1
|
Adamescu AI, Tilișcan C, Stratan LM, Mihai N, Ganea OA, Ciobanu S, Marinescu AG, Aramă V, Aramă ȘS. Decoding Inflammation: The Role of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Predicting Critical Outcomes in COVID-19 Patients. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:634. [PMID: 40282925 PMCID: PMC12028830 DOI: 10.3390/medicina61040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: The neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are novel biomarkers that provide insight into systemic inflammation and how the immune system responds to stress or infection. These ratios have been associated with predicting clinical outcomes in various diseases, including COVID-19. This study aims to evaluate the prognostic value of NLR and PLR in anticipating ICU admission, acute respiratory failure, and disease severity in COVID-19 patients. Materials and Methods: We conducted a retrospective, observational study that included 536 patients diagnosed with COVID-19. We analyzed the NLR and PLR values at admission and correlated them with ICU admission, the onset of acute respiratory failure, and clinical outcomes. Results: Statistical correlations were identified between elevated NLR and PLR values and the development of complications during hospitalization (p = 0.04 and p = 0.00), acute hypoxemic respiratory failure (p = 0.00), and admission to the intensive care unit (ICU) (p = 0.04). No correlations were found between the values of these ratios and mortality (p = 0.46 and p = 0.32) nor with the development of hepatic cytolysis (p = 0.79 and p = 0.87). Conclusions: NLR and PLR are reliable, easily obtainable biomarkers that can aid in the early prediction of ICU admission and disease severity in COVID-19 patients, offering valuable insights for risk stratification and clinical management. Further prospective studies are needed to validate these biomarkers as part of a broader predictive model for critical care in COVID-19.
Collapse
Affiliation(s)
- Aida-Isabela Adamescu
- Department II, Pathophysiology and Immunology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.A.)
- Prof. Dr. Matei Bals National Institute of Infectious Diseases, 021105 Bucharest, Romania
| | - Cătălin Tilișcan
- Department II, Pathophysiology and Immunology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.A.)
- Prof. Dr. Matei Bals National Institute of Infectious Diseases, 021105 Bucharest, Romania
| | - Laurențiu Mihăiță Stratan
- Prof. Dr. Matei Bals National Institute of Infectious Diseases, 021105 Bucharest, Romania
- Department II, Infectious Diseases, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Nicoleta Mihai
- Prof. Dr. Matei Bals National Institute of Infectious Diseases, 021105 Bucharest, Romania
- Department II, Infectious Diseases, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Oana-Alexandra Ganea
- Prof. Dr. Matei Bals National Institute of Infectious Diseases, 021105 Bucharest, Romania
- Department II, Infectious Diseases, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Sebastian Ciobanu
- Department II, Pathophysiology and Immunology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.A.)
- Emergency University Hospital, 050098 Bucharest, Romania
| | - Adrian Gabriel Marinescu
- Prof. Dr. Matei Bals National Institute of Infectious Diseases, 021105 Bucharest, Romania
- Department II, Infectious Diseases, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Victoria Aramă
- Prof. Dr. Matei Bals National Institute of Infectious Diseases, 021105 Bucharest, Romania
- Department II, Infectious Diseases, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ștefan Sorin Aramă
- Department II, Pathophysiology and Immunology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.A.)
- Prof. Dr. Matei Bals National Institute of Infectious Diseases, 021105 Bucharest, Romania
| |
Collapse
|
2
|
Chidambaram V, Kumar A, Sadaf MI, Lu E, Al’Aref SJ, Tarun T, Galiatsatos P, Gulati M, Blumenthal RS, Leucker TM, Karakousis PC, Mehta JL. COVID-19 in the Initiation and Progression of Atherosclerosis: Pathophysiology During and Beyond the Acute Phase. JACC. ADVANCES 2024; 3:101107. [PMID: 39113913 PMCID: PMC11304887 DOI: 10.1016/j.jacadv.2024.101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 08/10/2024]
Abstract
The incidence of atherosclerotic cardiovascular disease is increasing globally, especially in low- and middle-income countries, despite significant efforts to reduce traditional risk factors. Premature subclinical atherosclerosis has been documented in association with several viral infections. The magnitude of the recent COVID-19 pandemic has highlighted the need to understand the association between SARS-CoV-2 and atherosclerosis. This review examines various pathophysiological mechanisms, including endothelial dysfunction, platelet activation, and inflammatory and immune hyperactivation triggered by SARS-CoV-2 infection, with specific attention on their roles in initiating and promoting the progression of atherosclerotic lesions. Additionally, it addresses the various pathogenic mechanisms by which COVID-19 in the post-acute phase may contribute to the development of vascular disease. Understanding the overlap of these syndromes may enable novel therapeutic strategies. We further explore the need for guidelines for closer follow-up for the often-overlooked evidence of atherosclerotic cardiovascular disease among patients with recent COVID-19, particularly those with cardiometabolic risk factors.
Collapse
Affiliation(s)
- Vignesh Chidambaram
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amudha Kumar
- Division of Cardiology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Murrium I. Sadaf
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Emily Lu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Subhi J. Al’Aref
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Tushar Tarun
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Panagis Galiatsatos
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Martha Gulati
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Roger S. Blumenthal
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thorsten M. Leucker
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Petros C. Karakousis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jawahar L. Mehta
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Division of Cardiovascular Medicine, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
3
|
Liu L, Zhou C, Jiang H, Wei H, Zhou Y, Zhou C, Ji X. Epidemiology, pathogenesis, and management of Coronavirus disease 2019-associated stroke. Front Med 2023; 17:1047-1067. [PMID: 38165535 DOI: 10.1007/s11684-023-1041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Abstract
The Coronavirus disease 2019 (COVID-19) epidemic has triggered a huge impact on healthcare, socioeconomics, and other aspects of the world over the past three years. An increasing number of studies have identified a complex relationship between COVID-19 and stroke, although active measures are being implemented to prevent disease transmission. Severe COVID-19 may be associated with an increased risk of stroke and increase the rates of disability and mortality, posing a serious challenge to acute stroke diagnosis, treatment, and care. This review aims to provide an update on the influence of COVID-19 itself or vaccines on stroke, including arterial stroke (ischemic stroke and hemorrhagic stroke) and venous stroke (cerebral venous thrombosis). Additionally, the neurovascular mechanisms involved in SARS-CoV-2 infection and the clinical characteristics of stroke in the COVID-19 setting are presented. Evidence on vaccinations, potential therapeutic approaches, and effective strategies for stroke management has been highlighted.
Collapse
Affiliation(s)
- Lu Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100032, China
- Neurology and Intracranial Hypertension and Cerebral Venous Disease Center, National Health Commission of China, Xuanwu Hospital, Capital Medical University, Beijing, 100032, China
| | - Chenxia Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100032, China
- Neurology and Intracranial Hypertension and Cerebral Venous Disease Center, National Health Commission of China, Xuanwu Hospital, Capital Medical University, Beijing, 100032, China
| | - Huimin Jiang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Huimin Wei
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yifan Zhou
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Chen Zhou
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| | - Xunming Ji
- Neurology and Intracranial Hypertension and Cerebral Venous Disease Center, National Health Commission of China, Xuanwu Hospital, Capital Medical University, Beijing, 100032, China.
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100032, China.
| |
Collapse
|
4
|
Kusudo E, Murata Y, Kawamoto S, Egi M. Variant-derived SARS-CoV-2 spike protein does not directly cause platelet activation or hypercoagulability. Clin Exp Med 2023; 23:3701-3708. [PMID: 37208552 PMCID: PMC10198021 DOI: 10.1007/s10238-023-01091-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Thrombosis has been associated with severity and mortality in COVID-19. SARS-CoV-2 infects the host via its spike protein. However, direct effects of spike proteins from SARS-CoV-2 variants on platelet activity and coagulability have not been examined. An ethically approved ex vivo study was performed under a preplanned power analysis. Venous blood was collected from 6 healthy subjects who gave prior written consent. The samples were divided into 5 groups: without spike proteins (group N) and with spike proteins derived from alpha, beta, gamma, and delta SARS-CoV-2 variants (groups A, B, C, and D, respectively). Platelet aggregability, P-selectin expression, platelet-associated complement-1 (PAC-1) binding, platelet count, and mean platelet volume (MPV) were measured in all 5 groups, and thromboelastography (TEG) parameters were measured in groups N and D. The % change in each parameter in groups A to D was calculated relative to the value in group N. Data were analyzed by Friedman test, except for TEG parameters, which were evaluated by Wilcoxon matched pairs test. P < 0.05 was considered significant. This study included 6 participants based on a power analysis. There were no significant differences in platelet aggregability under stimulation with adenosine diphosphate 5 µg/ml, collagen 0.2 or 0.5 µg/ml, and Ser-Phe-Leu-Leu-Arg-Asn-amide trifluoroacetate salt (SFLLRN) 0.5 or 1 µM in groups A-D compared to group N. There were also no significant differences in P-selectin expression and PAC-1 binding under basal conditions or SFLLRN stimulation, and no significant differences in platelet count, MPV and TEG parameters. Platelet hyperactivity and blood hypercoagulability have been reported in COVID-19 patients, but spike proteins at 5 µg/ml from SARS-CoV-2 variants (alpha, beta, gamma, delta) did not directly cause these effects in an ex vivo study. This study was approved by the Ethics Committee of Kyoto University Hospital (R0978-1) on March 06, 2020.
Collapse
Affiliation(s)
- Eriko Kusudo
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yutaka Murata
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Anesthesia, Kitano Hospital, 2-4-20 Ohgimachi, Kita-ku, Osaka, 530-8480, Japan
| | - Shuji Kawamoto
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Moritoki Egi
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
5
|
Brinjikji W, Kallmes DF, Virmani R, de Meyer SF, Yoo AJ, Humphries W, Zaidat OO, Teleb MS, Jones JG, Siddiqui AH, Andersson T, Nogueira RG, Gil SM, Douglas A, Rossi R, Rentzos A, Ceder E, Carlqvist J, Dunker D, Jood K, Tatlisumak T, Doyle KM. Endotheliitis and cytokine storm as a mechanism of clot formation in COVID-19 ischemic stroke patients: A histopathologic study of retrieved clots. Interv Neuroradiol 2023:15910199231185804. [PMID: 37769315 DOI: 10.1177/15910199231185804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Studies during the COVID-19 pandemic have demonstrated an association between COVID-19 virus infection and the development of acute ischemic stroke, particularly large vessel occlusion (LVO). Studying the characteristics and immunohistochemistry of retrieved stroke emboli during mechanical thrombectomy for LVO may offer insights into the pathogenesis of LVO in COVID-19 patients. We examined retrieved COVID-19 emboli from the STRIP, EXCELLENT, and RESTORE registries and compared their characteristics to a control group. METHODS We identified COVID-positive LVO patients from the STRIP, RESTORE, and EXCELLENT studies who underwent mechanical thrombectomy. These patients were matched to a control group controlling for stroke etiology based on Trial of Org 10172 in Acute Stroke Treatment criteria. All clots were stained with Martius Scarlet Blue (MSB) along with immunohistochemistry for interleukin-6 (IL-6), C-reactive protein (CRP), von Willebrand factor (vWF), CD66b, fibrinogen, and citrullinated Histone H3. Clot composition was compared between groups. RESULTS Nineteen COVID-19-positive patients and 38 controls were included. COVID-19-positive patients had a significantly higher percentage of CRP and vWF. There was no difference in IL-6, fibrin, CD66b, or citrullinated Histone H3 between groups. Based on MSB staining, there was no statistically significant difference regarding the percentage of red blood cells, white blood cells, fibrin, and platelets. CONCLUSIONS Our study found higher concentrations of CRP and vWF in retrieved clots of COVID-19-positive stroke patients compared to COVID-19-negative controls. These findings support the potential role of systemic inflammation as indicated by elevated CRP and endothelial injury as indicated by elevated vWF as precipitating factors in thrombus development in these patients.
Collapse
Affiliation(s)
| | | | - Renu Virmani
- Department of Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Simon F de Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Albert J Yoo
- Neurointervention, Texas Stroke Institute, Plano, TX, USA
| | | | - Osama O Zaidat
- Department of Neuroscience, Mercy Health St Vincent Medical Center, Toledo, OH, USA
| | - Mohamed S Teleb
- Neurointerventional Surgery, Stroke, and Neurocritical Care, Banner Health, Mesa, AZ, USA
| | - Jesse G Jones
- Department of Neurosurgery, University of Alabama, Birmingham, AL, USA
| | - Adnan H Siddiqui
- Departments of Neurosurgery and Radiology, State University of New York at Buffalo, New York, NY, USA
| | - Tommy Andersson
- Department of Neuroradiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Raul G Nogueira
- Department of Neurology and Neurosurgery, University of Pittsburgh Medical Center, UPMC Stroke Institute, Pittsburgh, PA, USA
| | - Sara Molina Gil
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM-SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Andrew Douglas
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM-SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Rosanna Rossi
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM-SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Alexander Rentzos
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Erik Ceder
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Jeanette Carlqvist
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Dennis Dunker
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Katarina Jood
- Department of Clinical Neurosciences, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Turgut Tatlisumak
- Department of Clinical Neurosciences, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karen M Doyle
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM-SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
6
|
Yousefi P, Soltani S, Siri G, Rezayat SA, Gholami A, Zafarani A, Razizadeh MH, Alborzi E, Mokhtary‐Irani G, Abedi B, Karampoor S, Tabibzadeh A, Farahani A. Coagulopathy and thromboembolic events a pathogenic mechanism of COVID-19 associated with mortality: An updated review. J Clin Lab Anal 2023; 37:e24941. [PMID: 37431777 PMCID: PMC10431412 DOI: 10.1002/jcla.24941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
During 2019, the SARS-CoV-2 emerged from China, and during months, COVID-19 spread in many countries around the world. The expanding data about pathogenesis of this virus could elucidate the exact mechanism by which COVID-19 caused death in humans. One of the pathogenic mechanisms of this disease is coagulation. Coagulation disorders that affect both venous and arterial systems occur in patients with COVID-19. The possible mechanism involved in the coagulation could be excessive inflammation induced by SARS-CoV-2. However, it is not yet clear well how SARS-CoV-2 promotes coagulopathy. However, some factors, such as pulmonary endothelial cell damage and some anticoagulant system disorders, are assumed to have an important role. In this study, we assessed conducted studies about COVID-19-induced coagulopathy to obtain clearer vision of the wide range of manifestations and possible pathogenesis mechanisms.
Collapse
Affiliation(s)
- Parastoo Yousefi
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Saber Soltani
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Goli Siri
- Department of Internal Medicine, Amir Alam HospitalTehran University of Medical SciencesTehranIran
| | - Sara Akhavan Rezayat
- Department of Health Care Management and Economics, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Ali Gholami
- School of MedicineArak University of Medical SciencesArakIran
| | - Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied MedicineIran University of Medical SciencesTehranIran
| | | | - Ehsan Alborzi
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Golnaz Mokhtary‐Irani
- Department of Virology, Faculty of MedicineAhvaz Jondishapur University of Medical SciencesAhvazIran
| | - Behnam Abedi
- Department of Medical Laboratory SciencesKhomein University of Medical SciencesKhomeinIran
| | - Sajad Karampoor
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| | - Alireza Tabibzadeh
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Abbas Farahani
- Department of Medical Laboratory SciencesKhomein University of Medical SciencesKhomeinIran
- Molecular and Medicine Research CenterKhomein University of Medical SciencesKhomeinIran
| |
Collapse
|
7
|
Abstract
COVID-19 is characterized by dysregulated thrombosis and coagulation that can increase mortality in patients. Platelets are fast responders to pathogen presence, alerting the surrounding immune cells and contributing to thrombosis and intravascular coagulation. The SARS-CoV-2 genome has been found in platelets from patients with COVID-19, and its coverage varies according to the method of detection, suggesting direct interaction of the virus with these cells. Antibodies against Spike and Nucleocapsid have confirmed this platelet-viral interaction. This review discusses the immune, prothrombotic, and procoagulant characteristics of platelets observed in patients with COVID-19. We outline the direct and indirect interaction of platelets with SARS-CoV-2, the contribution of the virus to programmed cell death pathway activation in platelets and the consequent extracellular vesicle release. We discuss platelet activation and immunothrombosis in patients with COVID-19, the effect of Spike on platelets, and possible activation of platelets by classical platelet activation triggers as well as contribution of platelets to complement activation. As COVID-19-mediated thrombosis and coagulation are still not well understood in vivo, we discuss available murine models and mouse adaptable strains.
Collapse
Affiliation(s)
- Anthony Sciaudone
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| | - Heather Corkrey
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| | - Fiachra Humphries
- Innate Immunity (F.H.). University of Massachusetts Chan Medical School, Worcester, MA
| | - Milka Koupenova
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
8
|
Shahidi M, Amirzargar MR. The impact of neutrophil extracellular traps in coronavirus disease - 2019 pathophysiology. Blood Coagul Fibrinolysis 2023; 34:87-92. [PMID: 36719805 DOI: 10.1097/mbc.0000000000001181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by novel coronavirus-2019 (nCoV-2019), is a highly contagious disease with high mortality and morbidity risk. Infected people may suffer from respiratory infections, which may be more progressive in patients with a defective immune system and underlying medical problems. In this regard, the cells involved in the innate immune system, play a decisive role in disease progression and complication development. Pathogen entrapment is the critical role of neutrophil extracellular traps (NETosis). This process involves the widespread release of fibrous structures by the stimulant-activated neutrophils. These fibrous structures are composed of cytosolic proteins and granular contents brought together by a network of released chromatins. This network can inhibit the spread of pathogens by their entrapment. Moreover, NETosis damage the host by producing toxic agents and triggering thrombosis. Therefore, this phenomenon may act as a double-edged sword. Regarding the rapid expansion of COVID-19, it is crucial to examine the involvement of NETosis in infected patients. This study aims to discuss NETosis participation to show its probable association with increased risk of thrombogenicity and help develop new therapeutic approaches in the battle against this viral disease.
Collapse
Affiliation(s)
- Minoo Shahidi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
9
|
Zerangian N, Erabi G, Poudineh M, Monajjem K, Diyanati M, Khanlari M, Khalaji A, Allafi D, Faridzadeh A, Amali A, Alizadeh N, Salimi Y, Ghane Ezabadi S, Abdi A, Hasanabadi Z, ShojaeiBaghini M, Deravi N. Venous thromboembolism in viral diseases: A comprehensive literature review. Health Sci Rep 2023; 6:e1085. [PMID: 36778773 PMCID: PMC9900357 DOI: 10.1002/hsr2.1085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/25/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Venous thromboembolism (VTE) is known to be a common respiratory and/or cardiovascular complication in hospitalized patients with viral infections. Numerous studies have proven human immunodeficiency virus infection to be a prothrombotic condition. An elevated VTE risk has been observed in critically ill H1N1 influenza patients. VTE risk is remarkably higher in patients infected with the Hepatitis C virus in contrast to uninfected subjects. The elevation of D-dimer levels supported the association between Chikungunya and the Zika virus and the rise of clinical VTE risk. Varicella-zoster virus is a risk factor for both cellulitis and the consequent invasive bacterial disease which may take part in thrombotic initiation. Eventually, hospitalized patients infected with the coronavirus disease of 2019 (COVID-19), the cause of the ongoing worldwide pandemic, could mainly suffer from an anomalous risk of coagulation activation with enhanced venous thrombosis events and poor quality clinical course. Although the risk of VTE in nonhospitalized COVID-19 patients is not known yet, there are a large number of guidelines and studies on thromboprophylaxis administration for COVID-19 cases. This study aims to take a detailed look at the effect of viral diseases on VTE, the epidemiology of VTE in viral diseases, and the diagnosis and treatment of VTE.
Collapse
Affiliation(s)
- Nasibeh Zerangian
- Health Education and Health Promotion, Department of Health Education and Health Promotion, School of HealthMashhad University of Medical SciencesMashhadIran
| | - Gisou Erabi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | | | - Kosar Monajjem
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Maryam Diyanati
- Student Research CommitteeRafsanjan University of Medical SciencesRafsanjanIran
| | - Maryam Khanlari
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | | | - Diba Allafi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of MedicineMashhad University of Medical SciencesMashhadIran
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Arian Amali
- Student Research Committee, Paramedical DepartmentIslamic Azad University, Mashhad BranchMashhadIran
| | - Nilufar Alizadeh
- Doctor of Medicine (MD), School of MedicineIran University of Medical SciencesTehranIran
| | - Yasaman Salimi
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Sajjad Ghane Ezabadi
- Student's Scientific Research Center, School of MedicineTehran University of Medical SciencesTehranIran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Hasanabadi
- Doctor of Medicine (MD), School of MedicineQazvin University of Medical ScienceQazvinIran
| | - Mahdie ShojaeiBaghini
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| | - Niloofar Deravi
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Platelet-Neutrophil Crosstalk in Thrombosis. Int J Mol Sci 2023; 24:ijms24021266. [PMID: 36674781 PMCID: PMC9861587 DOI: 10.3390/ijms24021266] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Platelets are essential for the formation of a haemostatic plug to prevent bleeding, while neutrophils are the guardians of our immune defences against invading pathogens. The interplay between platelets and innate immunity, and subsequent triggering of the activation of coagulation is part of the host system to prevent systemic spread of pathogen in the blood stream. Aberrant immunothrombosis and excessive inflammation can however, contribute to the thrombotic burden observed in many cardiovascular diseases. In this review, we highlight how platelets and neutrophils interact with each other and how their crosstalk is central to both arterial and venous thrombosis and in COVID-19. While targeting platelets and coagulation enables efficient antithrombotic treatments, they are often accompanied with a bleeding risk. We also discuss how novel approaches to reduce platelet-mediated recruitment of neutrophils could represent promising therapies to treat thrombosis without affecting haemostasis.
Collapse
|
11
|
Nateghi S, Hesari E, Mansouri F, Akrami M, Pourian M, Khosravani A, Taghizadeh F, Akbarpour S, Faraji N. Evaluation of Blood Biochemistry and Cardiopulmonary status of Hospitalized Covid-19 Patients in 3 Months Post Discharged Follow up Survey. Clin Med Insights Circ Respir Pulm Med 2022; 16:11795484221119332. [PMID: 36579139 PMCID: PMC9791284 DOI: 10.1177/11795484221119332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The new coronavirus causes systemic inflammation and damage to various organs. So, this study aimed to follow up patients with COVID -19 after recovery for three months by performing cardiac, pulmonary and laboratory tests. MATERIALS AND METHODS This was a prospective cohort study of COVID-19 patients who were discharged from Baharloo Hospital. The diagnosis of COVID-19 was confirmed by PCR or long CT scan. Inclusion criteria were age over 18 years and patients with more than 50% of pulmonary involvement in lung CT scan. The patients were called to Baharloo hospital three months after recovery and were examined for cardiac, pulmonary and blood tests. RESULT Our study included 178 participants with mean age of 55.70, and 50.6% of them were male. Among pulmonary factors in the hospital, 71.9%, 15.7%,1.7%,19.1% and 53.4% had positive GGO, consolidation, reverse halo sign, traction bronchiectasis and vascular enlargement, respectively. After three months follow up, percentage of patients who had reticulation, honeycombing, fibrotic brand and bullae were 12%, 1.1%,8.4% and 0%, respectively. The Mean values of FVC and FEV1 were reported 4.21 and 3.01, respectively. Among Cardiac factors, positive PVC, PAC and mean Pap were decreased after three months. Only Growth in myalgia and Decreased sense of taste were statistically significant. Also, D dimer, UA protein, PMN, Ferritin CRP, PMN, LDH and HB amounts had decreased significantly. CONCLUSION Our study indicated that in addition to pulmonary changes, rapid damage to other organs and the occurrence of cardiac symptoms and changes in laboratory result were also reported in patients recovered from COVID-19.
Collapse
Affiliation(s)
- Saeed Nateghi
- Department of Cardiology, Baharloo Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Elahe Hesari
- School of public health, Department of Epidemiology and Biostatistics, Tehran University of Medical Science, Tehran, Iran
| | - Fariba Mansouri
- Department of Respiratory, Baharloo Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Majid Akrami
- Department of Anesthesiology, Baharloo Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Mandana Pourian
- Radiology, Baharloo Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Arezoo Khosravani
- Baharloo Hospital, Tehran University of Medical Science, Tehran, Iran
| | | | - Samaneh Akbarpour
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Neda Faraji
- Department of Internist, Baharloo Hospital, Tehran University of Medical Science, Tehran, Iran,Neda Faraji, Assistant professor of Internal Diseases, Department of Internist, Baharloo Hospital, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
12
|
Nappi F, Nappi P, Gambardella I, Avtaar Singh SS. Thromboembolic Disease and Cardiac Thrombotic Complication in COVID-19: A Systematic Review. Metabolites 2022; 12:889. [PMID: 36295791 PMCID: PMC9611930 DOI: 10.3390/metabo12100889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus 2019 pandemic has affected many healthcare systems worldwide. While acute respiratory distress syndrome (ARDS) has been well-documented in COVID-19, there are several cardiovascular complications, such as myocardial infarction, ischaemic stroke, and pulmonary embolism, leading to disability and death. The link between COVID-19 and increasing thrombogenicity potentially occurs due to numerous different metabolic mechanisms, ranging from endothelial damage for direct virus infection, associated excessive formation of neutrophil extracellular traps (NETs), pathogenic activation of the renin-angiotensin-aldosterone system (RAAS), direct myocardial injury, and ischemia induced by respiratory failure, all of which have measurable biomarkers. A search was performed by interrogating three databases (MEDLINE; MEDLINE In-Process and Other Non-Indexed Citations, and EMBASE). Evidence from randomized controlled trials (RCT), prospective series, meta-analyses, and unmatched observational studies were evaluated for the processing of the algorithm and treatment of thromboembolic disease and cardiac thrombotic complications related to COVID-19 during SARS-CoV-2 infection. Studies out with the SARS-Cov-2 infection period and case reports were excluded. A total of 58 studies were included in this analysis. The role of the acute inflammatory response in the propagation of the systemic inflammatory sequelae of the disease plays a major part in determining thromboembolic disease and cardiac thrombotic complication in COVID-19. Some of the mechanisms of activation of these pathways, alongside the involved biomarkers noted in previous studies, are highlighted. Inflammatory response led to thromboembolic disease and cardiac thrombotic complications in COVID-19. NETs play a pivotal role in the pathogenesis of the inflammatory response. Despite moving into the endemic phase of the disease in most countries, thromboembolic complications in COVID-19 remain an entity that substantially impacts the health care system, with long-term effects that remain uncertain. Continuous monitoring and research are required.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | - Pierluigi Nappi
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Ivancarmine Gambardella
- Department of Cardiothoracic Surgery, Weill Cornell Medicine–New York Presbyterian Medical Center, New York, NY 10065, USA
| | | |
Collapse
|
13
|
Vinpocetine is the forthcoming adjuvant agent in the management of COVID-19. Future Sci OA 2022; 8:FSO797. [PMID: 35662743 PMCID: PMC9017700 DOI: 10.2144/fsoa-2021-0099] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/23/2022] [Indexed: 11/23/2022] Open
Abstract
Vinpocetine (VPN) is an alkaloid derivative of vincamine inhibits phosphodiesterase type 1 that increase cyclic guanosine monophosphate and cyclic adenosine monophosphate. VPN have anti-inflammatory and antioxidant effects with suppression release of pro-inflammatory cytokines. Moreover, VPN mitigates oxidative stress (OS) and inflammatory reactions through inhibition of mitogen-activated protein kinase (MAPK) signaling pathway. Therefore, VPN may decrease hyper-inflammation-induced acute lung injury in COVID-19 through modulation of NF-κB pathway. Taken together, VPN has pulmonary and extra-pulmonary protective effects against COVID-19 through mitigation of OS and hyperinflammation. In conclusion, VPN has noteworthy anti-inflammatory and anti-oxidant effects through inhibition of NF-κB/MAPK signaling pathway so, it may reduce SARS-CoV-2-induced hyper inflammatory and OS. Vinpocetine (VPN) is an alkaloid from vincamine with a potent anti-inflammatory and antioxidant effects. VPN has the possibility of inhibiting substances that cause inflammation and oxidative stress and as a result, may be beneficial in COVID-19 treatment. Due to the anti-inflammatory effect of VPN, acute lung injury in COVID-19 may reduce as a result of the inhibition of agent that causes lungs inflammation in COVID-19. VPN may have potential to reduce difficulty in breathing and damage to the lungs. Conclusively, VPN when administered with other therapy may improve the outcome of treatment of COVID-19.
Collapse
|
14
|
Greinacher A, Schönborn L, Siegerist F, Steil L, Palankar R, Handtke S, Reder A, Thiele T, Aurich K, Methling K, Lalk M, Völker U, Endlich N. Pathogenesis of vaccine-induced immune thrombotic thrombocytopenia (VITT). Semin Hematol 2022; 59:97-107. [PMID: 35512907 PMCID: PMC8863951 DOI: 10.1053/j.seminhematol.2022.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023]
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT; synonym, thrombosis with thrombocytopenia syndrome, is associated with high-titer immunoglobulin G antibodies directed against platelet factor 4 (PF4). These antibodies activate platelets via platelet FcγIIa receptors, with platelet activation greatly enhanced by PF4. Here we summarize the current concepts in the pathogenesis of VITT. We first address parallels between heparin-induced thrombocytopenia and VITT, and provide recent findings on binding of PF4 to adenovirus particles and non-assembled adenovirus proteins in the 2 adenovirus vector-based COVID-19 vaccines, ChAdOx1 nCoV-19 and Ad26.COV2.S. Further, we discuss the potential role of vaccine constituents such as glycosaminoglycans, EDTA, polysorbate 80, human cell-line proteins and nucleotides as potential binding partners of PF4. The immune response towards PF4 in VITT is likely triggered by a proinflammatory milieu. Human cell-line proteins, non-assembled virus proteins, and potentially EDTA may contribute to the proinflammatory state. The transient nature of the immune response towards PF4 in VITT makes it likely that-as in heparin-induced thrombocytopenia -marginal zone B cells are key for antibody production. Once high-titer anti-PF4 antibodies have been formed 5 to 20 days after vaccination, they activate platelets and granulocytes. Activated granulocytes undergo NETosis and the released DNA also forms complexes with PF4, which fuels the Fcγ receptor-dependent cell activation process, ultimately leading to massive thrombin generation. Finally, we summarize our initial observations indicating that VITT-like antibodies might also be present in rare patients with recurrent venous and arterial thrombotic complications, independent of vaccination.
Collapse
Affiliation(s)
- Andreas Greinacher
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.
| | - Linda Schönborn
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Florian Siegerist
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Raghavendra Palankar
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Handtke
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Thiele
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Konstanze Aurich
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Amara U, Rashid S, Mahmood K, Nawaz MH, Hayat A, Hassan M. Insight into prognostics, diagnostics, and management strategies for SARS CoV-2. RSC Adv 2022; 12:8059-8094. [PMID: 35424750 PMCID: PMC8982343 DOI: 10.1039/d1ra07988c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 01/08/2023] Open
Abstract
The foremost challenge in countering infectious diseases is the shortage of effective therapeutics. The emergence of coronavirus disease (COVID-19) outbreak has posed a great menace to the public health system globally, prompting unprecedented endeavors to contain the virus. Many countries have organized research programs for therapeutics and management development. However, the longstanding process has forced authorities to implement widespread infrastructures for detailed prognostic and diagnostics study of severe acute respiratory syndrome (SARS CoV-2). This review discussed nearly all the globally developed diagnostic methodologies reported for SARS CoV-2 detection. We have highlighted in detail the approaches for evaluating COVID-19 biomarkers along with the most employed nucleic acid- and protein-based detection methodologies and the causes of their severe downfall and rejection. As the variable variants of SARS CoV-2 came into the picture, we captured the breadth of newly integrated digital sensing prototypes comprised of plasmonic and field-effect transistor-based sensors along with commercially available food and drug administration (FDA) approved detection kits. However, more efforts are required to exploit the available resources to manufacture cheap and robust diagnostic methodologies. Likewise, the visualization and characterization tools along with the current challenges associated with waste-water surveillance, food security, contact tracing, and their role during this intense period of the pandemic have also been discussed. We expect that the integrated data will be supportive and aid in the evaluation of sensing technologies not only in current but also future pandemics.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Sidra Rashid
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Maria Hassan
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
| |
Collapse
|
16
|
Bote J, Corkrey HA, Koupenova M. Human Platelets and Influenza Virus: Internalization and Platelet Activation. Platelets 2022; 33:184-191. [PMID: 34369285 PMCID: PMC8821732 DOI: 10.1080/09537104.2021.1961710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Influenza infection has long been associated with prothrombotic outcomes in patients and platelets are the blood component predominantly responsible for thrombosis. In this review, we outline what is known about influenza interaction with human platelets, virion internalization, and viral RNA sensing, and the consequent impact on platelet function. We further discuss activation of platelets by IgG-influenza complexes and touch upon mechanisms of environmental platelet activation that relate to prothrombotic outcomes in patients during infection.
Collapse
Affiliation(s)
- Josiah Bote
- University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA 01605, USA
| | - Heather A. Corkrey
- University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA 01605, USA
| | - Milka Koupenova
- University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA 01605, USA,Corresponding Author: Milka Koupenova, University of Massachusetts Medical School, Albert Sherman Center, 368 Plantation St, S7-1041, Worcester, MA 01605, Tel: (774) 455-6646,
| |
Collapse
|
17
|
Zhang Z, Zhang P, Han C, Cong G, Yang CC, Deng Y. Online Machine Learning for Accelerating Molecular Dynamics Modeling of Cells. Front Mol Biosci 2022; 8:812248. [PMID: 35155570 PMCID: PMC8830520 DOI: 10.3389/fmolb.2021.812248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
We developed a biomechanics-informed online learning framework to learn the dynamics with ground truth generated with multiscale modeling simulation. It was built on Summit-like supercomputers, which were also used to benchmark and validate our framework on one physiologically significant modeling of deformable biological cells. We generalized the century-old equation of Jeffery orbits to a new equation of motion with additional parameters to account for the flow conditions and the cell deformability. Using simulation data at particle-based resolutions for flowing cells and the learned parameters from our framework, we validated the new equation by the motions, mostly rotations, of a human platelet in shear blood flow at various shear stresses and platelet deformability. Our online framework, which surrogates redundant computations in the conventional multiscale modeling by solutions of our learned equation, accelerates the conventional modeling by three orders of magnitude without visible loss of accuracy.
Collapse
Affiliation(s)
- Ziji Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Peng Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Changnian Han
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Guojing Cong
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Chih-Chieh Yang
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States
| | - Yuefan Deng
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
- Mathematics, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Kamin Mukaz D, Gergi M, Koh I, Zakai NA, Judd SE, Sholzberg M, Baumann Kreuziger L, Freeman K, Colovos C, Olson NC, Cushman M. Thrombo-inflammatory biomarkers and D-dimer in a biracial cohort study. Res Pract Thromb Haemost 2021; 5:e12632. [PMID: 34934895 PMCID: PMC8652130 DOI: 10.1002/rth2.12632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/06/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Higher D-dimer is a risk factor for cardiovascular diseases and venous thromboembolism. In the general population, D-dimer and other thrombo-inflammatory biomarkers are higher among Black individuals, who also have higher risk of these conditions compared to White people. OBJECTIVE To assess whether Black individuals have an exaggerated correlation between D-dimer and thrombo-inflammatory biomarkers characteristic of cardiovascular diseases. METHODS Linear regression was used to assess correlations of 11 thrombo-inflammatory biomarkers with D-dimer in a cross-sectional study of 1068 participants of the biracial Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort. RESULTS Adverse levels of most biomarkers, especially fibrinogen, factor VIII, C-reactive protein, N-terminal pro-B-type natriuretic peptide, and interleukin (IL)-6, were associated with higher D-dimer. Several associations with D-dimer differed significantly by race. For example, the association of factor VIII with D-dimer was more than twice as large in Black compared to White participants. Specifically, D-dimer was 26% higher per standard deviation (SD) higher factor VIII in Black adults and was only 11% higher per SD higher factor VIII in White adults. In Black but not White adults, higher IL-10 and soluble CD14 were associated with higher D-dimer. CONCLUSIONS Findings suggest that D-dimer might relate to Black/White differences in cardiovascular diseases and venous thromboembolism because it is a marker of amplified thrombo-inflammatory response in Black people. Better understanding of contributors to higher D-dimer in the general population is needed.
Collapse
Affiliation(s)
- Debora Kamin Mukaz
- Department of MedicineLarner College of Medicine at the University of VermontBurlingtonVermontUSA
| | - Mansour Gergi
- Department of MedicineLarner College of Medicine at the University of VermontBurlingtonVermontUSA
| | - Insu Koh
- Department of Pathology and Laboratory MedicineLarner College of Medicine at the University of VermontBurlingtonVermontUSA
| | - Neil A. Zakai
- Department of MedicineLarner College of Medicine at the University of VermontBurlingtonVermontUSA
- Department of Pathology and Laboratory MedicineLarner College of Medicine at the University of VermontBurlingtonVermontUSA
| | - Suzanne E. Judd
- Department of BiostatisticsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Michelle Sholzberg
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
- St. Michael’s HospitalTorontoOntarioCanada
| | - Lisa Baumann Kreuziger
- Blood Research InstituteVersiti, MilwaukeeWisconsinUSA
- Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Kalev Freeman
- Department of SurgeryLarner College of Medicine at the University of VermontBurlingtonVermontUSA
| | - Christos Colovos
- Department of SurgeryLarner College of Medicine at the University of VermontBurlingtonVermontUSA
| | - Nels C. Olson
- Department of Pathology and Laboratory MedicineLarner College of Medicine at the University of VermontBurlingtonVermontUSA
| | - Mary Cushman
- Department of MedicineLarner College of Medicine at the University of VermontBurlingtonVermontUSA
- Department of Pathology and Laboratory MedicineLarner College of Medicine at the University of VermontBurlingtonVermontUSA
| |
Collapse
|
19
|
Lim MS, Mcrae S. COVID-19 and immunothrombosis: Pathophysiology and therapeutic implications. Crit Rev Oncol Hematol 2021; 168:103529. [PMID: 34800652 PMCID: PMC8596655 DOI: 10.1016/j.critrevonc.2021.103529] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/11/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
The coagulopathy of COVID-19 is characterised by significantly elevated D Dimer and fibrinogen, mild thrombocytopenia and a mildly prolonged PT/APTT. A high incidence of thrombotic complications occurs despite standard thromboprophylaxis. The evidence to date supports immunothrombosis as the underlying mechanism for this coagulopathy which is triggered by a hyperinflammatory response and endotheliopathy. A hypercoagulable state results from endothelial damage/activation, complement activation, platelet hyperactivity, release of Extracellular Neutrophil Traps, activation of the coagulation system and a "hypofibrinolytic" state. Significant cross-talk occurs between the innate/adaptive immune system, endothelium and the coagulation system. D dimer has been shown to be the most reliable predictor of disease severity, thrombosis, and overall survival. In this context, targeting pathways upstream of coagulation using novel or repurposed drugs alone or in combination with other anti-thrombotic agents may be a rational approach to prevent the mortality/morbidity due to COVID-19 associated coagulopathy.
Collapse
Affiliation(s)
- Ming Sheng Lim
- Department of Hematology, Launceston General Hospital, WP Holman Clinic, Level 1. PO Box 1963, Launceston, Tasmania, Australia.
| | - Simon Mcrae
- Department of Hematology, Launceston General Hospital, WP Holman Clinic, Level 1. PO Box 1963, Launceston, Tasmania, Australia.
| |
Collapse
|
20
|
Koupenova M, Corkrey HA, Vitseva O, Tanriverdi K, Somasundaran M, Liu P, Soofi S, Bhandari R, Godwin M, Parsi KM, Cousineau A, Maehr R, Wang JP, Cameron SJ, Rade J, Finberg RW, Freedman JE. SARS-CoV-2 Initiates Programmed Cell Death in Platelets. Circ Res 2021; 129:631-646. [PMID: 34293929 PMCID: PMC8409903 DOI: 10.1161/circresaha.121.319117] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Supplemental Digital Content is available in the text. Coronavirus disease 2019 (COVID-19) is characterized by increased incidence of microthrombosis with hyperactive platelets sporadically containing viral RNA. It is unclear if SARS-CoV-2 (severe acute respiratory syndrome, corona virus-2) directly alters platelet activation or if these changes are a reaction to infection-mediated global inflammatory alterations. Importantly, the direct effect of SARS-CoV-2 on platelets has yet to be studied.
Collapse
Affiliation(s)
- Milka Koupenova
- Department of Medicine, Division of Cardiovascular Medicine (M.K., H.A.C., O.V., K.T., J.R., J.E.F.), University of Massachusetts Medical School, Worcester, MA
| | - Heather A Corkrey
- Department of Medicine, Division of Cardiovascular Medicine (M.K., H.A.C., O.V., K.T., J.R., J.E.F.), University of Massachusetts Medical School, Worcester, MA
| | - Olga Vitseva
- Department of Medicine, Division of Cardiovascular Medicine (M.K., H.A.C., O.V., K.T., J.R., J.E.F.), University of Massachusetts Medical School, Worcester, MA
| | - Kahraman Tanriverdi
- Department of Medicine, Division of Cardiovascular Medicine (M.K., H.A.C., O.V., K.T., J.R., J.E.F.), University of Massachusetts Medical School, Worcester, MA
| | - Mohan Somasundaran
- Department of Biochemistry and Molecular Pharmacology (M.S.), University of Massachusetts Medical School, Worcester, MA
| | - Ping Liu
- Department of Medicine, Division of Infectious Disease and Immunology Department of Medicine (P.L., S.S., J.P.W., R.W.F.), University of Massachusetts Medical School, Worcester, MA
| | - Shaukat Soofi
- Department of Medicine, Division of Infectious Disease and Immunology Department of Medicine (P.L., S.S., J.P.W., R.W.F.), University of Massachusetts Medical School, Worcester, MA
| | - Rohan Bhandari
- Heart, Vascular and Thoracic Institute (R.B., S.J.C.).,Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, OH (R.B., M.G., S.J.C.)
| | - Matthew Godwin
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, OH (R.B., M.G., S.J.C.)
| | - Krishna Mohan Parsi
- Diabetes Center of Excellence (K.M.P., A.C., R.M.), University of Massachusetts Medical School, Worcester, MA.,Program in Molecular Medicine (K.M.P., R.M.), University of Massachusetts Medical School, Worcester, MA
| | - Alyssa Cousineau
- Diabetes Center of Excellence (K.M.P., A.C., R.M.), University of Massachusetts Medical School, Worcester, MA
| | - René Maehr
- Diabetes Center of Excellence (K.M.P., A.C., R.M.), University of Massachusetts Medical School, Worcester, MA.,Program in Molecular Medicine (K.M.P., R.M.), University of Massachusetts Medical School, Worcester, MA
| | - Jennifer P Wang
- Department of Medicine, Division of Infectious Disease and Immunology Department of Medicine (P.L., S.S., J.P.W., R.W.F.), University of Massachusetts Medical School, Worcester, MA
| | - Scott J Cameron
- Heart, Vascular and Thoracic Institute (R.B., S.J.C.).,Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, OH (R.B., M.G., S.J.C.).,Case Western Reserve University Lerner College of Medicine, Cleveland, OH (S.J.C.)
| | - Jeffrey Rade
- Department of Medicine, Division of Cardiovascular Medicine (M.K., H.A.C., O.V., K.T., J.R., J.E.F.), University of Massachusetts Medical School, Worcester, MA
| | - Robert W Finberg
- Department of Medicine, Division of Infectious Disease and Immunology Department of Medicine (P.L., S.S., J.P.W., R.W.F.), University of Massachusetts Medical School, Worcester, MA
| | - Jane E Freedman
- Department of Medicine, Division of Cardiovascular Medicine (M.K., H.A.C., O.V., K.T., J.R., J.E.F.), University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
21
|
Ghare Naz MS, Banaei M, Dashti S, Tehrani FR. An overview of sex hormones in relation to SARS-CoV-2 infection. Future Virol 2021. [PMID: 34306167 PMCID: PMC8293688 DOI: 10.2217/fvl-2021-0058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/01/2021] [Indexed: 01/03/2023]
Abstract
Aim: Sex differences in COVID-19 outcomes might be explained from a sex hormones (SexHs) perspective. Materials & methods: PubMed, Scopus, Web of Science, EMBASE and Google Scholar were searched up to March 2021. Results: Based on the literature review, the crosstalk between SexHs (estrogens, progesterone and testosterone), their receptors (estrogen α and β, androgen, and progesterone) and the immune system shaped the sex-related differences in immune responses against COVID-19. Differential production of SexHs over the lifespan (during pregnancy, reproductive years, menopause and andropause) and over different seasons may result in disparities in body response toward COVID-19. Moreover, SexHs-specific differences might affect vaccine efficacy and response to treatment. Conclusion: The roles of SexHs need to be considered in vaccine development and even treatment of COVID-19.
Collapse
Affiliation(s)
- Marzieh Saei Ghare Naz
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran
| | - Mojdeh Banaei
- Mother & Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Sareh Dashti
- Department of Midwifery, Mashhad Branch, Islamic Azad University, Mashhad, 9187147578, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran
| |
Collapse
|
22
|
Garofano K, Park CS, Alarcon C, Avitia J, Barbour A, Diemert D, Fraser CM, Friedman PN, Horvath A, Rashid K, Shaazuddin M, Sidahmed A, O'Brien TJ, Perera MA, Lee NH. Differences in the Platelet mRNA Landscape Portend Racial Disparities in Platelet Function and Suggest Novel Therapeutic Targets. Clin Pharmacol Ther 2021; 110:702-713. [PMID: 34255863 DOI: 10.1002/cpt.2363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/07/2021] [Indexed: 11/10/2022]
Abstract
The African American (AA) population displays a 1.6 to 3-fold higher incidence of thrombosis and stroke mortality compared with European Americans (EAs). Current antiplatelet therapies target the ADP-mediated signaling pathway, which displays significant pharmacogenetic variation for platelet reactivity. The focus of this study was to define underlying population differences in platelet function in an effort to identify novel molecular targets for future antiplatelet therapy. We performed deep coverage RNA-Seq to compare gene expression levels in platelets derived from a cohort of healthy volunteers defined by ancestry determination. We identified > 13,000 expressed platelet genes of which 480 were significantly differentially expressed genes (DEGs) between AAs and EAs. DEGs encoding proteins known or predicted to modulate platelet aggregation, morphology, or platelet count were upregulated in AA platelets. Numerous G-protein coupled receptors, ion channels, and pro-inflammatory cytokines not previously associated with platelet function were likewise differentially expressed. Many of the signaling proteins represent potential pharmacologic targets of intervention. Notably, we confirmed the differential expression of cytokines IL32 and PROK2 in an independent cohort by quantitative real-time polymerase chain reaction, and provide functional validation of the opposing actions of these two cytokines on collagen-induced AA platelet aggregation. Using Genotype-Tissue Expression whole blood data, we identified 516 expression quantitative trait locuses with Fst values > 0.25, suggesting that population-differentiated alleles may contribute to differences in gene expression. This study identifies gene expression differences at the population level that may affect platelet function and serve as potential biomarkers to identify cardiovascular disease risk. Additionally, our analysis uncovers candidate novel druggable targets for future antiplatelet therapies.
Collapse
Affiliation(s)
- Kaitlin Garofano
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - C Sehwan Park
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cristina Alarcon
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Juan Avitia
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - April Barbour
- Department of Medicine, George Washington University, Washington, DC, USA
| | - David Diemert
- Department of Medicine, George Washington University, Washington, DC, USA
| | - Claire M Fraser
- Institute for Genome Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Paula N Friedman
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Anelia Horvath
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, USA
| | - Kameron Rashid
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Mohammed Shaazuddin
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alfateh Sidahmed
- Department of Medicine, George Washington University, Washington, DC, USA
| | - Travis J O'Brien
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Minoli A Perera
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Norman H Lee
- Department of Pharmacology and Physiology, GW Cancer Center, George Washington University, Washington, DC, USA
| |
Collapse
|
23
|
The Prothrombotic State Associated with SARS-CoV-2 Infection: Pathophysiological Aspects. Mediterr J Hematol Infect Dis 2021; 13:e2021045. [PMID: 34276914 PMCID: PMC8265369 DOI: 10.4084/mjhid.2021.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023] Open
Abstract
Severe coronavirus disease-2019 (COVID-19) is frequently associated with microvascular thrombosis, especially in the lung, or macrovascular thrombosis, mainly venous thromboembolism, which significantly contributes to the disease mortality burden. COVID-19 patients also exhibit distinctive laboratory abnormalities that are compatible with a prothrombotic state. The key event underlying COVID-19-associated thrombotic complications is an excessive host inflammatory response to severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection generating multiple inflammatory mediators, mainly cytokines and complement activation products. The latter, along with the virus itself, the increased levels of angiotensin II and hypoxia, drive the major cellular changes promoting thrombosis, which include: (1) aberrant expression of tissue factor by activated alveolar epithelial cells, monocytes-macrophages and neutrophils, and production of other prothrombotic factors by activated endothelial cells (ECs) and platelets; (2) reduced expression of physiological anticoagulants by dysfunctional ECs, and (3) suppression of fibrinolysis by the endothelial overproduction of plasminogen activator inhibitor-1 and, likely, by heightened thrombin-mediated activation of thrombin-activatable fibrinolysis inhibitor. Moreover, upon activation or death, neutrophils and other cells release nuclear materials that are endowed with potent prothrombotic properties. The ensuing thrombosis significantly contributes to lung injury and, in most severe COVID-19 patients, to multiple organ dysfunction. Insights into the pathogenesis of COVID-19-associated thrombosis may have implications for the development of new diagnostic and therapeutic tools.
Collapse
|
24
|
Nappi F, Iervolino A, Avtaar Singh SS. Thromboembolic Complications of SARS-CoV-2 and Metabolic Derangements: Suggestions from Clinical Practice Evidence to Causative Agents. Metabolites 2021; 11:341. [PMID: 34070672 PMCID: PMC8229698 DOI: 10.3390/metabo11060341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome (SARS) Coronavirus (CoV)-2 is a recently identified positive sense single-strand RNA (ssRNA) β-coronavirus. The viral spike proteins infect human hosts by binding to the cellular receptor angiotensin-converting enzyme 2 (ACE2). The infection causes a systemic illness involving cell metabolism. This widespread involvement is implicated in the pathophysiology of the illness which ranges from mild to severe, requiring multi organ support, ranging from oxygen supplementation to full cardiovascular and respiratory support. Patients with multiple co-existing comorbidities are also at a higher risk. The aim of this review is to explore the exact mechanisms by which COVID-19 affects patients systemically with a primary focus on the bleeding and thrombotic complications linked with the disease. Issues surrounding the thrombotic complications following administration of the ChAdOx1 nCoV-19 (Astra-Zeneca-Oxford) vaccine have also been illustrated. Risk stratification and treatment options in these patients should be tailored according to clinical severity with input from a multidisciplinary team.
Collapse
Affiliation(s)
- Francesco Nappi
- Centre Cardiologique du Nord de Saint-Denis, Department of Cardiac Surgery, 93200 Saint-Denis, France
| | - Adelaide Iervolino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
| | - Sanjeet Singh Avtaar Singh
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank G81 4DY, UK;
| |
Collapse
|
25
|
International COVID-19 thrombosis biomarkers colloquium: COVID-19 diagnostic tests. J Thromb Thrombolysis 2021; 52:992-998. [PMID: 34021852 PMCID: PMC8140326 DOI: 10.1007/s11239-021-02465-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 01/20/2023]
|
26
|
Shevchuk O, Begonja AJ, Gambaryan S, Totzeck M, Rassaf T, Huber TB, Greinacher A, Renne T, Sickmann A. Proteomics: A Tool to Study Platelet Function. Int J Mol Sci 2021; 22:ijms22094776. [PMID: 33946341 PMCID: PMC8125008 DOI: 10.3390/ijms22094776] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Platelets are components of the blood that are highly reactive, and they quickly respond to multiple physiological and pathophysiological processes. In the last decade, it became clear that platelets are the key components of circulation, linking hemostasis, innate, and acquired immunity. Protein composition, localization, and activity are crucial for platelet function and regulation. The current state of mass spectrometry-based proteomics has tremendous potential to identify and quantify thousands of proteins from a minimal amount of material, unravel multiple post-translational modifications, and monitor platelet activity during drug treatments. This review focuses on the role of proteomics in understanding the molecular basics of the classical and newly emerging functions of platelets. including the recently described role of platelets in immunology and the development of COVID-19.The state-of-the-art proteomic technologies and their application in studying platelet biogenesis, signaling, and storage are described, and the potential of newly appeared trapped ion mobility spectrometry (TIMS) is highlighted. Additionally, implementing proteomic methods in platelet transfusion medicine, and as a diagnostic and prognostic tool, is discussed.
Collapse
Affiliation(s)
- Olga Shevchuk
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
- Correspondence: (O.S.); (A.S.)
| | - Antonija Jurak Begonja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Torez pr. 44, 194223 St. Petersburg, Russia;
| | - Matthias Totzeck
- West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany; (M.T.); (T.R.)
| | - Tienush Rassaf
- West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany; (M.T.); (T.R.)
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany;
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Medizinisches Proteom-Center (MPC), Medizinische Fakultät, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
- Correspondence: (O.S.); (A.S.)
| |
Collapse
|
27
|
Talasaz AH, Sadeghipour P, Kakavand H, Aghakouchakzadeh M, Kordzadeh-Kermani E, Van Tassell BW, Gheymati A, Ariannejad H, Hosseini SH, Jamalkhani S, Sholzberg M, Monreal M, Jimenez D, Piazza G, Parikh SA, Kirtane AJ, Eikelboom JW, Connors JM, Hunt BJ, Konstantinides SV, Cushman M, Weitz JI, Stone GW, Krumholz HM, Lip GYH, Goldhaber SZ, Bikdeli B. Recent Randomized Trials of Antithrombotic Therapy for Patients With COVID-19: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:1903-1921. [PMID: 33741176 PMCID: PMC7963001 DOI: 10.1016/j.jacc.2021.02.035] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
Endothelial injury and microvascular/macrovascular thrombosis are common pathophysiological features of coronavirus disease-2019 (COVID-19). However, the optimal thromboprophylactic regimens remain unknown across the spectrum of illness severity of COVID-19. A variety of antithrombotic agents, doses, and durations of therapy are being assessed in ongoing randomized controlled trials (RCTs) that focus on outpatients, hospitalized patients in medical wards, and patients critically ill with COVID-19. This paper provides a perspective of the ongoing or completed RCTs related to antithrombotic strategies used in COVID-19, the opportunities and challenges for the clinical trial enterprise, and areas of existing knowledge, as well as data gaps that may motivate the design of future RCTs.
Collapse
Affiliation(s)
- Azita H Talasaz
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran. https://twitter.com/AzitaTalasaz
| | - Parham Sadeghipour
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hessam Kakavand
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Aghakouchakzadeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Kordzadeh-Kermani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Benjamin W Van Tassell
- Department of Pharmacotherapy and Outcome Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA; Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Azin Gheymati
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Ariannejad
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Hosseini
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepehr Jamalkhani
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Michelle Sholzberg
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Manuel Monreal
- Department of Internal Medicine, Hospital Universitari Germans Trials i Pujol, Universidad Católica San Antonio de Murcia, Barcelona, Spain
| | - David Jimenez
- Respiratory Department, Hospital Ramón y Cajal and Medicine Department, Universidad de Alcalá (Instituto de Ramón y Cajal de Investigación Sanitaria), Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Gregory Piazza
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sahil A Parikh
- Clinical Trials Center, Cardiovascular Research Foundation, New York, New York, USA; NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Ajay J Kirtane
- Clinical Trials Center, Cardiovascular Research Foundation, New York, New York, USA; NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - John W Eikelboom
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jean M Connors
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Beverley J Hunt
- Haemostasis and Thrombosis Centre, St. Thomas' Hospital, London, United Kingdom
| | - Stavros V Konstantinides
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University of Mainz, Mainz, Germany; Department of Cardiology, Democritus University of Thrace, Komotini, Greece
| | - Mary Cushman
- Department of Medicine, University of Vermont Larner College of Medicine and University of Vermont Medical Center, Burlington, Vermont, USA; Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine and University of Vermont Medical Center, Burlington, Vermont, USA
| | - Jeffrey I Weitz
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Gregg W Stone
- Clinical Trials Center, Cardiovascular Research Foundation, New York, New York, USA; Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harlan M Krumholz
- Center for Outcomes Research and Evaluation (CORE), Yale School of Medicine, New Haven, Connecticut, USA; Department of Health Policy and Administration, Yale School of Public Health, New Haven, Connecticut, USA; Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, University of Liverpool, Liverpool, United Kingdom; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Samuel Z Goldhaber
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Behnood Bikdeli
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Clinical Trials Center, Cardiovascular Research Foundation, New York, New York, USA; Center for Outcomes Research and Evaluation (CORE), Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
28
|
McGonagle D, Bridgewood C, Ramanan AV, Meaney JFM, Watad A. COVID-19 vasculitis and novel vasculitis mimics. THE LANCET. RHEUMATOLOGY 2021; 3:e224-e233. [PMID: 33521655 PMCID: PMC7832717 DOI: 10.1016/s2665-9913(20)30420-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
COVID-19 has been occasionally linked to histologically confirmed cutaneous vasculitis and a Kawasaki-like vasculitis, with these entities generally having minimal or no lung involvement and a good prognosis. Unlike these vasculitis types, patients with severe COVID-19 pneumonia can develop cutaneous vasculitis-like lesions and systemic arterial and venous thromboemboli, including cryptogenic strokes and other vasculopathy features. Proposed underlying mechanisms for these severe manifestations have encompassed immune dysregulation, including an anti-phospholipid syndrome-like state, complement activation, viral dissemination with direct systemic endothelial infection, viral RNAaemia with immunothrombosis, clotting pathway activation mediated by hypoxaemia, and immobility. In this Viewpoint, we highlight how imaging and post-mortem findings from patients with COVID-19 indicate a novel thrombosis in the pulmonary venous territory distal to the alveolar capillary bed, a territory that normally acts as a clot filtration system, which might represent an unappreciated nidus for systemic microembolism. Additionally, we suggest that this mechanism represents a novel vasculitis mimic related to COVID-19 that might lead to cryptogenic strokes across multivessel territories, acute kidney injury with haematuria, a skin vasculitis mimic, intestinal ischaemia, and other organ ischaemic manifestations. This finding is supported by pathological reports of extensive pulmonary venular thrombosis and peripheral organ thrombosis with pauci-immune cellular infiltrates. Therefore, severe COVID-19 pneumonia with extensive pulmonary intravascular coagulopathy might help to explain the numerous systemic complications of COVID-19, in which the demonstration of direct organ infection has not adequately explained the pathology.
Collapse
Affiliation(s)
- Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, UK
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Athimalaipet V Ramanan
- University Hospitals Bristol NHS Foundation Trust and Bristol Medical School, University of Bristol, Bristol, UK
| | - James F M Meaney
- Department of Radiology, St James Hospital and The Thomas Mitchell Centre for Advanced Medical Imaging, Trinity College Dublin, Dublin, Ireland
| | - Abdulla Watad
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Department of Medicine B, Rheumatology Unit, Sheba Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Aliotta A, Bertaggia Calderara D, Zermatten MG, Marchetti M, Alberio L. Thrombocytopathies: Not Just Aggregation Defects-The Clinical Relevance of Procoagulant Platelets. J Clin Med 2021; 10:jcm10050894. [PMID: 33668091 PMCID: PMC7956450 DOI: 10.3390/jcm10050894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Platelets are active key players in haemostasis. Qualitative platelet dysfunctions result in thrombocytopathies variously characterized by defects of their adhesive and procoagulant activation endpoints. In this review, we summarize the traditional platelet defects in adhesion, secretion, and aggregation. In addition, we review the current knowledge about procoagulant platelets, focusing on their role in bleeding or thrombotic pathologies and their pharmaceutical modulation. Procoagulant activity is an important feature of platelet activation, which should be specifically evaluated during the investigation of a suspected thrombocytopathy.
Collapse
Affiliation(s)
- Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Maxime G. Zermatten
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Matteo Marchetti
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
- Service de Médecine Interne, Hôpital de Nyon, CH-1260 Nyon, Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
- Correspondence:
| |
Collapse
|
30
|
Abstract
Platelets play an essential role in maintaining vascular integrity after injury. In addition, platelets contribute to the immune response to pathogens. For instance, they express receptors that mediate binding of viruses, and toll-like receptors that activate the cell in response to pathogen-associated molecular patterns. Platelets can be beneficial and/or detrimental during viral infections. They reduce blood-borne viruses by engulfing the free virus and presenting the virus to neutrophils. However, platelets can also enhance inflammation and tissue injury during viral infections. Here, we discuss the roles of platelets in viral infection.
Collapse
Affiliation(s)
- Silvio Antoniak
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
31
|
Campbell RA, Boilard E, Rondina MT. Is there a role for the ACE2 receptor in SARS-CoV-2 interactions with platelets? J Thromb Haemost 2021; 19:46-50. [PMID: 33119197 PMCID: PMC7899240 DOI: 10.1111/jth.15156] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/12/2020] [Accepted: 10/26/2020] [Indexed: 01/11/2023]
Abstract
There is an urgent need to understand the underlying mechanisms contributing to thrombotic and inflammatory complications during COVID-19. Data from independent groups have identified that platelets are hyperreactive during COVID-19. Platelet hyperreactivity is accompanied by changes in platelet gene expression, and enhanced interactions between platelets and leukocytes. In some patients, SARS-CoV-2 mRNA has been detected in platelets. Together, this suggests that SARS-CoV-2 may interact with platelets. However, controversy remains on which receptors mediate SARS-CoV-2 platelet interactions. Most, but not all, transcriptomic and proteomic analyses fail to observe the putative SARS-CoV-2 receptor, angiotensin converting enzyme-2, or the cellular serine protease necessary for viral entry, TMPRSS2, on platelets and megakaryocytes. Interestingly, platelets express other known SARS-CoV-2 receptors, which induce similar patterns of activation to those observed when platelets are incubated with SARS-CoV-2. This article explores these findings and discusses ongoing areas of controversy and uncertainty with regard to SARS-CoV-2 platelet interactions.
Collapse
Affiliation(s)
- Robert A Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, UT, USA
- Departments of Internal Medicine & Pathology, University of Utah, Salt Lake City, UT, USA
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier,, Universitaire de Québec- Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'immunologie, Université Laval, Québec, QC, Canada
| | - Matthew T Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, UT, USA
- Departments of Internal Medicine & Pathology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen VAMC Department of Internal Medicine and GRECC, Salt Lake City, UT, USA
| |
Collapse
|
32
|
Shannon O. The role of platelets in sepsis. Res Pract Thromb Haemost 2021; 5:27-37. [PMID: 33537527 PMCID: PMC7845078 DOI: 10.1002/rth2.12465] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/06/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
A State of the Art lecture titled "The role of platelets in sepsis" was presented at the ISTH congress in 2020. Sepsis is a life-threatening organ dysfunction caused by a dysregulated and multifaceted host response to infection. Platelets play a significant role in the coordinated immune response to infection and therefore in the inflammation and coagulation dysfunction that contributes to organ damage in sepsis. Thrombocytopenia has a high incidence in sepsis, and it is a marker of poor prognosis. The genesis of thrombocytopenia is likely multifactorial, and unraveling the involved molecular mechanisms will allow development of biomarkers of platelet function in sepsis. Such platelet biomarkers can facilitate study of antiplatelet interventions as immunomodulatory treatment in sepsis. Finally, relevant new data on this topic presented during the 2020 ISTH virtual congress are reviewed.
Collapse
Affiliation(s)
- Oonagh Shannon
- Division of Infection MedicineDepartment of Clinical SciencesFaculty of MedicineLund UniversityLundSweden
| |
Collapse
|
33
|
Zakeri A, Jadhav AP, Sullenger BA, Nimjee SM. Ischemic stroke in COVID-19-positive patients: an overview of SARS-CoV-2 and thrombotic mechanisms for the neurointerventionalist. J Neurointerv Surg 2020; 13:202-206. [PMID: 33298508 DOI: 10.1136/neurintsurg-2020-016794] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022]
Abstract
Coronavirus disease 2019 (COVID-19) results from infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first reported in Wuhan, China in patients suffering from severe pneumonia and acute respiratory distress syndrome and has now grown into the first pandemic in over 100 years. Patients infected with SARS-CoV-2 develop arterial thrombosis including stroke, myocardial infarction and peripheral arterial thrombosis, all of which result in poor outcomes despite maximal medical, endovascular, and microsurgical treatment compared with non-COVID-19-infected patients. In this review we provide a brief overview of SARS-CoV-2, the infectious agent responsible for the COVID-19 pandemic, and describe the mechanisms responsible for COVID-19-associated coagulopathy. Finally, we discuss the impact of COVID-19 on ischemic stroke, focusing on large vessel occlusion.
Collapse
Affiliation(s)
- Amanda Zakeri
- Neurosurgery, The Ohio State University Medical Center, Columbus, Ohio, USA
| | | | - Bruce A Sullenger
- Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Shahid M Nimjee
- Neurosurgery, The Ohio State University Medical Center, Columbus, Ohio, USA
| |
Collapse
|
34
|
Affiliation(s)
- Milka Koupenova
- Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Jane E Freedman
- Department of Medicine, University of Massachusetts Medical School, Worcester
| |
Collapse
|
35
|
Parra-Izquierdo I, Aslan JE. Perspectives on Platelet Heterogeneity and Host Immune Response in Coronavirus Disease 2019 (COVID-19). Semin Thromb Hemost 2020; 46:826-830. [PMID: 32882716 PMCID: PMC7645832 DOI: 10.1055/s-0040-1715093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iván Parra-Izquierdo
- Knight Cardiovascular Institute, Division of Cardiology, Department of Medicine, School of Medicine, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Joseph E. Aslan
- Knight Cardiovascular Institute, Division of Cardiology, Department of Medicine, School of Medicine, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
36
|
Mackman N, Antoniak S, Wolberg AS, Kasthuri R, Key NS. Coagulation Abnormalities and Thrombosis in Patients Infected With SARS-CoV-2 and Other Pandemic Viruses. Arterioscler Thromb Vasc Biol 2020; 40:2033-2044. [PMID: 32657623 PMCID: PMC7447001 DOI: 10.1161/atvbaha.120.314514] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
The world is amid a pandemic caused by severe acute respiratory syndrome-coronavirus 2. Severe acute respiratory syndrome-coronavirus causes serious respiratory tract infections that can lead to viral pneumonia, acute respiratory distress syndrome, and death. Some patients with coronavirus disease 2019 (COVID-19) have an activated coagulation system characterized by elevated plasma levels of d-dimer-a biomarker of fibrin degradation. Importantly, high levels of D-dimer on hospital admission are associated with increased risk of mortality. Venous thromboembolism is more common than arterial thromboembolism in hospitalized COVID-19 patients. Pulmonary thrombosis and microvascular thrombosis are observed in autopsy studies, and this may contribute to the severe hypoxia observed in COVID-19 patients. It is likely that multiple systems contribute to thrombosis in COVID-19 patients, such as activation of coagulation, platelet activation, hypofibrinolysis, endothelial cell dysfunction, inflammation, neutrophil extracellular traps, and complement. Targeting these different pathways may reduce thrombosis and improve lung function in COVID-19 patients.
Collapse
Affiliation(s)
- Nigel Mackman
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Division of Hematology, Department of Medicine (N.M., R.K., N.S.K.), University of North Carolina at Chapel Hill
| | - Silvio Antoniak
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Department of Pathology and Laboratory Medicine (S.A., A.S.W.), University of North Carolina at Chapel Hill
| | - Alisa S. Wolberg
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Department of Pathology and Laboratory Medicine (S.A., A.S.W.), University of North Carolina at Chapel Hill
| | - Raj Kasthuri
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Division of Hematology, Department of Medicine (N.M., R.K., N.S.K.), University of North Carolina at Chapel Hill
| | - Nigel S. Key
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Division of Hematology, Department of Medicine (N.M., R.K., N.S.K.), University of North Carolina at Chapel Hill
| |
Collapse
|