 38546719 DOI: 10.1021/acs.jafc.3c09902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Ethanol (EtOH) has been identified as a potential pathogenic factor in gastric ulcer development primarily due to its association with gastric injury and excessive production of reactive oxygen species. Magnolol (Mag), the principal active compound in Magnolia officinalis extract, is well studied for its notable anti-inflammatory and antioxidant properties. However, its limited solubility, propensity for agglomeration, and low absorption and utilization rates significantly restrict its therapeutic use. This study aims to overcome these challenges by developing a Mag nanoparticle system targeting the treatment and prevention of EtOH-induced gastric ulcers in mice. Utilizing a click chemistry approach, we successfully synthesized this system by reacting thiolated bovine serum albumin (BSA·SH) with Mag. The in vitro analysis revealed effective uptake of the BSA·SH-Mag nanoparticle system by human gastric epithelial cells (GES-1), showcasing its antioxidant and anti-inflammatory capabilities. Additionally, BSA·SH-Mag exhibited gradual disintegration and release in simulated gastric fluid, resulting in a notable reduction of oxidative stress in gastric tissues and mucosal tissue repair and effectively reducing inflammatory expression. Furthermore, BSA·SH-Mag attenuated EtOH-induced gastric inflammation by decreasing the level of NOX4 protein expression and augmenting the level of Nrf2 protein expression. In conclusion, our findings indicate that BSA·SH-Mag represents a promising candidate as an oral therapeutic for gastric ulcer treatment.
Collapse
Affiliation(s)
- Yan-Fei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bei-Wei Zhu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
7
|
Wen J, Wang C, Song LY, Wang YY, Liang PT, Pang WL, Yin W, Zhang Q, Zhao WT, Sun XP, Yan JY, Yang ZS. Ferroptosis Mediates Pulmonary Fibrosis: Implications for the Effect of Astragalus and Panax notoginseng Decoction. Can Respir J 2024; 2024:5554886. [PMID: 38584671 PMCID: PMC10997418 DOI: 10.1155/2024/5554886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
Objective To investigate the mechanism through which Astragalus and Panax notoginseng decoction (APD) facilitates the treatment of ferroptosis-mediated pulmonary fibrosis. Materials and Methods First, the electromedical measurement systems were used to measure respiratory function in mice; the lungs were then collected for histological staining. Potential pharmacologic targets were predicted via network pharmacology. Finally, tests including immunohistochemistry, reverse transcription-quantitative polymerase chain reaction, and western blotting were used to evaluate the relative expression levels of collagen, transforming growth factor β, α-smooth muscle actin, hydroxyproline, and ferroptosis-related genes (GPX4, SLC7A11, ACSL4, and PTGS2) and candidates involved in the mediation of pathways associated with ferroptosis (Hif-1α and EGFR). Results APD prevented the occurrence of restrictive ventilation dysfunction induced by ferroptosis. Extracellular matrix and collagen fiber deposition were significantly reduced when the APD group compared with the model group; furthermore, ferroptosis was attenuated, expression of PTGS2 and ACSL4 increased, and expression of GPX4 and SLC7A11 decreased. In the APD group, the candidates related to the mediation of ferroptosis (Hif-1α and EGFR) decreased compared with the model group. Discussion and Conclusions. APD may ameliorate restrictive ventilatory dysfunction through the inhibition of ferroptosis. This was achieved through the attenuation of collagen deposition and inflammatory recruitment in pulmonary fibrosis. The underlying mechanisms might involve Hif-1α and EGFR.
Collapse
Affiliation(s)
- Jing Wen
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Cui Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Li-yun Song
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yin-ying Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Peng-tao Liang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen-lin Pang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen Yin
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qiang Zhang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wei-tian Zhao
- Dali Prefectural Hospital of Traditional Chinese Medicine, Dali, Yunnan, China
| | - Xue-ping Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jin-yuan Yan
- Central Laboratory, Kunming Medical University Second Hospital, Kunming, Yunnan, China
| | - Zhong-shan Yang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
8
|
Hao Y, Li J, Dan L, Wu X, Xiao X, Yang H, Zhou R, Li B, Wang F, Du Q. Chinese medicine as a therapeutic option for pulmonary fibrosis: Clinical efficacies and underlying mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116836. [PMID: 37406748 DOI: 10.1016/j.jep.2023.116836] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is a fibrotic interstitial lung disease caused by continuous damage and excessive repair of alveolar epithelial cells, the pathogenesis of which is not fully understood. At present, the incidence of PF has increased significantly around the world. The therapeutic arsenals against PF are relatively limited, with often poor efficacy and many adverse effects. As a conventional and effective therapeutic strategy, traditional Chinese medicine (TCM) has been widely applied in treating lung fibrosis for thousands of years in China. Due to the multi-ingredient, multi-target characteristics, Chinese medicines possess promising clinical benefits for PF treatment. AIM OF THIS REVIEW This review aims to systematically analyze the clinical efficacy of Chinese medicine on PF, and further summarize the relevant mechanisms of Chinese medicine treating PF in preclinical studies, in order to provide a comprehensive insight into the beneficial effects of Chinese medicines on PF. METHODS Eight major Chinese and English databases were searched from database inception up to October 2022, and all randomized clinical trials (RCTs) investigating the effects of Chinese medicine intervention on effectiveness and safety in the treatment of PF patients were included. Subsequently, preclinical studies related to the treatment of PF in Chinese medicine, including Chinese medicine compounds, Chinese herbal materials and extracts, and Chinese herbal formulas (CHFs) were searched through PubMed and Web of science to summarize the related mechanisms of Chinese medicine against PF. RESULTS A total of 56 studies with 4019 patients were included by searching the relevant databases. Total clinical efficacy, pulmonary function, blood gas analysis, lung high resolution CT (HRCT), 6 min walk test (6-MWT), St George's Respiratory Questionnaire (SGRQ) scores, clinical symptom scores, TCM syndrome scores and other outcome indicators related to PF were analyzed. Besides, numerous preclinical studies have shown that many Chinese medicine compounds, Chinese herbal materials and extracts, and CHFs play a preventive and therapeutic role in PF by reducing oxidative stress, ameliorating inflammation, inhibiting epithelial-mesenchymal transition and myofibroblasts activation, and regulating autophagy and apoptosis. CONCLUSION Chinese medicines show potential as supplements or substitutes for treating PF. And studies on Chinese medicines will provide a new approach to better management of PF.
Collapse
Affiliation(s)
- Yanwei Hao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiaxin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lijuan Dan
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuanyu Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Xiao
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Rui Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Fei Wang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
9
|
Sheng M, Li Q, Huang W, Yu D, Pan H, Qian K, Ren F, Luo L, Tang L. Ang-(1-7)/Mas axis ameliorates bleomycin-induced pulmonary fibrosis in mice via restoration of Nox4-Nrf2 redox homeostasis. Eur J Pharmacol 2024; 962:176233. [PMID: 38043775 DOI: 10.1016/j.ejphar.2023.176233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive interstitial lung disease characterized by diffuse alveolar inflammation, fibroblast differentiation, and the excessive deposition of extracellular matrix. During the progression of PF, redox imbalance caused by excessive reactive oxygen species (ROS) production can result in further destruction of lung tissue. At present, data on the role of NADPH oxidase-4 (Nox4)-nuclear factor erythroid 2-related factor 2 (Nrf2) redox imbalance in PF are limited. The angiotensin (1-7) [Ang-(1-7)]/Mas axis is a protective axis in the renin-angiotensin system (RAS) that exerts antifibrotic effects. Therefore, this study aimed to investigate the role of the Ang-(1-7)/Mas axis in PF and to explore its mechanism in depth. The results revealed that the Ang-(1-7)/Mas axis inhibited TGF-β1-induced lung fibroblast differentiation, inflammation and fibrosis in bleomycin (BLM)-treated lung tissue. A mechanistic study suggested that the Ang-(1-7)/Mas axis may restore Nox4-Nrf2 redox homeostasis by upregulating the level of p62, reducing oxidative stress and the inflammatory response and thus delaying the progression of lung fibrosis. This study provides a theoretical basis for exploring the mechanisms of PF and therapeutic targets for PF.
Collapse
Affiliation(s)
- Min Sheng
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinke Li
- Department of Urology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenhan Huang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Yu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Pan
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kechen Qian
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feifeng Ren
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Luo
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Tang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Badibostan H, Eizadi-Mood N, Hayes AW, Karimi G. Protective effects of natural compounds against paraquat-induced pulmonary toxicity: the role of the Nrf2/ARE signaling pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:611-624. [PMID: 36682065 DOI: 10.1080/09603123.2022.2163985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Paraquat (PQ) is a toxic herbicide to humans. Once absorbed, it accumulates in the lungs. PQ has been well documented that the generation of reactive oxygen species (ROS) is the main mechanism of its toxicity. Oxidative damage of PQ in lungs is represented as generation of cytotoxic and fibrotic mediators, interruption of epithelial and endothelial barriers, and inflammatory cell infiltration. No effective treatment for PQ toxicity is currently available. Several studies have shown that natural compounds (NCs) have the potential to alleviate PQ-induced pulmonary toxicity, due to their antioxidant and anti-inflammatory effects. NCs function as protective agents through stimulation of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Elevation of Nrf2 levels leads to the expression of its downstream enzymes such as SOD, CAT, and HO-1. The hypothesized role of the Nrf2/ARE signaling pathway as the protective mechanism of NCs against PQ-induced pulmonary toxicity is reviewed.
Collapse
Affiliation(s)
- Hasan Badibostan
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nastaran Eizadi-Mood
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Ye X, Zhang M, Gu H, Liu M, Zhao Y, Shi Y, Wu S, Jiang C, Ye X, Zhu H, Li Q, Huang X, Cao M. Animal models of acute exacerbation of pulmonary fibrosis. Respir Res 2023; 24:296. [PMID: 38007420 PMCID: PMC10675932 DOI: 10.1186/s12931-023-02595-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive scarring interstitial lung disease with an unknown cause. Some patients may experience acute exacerbations (AE), which result in severe lung damage visible on imaging or through examination of tissue samples, often leading to high mortality rates. However, the etiology and pathogenesis of AE-IPF remain unclear. AE-IPF patients exhibit diffuse lung damage, apoptosis of type II alveolar epithelial cells, and an excessive inflammatory response. Establishing a reliable animal model of AE is critical for investigating the pathogenesis. Recent studies have reported a variety of animal models for AE-IPF, each with its own advantages and disadvantages. These models are usually established in mice with bleomycin-induced pulmonary fibrosis, using viruses, bacteria, small peptides, or specific drugs. In this review, we present an overview of different AE models, hoping to provide a useful resource for exploring the mechanisms and targeted therapies for AE-IPF.
Collapse
Affiliation(s)
- Xu Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Mingrui Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Mengying Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yichao Zhao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanchen Shi
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shufei Wu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Jiang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huihui Zhu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Li
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinmei Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
- Nanjing Institute of Respiratory Diseases, Nanjing, China.
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China.
- Nanjing Institute of Respiratory Diseases, Nanjing, China.
| |
Collapse
|
12
|
Li L, Lin L, Wen B, Zhao PC, Liu DS, Pang GM, Wang ZR, Tan Y, Lu C. Promising Natural Medicines for the Treatment of High-Altitude Illness. High Alt Med Biol 2023; 24:175-185. [PMID: 37504973 PMCID: PMC10516238 DOI: 10.1089/ham.2022.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Li Li, Lin Lin, Bo Wen, Peng-cheng Zhao, Da-sheng Liu, Guo-ming Pang, Zi-rong Wang, Yong Tan, and Cheng Lu. Promising natural medicines for the treatment of high-altitude illness. High Alt Med Biol. 24:175-185, 2023.-High-altitude illness (HAI) is a dangerous disease characterized by oxidative stress, inflammatory damage and hemodynamic changes in the body that can lead to severe damage to the lungs, heart, and brain. Natural medicines are widely known for their multiple active ingredients and pharmacological effects, which may be important in the treatment of HAI. In this review, we outline the specific types of HAI and the underlying pathological mechanisms and summarize the currently documented natural medicines applied in the treatment of acute mountain sickness and high-altitude cerebral edema, high-altitude pulmonary edema, chronic mountain sickness, and high-altitude pulmonary hypertension. Their sources, types, and medicinal sites are summarized, and their active ingredients, pharmacological effects, related mechanisms, and potential toxicity are discussed. In conclusion, natural medicines, as an acceptable complementary and alternative strategy with fewer side effects and more long-term application, can provide a reference for developing more natural antialtitude sickness medicines in the future and have good application prospects in HAI treatment.
Collapse
Affiliation(s)
- Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Wen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng-cheng Zhao
- School of Life Science, Northwestern Polytechnical University, Xi'an, China
| | - Da-sheng Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guo-ming Pang
- Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, China
| | - Zi-rong Wang
- Logistics Support Division, National Immigration Administration, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Qin S, Tan P, Xie J, Zhou Y, Zhao J. A systematic review of the research progress of traditional Chinese medicine against pulmonary fibrosis: from a pharmacological perspective. Chin Med 2023; 18:96. [PMID: 37537605 PMCID: PMC10398979 DOI: 10.1186/s13020-023-00797-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Pulmonary fibrosis is a chronic progressive interstitial lung disease caused by a variety of etiologies. The disease can eventually lead to irreversible damage to the lung tissue structure, severely affecting respiratory function and posing a serious threat to human health. Currently, glucocorticoids and immunosuppressants are the main drugs used in the clinical treatment of pulmonary fibrosis, but their efficacy is limited and they can cause serious adverse effects. Traditional Chinese medicines have important research value and potential for clinical application in anti-pulmonary fibrosis. In recent years, more and more scientific researches have been conducted on the use of traditional Chinese medicine to improve or reduce pulmonary fibrosis, and some important breakthroughs have been made. This review paper systematically summarized the research progress of pharmacological mechanism of traditional Chinese medicines and their active compounds in improving or reducing pulmonary fibrosis. We conducted a systematic search in several main scientific databases, including PubMed, Web of Science, and Google Scholar, using keywords such as idiopathic pulmonary fibrosis, pulmonary fibrosis, interstitial pneumonia, natural products, herbal medicine, and therapeutic methods. Ultimately, 252 articles were included and systematically evaluated in this analysis. The anti-fibrotic mechanisms of these traditional Chinese medicine studies can be roughly categorized into 5 main aspects, including inhibition of epithelial-mesenchymal transition, anti-inflammatory and antioxidant effects, improvement of extracellular matrix deposition, mediation of apoptosis and autophagy, and inhibition of endoplasmic reticulum stress. The purpose of this article is to provide pharmaceutical researchers with information on the progress of scientific research on improving or reducing Pulmonary fibrosis with traditional Chinese medicine, and to provide reference for further pharmacological research.
Collapse
Affiliation(s)
- Shanbo Qin
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Peng Tan
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| | - Junjie Xie
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yongfeng Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junning Zhao
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| |
Collapse
|
14
|
Peng S, Shen L, Yu X, Zhang L, Xu K, Xia Y, Zha L, Wu J, Luo H. The role of Nrf2 in the pathogenesis and treatment of ulcerative colitis. Front Immunol 2023; 14:1200111. [PMID: 37359553 PMCID: PMC10285877 DOI: 10.3389/fimmu.2023.1200111] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease involving mainly the colorectal mucosa and submucosa, the incidence of which has been on the rise in recent years. Nuclear factor erythroid 2-related factor 2 (Nrf2), known for its key function as a transcription factor, is pivotal in inducing antioxidant stress and regulating inflammatory responses. Numerous investigations have demonstrated the involvement of the Nrf2 pathway in maintaining the development and normal function of the intestine, the development of UC, and UC-related intestinal fibrosis and carcinogenesis; meanwhile, therapeutic agents targeting the Nrf2 pathway have been widely investigated. This paper reviews the research progress of the Nrf2 signaling pathway in UC.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Xiaoyun Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Xu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Lanlan Zha
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Jing Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| |
Collapse
|
15
|
Yin Y, Shen H. Melatonin ameliorates acute lung injury caused by paraquat poisoning by promoting PINK1 and BNIP3 expression. Toxicology 2023; 490:153506. [PMID: 37028639 DOI: 10.1016/j.tox.2023.153506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Paraquat (PQ) poisoning can result in multiple organ dysfunction syndrome, mainly manifesting as acute lung injury and acute respiratory distress syndrome. No specific cure exists for PQ poisoning. However, by scavenging mitochondrial DNA (mtDNA), the damage-associated molecular pattern during PQ poisoning, mitophagy can ameliorate the downstream inflammatory pathways activated by mtDNA. Melatonin (MEL), however, can promote the expression of PINK1 and BNIP3, which are key proteins involved in mitophagy. In this study, we first explored whether MT could reduce PQ-induced acute lung injury by affecting mitophagy in animal models, and then, we studied the specific mechanism associated with this process through in vitro experiments. We also evaluated MEL intervention in the PQ group, while inhibiting the expression of PINK1 and BNIP3, to further determine whether the protective effects of MEL are associated with its effect on mitophagy. We found that when the expression of PINK1 and BNIP3 was inhibited, MEL intervention could not reduce mtDNA leakage and the release of inflammatory factors caused by PQ exposure, suggesting that the protective effect of MEL was blocked. These results suggest that by promoting the expression of PINK1 and BNIP3 and activating mitophagy, MEL can reduce mtDNA/TLR9-mediated acute lung injury during PQ poisoning. The results of this study could provide guidance for the clinical treatment of PQ poisoning to reduce associated mortality.
Collapse
|
16
|
Ang D, Kendall R, Atamian HS. Virtual and In Vitro Screening of Natural Products Identifies Indole and Benzene Derivatives as Inhibitors of SARS-CoV-2 Main Protease (M pro). BIOLOGY 2023; 12:biology12040519. [PMID: 37106720 PMCID: PMC10135783 DOI: 10.3390/biology12040519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
The rapid spread of the coronavirus disease 2019 (COVID-19) resulted in serious health, social, and economic consequences. While the development of effective vaccines substantially reduced the severity of symptoms and the associated deaths, we still urgently need effective drugs to further reduce the number of casualties associated with SARS-CoV-2 infections. Machine learning methods both improved and sped up all the different stages of the drug discovery processes by performing complex analyses with enormous datasets. Natural products (NPs) have been used for treating diseases and infections for thousands of years and represent a valuable resource for drug discovery when combined with the current computation advancements. Here, a dataset of 406,747 unique NPs was screened against the SARS-CoV-2 main protease (Mpro) crystal structure (6lu7) using a combination of ligand- and structural-based virtual screening. Based on 1) the predicted binding affinities of the NPs to the Mpro, 2) the types and number of interactions with the Mpro amino acids that are critical for its function, and 3) the desirable pharmacokinetic properties of the NPs, we identified the top 20 candidates that could potentially inhibit the Mpro protease function. A total of 7 of the 20 top candidates were subjected to in vitro protease inhibition assay and 4 of them (4/7; 57%), including two beta carbolines, one N-alkyl indole, and one Benzoic acid ester, had significant inhibitory activity against Mpro protease. These four NPs could be developed further for the treatment of COVID-19 symptoms.
Collapse
Affiliation(s)
- Dony Ang
- Computational and Data Sciences Program, Chapman University, Orange, CA 92866, USA
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Riley Kendall
- Computational and Data Sciences Program, Chapman University, Orange, CA 92866, USA
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Hagop S Atamian
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Biological Sciences Program, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
17
|
Zhang Q, Ye W, Liu Y, Niu D, Zhao X, Li G, Qu Y, Zhao Z. S-allylmercapto-N-acetylcysteine ameliorates pulmonary fibrosis in mice via Nrf2 pathway activation and NF-κB, TGF-β1/Smad2/3 pathway suppression. Biomed Pharmacother 2023; 157:114018. [PMID: 36410121 PMCID: PMC9672846 DOI: 10.1016/j.biopha.2022.114018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic lung disease characterised by alveolar inflammatory injury, alveolar septal thickening, and eventually fibrosis. Patients with severe Coronavirus Disease 2019 (COVID-19) may have left a certain degree of pulmonary fibrosis. PF is commonly caused by oxidative imbalance and inflammatory damage. S-allylmercapto-N-acetylcysteine (ASSNAC) exhibits anti-oxidative and anti-inflammatory effects in other diseases. However, the pharmacodynamics of ASSNAC remain unclear for PF. This investigation aimed to evaluate the efficacy and mechanism of ASSNAC against PF. The PF model was established by TGF-β1 stimulating HFL-1 cells in vitro. ASSNAC exhibited the potential to inhibit fibroblast transformation into myofibroblasts. Also, in the PF mice model with bleomycin (BLM), the sodium salt of ASSNAC (ASSNAC-Na) inhalation was treated. ASSNAC remarkably improved mice's lung tissue structure and collagen deposition. The important indicator proteins of PF, collagen Ⅰ, collagen Ⅲ, and α-SMA significantly decreased in the ASSNAC treated groups. Besides, ASSNAC attenuated oxidative stress by reversing glutathione (GSH), superoxide dismutase (SOD) levels and interfering with Nrf2/NOX4 signaling pathways. ASSNAC showed an anti-inflammatory effect by reducing the number of inflammatory cells and inflammatory cytokines, such as TNF-α and IL-6, and blocking the NF-κB signaling pathway. ASSNAC inhibited fibroblast differentiation by blocking the TGF-β1/Smad2/3 signaling pathway. This study implicates that ASSNAC alleviates pulmonary fibrosis through fighting against oxidative stress, reducing inflammation and inhibiting fibroblast differentiation.
Collapse
Affiliation(s)
- Qinxiu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Wenhui Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Ying Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Decao Niu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Xin Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Genjv Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Ying Qu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, PR China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, PR China.
| |
Collapse
|
18
|
Patra M, Dubey SK, Saha S, Rizzoli C, Bhattacharjee S, Saha R. Simultaneous presence of mono- and bi-cationic bipyridyls within a metal-organic supramolecular host: crystal structure, spectral and Hirshfeld surface analysis. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2154155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Sudipta Saha
- Department of Chemistry, TDB College, Ranjganj, India
| | | | | | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Asansol, India
| |
Collapse
|
19
|
Signaling pathways involved in paraquat-induced pulmonary toxicity: Molecular mechanisms and potential therapeutic drugs. Int Immunopharmacol 2022; 113:109301. [DOI: 10.1016/j.intimp.2022.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
20
|
Li L, Wu Y, Wang J, Yan H, Lu J, Wang Y, Zhang B, Zhang J, Yang J, Wang X, Zhang M, Li Y, Miao L, Zhang H. Potential Treatment of COVID-19 with Traditional Chinese Medicine: What Herbs Can Help Win the Battle with SARS-CoV-2? ENGINEERING (BEIJING, CHINA) 2022; 19:139-152. [PMID: 34729244 PMCID: PMC8552808 DOI: 10.1016/j.eng.2021.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
Traditional Chinese medicine (TCM) has been successfully applied worldwide in the treatment of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the pharmacological mechanisms underlying this success remain unclear. Hence, the aim of this review is to combine pharmacological assays based on the theory of TCM in order to elucidate the potential signaling pathways, targets, active compounds, and formulas of herbs that are involved in the TCM treatment of COVID-19, which exhibits combatting viral infections, immune regulation, and amelioration of lung injury and fibrosis. Extensive reports on target screening are elucidated using virtual prediction via docking analysis or network pharmacology based on existing data. The results of these reports indicate that an intricate regulatory mechanism is involved in the pathogenesis of COVID-19. Therefore, more pharmacological research on the natural herbs used in TCM should be conducted in order to determine the association between TCM and COVID-19 and account for the observed therapeutic effects of TCM against COVID-19.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzheng Wu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiabao Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huimin Yan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boli Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junhua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Min Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
21
|
The Role of Nrf2 in Pulmonary Fibrosis: Molecular Mechanisms and Treatment Approaches. Antioxidants (Basel) 2022; 11:antiox11091685. [PMID: 36139759 PMCID: PMC9495339 DOI: 10.3390/antiox11091685] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Pulmonary fibrosis is a chronic, progressive, incurable interstitial lung disease with high mortality after diagnosis and remains a global public health problem. Despite advances and breakthroughs in understanding the pathogenesis of pulmonary fibrosis, there are still no effective methods for the prevention and treatment of pulmonary fibrosis. The existing treatment options are imperfect, expensive, and have considerable limitations in effectiveness and safety. Hence, there is an urgent need to find novel therapeutic targets. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a central regulator of cellular antioxidative responses, inflammation, and restoration of redox balance. Accumulating reports reveal that Nrf2 activators exhibit potent antifibrosis effects and significantly attenuate pulmonary fibrosis in vivo and in vitro. This review summarizes the current Nrf2-related knowledge about the regulatory mechanism and potential therapies in the process of pulmonary fibrosis. Nrf2 orchestrates the activation of multiple protective genes that target inflammation, oxidative stress, fibroblast–myofibroblast differentiation (FMD), and epithelial–mesenchymal transition (EMT), and the mechanisms involve Nrf2 and its downstream antioxidant, Nrf2/HO−1/NQO1, Nrf2/NOX4, and Nrf2/GSH signaling pathway. We hope to indicate potential for Nrf2 system as a therapeutic target for pulmonary fibrosis.
Collapse
|
22
|
Laloglu E, Alay H. Role of transforming growth factor-beta 1 and connective tissue growth factor levels in coronavirus disease-2019-related lung Injury: a prospective, observational, cohort study. Rev Soc Bras Med Trop 2022; 55:e06152021. [PMID: 35894403 PMCID: PMC9359341 DOI: 10.1590/0037-8682-0615-2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Coronavirus disease-2019 (COVID-19) results in acute lung injury. This study examined the usefulness of serum transforming growth factor-beta 1 (TGF-β1) and connective tissue growth factor (CTGF) levels in predicting disease severity in COVID-19 patients with pulmonary involvement. Methods: Fifty patients with confirmed COVID-19 and pulmonary involvement between September 2020, and February 2021 (Group 1) and 45 healthy controls (Group 2) were classified into three subgroups based on clinical severity: moderate, severe, and critical pneumonia. Serum TGF-β1 and CTGF concentrations were measured on days 1 and 7 of admission in Group 1 using an enzyme-linked immunosorbent assay. These concentrations were also measured in control cases. The mean serum TGF-β1 and CTGF levels were then compared among COVID-19 patients, based on clinical severity. Results: Significantly higher mean serum TGF-β1 and CTGF levels were observed on both days in Group 1 than in the control group. The mean serum TGF-β1 and CTGF levels on day 7 were also significantly higher than those on day 1 in Group 1. The critical patient group had the highest serum TGF-β1 and CTGF levels on both days, and the difference between this group and the moderate and severe pneumonia groups was significant. Cutoff values of 5.36 ng/mL for TGF-β1 and 626.2 pg/mL for CTGF emerged as predictors of COVID-19 with pulmonary involvement in receiver-operating characteristic curve analysis. Conclusions: TGF-β1 and CTGF are potential markers that can distinguish COVID-19 patients with pulmonary involvement and indicate disease severity. These findings may be useful for initiating treatment for early-stage COVID-19.
Collapse
Affiliation(s)
- Esra Laloglu
- Ataturk University, Faculty of Medicine, Department of Medical Biochemistry, Erzurum, Turkey
| | - Handan Alay
- Ataturk University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Erzurum, Turkey
| |
Collapse
|
23
|
Wang Y, Li X, Pu S, Wang X, Guo L, Zhang L, Wang Z. Ameliorative Effects of Arctigenin on Pulmonary Fibrosis Induced by Bleomycin via the Antioxidant Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3541731. [PMID: 35847593 PMCID: PMC9277162 DOI: 10.1155/2022/3541731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
In this study, we evaluated the in vivo effect of arctigenin (ATG) on bleomycin-induced pulmonary fibrosis in mice and assessed the role of antioxidant activity. Hematoxylin and eosin (H&E) staining, the results of Masson's trichrome, and Sirius red staining showed that bleomycin induced obvious pathological changes and collagen deposition in the lung tissue of mice, which were effectively inhibited by ATG. Specifically, based on immunohistochemistry and western blot results, ATG inhibited the expression of fibrosis markers, such as collagen, fibronectin, and α-SMA. Moreover, ATG regulated reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in the lung tissue of pulmonary fibrosis mice and reduced the pressure of oxidative stress. ATG also regulated the TGF-β-induced expression of p-Akt, confirming that ATG can inhibit fibrosis through antioxidant activity modulation.
Collapse
Affiliation(s)
- Yueshang Wang
- College of Animal Science & Technology, College of Animal Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- College of Pharmacy, Linyi University, Linyi, 276000 Shandong, China
| | - Xinpeng Li
- College of Pharmacy, Linyi University, Linyi, 276000 Shandong, China
| | - Shiwen Pu
- College of Pharmacy, Linyi University, Linyi, 276000 Shandong, China
| | - Xiao Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lisheng Zhang
- College of Animal Science & Technology, College of Animal Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Zhen Wang
- College of Pharmacy, Linyi University, Linyi, 276000 Shandong, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
24
|
An Inhibitor of Nuclear Factor-Kappa B Pathway Attenuates the Release of TGF-β1 and Inhibits the Fibrogenic Progress in a Model of Airway Remodeling Induced by Acrolein. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4984634. [PMID: 35432586 PMCID: PMC9007674 DOI: 10.1155/2022/4984634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
Airway inflammation, airway hypersecretion, and airway remodeling are believed to be involved in the process of lung fibrosis. Nowadays, acrolein is widely used to establish the model of airway remodeling. An active component of propolis, named caffeic acid phenethyl ester (CAPE), is recognized as an inhibitor of the NF-κB pathway and shows anti-inflammatory effect. The purpose of this study was to investigate the protective effect of CAPE on acrolein-induced airway remodeling. 24 mice were divided into 4 groups: control group; acrolein group, mice received acrolein (inhalation of acrolein for 20 days); CAPE group, mice received CAPE (30 mg/kg); and acrolein+CAPE group, mice received acrolein and CAPE. After 20 days, lung tissue was removed for histopathology and immunohistochemical evaluations. TGF-β1 and Muc5ac levels were measured at the protein and molecular levels. Additionally, the phospho-P65/P65 values in the airway smooth muscle cells treated with TGF-β1 or CAPE were detected by Western blot. The results showed that compared with the control, subepithelial collagen deposition, airway inflammation, and peribronchus fibrosis were inhibited in the group treated with CAPE. Furthermore, TGF-β1 was significantly decreased in the acrolein+CAPE group compared with the acrolein group. Additionally, we identified CAPE inhibited P65 phosphorylation. However, CAPE did not inhibit the Muc5ac overproduction and hypersecretion induced by acrolein. In conclusion, as an inhibitor of the NF-κB pathway, CAPE attenuated the release of TGF-β1, which inhibited the fibrogenic progress induced by acrolein in mice and took no effect on inhibiting airway mucus hypersecretion.
Collapse
|
25
|
Hasan M, Paul NC, Paul SK, Saikat ASM, Akter H, Mandal M, Lee SS. Natural Product-Based Potential Therapeutic Interventions of Pulmonary Fibrosis. Molecules 2022; 27:1481. [PMID: 35268581 PMCID: PMC8911636 DOI: 10.3390/molecules27051481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis (PF) is a disease-refractive lung condition with an increased rate of mortality. The potential factors causing PF include viral infections, radiation exposure, and toxic airborne chemicals. Idiopathic PF (IPF) is related to pneumonia affecting the elderly and is characterized by recurring scar formation in the lungs. An impaired wound healing process, defined by the dysregulated aggregation of extracellular matrix components, triggers fibrotic scar formation in the lungs. The potential pathogenesis includes oxidative stress, altered cell signaling, inflammation, etc. Nintedanib and pirfenidone have been approved with a conditional endorsement for the management of IPF. In addition, natural product-based treatment strategies have shown promising results in treating PF. In this study, we reviewed the recently published literature and discussed the potential uses of natural products, classified into three types-isolated active compounds, crude extracts of plants, and traditional medicine, consisting of mixtures of different plant products-in treating PF. These natural products are promising in the treatment of PF via inhibiting inflammation, oxidative stress, and endothelial mesenchymal transition, as well as affecting TGF-β-mediated cell signaling, etc. Based on the current review, we have revealed the signaling mechanisms of PF pathogenesis and the potential opportunities offered by natural product-based medicine in treating PF.
Collapse
Affiliation(s)
- Mahbub Hasan
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
- Department of Oriental Biomedical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
| | - Nidhan Chandra Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Shamrat Kumar Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Hafeza Akter
- Pharmacology and Toxicology Research Division, Health Medical Science Research Foundation, Dhaka 1207, Bangladesh;
| | - Manoj Mandal
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Sang-Suk Lee
- Department of Oriental Biomedical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
| |
Collapse
|
26
|
Liu YX, Zhou YH, Jiang CH, Liu J, Chen DQ. Prevention, treatment and potential mechanism of herbal medicine for Corona viruses: A review. Bioengineered 2022; 13:5480-5508. [PMID: 35184680 PMCID: PMC8973820 DOI: 10.1080/21655979.2022.2036521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by the SARS-coronavirus 2(SARS-CoV-2) virus has become the greatest global public health crisis in recent years,and the COVID-19 epidemic is still continuing. However, due to the lack of effectivetherapeutic drugs, the treatment of corona viruses is facing huge challenges. In thiscontext, countries with a tradition of using herbal medicine such as China have beenwidely using herbal medicine for prevention and nonspecific treatment of corona virusesand achieved good responses. In this review, we will introduce the application of herbalmedicine in the treatment of corona virus patients in China and other countries, andreview the progress of related molecular mechanisms and antiviral activity ingredients ofherbal medicine, in order to provide a reference for herbal medicine in the treatment ofcorona viruses. We found that herbal medicines are used in the prevention and fightagainst COVID-19 in countries on all continents. In China, herbal medicine has beenreported to relieve some of the clinical symptoms of mild patients and shorten the length of hospital stay. However, as most herbal medicines for the clinical treatment of COVID-19still lack rigorous clinical trials, the clinical and economic value of herbal medicines in theprevention and treatment of COVID-19 has not been fully evaluated. Future work basedon large-scale randomized, double-blind clinical trials to evaluate herbal medicines andtheir active ingredients in the treatment of new COVID-19 will be very meaningful.
Collapse
Affiliation(s)
- Yan-Xia Liu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-He Zhou
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 China
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Chang-Hong Jiang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Ding-Qiang Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Pagano E. Phytocompounds and COVID-19: Two years of knowledge. Phytother Res 2022; 36:2267-2271. [PMID: 35170093 PMCID: PMC9111037 DOI: 10.1002/ptr.7420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 01/30/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
28
|
Guo DA, Yao CL, Wei WL, Zhang JQ, Bi QR, Li JY, Khan I, Bauer R. Traditional Chinese medicines against COVID-19: A global overview. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.353502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
29
|
Wu Y, Xu L, Cao G, Min L, Dong T. Effect and Mechanism of Qingfei Paidu Decoction in the Management of Pulmonary Fibrosis and COVID-19. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 50:33-51. [PMID: 34931591 DOI: 10.1142/s0192415x22500021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Qingfei Paidu decoction (QFPD) has been repeatedly recommended for the clinical treatment of novel coronavirus disease 2019 (COVID-19) in multiple provinces throughout China. A possible complication of COVID-19 lung involvement is pulmonary fibrosis, which causes chronic breathing difficulties and affects the patient's quality of life. Therefore, there is an important question regarding whether QFPD can alleviate the process of pulmonary fibrosis and its potential mechanisms. To explore this issue, this study demonstrated the anti-pulmonary fibrosis activity and mode of action of QFPD in vivo and in vitro pulmonary fibrosis models and network pharmacology. The results showed that QFPD effectively ameliorated the bleomycin-induced inflammation and collagen deposition in mice and significantly improved the epithelial-mesenchymal transition in pulmonary fibrosis in mice. In addition, QFPD inhibited bleomycin-induced M2 polarization of macrophages in pulmonary tissues. An in-depth study of the mechanism of QFPD in the treatment of pulmonary fibrosis based on network pharmacology and molecular simulation revealed that SRC was the main target of QFPD and sitosterol (a key compound in QFPD). QFPD and sitosterol regulate the EMT process and M2 polarization of macrophages by inhibiting the activation of SRC, thereby alleviating pulmonary fibrosis in mice. COVID-19 infection might produce severe fibrosis, and antifibrotic therapy with QFPD may be valuable in preventing severe neocoronavirus disease in patients with IPF, which could be a key factor explaining the role of QFPD in the treatment of COVID-19.
Collapse
Affiliation(s)
- Yu Wu
- Department of Pharmacy, Chongchuan District, Nantong 226000, China.,College of Pharmacy, Nanjing University of Traditional Chinese Medicine, Qixia District, Nanjing 210023, China
| | - Lili Xu
- Department of Orthopaedics, Nantong Hospital of Traditional Chinese Medicine, Affiliated Traditional Chinese Medicine Hospital of Nantong University, Nantong Hospital to Nanjing University of Chinese Medicine, Chongchuan District, Nantong 226000, China
| | - Gang Cao
- Department of Pharmacy, Chongchuan District, Nantong 226000, China
| | - Lingtian Min
- Department of Orthopaedics, Nantong Hospital of Traditional Chinese Medicine, Affiliated Traditional Chinese Medicine Hospital of Nantong University, Nantong Hospital to Nanjing University of Chinese Medicine, Chongchuan District, Nantong 226000, China
| | - Tingting Dong
- Department of Oncology, Suqian First Hospital, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Sucheng District, Suqian 223800, P.R. China
| |
Collapse
|
30
|
Epoxyeicosatrienoic Acids and Fibrosis: Recent Insights for the Novel Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms221910714. [PMID: 34639055 PMCID: PMC8509622 DOI: 10.3390/ijms221910714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Organ fibrosis often ends in eventual organ failure and leads to high mortality. Although researchers have identified many effector cells and molecular pathways, there are few effective therapies for fibrosis to date and the underlying mechanism needs to be examined and defined further. Epoxyeicosatrienoic acids (EETs) are endogenous lipid metabolites of arachidonic acid (ARA) synthesized by cytochrome P450 (CYP) epoxygenases. EETs are rapidly metabolized primarily via the soluble epoxide hydrolase (sEH) pathway. The sEH pathway produces dihydroxyeicosatrienoic acids (DHETs), which have lower activity. Stabilized or increased EETs levels exert several protective effects, including pro-angiogenesis, anti-inflammation, anti-apoptosis, and anti-senescence. Currently, intensive investigations are being carried out on their anti-fibrotic effects in the kidney, heart, lung, and liver. The present review provides an update on how the stabilized or increased production of EETs is a reasonable theoretical basis for fibrosis treatment.
Collapse
|
31
|
Cisterna B, Costanzo M, Lacavalla MA, Galiè M, Angelini O, Tabaracci G, Malatesta M. Low Ozone Concentrations Differentially Affect the Structural and Functional Features of Non-Activated and Activated Fibroblasts In Vitro. Int J Mol Sci 2021; 22:10133. [PMID: 34576295 PMCID: PMC8466365 DOI: 10.3390/ijms221810133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Oxygen-ozone (O2-O3) therapy is increasingly applied as a complementary/adjuvant treatment for several diseases; however, the biological mechanisms accounting for the efficacy of low O3 concentrations need further investigations to understand the possibly multiple effects on the different cell types. In this work, we focused our attention on fibroblasts as ubiquitous connective cells playing roles in the body architecture, in the homeostasis of tissue-resident cells, and in many physiological and pathological processes. Using an established human fibroblast cell line as an in vitro model, we adopted a multimodal approach to explore a panel of cell structural and functional features, combining light and electron microscopy, Western blot analysis, real-time quantitative polymerase chain reaction, and multiplex assays for cytokines. The administration of O2-O3 gas mixtures induced multiple effects on fibroblasts, depending on their activation state: in non-activated fibroblasts, O3 stimulated proliferation, formation of cell surface protrusions, antioxidant response, and IL-6 and TGF-β1 secretion, while in LPS-activated fibroblasts, O3 stimulated only antioxidant response and cytokines secretion. Therefore, the low O3 concentrations used in this study induced activation-like responses in non-activated fibroblasts, whereas in already activated fibroblasts, the cell protective capability was potentiated.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Maria Assunta Lacavalla
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Osvaldo Angelini
- San Rocco Clinic, Via Monsignor G.V. Moreni 95, I-25018 Montichari, Italy; (O.A.); (G.T.)
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G.V. Moreni 95, I-25018 Montichari, Italy; (O.A.); (G.T.)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| |
Collapse
|
32
|
Liskova A, Koklesova L, Samec M, Abdellatif B, Zhai K, Siddiqui M, Šudomová M, Hassan ST, Kudela E, Biringer K, Giordano FA, Büsselberg D, Golubnitschaja O, Kubatka P. Targeting phytoprotection in the COVID-19-induced lung damage and associated systemic effects-the evidence-based 3PM proposition to mitigate individual risks. EPMA J 2021; 12:325-347. [PMID: 34367380 PMCID: PMC8329620 DOI: 10.1007/s13167-021-00249-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023]
Abstract
The risks related to the COVID-19 are multi-faceted including but by far not restricted to the following: direct health risks by poorly understood effects of COVID-19 infection, overloaded capacities of healthcare units, restricted and slowed down care of patients with non-communicable disorders such as cancer, neurologic and cardiovascular pathologies, among others; social risks-restricted and broken social contacts, isolation, professional disruption, explosion of aggression in the society, violence in the familial environment; mental risks-loneliness, helplessness, defenceless, depressions; and economic risks-slowed down industrial productivity, broken delivery chains, unemployment, bankrupted SMEs, inflation, decreased capacity of the state to perform socially important programs and to support socio-economically weak subgroups in the population. Directly or indirectly, the above listed risks will get reflected in a healthcare occupation and workload which is a tremendous long-term challenge for the healthcare capacity and robustness. The article does not pretend to provide solutions for all kind of health risks. However, it aims to present the scientific evidence of great clinical utility for primary, secondary, and tertiary care to protect affected individuals in a cost-effective manner. To this end, due to pronounced antimicrobial, antioxidant, anti-inflammatory, and antiviral properties, naturally occurring plant substances are capable to protect affected individuals against COVID-19-associated life-threatening complications such as lung damage. Furthermore, they can be highly effective, if being applied to secondary and tertiary care of noncommunicable diseases under pandemic condition. Thus, the stratification of patients evaluating specific health conditions such as sleep quality, periodontitis, smoking, chronic inflammation and diseases, metabolic disorders and obesity, vascular dysfunction, and cancers would enable effective managemenet of COVID-19-associated complications in primary, secondary, and tertiary care in the context of predictive, preventive, and personalized medicine (3PM).
Collapse
Affiliation(s)
- Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Basma Abdellatif
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Kevin Zhai
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Manaal Siddiqui
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461, Rajhrad, Czech Republic
| | - Sherif T.S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Erik Kudela
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
33
|
Zhu DD, Tan XM, Lu LQ, Yu SJ, Jian RL, Liang XF, Liao YX, Fan W, Barbier-Torres L, Yang A, Yang HP, Liu T. Interplay between nuclear factor erythroid 2-related factor 2 and inflammatory mediators in COVID-19-related liver injury. World J Gastroenterol 2021; 27:2944-2962. [PMID: 34168400 PMCID: PMC8192291 DOI: 10.3748/wjg.v27.i22.2944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/06/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 is a global pandemic and poses a major threat to human health worldwide. In addition to respiratory symptoms, COVID-19 is usually accompanied by systemic inflammation and liver damage in moderate and severe cases. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the expression of antioxidant proteins, participating in COVID-19-mediated inflammation and liver injury. Here, we show the novel reciprocal regulation between NRF2 and inflammatory mediators associated with COVID-19-related liver injury. Additionally, we describe some mechanisms and treatment strategies.
Collapse
Affiliation(s)
- Dan-Dan Zhu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xue-Mei Tan
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Li-Qing Lu
- Key Laboratory of Cancer proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Si-Jia Yu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Ru-Li Jian
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xin-Fang Liang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yi-Xuan Liao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Wei Fan
- Department of Medicine, Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Lucíia Barbier-Torres
- Department of Medicine, Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Austin Yang
- Department of Biology, East Los Angeles College, Los Angeles, CA 91008, United States
| | - He-Ping Yang
- Department of Medicine, Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
34
|
Wang J, Zhao X, Feng W, Li Y, Peng C. Inhibiting TGF-[Formula: see text] 1-Mediated Cellular Processes as an Effective Strategy for the Treatment of Pulmonary Fibrosis with Chinese Herbal Medicines. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1965-1999. [PMID: 34961416 DOI: 10.1142/s0192415x21500932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease that even threatens the lives of some patients infected with COVID-19. PF is a multicellular pathological process, including the initial injuries of epithelial cells, recruitment of inflammatory cells, epithelial-mesenchymal transition, activation and differentiation of fibroblasts, etc. TGF-[Formula: see text]1 acts as a key effect factor that participates in these cellular processes of PF. Recently, much attention was paid to inhibiting TGF-[Formula: see text]1 mediated cell processes in the treatment of PF with Chinese herbal medicines (CHM), an important part of traditional Chinese medicine. Here, this review first summarized the effects of TGF-[Formula: see text]1 in different cellular processes of PF. Then, this review summarized the recent research on CHM (compounds, multi-components, single medicines and prescriptions) to directly and/or indirectly inhibit TGF-[Formula: see text]1 signaling (TLRs, PPARs, micrRNA, etc.) in PF. Most of the research focused on CHM natural compounds, including but not limited to alkaloids, flavonoids, phenols and terpenes. After review, the research perspectives of CHM on TGF-[Formula: see text]1 inhibition in PF were further discussed. This review hopes that revealing the inhibiting effects of CHM on TGF-[Formula: see text]1-mediated cellular processes of PF can promote CHM to be better understood and utilized, thus transforming the therapeutic activities of CHM into practice.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xingtao Zhao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Wuwen Feng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yunxia Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|