1
|
Hinou H. DHB Matrix with Additives for Direct MALDI Mass Spectrometry of Carbohydrates and Glycoconjugates. TRENDS GLYCOSCI GLYC 2023. [DOI: 10.4052/tigg.2214.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Hinou H. DHB Matrix with Additives for Direct MALDI Mass Spectrometry of Carbohydrates and Glycoconjugates. TRENDS GLYCOSCI GLYC 2023. [DOI: 10.4052/tigg.2214.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Kobylis P, Stepnowski P, Caban M. Review of the applicability of ionic liquid matrices for the quantification of small molecules by MALDI MS. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Zhao X, Cai P, Sun C, Pan Y. Application of ionic liquids in separation and analysis of carbohydrates: State of the art and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Ma Q, Adua E, Boyce MC, Li X, Ji G, Wang W. IMass Time: The Future, in Future! OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:679-695. [PMID: 30457467 DOI: 10.1089/omi.2018.0162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Joseph John Thomson discovered and proved the existence of electrons through a series of experiments. His work earned him a Nobel Prize in 1906 and initiated the era of mass spectrometry (MS). In the intervening time, other researchers have also been awarded the Nobel Prize for significant advances in MS technology. The development of soft ionization techniques was central to the application of MS to large biological molecules and led to an unprecedented interest in the study of biomolecules such as proteins (proteomics), metabolites (metabolomics), carbohydrates (glycomics), and lipids (lipidomics), allowing a better understanding of the molecular underpinnings of health and disease. The interest in large molecules drove improvements in MS resolution and now the challenge is in data deconvolution, intelligent exploitation of heterogeneous data, and interpretation, all of which can be ameliorated with a proposed IMass technology. We define IMass as a combination of MS and artificial intelligence, with each performing a specific role. IMass will offer advantages such as improving speed, sensitivity, and analyses of large data that are presently not possible with MS alone. In this study, we present an overview of the MS considering historical perspectives and applications, challenges, as well as insightful highlights of IMass.
Collapse
Affiliation(s)
- Qingwei Ma
- 1 Bioyong (Beijing) Technology Co., Ltd. , Beijing, China
| | - Eric Adua
- 2 School of Medical and Health Sciences, Edith Cowan University , Joondalup, Australia
| | - Mary C Boyce
- 3 School of Science, Edith Cowan University , Joondalup, Australia
| | - Xingang Li
- 2 School of Medical and Health Sciences, Edith Cowan University , Joondalup, Australia
| | - Guang Ji
- 4 China-Canada Centre of Research for Digestive Diseases, University of Ottawa , Ottawa, Canada
- 5 Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | - Wei Wang
- 2 School of Medical and Health Sciences, Edith Cowan University , Joondalup, Australia
- 6 School of Public Health, Taishan Medical University , Taian, China
| |
Collapse
|
6
|
Abdelhamid HN. Ionic Liquid-Assisted Laser Desorption/Ionization-Mass Spectrometry: Matrices, Microextraction, and Separation. Methods Protoc 2018; 1:E23. [PMID: 31164566 PMCID: PMC6526421 DOI: 10.3390/mps1020023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022] Open
Abstract
Ionic liquids (ILs) have advanced a variety of applications, including matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). ILs can be used as matrices and solvents for analyte extraction and separation prior to analysis using laser desorption/ionization-mass spectrometry (LDI-MS). Most ILs show high stability with negligible sublimation under vacuum, provide high ionization efficiency, can be used for qualitative and quantitative analyses with and without internal standards, show high reproducibility, form homogenous spots during sampling, and offer high solvation efficiency for a wide range of analytes. Ionic liquids can be used as solvents and pseudo-stationary phases for extraction and separation of a wide range of analytes, including proteins, peptides, lipids, carbohydrates, pathogenic bacteria, and small molecules. This review article summarizes the recent advances of ILs applications using MALDI-MS. The applications of ILs as matrices, solvents, and pseudo-stationary phases, are also reviewed.
Collapse
|
7
|
Zhao X, Shen S, Wu D, Cai P, Pan Y. Novel ionic liquid matrices for qualitative and quantitative detection of carbohydrates by matrix assisted laser desorption/ionization mass spectrometry. Anal Chim Acta 2017; 985:114-120. [PMID: 28864181 DOI: 10.1016/j.aca.2017.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/25/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
Analysis of carbohydrates based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is still challenging and researchers have been devoting themselves to efficient matrices discovery. In the present study, the design, synthesis, qualitative and quantitative performance of non-derivative ionic liquid matrices (ILMs) were reported. DHB/N-methylaniline (N-MA) and DHB/N-ethylaniline (N-EA), performing best for carbohydrate detection, have been screened out. The limit of detection for oligosaccharide provided by DHB/N-MA and DHB/N-EA were as low as 10 fmol. DHB/N-MA and DHB/N-EA showed significantly higher ion generation efficiency than DHB. The comparison of capacity to probe polysaccharide between these two ILMs and DHB also revealed their powerful potential. Their outstanding performance were probably due to lower proton affinities and stronger UV absorption at λ = 355 nm. What is more, taking DHB/N-MA as an example, quantitative analysis of fructo-oligosaccharide mixtures extracted and identified from rice noodles has been accomplished sensitively using an internal standard method. Overall, DHB/N-MA and DHB/N-EA exhibited excellent performance and might be significant sources as the carbohydrate matrices.
Collapse
Affiliation(s)
- Xiaoyong Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shanshan Shen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Datong Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pengfei Cai
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Li XG, Zhang F, Gao Y, Zhou QM, Zhao Y, Li Y, Huo JZ, Zhao XJ. Facile synthesis of red emitting 3-aminophenylboronic acid functionalized copper nanoclusters for rapid, selective and highly sensitive detection of glycoproteins. Biosens Bioelectron 2016; 86:270-276. [DOI: 10.1016/j.bios.2016.06.054] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/14/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
|
10
|
Moon JH, Park KM, Ahn SH, Lee SH, Kim MS. Investigations of Some Liquid Matrixes for Analyte Quantification by MALDI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1657-1664. [PMID: 26122519 DOI: 10.1007/s13361-015-1202-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Sample inhomogeneity is one of the obstacles preventing the generation of reproducible mass spectra by MALDI and to their use for the purpose of analyte quantification. As a potential solution to this problem, we investigated MALDI with some liquid matrixes prepared by nonstoichiometric mixing of acids and bases. Out of 27 combinations of acids and bases, liquid matrixes could be produced from seven. When the overall spectral features were considered, two liquid matrixes using α-cyano-4-hydroxycinnamic acid as the acid and 3-aminoquinoline and N,N-diethylaniline as bases were the best choices. In our previous study of MALDI with solid matrixes, we found that three requirements had to be met for the generation of reproducible spectra and for analyte quantification: (1) controlling the temperature by fixing the total ion count, (2) plotting the analyte-to-matrix ion ratio versus the analyte concentration as the calibration curve, and (3) keeping the matrix suppression below a critical value. We found that the same requirements had to be met in MALDI with liquid matrixes as well. In particular, although the liquid matrixes tested here were homogeneous, they failed to display spot-to-spot spectral reproducibility unless the first requirement above was met. We also found that analyte-derived ions could not be produced efficiently by MALDI with the above liquid matrixes unless the analyte was sufficiently basic. In this sense, MALDI processes with solid and liquid matrixes should be regarded as complementary techniques rather than as competing ones.
Collapse
Affiliation(s)
- Jeong Hee Moon
- Functional Genomics Research Center, KRIBB, Daejeon, 305-806, Korea
| | - Kyung Man Park
- Department of Chemistry, Seoul National University, Seoul, 151-747, Korea
| | - Sung Hee Ahn
- Department of Chemistry, Seoul National University, Seoul, 151-747, Korea
| | - Seong Hoon Lee
- Department of Chemistry, Seoul National University, Seoul, 151-747, Korea
| | - Myung Soo Kim
- Seoul National University Research Institute for Basic Sciences, Seoul, 151-747, Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 151-742, Korea.
| |
Collapse
|
11
|
Yin B, Gao Y, Chung CY, Yang S, Blake E, Stuczynski MC, Tang J, Kildegaard HF, Andersen MR, Zhang H, Betenbaugh MJ. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation. Biotechnol Bioeng 2015; 112:2343-51. [PMID: 26154505 DOI: 10.1002/bit.25650] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 12/11/2022]
Abstract
Sialic acid, a terminal residue on complex N-glycans, and branching or antennarity can play key roles in both the biological activity and circulatory lifetime of recombinant glycoproteins of therapeutic interest. In order to examine the impact of glycosyltransferase expression on the N-glycosylation of recombinant erythropoietin (rEPO), a human α2,6-sialyltransferase (ST6Gal1) was expressed in Chinese hamster ovary (CHO-K1) cells. Sialylation increased on both EPO and CHO cellular proteins as observed by SNA lectin analysis, and HPLC profiling revealed that the sialic acid content of total glycans on EPO increased by 26%. The increase in sialic acid content was further verified by detailed profiling of the N-glycan structures using mass spectra (MS) analysis. In order to enhance antennarity/branching, UDP-N-acetylglucosamine: α-1,3-D-mannoside β1,4-N-acetylglucosaminyltransferase (GnTIV/Mgat4) and UDP-N-acetylglucosamine:α-1,6-D-mannoside β1,6-N-acetylglucosaminyltransferase (GnTV/Mgat5), was incorporated into CHO-K1 together with ST6Gal1. Tri- and tetraantennary N-glycans represented approximately 92% of the total N-glycans on the resulting EPO as measured using MS analysis. Furthermore, sialic acid content of rEPO from these engineered cells was increased ∼45% higher with tetra-sialylation accounting for ∼10% of total sugar chains compared to ∼3% for the wild-type parental CHO-K1. In this way, coordinated overexpression of these three glycosyltransferases for the first time in model CHO-K1 cell lines provides a mean for enhancing both N-glycan branching complexity and sialylation with opportunities to generate tailored complex N-glycan structures on therapeutic glycoproteins in the future.
Collapse
Affiliation(s)
- Bojiao Yin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Yuan Gao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Shuang Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Emily Blake
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Mark C Stuczynski
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Juechun Tang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Helene F Kildegaard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hoersholm, Denmark
| | - Mikael R Andersen
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
12
|
Wei Y, Zhang Y, Lin Y, Li L, Liu J, Wang Z, Xiong S, Zhao Z. A uniform 2,5-dihydroxybenzoic acid layer as a matrix for MALDI-FTICR MS-based lipidomics. Analyst 2015; 140:1298-305. [DOI: 10.1039/c4an01964d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A very uniform 2,5-dihydroxybenzoic acid (DHB)–analyte co-crystal was skillfully constructed for lipidomics study by MALDI-FTICR MS.
Collapse
Affiliation(s)
- Yanbo Wei
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry Chinese Academy of Sciences
- Beijing 100190
- China
| | - Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry Chinese Academy of Sciences
- Beijing 100190
- China
| | - Yu Lin
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry Chinese Academy of Sciences
- Beijing 100190
- China
| | - Lin Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jian'an Liu
- Beijing Mass Spectrum Center
- Beijing 100190
- China
| | | | | | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
13
|
Lahaye M, Falourd X, Quemener B, Devaux MF, Audergon JM. Histological and cell wall polysaccharide chemical variability among apricot varieties. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Hesselink T, Rouwendal GJA, Henquet MGL, Florack DEA, Helsper JPFG, Bosch D. Expression of natural human β1,4-GalT1 variants and of non-mammalian homologues in plants leads to differences in galactosylation of N-glycans. Transgenic Res 2014; 23:717-28. [PMID: 25082356 DOI: 10.1007/s11248-014-9806-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/29/2014] [Indexed: 11/30/2022]
Abstract
β1,4-Galactosylation of plant N-glycans is a prerequisite for commercial production of certain biopharmaceuticals in plants. Two different types of galactosylated N-glycans have initially been reported in plants as the result of expression of human β1,4-galactosyltransferase 1 (GalT). Here we show that these differences are associated with differences at its N-terminus: the natural short variant of human GalT results in hybrid type N-glycans, whereas the long form generates bi-antennary complex type N-glycans. Furthermore, expression of non-mammalian, chicken and zebrafish GalT homologues with N-termini resembling the short human GalT N-terminus also induce hybrid type N-glycans. Providing both non-mammalian GalTs with a 13 amino acid N-terminal extension that distinguishes the two naturally occurring forms of human GalT, acted to increase the levels of bi-antennary galactosylated N-glycans when expressed in tobacco leaves. Replacement of the cytosolic tail and transmembrane domain of chicken and zebrafish GalTs with the corresponding region of rat α2,6-sialyltransferase yielded a gene whose expression enhanced the level of bi-antennary galactosylation even further.
Collapse
Affiliation(s)
- Thamara Hesselink
- Plant Research International B.V., Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands,
| | | | | | | | | | | |
Collapse
|
15
|
Li H, Zhao X, Zhang Q, Feng X, Liu BF, Liu X. Solid-phase methylamidation for sialoglycomics by MALDI-MS. Anal Bioanal Chem 2014; 406:6235-46. [DOI: 10.1007/s00216-014-8038-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/15/2014] [Indexed: 01/22/2023]
|
16
|
Veličković D, Ropartz D, Guillon F, Saulnier L, Rogniaux H. New insights into the structural and spatial variability of cell-wall polysaccharides during wheat grain development, as revealed through MALDI mass spectrometry imaging. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2079-91. [PMID: 24600018 PMCID: PMC3991742 DOI: 10.1093/jxb/eru065] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arabinoxylans (AX) and (1→3),(1→4)-β-glucans (BG) are the major components of wheat grain cell walls. Although incompletely described at the molecular level, it is known that the chemical and distributional heterogeneity of these compounds impacts the quality and use of wheat. In this work, an emerging technique based on MALDI mass spectrometry imaging (MSI) was employed to map variations in the quantity, localization, and structure of these polysaccharides in the endosperm during wheat maturation. MALDI MSI couples detailed structural information with the spatial localization observed at the micrometer scale. The enzymic hydrolysis of AX and BG was performed directly on the grain sections, resulting in the efficient formation of smaller oligosaccharides that are easily measurable through MS, with no relocation across the grain. The relative quantification of the generated oligosaccharides was achieved. The method was validated by confirming data previously obtained using other analytical techniques. Furthermore, in situ analysis of grain cell walls through MSI revealed previously undetectable intense acetylation of AX in young compared to mature grains, together with findings concerning the feruloylation of AX and different structural features of BG. These results provide new insights into the physiological roles of these polysaccharides in cell walls and the specificity of the hydrolytic enzymes involved.
Collapse
|
17
|
Walker SH, Taylor AD, Muddiman DC. Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT): a novel glycan-relative quantification strategy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1376-1384. [PMID: 23860851 PMCID: PMC3769964 DOI: 10.1007/s13361-013-0681-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/07/2013] [Accepted: 05/11/2013] [Indexed: 06/02/2023]
Abstract
The Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT) strategy for the sample preparation, data analysis, and relative quantification of N-linked glycans is presented. Glycans are derivatized with either natural (L) or stable-isotope labeled (H) hydrazide reagents and analyzed using reversed phase liquid chromatography coupled online to a Q Exactive mass spectrometer. A simple glycan ladder, maltodextrin, is first used to demonstrate the relative quantification strategy in samples with negligible analytical and biological variability. It is shown that after a molecular weight correction attributable to isotopic overlap and a post-acquisition normalization of the data to account for any systematic bias, a plot of the experimental H:L ratio versus the calculated H:L ratio exhibits a correlation of unity for maltodextrin samples mixed in different ratios. We also demonstrate that the INLIGHT approach can quantify species over four orders of magnitude in ion abundance. The INLIGHT strategy is further demonstrated in pooled human plasma, where it is shown that the post-acquisition normalization is more effective than using a single spiked-in internal standard. Finally, changes in glycosylation are able to be detected in complex biological matrices, when spiked with a glycoprotein. The ability to spike in a glycoprotein and detect change at the glycan level validates both the sample preparation and data analysis strategy, making INLIGHT an invaluable relative quantification strategy for the field of glycomics.
Collapse
Affiliation(s)
- S. Hunter Walker
- W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Amber D. Taylor
- W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - David C. Muddiman
- W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
18
|
Walker SH, Taylor AD, Muddiman DC. The use of a xylosylated plant glycoprotein as an internal standard accounting for N-linked glycan cleavage and sample preparation variability. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1354-1358. [PMID: 23681813 PMCID: PMC3689153 DOI: 10.1002/rcm.6579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Traditionally, free oligosaccharide internal standards are used to account for variability in glycan relative quantification experiments by mass spectrometry. However, a more suitable internal standard would be a glycoprotein, which could also control for enzymatic cleavage efficiency, allowing for more accurate quantitative experiments. METHODS Hydrophobic, hydrazide N-linked glycan reagents (both native and stable-isotope labeled) are used to derivatize and differentially label N-linked glycan samples for relative quantification, and the samples are analyzed by a reversed-phase liquid chromatography chip system coupled online to a Q-Exactive mass spectrometer. The inclusion of two internal standards, maltoheptaose (previously used) and horseradish peroxidase (HRP) (novel), is studied to demonstrate the effectiveness of using a glycoprotein as an internal standard in glycan relative quantification experiments. RESULTS HRP is a glycoprotein containing a xylosylated N-linked glycan, which is unique from mammalian N-linked glycans. Thus, the internal standard xylosylated glycan could be detected without interference to the sample. Additionally, it was shown that differences in cleavage efficiency can be detected by monitoring the HRP glycan. In a sample where cleavage efficiency variation is minimal, the HRP glycan performs as well as maltoheptaose. CONCLUSIONS Because the HRP glycan performs as well as maltoheptaose but is also capable of correcting and accounting for cleavage variability, it is a more versatile internal standard and will be used in all subsequent biological studies. Because of the possible lot-to-lot variation of an enzyme, differences in biological matrix, and variable enzyme activity over time, it is a necessity to account for glycan cleavage variability in glycan relative quantification experiments.
Collapse
Affiliation(s)
- S. Hunter Walker
- W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Amber D. Taylor
- W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - David C. Muddiman
- W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
19
|
Hung W, Wang S, Chen C, Chen C, Fang J, Yang W. Tagging
N
‐Linked Glycan with 2,3‐Naphthalenediamine for Mass Spectrometric Analysis. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei‐Ting Hung
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Shwu‐Huey Wang
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Chein‐Hung Chen
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Chung‐Hsuan Chen
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Jim‐Min Fang
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, R.O.C
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Wen‐Bin Yang
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, R.O.C
| |
Collapse
|
20
|
Yang S, Li Y, Shah P, Zhang H. Glycomic analysis using glycoprotein immobilization for glycan extraction. Anal Chem 2013; 85:5555-61. [PMID: 23688297 DOI: 10.1021/ac400761e] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycosylation is one of the most common protein modifications and is involved in many functions of glycoproteins. Investigating aberrant protein glycosylation associated with diseases is useful in improving disease diagnostics. Due to the nontemplate nature of glycan biosynthesis, the glycans attached to glycoproteins are enormously complex; thus, a method for comprehensive analysis of glycans from biological or clinical samples is needed. Here, we describe a novel method for glycomic analysis using glycoprotein immobilization for glycan extraction (GIG). Proteins or peptides from complex samples were first immobilized on solid support, and other nonconjugated molecules were removed. Glycans were enzymatically or chemically modified on solid phase before releasing from glycoproteins/glycopeptides for mass spectrometry analysis. The method was applied to the glycomic analysis of both N- and O-glycans.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
21
|
Wei Y, Li S, Wang J, Shu C, Liu J, Xiong S, Song J, Zhang J, Zhao Z. Polystyrene Spheres-Assisted Matrix-Assisted Laser Desorption Ionization Mass Spectrometry for Quantitative Analysis of Plasma Lysophosphatidylcholines. Anal Chem 2013; 85:4729-34. [DOI: 10.1021/ac400452k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | | | - Jianwen Song
- Key Laboratory of Cell Proliferation
and Regulation Biology, Ministry of Education, Institute of Cell Biology,
College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Junjie Zhang
- Key Laboratory of Cell Proliferation
and Regulation Biology, Ministry of Education, Institute of Cell Biology,
College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | | |
Collapse
|
22
|
Alley WR, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 2013; 113:2668-732. [PMID: 23531120 PMCID: PMC3992972 DOI: 10.1021/cr3003714] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- William R. Alley
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Benjamin F. Mann
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
- Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
23
|
Lavanant H, Loutelier-Bourhis C. Use of procaine and procainamide as derivatizing co-matrices for the analysis of oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1311-1319. [PMID: 22555924 DOI: 10.1002/rcm.6223] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RATIONALE Analysis of oligosaccharides by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry often yields only alkali metal cation adducts, which results in lower fragmentation yields and difficulty to retrieve sequence information. Derivatization by reductive amination may be used to promote Y-type glycosidic cleavages. However, this involves time-consuming preparations and purifications with sample loss. Here, procaine and procainamide were used directly as co-matrices with 2,5-dihydroxybenzoic acid (DHB). METHODS Acidified 10 g/L procaine hydrochloride or procainamide hydrochloride solutions in water/acetonitrile were added to the oligosaccharide solution one minute before preparing our MALDI targets using DHB with the dried-droplet method. This simple protocol resulted in deposits of very fine homogeneous crystals. RESULTS Positive ion mass spectra, easily acquired in an automated mode, presented a high percentage of oligosaccharides derivatized as Schiff base or glycosylamine notably detected as protonated molecules [M + H](+). The high abundance of procaine or procainamide on the target did not impede the ionization process, improved the signal-to-noise ratio and eliminated the need to search for 'sweet spots'. Fragmentation of the protonated precursor ions of the derivatives largely favored Y-type glycosidic cleavages. CONCLUSIONS This easy and fast sample preparation, involving low toxicity and easily accessible chemicals, allowed the selection of protonated molecules as precursor ions for post-source decay analyses. This opened the possibility of simplifying sequence retrieval in routine oligosaccharide analyses.
Collapse
Affiliation(s)
- Hélène Lavanant
- Université de Rouen, UMR CNRS 6014, COBRA, FR3038, rue Tesnière, 76821 Mont St Aignan, Cedex, France.
| | | |
Collapse
|
24
|
Jeong HJ, Kim YG, Yang YH, Kim BG. High-throughput quantitative analysis of total N-glycans by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 2012; 84:3453-60. [PMID: 22455307 DOI: 10.1021/ac203440c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accurate and reproducible quantification of glycans from protein drugs has become an important issue for quality control of therapeutic proteins in biopharmaceutical and biotechnology industries. Mass spectrometry is a promising tool for both qualitative and quantitative analysis of glycans owing to mass accuracy, efficiency, and reproducibility, but it has been of limited success in quantitative analysis for sialylated glycans in a high-throughput manner. Here, we present a solid-phase permethylation-based total N-glycan quantitative method that includes N-glycan releasing, purification, and derivatization on a 96-well plate platform. The solid-phase neutralization enabled us to perform reliable absolute quantification of the acidic N-glycans as well as neutral N-glycans from model glycoproteins (i.e., chicken ovalbumin and porcine thyroglobulin) by only using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Furthermore, low-abundance sialylated N-glycans from human serum prostate specific antigen (PSA), an extremely valuable prostate cancer marker, were initially quantified, and their chemical compositions were proposed. Taken together, these results demonstrate that our all-inclusive glycan preparation method based on a 96-well plate platform may contribute to the precise and reliable qualitative and quantitative analysis of glycans.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- School of Chemical and Biological Engineering in College of Engineering, Seoul National University, Shillim-dong, Seoul, 151-742, Korea
| | | | | | | |
Collapse
|
25
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
26
|
Ropartz D, Bodet PE, Przybylski C, Gonnet F, Daniel R, Fer M, Helbert W, Bertrand D, Rogniaux H. Performance evaluation on a wide set of matrix-assisted laser desorption ionization matrices for the detection of oligosaccharides in a high-throughput mass spectrometric screening of carbohydrate depolymerizing enzymes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2059-70. [PMID: 21698689 DOI: 10.1002/rcm.5060] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Compared to other analytical methods, matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) presents several unique advantages for the structural characterization of degradation products of carbohydrates. Our final goal is to implement this technique as a high-throughput platform, with the aim of exploring natural bio-diversity to discover new carbohydrate depolymerizing enzymes. In this approach, a variety of carbohydrates will be used as enzymes substrates and MALDI-MS will be employed to monitor the oligosaccharides produced. One drawback of MALDI, however, is that the choice of the matrix is largely dependent on the chemical properties of the analyte. In this context, our objective in the present work was to find the smallest set of MALDI matrices able to detect chemically heterogeneous oligosaccharides. This was done through the performance evaluation of more than 40 MALDI matrices preparations. Homogeneity of analyte-matrix deposits was considered as a critical feature, especially since the final objective is to fully automate the analyses. Evaluation of the matrices was done by means of a rigorous statistical approach. Amongst all tested compounds, our work proposes the use of the DHB/DMA ionic matrix as the most generic matrix, for rapid detection of a variety of polysaccharides including neutral, anionic, methylated, sulfated, and acetylated compounds. The selected matrices were then used to screen crude bacterial incubation media for the detection of enzymatic degradation products.
Collapse
Affiliation(s)
- David Ropartz
- INRA UR1268 Biopolymères Interactions Assemblages, Plate-Forme BIBS, F-44316 Nantes, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Harvey DJ. Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1196-225. [DOI: 10.1016/j.jchromb.2010.11.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/01/2010] [Accepted: 11/06/2010] [Indexed: 12/21/2022]
|
28
|
Guillard M, Morava E, van Delft FL, Hague R, Körner C, Adamowicz M, Wevers RA, Lefeber DJ. Plasma N-glycan profiling by mass spectrometry for congenital disorders of glycosylation type II. Clin Chem 2011; 57:593-602. [PMID: 21273509 DOI: 10.1373/clinchem.2010.153635] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Determination of the genetic defect in patients with a congenital disorder of glycosylation (CDG) is challenging because of the wide clinical presentation, the large number of gene products involved, and the occurrence of secondary causes of underglycosylation. Transferrin isoelectric focusing has been the method of choice for CDG screening; however, improved methods are required for the molecular diagnosis of patients with CDG type II. METHODS Plasma samples with a typical transferrin isofocusing profile were analyzed. N-glycans were released from these samples by PNGase F [peptide-N4-(acetyl-β-glucosaminyl)-asparagine amidase] digestion, permethylated and purified, and measured on a MALDI linear ion trap mass spectrometer. A set of 38 glycans was used for quantitative comparison and to establish reference intervals for such glycan features as the number of antennae, the level of truncation, and fucosylation. Plasma N-glycans from control individuals, patients with known CDG type II defects, and patients with a secondary cause of underglycosylation were analyzed. RESULTS CDGs due to mannosyl (α-1,6-)-glycoprotein β-1,2-N-acetylglucosaminyltransferase (MGAT2), β-1,4-galactosyltransferase 1 (B4GALT1), and SLC35C1 (a GDP-fucose transporter) defects could be diagnosed directly from the N-glycan profile. CDGs due to defects in proteins involved in Golgi trafficking, such as subunit 7 of the conserved oligomeric Golgi complex (COG7) and subunit V0 a2 of the lysosomal H(+)-transporting ATPase (ATP6V0A2) caused a loss of triantennary N-glycans and an increase of truncated structures. Secondary causes with liver involvement were characterized by increased fucosylation, whereas the presence of plasma sialidase produced isolated undersialylation. CONCLUSIONS MALDI ion trap analysis of plasma N-glycans documents features that discriminate between primary and secondary causes of underglycosylation and should be applied as the first step in the diagnostic track of all patients with an unsolved CDG type II.
Collapse
Affiliation(s)
- Maïlys Guillard
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Rakus JF, Mahal LK. New technologies for glycomic analysis: toward a systematic understanding of the glycome. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:367-392. [PMID: 21456971 DOI: 10.1146/annurev-anchem-061010-113951] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Carbohydrates are the most difficult class of biological molecules to study by high-throughput methods owing to the chemical similarities between the constituent monosaccharide building blocks, template-less biosynthesis, and the lack of clearly identifiable consensus sequences for the glycan modification of cohorts of glycoproteins. These molecules are crucial for a wide variety of cellular processes ranging from cell-cell communication to immunity, and they are altered in disease states such as cancer and inflammation. Thus, there has been a dedicated effort to develop glycan analysis into a high-throughput analytical field termed glycomics. Herein we highlight major advances in applying separation, mass spectrometry, and microarray methods to the fields of glycomics and glycoproteomics. These new analytical techniques are rapidly advancing our understanding of the importance of glycosylation in biology and disease.
Collapse
Affiliation(s)
- John F Rakus
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | | |
Collapse
|
30
|
Pasek M, Ramakrishnan B, Boeggeman E, Manzoni M, Waybright TJ, Qasba PK. Bioconjugation and detection of lactosamine moiety using alpha1,3-galactosyltransferase mutants that transfer C2-modified galactose with a chemical handle. Bioconjug Chem 2010; 20:608-18. [PMID: 19245254 DOI: 10.1021/bc800534r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Studies on wild-type and mutant glycosyltransferases have shown that they can transfer modified sugars with a versatile chemical handle, such as keto or azido group, that can be used for conjugation chemistry and detection of glycan residues on glycoconjugates. To detect the most prevalent glycan epitope, N-acetyllactosamine (LacNAc (Galbeta1-4GalNAcbeta)), we have mutated a bovine alpha1,3-galactosyltransferse (alpha3Gal-T)() enzyme which normally transfers Gal from UDP-Gal to the LacNAc acceptor, to transfer GalNAc or C2-modified galactose from their UDP derivatives. The alpha3Gal-T enzyme belongs to the alpha3Gal/GalNAc-T family that includes human blood group A and B glycosyltransferases, which transfer GalNAc and Gal, respectively, to the Gal moiety of the trisaccharide Fucalpha1-2Galbeta1-4GlcNAc. On the basis of the sequence and structure comparison of these enzymes, we have carried out rational mutation studies on the sugar donor-binding residues in bovine alpha3Gal-T at positions 280 to 282. A mutation of His280 to Leu/Thr/Ser/Ala or Gly and Ala281 and Ala282 to Gly resulted in the GalNAc transferase activity by the mutant alpha3Gal-T enzymes to 5-19% of their original Gal-T activity. We show that the mutants (280)SGG(282) and (280)AGG(282) with the highest GalNAc-T activity can also transfer modified sugars such as 2-keto-galactose or GalNAz from their respective UDP-sugar derivatives to LacNAc moiety present at the nonreducing end of glycans of asialofetuin, thus enabling the detection of LacNAc moiety of glycoproteins and glycolipids by a chemiluminescence method.
Collapse
Affiliation(s)
- Marta Pasek
- Structural Glycobiology Section, Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
31
|
Meriaux C, Franck J, Wisztorski M, Salzet M, Fournier I. Liquid ionic matrixes for MALDI mass spectrometry imaging of lipids. J Proteomics 2010; 73:1204-18. [DOI: 10.1016/j.jprot.2010.02.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/03/2010] [Accepted: 02/10/2010] [Indexed: 01/19/2023]
|
32
|
I2-catalyzed oxidative condensation of aldoses with diamines: synthesis of aldo-naphthimidazoles for carbohydrate analysis. Molecules 2010; 15:1340-53. [PMID: 20335985 PMCID: PMC6257232 DOI: 10.3390/molecules15031340] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/02/2010] [Accepted: 03/05/2010] [Indexed: 11/17/2022] Open
Abstract
A novel method for the conversion of unprotected and unmodified aldoses to aldo-imidazoles has been developed. Using iodine as a catalyst in acetic acid solution, a series of mono- and oligosaccharides, including those containing carboxyl and acetamido groups, undergo an oxidative condensation reaction with aromatic vicinal diamines at room temperature to give the corresponding aldo-imidazole products in high yields. No cleavage of the glycosidic bond occurs under the mild reaction conditions. The compositional analysis of saccharides is commonly realized by capillary electropheresis of the corresponding aldo-imidazole derivatives, which are easily synthesized by the reported iodine-promoted oxidative condensation. In addition, a series of aldo-imidazoles were determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS) to analyze molecular weight and ion intensity. The diamine-labeled saccharides showed enhanced signals in MALDI–TOF MS. The combined use of aldo-imidazole derivatization and mass spectrometric analysis thus provides a rapid method for identification of saccharides, even when less than 1 pmol of saccharide is present in the sample. These results can be further applied to facilitate the isolation and analysis of novel saccharides.
Collapse
|
33
|
Lin C, Hung WT, Chen CH, Fang JM, Yang WB. A new naphthimidazole derivative for saccharide labeling with enhanced sensitivity in mass spectrometry detection. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:85-94. [PMID: 19960495 DOI: 10.1002/rcm.4354] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A series of saccharides, including maltoheptose, blood type B antigen, pullulan and the glucan of Ganoderma lucidum, are easily converted into the naphthimidazole (NAIM) derivatives in high yields by the iodine-promoted oxidative condensation. The NAIM-labeled saccharides, without further purification, show enhanced signals in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The combined use of NAIM derivatization and MALDI-TOFMS analysis thus provides a rapid method for identification of saccharides even in less than 1 pmol of saccharide in the sample. Characterization of the biologically active saccharides and complex polysaccharides is also achieved through the NAIM-derivatization method. This study can be further applied to facilitate the isolation and analysis of novel saccharides.
Collapse
Affiliation(s)
- Chunchi Lin
- The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
34
|
Nishikaze T, Amano J. Reverse thin layer method for enhanced ion yield of oligosaccharides in matrix-assisted laser desorption/ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3787-3794. [PMID: 19902420 DOI: 10.1002/rcm.4320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A sample preparation method that is suitable for sensitive detection of underivatized oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been investigated. As compared with the conventional dried-droplet or ethanol (EtOH) recrystallization method, superior mass spectra in terms of ion yield and signal-to-noise (s/n) ratio were obtained when methanol (MeOH) was used as a solvent for the mixture of matrix and oligosaccharides. Based on these results, a new sample preparation method, named the 'reverse thin layer method', was developed. This method comprises two steps: first, complete drying of the oligosaccharide solution on the MALDI target plate; and second, deposition of the matrix dissolved in a small amount of MeOH. Using this method, a relatively homogeneous matrix crystal was generated and higher yields of both positive and negative ions were obtained from oligosaccharides compared with conventional methods. Notably, the method can be applied to various matrices including both solid and liquid matrices.
Collapse
Affiliation(s)
- Takashi Nishikaze
- Laboratory of Glycobiology, The Noguchi Institute, 1-8-1 Kaga, Itabashi, Tokyo 173-0003, Japan
| | | |
Collapse
|
35
|
Boeggeman E, Ramakrishnan B, Pasek M, Manzoni M, Puri A, Loomis KH, Waybright TJ, Qasba PK. Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug Chem 2009; 20:1228-36. [PMID: 19425533 DOI: 10.1021/bc900103p] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Fc N-glycan chains of four therapeutic monoclonal antibodies (mAbs), namely, Avastin, Rituxan, Remicade, and Herceptin, released by PNGase F, show by MALDI analysis that these biantennary N-glycans are a mixture of G0, G1, and G2 glycoforms. The G0 glycoform has no galactose on the terminal GlcNAc residues, and the G1 and G2 glycoforms have one or two terminal galactose residues, respectively, while no N-glycan with terminal sialic acid residue is observed. We show here that under native conditions we can convert the N-glycans of these mAbs to a homogeneous population of G0 glycoform using beta1,4 galactosidase from Streptococcus pneumoniae. The G0 glycoforms of mAbs can be galactosylated with a modified galactose having a chemical handle at the C2 position, such as ketone or azide, using a mutant beta1,4-galactosyltransferase (beta1,4Gal-T1-Y289L). The addition of the modified galactose at a specific glycan residue of a mAb permits the coupling of a biomolecule that carries an orthogonal reactive group. The linking of a biotinylated or a fluorescent dye carrying derivatives selectively occurs with the modified galactose, C2-keto-Gal, at the heavy chain of these mAbs, without altering their antigen binding activities, as shown by indirect enzyme linked immunosorbent assay (ELISA) and fluorescence activated cell sorting (FACS) methods. Our results demonstrate that the linking of cargo molecules to mAbs via glycans could prove to be an invaluable tool for potential drug targeting by immunotherapeutic methods.
Collapse
Affiliation(s)
- Elizabeth Boeggeman
- Structural Glycobiology Section, CCR-Nanobiology Program, SAIC-Frederick, Inc., Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Rouwendal GJA, Florack DEA, Hesselink T, Cordewener JH, Helsper JPFG, Bosch D. Synthesis of Lewis X epitopes on plant N-glycans. Carbohydr Res 2009; 344:1487-93. [PMID: 19515362 DOI: 10.1016/j.carres.2009.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/26/2009] [Accepted: 05/06/2009] [Indexed: 11/16/2022]
Abstract
Glycoproteins from tobacco line xFxG1, in which expression of a hybrid beta-(1-->4)-galactosyltransferase (GalT) and a hybrid alpha-(1-->3)-fucosyltransferase IXa (FUT9a) is combined, contained an abundance of hybrid N-glycans with Lewis X (Le(X)) epitopes. A comparison with N-glycan profiles from plants expressing only the hybrid beta-(1-->4)-galactosyltransferase suggested that the fucosylation of the LacNAc residues in line xFxG1 protected galactosylated N-glycans from endogenous plant beta-galactosidase activity.
Collapse
Affiliation(s)
- Gerard J A Rouwendal
- Plant Research International B.V., Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Guillard M, Gloerich J, Wessels HJCT, Morava E, Wevers RA, Lefeber DJ. Automated measurement of permethylated serum N-glycans by MALDI-linear ion trap mass spectrometry. Carbohydr Res 2009; 344:1550-7. [PMID: 19577739 DOI: 10.1016/j.carres.2009.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 06/04/2009] [Accepted: 06/12/2009] [Indexed: 11/19/2022]
Abstract
The use of N-glycan mass spectrometry for clinical diagnostics requires the development of robust high-throughput profiling methods. Still, structural assignment of glycans requires additional information such as MS(2) fragmentation or exoglycosidase digestions. We present a setting which combines a MALDI ionization source with a linear ion trap analyzer. This instrumentation allows automated measurement of samples thanks to the crystal positioning system, combined with MS(n) sequencing options. 2,5-Dihydroxybenzoic acid, commonly used for the analysis of glycans, failed to produce the required reproducibility due to its non-homogeneous crystallization properties. In contrast, alpha-cyano-4-hydroxycinnamic acid provided a homogeneous crystallization pattern and reproducibility of the measurements. Using serum N-glycans as a test sample, we focused on the automation of data collection by optimizing the instrument settings. Glycan structures were confirmed by MS(2) analysis. Although sample processing still needs optimization, this method provides a reproducible and high-throughput approach for measurement of N-glycans using a MALDI-linear ion trap instrument.
Collapse
Affiliation(s)
- Maïlys Guillard
- Laboratory of Pediatrics and Neurology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Hung WT, Wang SH, Chen CH, Yang WB. Structure determination of beta-glucans from Ganoderma lucidum with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Molecules 2008; 13:1538-50. [PMID: 18794771 PMCID: PMC6245394 DOI: 10.3390/molecules13081538] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 06/21/2008] [Accepted: 07/25/2008] [Indexed: 11/16/2022] Open
Abstract
A novel method that uses matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to analyze molecular weight and sequencing of glucan in Ganoderma lucidum is presented. Thus, β-glucan, which was isolated from fruiting bodies of G. lucidum, was measured in a direct and fast way using MALDI mass spectrometry. In addition, tandem mass spectrometry of permethylated glucans of G. lucidum, dextran, curdlan and maltohexaose were also pursued and different fragment patterns were obtained. The G. lucidum glucan structure was determined and this method for linkage analysis of permethylated glucan has been proven feasible.
Collapse
Affiliation(s)
- Wei-Ting Hung
- Genomics Research Center, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan
| | - Shwu-Huey Wang
- Instrument Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung-Hsuan Chen
- Genomics Research Center, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan
| | - Wen-Bin Yang
- Genomics Research Center, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan
- Author to whom correspondence should be addressed. Tel.: +886-2-27899930 ext.339; Fax: +886-2-27899931; E-mail:
| |
Collapse
|
39
|
Snovida SI, Rak-Banville JM, Perreault H. On the use of DHB/aniline and DHB/N,N-dimethylaniline matrices for improved detection of carbohydrates: automated identification of oligosaccharides and quantitative analysis of sialylated glycans by MALDI-TOF mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1138-1146. [PMID: 18511294 DOI: 10.1016/j.jasms.2008.04.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/29/2008] [Accepted: 04/29/2008] [Indexed: 05/26/2023]
Abstract
This study demonstrates the application of 2,5-dihydrohybenzoic acid/aniline (DHB/An) and 2,5-dihydroxybenzoic acid/N,N-dimethylaniline (DHB/DMA) matrices for automated identification and quantitative analysis of native oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Both matrices are shown to be superior to pure DHB for native glycans in terms of signal intensities of analytes and homogeneity of sample distribution throughout the crystal layer. On-target formation of stable aniline Schiff base derivatives of glycans in DHB/An and the complete absence of such products in the mass spectra acquired in DHB/DMA matrix provide a platform for automated identification of reducing oligosaccharides in the MALDI mass spectra of complex samples. The study also shows how enhanced sensitivity is achieved with the use of these matrices and how the homogeneity of deposited sample material may be exploited for quick and accurate quantitative analysis of native glycan mixtures containing neutral and sialylated oligosaccharides in the low-nanogram to mid-picogram range.
Collapse
Affiliation(s)
- Sergei I Snovida
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|