1
|
Chatzidimitriou K, Seremidi K, Kloukos D, Gizani S, Papaioannou W. The role of calcium in the prevention of erosive tooth wear: a systematic review and meta-analysis. Evid Based Dent 2024; 25:55. [PMID: 38200328 DOI: 10.1038/s41432-023-00966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVES The loss of hard dental tissue due to recurrent acid challenges and mechanical stresses without bacterial involvement is known as erosive tooth wear (ETW). Many studies in the literature have concentrated on variables that may affect the ETW process and prevent its occurrence or reduce its advancement. However, to date, no previous systematic review has evaluated the role of calcium in preventing ETW. Therefore, the purpose of the present systematic review was to review and critically appraise the scientific evidence regarding the role of calcium formulations in the prevention of ETW. METHODS The review protocol was registered in the PROSPERO international prospective register of systematic reviews (Ref: CRD42021229819). A literature search was conducted in electronic databases to identify in situ randomized controlled trials evaluating the prevention of ETW following the application of calcium formulations. The outcomes studied included mean enamel loss, surface microhardness, surface roughness, mean erosion/softening depth, mineral loss/precipitation and remineralization. Study characteristics and outcomes of included studies were summarized. Cochrane's risk-of-bias tool 2.0 was used to assess the quality of eligible studies, and meta-analysis using a random effects model was performed. RESULTS The search retrieved 869 studies of which 21 were considered eligible. Regarding the results of the quality assessment for potential risk of bias in all included studies, overall, 5 studies were considered as being at low risk, another 12 at unclear risk and 4 at high risk of bias. The findings of the studies showed that the addition of calcium in juice drinks led to reduced enamel loss, with blackcurrant juice presenting 2.6 times statistically significant less enamel loss compared to orange juice (p = 0.0001, I2 = 89%). No statistically significant difference in mean surface microhardness of eroded enamel was recorded between chewing gum with or without casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) (p = 0.31, I2 = 71%). Contradictory were the results regarding the effect of milk and CPP-ACP pastes on prevention of ETW. CONCLUSIONS Calcium formulations play an important role in ETW prevention, mainly through their addition to acidic drinks.
Collapse
Affiliation(s)
- Konstantina Chatzidimitriou
- Department of Preventive & Community Dentistry, National and Kapodistrian University of Athens, School of Dentistry, 2 Thivon Str, 115 27, Goudi, Athens, Greece.
| | - Kyriaki Seremidi
- Department of Paediatric Dentistry, National and Kapodistrian University of Athens, School of Dentistry, 2 Thivon Str, 115 27, Goudi, Athens, Greece
| | - Dimitrios Kloukos
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, CH-3012, Hochschulstrasse 4, Bern, Switzerland
| | - Sotiria Gizani
- Department of Paediatric Dentistry, National and Kapodistrian University of Athens, School of Dentistry, 2 Thivon Str, 115 27, Goudi, Athens, Greece
| | - William Papaioannou
- Department of Preventive & Community Dentistry, National and Kapodistrian University of Athens, School of Dentistry, 2 Thivon Str, 115 27, Goudi, Athens, Greece
| |
Collapse
|
2
|
Enax J, Meyer F, Schulze zur Wiesche E, Epple M. On the Application of Calcium Phosphate Micro- and Nanoparticles as Food Additive. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4075. [PMID: 36432359 PMCID: PMC9693044 DOI: 10.3390/nano12224075] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The human body needs calcium and phosphate as essential nutrients to grow bones and teeth, but they are also necessary for many other biochemical purposes (e.g., the biosynthesis of phospholipids, adenosine triphosphate, ATP, or DNA). The use of solid calcium phosphate in particle form as a food additive is reviewed and discussed in terms of bioavailability and its safety after ingestion. The fact that all calcium phosphates, such as hydroxyapatite and tricalcium phosphate, are soluble in the acidic environment of the stomach, regardless of the particle size or phase, means that they are present as dissolved ions after passing through the stomach. These dissolved ions cannot be distinguished from a mixture of calcium and phosphate ions that were ingested separately, e.g., from cheese or milk together with soft drinks or meat. Milk, including human breast milk, is a natural source of calcium and phosphate in which calcium phosphate is present as nanoscopic clusters (nanoparticles) inside casein (protein) micelles. It is concluded that calcium phosphates are generally safe as food additives, also in baby formula.
Collapse
Affiliation(s)
- Joachim Enax
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Frederic Meyer
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Erik Schulze zur Wiesche
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
3
|
Augusto MG, Scaramucci T, Campos TMB, Aoki IV, Schlueter N, Borges AB. Film-Forming Polymers for Tooth Erosion Prevention. Polymers (Basel) 2022; 14:polym14194225. [PMID: 36236172 PMCID: PMC9573524 DOI: 10.3390/polym14194225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Different agents have been proposed to prevent the progression of acid induced dental substance losses, which are called erosive tooth wear (ETW), such as fluorides, calcium, and phosphate-based products; however, there is a need for a further increase in efficacy. Recently, the ability of polymers to interact with the tooth surface, forming acid resistant films, has come into the focus of research; nevertheless, there is still the need for a better understanding of their mode of action. Thus, this article provides an overview of the chemical structure of polymers, their mode of action, as well as the effect of their incorporation into oral care products, acid beverages, and antacid formulations, targeting the prevention of ETW. Recent evidence indicates that this may be a promising approach, however, additional studies are needed to confirm their efficacy under more relevant clinical conditions that consider salivary parameters such as flow rate, composition, and clearance. The standardization of methodological procedures such as acid challenge, treatment duration, and combination with fluorides is necessary to allow further comparisons between studies. In conclusion, film-forming polymers may be a promising cost-effective approach to prevent and control erosive demineralization of the dental hard tissue.
Collapse
Affiliation(s)
- Marina Gullo Augusto
- Institute of Science and Technology, Department of Restorative Dentistry, São Paulo State University-UNESP, São José dos Campos 12245-000, Brazil
- School of Dentistry, Centro Universitário de Cascavel–UNIVEL, Av. Tito Muffato, 317-Santa Cruz, Cascavel 85806-080, Brazil
| | - Tais Scaramucci
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo-USP, São Paulo 12245-000, Brazil
| | | | - Idalina Vieira Aoki
- Department of Chemical Engineering, Polytechnic School, University of São Paulo-USP, São Paulo 12245-000, Brazil
| | - Nadine Schlueter
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, 30625 Hannover, Germany
| | - Alessandra Bühler Borges
- Institute of Science and Technology, Department of Restorative Dentistry, São Paulo State University-UNESP, São José dos Campos 12245-000, Brazil
- Correspondence: ; Tel.: +55-12-3947-9374
| |
Collapse
|
4
|
Teng NC, Pandey A, Hsu WH, Huang CS, Lee WF, Lee TH, Yang TCK, Yang TS, Yang JC. Rehardening and the Protective Effect of Gamma-Polyglutamic Acid/Nano-Hydroxyapatite Paste on Surface-Etched Enamel. Polymers (Basel) 2021; 13:4268. [PMID: 34883772 PMCID: PMC8659594 DOI: 10.3390/polym13234268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
Many revolutionary approaches are on the way pertaining to the high occurrence of tooth decay, which is an enduring challenge in the field of preventive dentistry. However, an ideal dental care material has yet to be fully developed. With this aim, this research reports a dramatic enhancement in the rehardening potential of surface-etched enamels through a plausible synergistic effect of the novel combination of γ-polyglutamic acid (γ-PGA) and nano-hydroxyapatite (nano-HAp) paste, within the limitations of the study. The percentage of recovery of the surface microhardness (SMHR%) and the surface parameters for 9 wt% γ-PGA/nano-HAp paste on acid-etched enamel were investigated with a Vickers microhardness tester and an atomic force microscope, respectively. This in vitro study demonstrates that γ-PGA/nano-HAp treatment could increase the SMHR% of etched enamel to 39.59 ± 6.69% in 30 min. To test the hypothesis of the rehardening mechanism and the preventive effect of the γ-PGA/nano-HAp paste, the surface parameters of mean peak spacing (Rsm) and mean arithmetic surface roughness (Ra) were both measured and compared to the specimens subjected to demineralization and/or remineralization. After the treatment of γ-PGA/nano-HAp on the etched surface, the reduction in Rsm from 999 ± 120 nm to 700 ± 80 nm suggests the possible mechanism of void-filling within a short treatment time of 10 min. Furthermore, ΔRa-I, the roughness change due to etching before remineralization, was 23.15 ± 3.23 nm, while ΔRa-II, the roughness change after remineralization, was 11.99 ± 3.90 nm. This statistically significant reduction in roughness change (p < 0.05) implies a protective effect against the demineralization process. The as-developed novel γ-PGA/nano-HAp paste possesses a high efficacy towards tooth microhardness rehardening, and a protective effect against acid etching.
Collapse
Affiliation(s)
- Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Aditi Pandey
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (A.P.); (T.-H.L.)
| | - Wei-Hsin Hsu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan; (W.-H.H.); (T.C.-K.Y.)
| | - Ching-Shuan Huang
- Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Tzu-Hsin Lee
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (A.P.); (T.-H.L.)
| | - Thomas Chung-Kuang Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan; (W.-H.H.); (T.C.-K.Y.)
| | - Tzu-Sen Yang
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 11031, Taiwan;
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (A.P.); (T.-H.L.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 11052, Taiwan
- Research Center of Digital Oral Science and Technology, Taipei Medical University, Taipei 11052, Taiwan
| |
Collapse
|
5
|
Dorozhkin SV. Synthetic amorphous calcium phosphates (ACPs): preparation, structure, properties, and biomedical applications. Biomater Sci 2021; 9:7748-7798. [PMID: 34755730 DOI: 10.1039/d1bm01239h] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amorphous calcium phosphates (ACPs) represent a metastable amorphous state of other calcium orthophosphates (abbreviated as CaPO4) possessing variable compositional but rather identical glass-like physical properties, in which there are neither translational nor orientational long-range orders of the atomic positions. In nature, ACPs of a biological origin are found in the calcified tissues of mammals, some parts of primitive organisms, as well as in the mammalian milk. Manmade ACPs can be synthesized in a laboratory by various methods including wet-chemical precipitation, in which they are the first solid phases, precipitated after a rapid mixing of aqueous solutions containing dissolved ions of Ca2+ and PO43- in sufficient amounts. Due to the amorphous nature, all types of synthetic ACPs appear to be thermodynamically unstable and, unless stored in dry conditions or doped by stabilizers, they tend to transform spontaneously to crystalline CaPO4, mainly to ones with an apatitic structure. This intrinsic metastability of the ACPs is of a great biological relevance. In particular, the initiating role that metastable ACPs play in matrix vesicle biomineralization raises their importance from a mere laboratory curiosity to that of a reasonable key intermediate in skeletal calcifications. In addition, synthetic ACPs appear to be very promising biomaterials both for manufacturing artificial bone grafts and for dental applications. In this review, the current knowledge on the occurrence, structural design, chemical composition, preparation, properties, and biomedical applications of the synthetic ACPs have been summarized.
Collapse
|
6
|
Reise M, Kranz S, Heyder M, Jandt KD, Sigusch BW. Effectiveness of Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) Compared to Fluoride Products in an In-Vitro Demineralization Model. MATERIALS 2021; 14:ma14205974. [PMID: 34683566 PMCID: PMC8540000 DOI: 10.3390/ma14205974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 11/16/2022]
Abstract
The goal of this study was to evaluate the effectiveness of the toothpaste Tooth Mousse compared to conventional fluoride-based versions in the prevention of enamel and dentin demineralization. Human enamel and dentin samples (n = 120 each) were exposed to artificial demineralization at pH 4.92. During the demineralization process, the samples in the test groups were periodically treated with Tooth Mousse (TM) containing casein-phosphopeptide -amorphous-calcium-phosphate (CPP-ACP) and Tooth Mousse Plus (TMP) containing amorphous-calcium-fluoride-phosphate (CPP-ACPF) to evaluate their protective properties. Fluoride toothpastes containing 1400 ppm amine fluoride (AmF) and 1450 ppm sodium fluoride (NaF) were applied in the positive control groups. Treatment with distilled water (group C-W) or demineralization without treatment (group C-D) served as negative controls. After the demineralization and treatment process, all samples were cut longitudinally and lesion depths were determined at six locations using polarized light microscopy. In TM/TMP groups (enamel: 80/86 µm, dentin: 153/156 µm) lesion depths were significantly smaller compared to the negative control groups C-W/C-D (enamel: 99/111 µm, dentin: 163/166 µm). However, TM and TMP compared to the positive controls AmF/NaF (enamel: 58/63 µm, dentin: 87/109 µm) showed higher lesion depths. The application of TM/TMP (89%/78%) during demineralization led to a reduced number of severe lesions compared to the negative controls C-W/C-D (100%/95%). In this study we demonstrate that Tooth Mousse is less effective regarding prevention of enamel and dentin demineralization compared to fluoride containing toothpastes.
Collapse
Affiliation(s)
- Markus Reise
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, An der Alten Post 4, 07743 Jena, Germany; (S.K.); (M.H.); (B.W.S.)
- Correspondence:
| | - Stefan Kranz
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, An der Alten Post 4, 07743 Jena, Germany; (S.K.); (M.H.); (B.W.S.)
| | - Markus Heyder
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, An der Alten Post 4, 07743 Jena, Germany; (S.K.); (M.H.); (B.W.S.)
| | - Klaus D. Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany;
| | - Bernd W. Sigusch
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, An der Alten Post 4, 07743 Jena, Germany; (S.K.); (M.H.); (B.W.S.)
| |
Collapse
|
7
|
Kasraei S, Kasraei P, Valizadeh S, Azarsina M. Rehardening of Eroded Enamel with CPP-ACFP Paste and CO 2 Laser Treatment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3304553. [PMID: 34337003 PMCID: PMC8298158 DOI: 10.1155/2021/3304553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Diet and lifestyle can destroy tooth structure due to the dissolution of enamel by acidic beverages. The present study evaluated the effect of CO2 laser irradiation and CPP-ACFP (casein phosphopeptide and amorphous calcium phosphate with fluoride) paste on the remineralization of enamel eroded by carbonated soft drinks. METHODS In the present in vitro study, 46 human sound premolar teeth were sectioned mesiodistally to achieve 84 samples. Fourteen samples were assigned to the positive control group (G1), and the remaining samples were immersed in 500 mL of cola drink for 2 minutes, followed by rinsing with distilled water for 10 seconds. This procedure was carried out three times to create erosive lesions. Then, the 60 eroded samples were randomly assigned to five groups of G2 to G6 in terms of the treatment as follows: negative control (G2), CO2 laser irradiation (G3), CPP-ACFP paste (G4), CO2 laser irradiation followed by CPP-ACFP paste application (G5), and CPP-ACFP paste application followed by CO2 laser irradiation (G6). The mean surface microhardness of the enamel surface was evaluated and determined at three points for each sample. Data were analyzed with one-way ANOVA and Tukey HSD tests (α = 0.05). RESULTS The highest and the lowest hardness values were recorded in the G1 (314 ± 12 kg/mm2) and G2 (213.7 ± 12 kg/mm2) groups, respectively. ANOVA revealed significant differences between the study groups (P < 0.001). Two-by-two comparisons showed significant differences between the G2 group and the other groups, indicating the efficacy of all the treatment modalities in tooth remineralization and rehardening procedures (P < 0.05). Only in group G6, the enamel microhardness was not significantly different from the G1 positive control group (P > 0.05). CONCLUSION Considering the parameters used in the present study, CO2 laser irradiation or CPP-ACFP paste application alone increased eroded enamel's surface hardness; however, their sequential application was more effective in rehardening the eroded enamel's surface to near-normal levels.
Collapse
Affiliation(s)
- Shahin Kasraei
- Department of Restorative Dentistry, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Valizadeh
- Dental Research Center, Dentistry Research Institute, Restorative Dentistry Department, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Azarsina
- Department of Operative Dentistry, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Akgun OM, Haman Bayari S, Ide S, Guven Polat G, Yildirim C, Orujalipoor I. Evaluation of the protective effect on enamel demineralization of CPP-ACP paste and ROCS by vibrational spectroscopy and SAXS: An in vitro study. Microsc Res Tech 2021; 84:2977-2987. [PMID: 34213062 DOI: 10.1002/jemt.23857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/21/2021] [Accepted: 06/08/2021] [Indexed: 11/09/2022]
Abstract
The aim of this study was to investigate human dental enamel surfaces using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and small angle X-ray scattering (SAXS) techniques concerning differences between the demineralized enamel surface and remineralized enamel surface by casein phosphopeptide amorphous calcium phosphate, Tooth mousse® (CPP-ACP) and remineralizing oral care systems (ROCS®) agents within the same tooth. For this purpose, 20 freshly extracted human maxillary central incisors without caries and defects were used. Labial surfaces of each of the teeth were divided into four sections, which were marked as follows: Group 1, normal enamel; Group 2, demineralized enamel with demineralization solution; Group 3, demineralized enamel + remineralization agent (ROCS for 10 teeth, CPP-ACP for 10 teeth); and Group 4, remineralization agent (ROCS for 10 teeth, CPP-ACP for 10 teeth). To describe the changes in tooth enamel, the phosphate group concentration within enamel was used as an indicator of the degree of mineralization. The phosphate and carbonate bands in the FTIR and Raman spectra were used to investigate the structural changes in the demineralized and remineralized enamel. Spectroscopic data were statistically analyzed in terms of CPP-ACP and ROCS using one-way analysis of variance. The carbonate content of demineralized enamel was higher than the carbonate content in the other groups (p < .03). The apatite carbonate-phosphate balance in the samples with only remineralizing agent-especially ROCS applied-changed significantly (p < .05) compared to the normal group. The average FTIR spectra of the groups were subjected to multivariate hierarchical cluster analysis (HCA) conducted with the use of the OPUS 5.5 software. Nanosized surface morphologies of the samples were compared using pair distance distributions obtained through SAXS analyses. According to the SAXS analyses, applications of CCP + ACP and ROCS agents were effective on nanostructures for all groups.
Collapse
Affiliation(s)
- Ozlem Marti Akgun
- Department of Pediatric Dentistry, Gulhane Faculty of Dentistry, University of Health Sciences, Ankara, Turkey
| | | | - Semra Ide
- Department of Physics Eng., Hacettepe University, Ankara, Turkey
| | - Gunseli Guven Polat
- Department of Pediatric Dentistry, Hamidiye Dentistry Faculty, University of Health Sciences, Istanbul, Turkey
| | - Ceren Yildirim
- Department of Nanotechnology & Nanomedicine, Hacettepe University, Ankara, Turkey
| | - Ilgar Orujalipoor
- Department of Nanotechnology & Nanomedicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Abstract
The difficulty in obtaining human teeth that are caries-free that have similar environmental exposure, e.g., diet intake and water fluoridation has lead researchers to opt for bovine teeth as a substitute for erosion studies. Bovine mandibular incisors are readily available at abattoirs and often originate from the same region and are likely to consume similar dietary intake. The bovine teeth for erosion or abrasion studies usually undergo specimen preparation to produce a "flat surface" baseline specimen. Among other terms used to define baseline specimens for erosion and abrasion studies include phrases like "optically flat" and "flat and smooth surface." However, these terms might have no quantitative value as it does not justify the actual surface characteristics of the prepared flattened surface. In dentistry, roughness average (Ra) is the most commonly used parameter when reporting the roughness of specimens Reporting Ra alone might not be sufficient as it does not provide information regarding the surface texture as there is no distinction between valleys and peaks, nor does it provide information about the core structure of a material unlike the bearing area curve. The incorporation of Ra and BAP values in baseline specimens has the potential in predicting the wear or lubricating potential of these specimens. Furthermore, standardization of baseline specimens by acknowledging its surface roughness values ensures comparability of erosion and abrasion studies as different specimen preparation technique might influence the outcome or results of research.
Collapse
Affiliation(s)
- Hayati Ishak
- Centre of Comprehensive Care Studies, Faculty of Dentistry, Universiti Teknologi MARA, Selangor, Malaysia
| | - James Field
- Department of Restorative Dentistry School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Matthew German
- School of Dental Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
10
|
Meira IA, Dos Santos EJL, Fernandes NLS, de Sousa ET, de Oliveira AFB, Sampaio FC. Erosive effect of industrialized fruit juices exposure in enamel and dentine substrates: An in vitro study. J Clin Exp Dent 2021; 13:e48-e55. [PMID: 33425231 PMCID: PMC7781208 DOI: 10.4317/jced.57385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/23/2020] [Indexed: 11/23/2022] Open
Abstract
Background Erosive tooth wear has been a highly prevalent and emerging phenomenon related to eating habits of the population. Aim: This study sought to investigate industrialized fruit juices exposure in enamel and dentine substrates in terms of erosive effect.
Material and Methods Human enamel and dentine specimens were randomized into 8 groups (n=8): Grape juice – Ades®, Grape juice – Del Valle Kapo®, Grape juice – Aurora®, Orange juice – Del Valle Kapo®, Orange juice – Ades®, Strawberry juice – Mais Vita®, Strawberry juice – Ades®, Citrus fruit juice – Tampico®. Specimens were submitted to an in vitro erosive challenge and to a microhardness test to evaluate the percentage of surface microhardness loss. The pH, titratable acidity, buffering capacity, degree of saturation and critical pH concerning hydroxyapatite and fluorapatite of the juices were measured as well as their composition of calcium, phosphate, fluoride, and total protein. Data were submitted to the analysis of variance and multivariate linear regression (α=0.05).
Results All test agents were undersaturated concerning hydroxyapatite and fluorapatite. A significant interaction between the type of juice and substrate was found (α=0.000, β=0.99). However, Orange juice – Del Valle Kapo®, Orange juice – Ades®, and Strawberry juice – Mais Vitta® demonstrated no difference between substrates. Grape juice – Ades® promoted less mineral than other juices in enamel and dentine. The calcium concentration in juices was a protective variable for microhardness loss in both substrates.
Conclusions The erosive effect of industrialized fruit juices affects enamel differently from dentine, and this effect differed between some, but not all, tested juices. Key words:Tooth erosion, dental enamel, dentine. beverages, food habits.
Collapse
Affiliation(s)
- Ingrid-Andrade Meira
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba/São Paulo, Brazil
| | - Elis-Janaina-Lira Dos Santos
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba/São Paulo, Brazil
| | | | - Emerson-Tavares de Sousa
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba/São Paulo, Brazil
| | | | - Fábio-Correia Sampaio
- Department of Clinic and Social Dentistry, Federal University of Paraiba-UFPB, João Pessoa/Paraiba, Brazil
| |
Collapse
|
11
|
Gümüş H, Aydınbelge M, Sönmez H. Evaluation of the Efficacy of Different Remineralizing Agents on Artificial Early Enamel Lesions of Primary Teeth: An In Vitro Study. JOURNAL OF ADVANCED ORAL RESEARCH 2020. [DOI: 10.1177/2320206820919664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aim: To analyze the remineralization efficacy of casein phosphopeptide–amorphous calcium phosphate (CPP–ACP) and 8% arginine on artificial early enamel lesions on primary teeth enamel samples. Materials and Methods: In this in vitro study, artificial enamel lesions were created in 120 primary teeth. Teeth were randomly divided into 5 groups: group C: CPP–ACP paste; group CF: CPP–ACPF paste with 900 ppm flour; group A: paste with 8% arginine; group K+: 500 ppm NaF as a positive control; and group K–: deionized water as a negative control. After 4 weeks of the remineralization process, the effect of remineralization on samples of agents used the microhardness, atomic force microscope, and scanning electron microscope analyses. Statistical analysis was done using Statistical Package for the Social Sciences (SPSS version 20.0, SPSS Inc., Chicago, IL, USA). ANOVA and Tukey Post-Hoc multiple comparison test were applied ( p < .05). Results: Increasing percentage values of the microhardness at groups C, CF, and A were significantly better than group K– ( p < .05), whereas there is no statistically significant difference with group K+ ( p > .05). The average surface roughness values of groups C and CF were similar with group K+ in AFM analysis, whereas average surface roughness values of group A were significantly higher than K+ group. Conclusion: The CPP–ACP, CPP–ACPF, and arginine are effective agents for remineralization of early childhood caries lesions.
Collapse
Affiliation(s)
- Hüsniye Gümüş
- Department of Pediatric Dentistry, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | - Mustafa Aydınbelge
- Department of Pediatric Dentistry, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | - Hayriye Sönmez
- Department of Pediatric Dentistry, Faculty of Dentistry, Ankara University, Ankara, Turkey
| |
Collapse
|
12
|
Carrouel F, Viennot S, Ottolenghi L, Gaillard C, Bourgeois D. Nanoparticles as Anti-Microbial, Anti-Inflammatory, and Remineralizing Agents in Oral Care Cosmetics: A Review of the Current Situation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E140. [PMID: 31941021 PMCID: PMC7022934 DOI: 10.3390/nano10010140] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 12/29/2022]
Abstract
Many investigations have pointed out widespread use of medical nanosystems in various domains of dentistry such as prevention, prognosis, care, tissue regeneration, and restoration. The progress of oral medicine nanosystems for individual prophylaxis is significant for ensuring bacterial symbiosis and high-quality oral health. Nanomaterials in oral cosmetics are used in toothpaste and other mouthwash to improve oral healthcare performance. These processes cover nanoparticles and nanoparticle-based materials, especially domains of application related to biofilm management in cariology and periodontology. Likewise, nanoparticles have been integrated in diverse cosmetic produces for the care of enamel remineralization and dental hypersensitivity. This review summarizes the indications and applications of several widely employed nanoparticles in oral cosmetics, and describes the potential clinical implementation of nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in the prevention of dental caries, hypersensitivity, and periodontitis.
Collapse
Affiliation(s)
- Florence Carrouel
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (S.V.); (D.B.)
| | - Stephane Viennot
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (S.V.); (D.B.)
| | - Livia Ottolenghi
- Department of Oral and Maxillo-facial Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Cedric Gaillard
- Institut national de Recherche en Agriculture, Alimentation et Environnement (INRAE), Unité de Recherche 1268 Biopolymères Interactions Assemblages (BIA), 44316 Nantes, France;
| | - Denis Bourgeois
- Laboratory “Systemic Health Care”, University of Lyon, University Claude Bernard Lyon 1, EA4129, 69008 Lyon, France; (S.V.); (D.B.)
| |
Collapse
|
13
|
Meyer F, Amaechi BT, Fabritius HO, Enax J. Overview of Calcium Phosphates used in Biomimetic Oral Care. Open Dent J 2018; 12:406-423. [PMID: 29988215 PMCID: PMC5997847 DOI: 10.2174/1874210601812010406] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 11/24/2022] Open
Abstract
Background: The use of biomimetic agents is an emerging field in modern oral care. Promising biomimetic substances for such applications are calcium phosphates, because their chemical composition is very similar to that of the mineral phase in human teeth, especially of natural enamel. Examples for their application include the remineralization of early caries lesions and repair of small enamel defects. Objective: This review provides an interdisciplinary view on calcium phosphates and their applications in biomimetic oral care. The aim of this work is to give an overview of in vivo and in situ studies comparing several calcium phosphates in preventive dentistry that can be used as a knowledge base for the development of innovative alternative oral care concepts. Methods: Books, reviews, and original research papers with a focus on in vivo and in situ studies were included. The databases PubMed® and SciFinder® were used for literature search. Calcium phosphates that are frequently utilized in oral care products are covered in this review and were used as search terms alone and together with the following key words: in vivo, in situ, caries, clinical study, and remineralization. From 13,470 studies found, 35 studies complied with the inclusion criteria and were used for this review. Results: Published in vivo and in situ studies demonstrate calcium phosphates’ potential in enamel remineralization. However, more studies are needed to further substantiate existing results and to extend and refine the application of calcium phosphates in modern oral care. Conclusion: Calcium phosphates represent an innovative biomimetic approach for daily oral care because of their high similarity to natural enamel that will broaden the range of future treatments in preventive dentistry.
Collapse
Affiliation(s)
- Frederic Meyer
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Bennett T Amaechi
- Department of Comprehensive Dentistry, University of Texas Health Science Center, 703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | - Helge-Otto Fabritius
- Max-Planck-Institut für Eisenforschung GmbH, Microstructure Physics and Alloy Design, Max-Planck-Straße 1, 40237 Duesseldorf, Germany
| | - Joachim Enax
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| |
Collapse
|
14
|
Yu H, Jiang NW, Ye XY, Zheng HY, Attin T, Cheng H. In situ effect of Tooth Mousse containing CPP-ACP on human enamel subjected to in vivo acid attacks. J Dent 2018; 76:40-45. [PMID: 29857075 DOI: 10.1016/j.jdent.2018.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/27/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE This in situ study aimed to evaluate the protective effect of Tooth Mousse (GC) containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on human enamel erosion and to compare the difference in erosion between the anteriorly and posteriorly positioned human enamel. METHODS This study used a 2-treatment (7 days each) crossover design with 12 healthy volunteers wearing intraoral appliances. Each appliance contained 4 human enamel specimens positioned on the buccal surfaces of the volunteers' maxillary central incisors and first molars. The specimens were intraorally treated withTooth Mousse (CPP-ACP group) or deionized water (control group) for 3 min and then exposed to in vivo acid attacks by rinsing with 150 ml of a cola drink (4 × 5 min/day). The surface microhardness (SMH) of the specimens was measured and used to calculate the percentage of SMH loss (%SMHl). Erosion effect on enamel was also investigated by scanning electron microscopy (n = 4) at the end of study. The data were statistically analysed using two-way analysis of variance (ANOVA) and Tukey's test at a level of P < 0.05. RESULTS A significant decrease in %SMHl was observed for the specimens of CPP-ACP group compared to that for the controls (P = 0.007). The specimens positioned posteriorly exhibited a significantly lower %SMHl than those positioned anteriorly (P = 0.033). Samples of CPP-ACP group showed fewer etching patterns than those of the control group. CONCLUSIONS In this in situ model, application of Tooth Mousse containing CPP-ACP before erosion reduced the %SMHl of human enamel. Enamel located in different positions showed different patterns of erosion. CLINICAL SIGNIFICANCE Application of Tooth Mousse containing CPP-ACP could be considered as a suitable preventive strategy against enamel erosion. ClinicalTrials.gov Identifier: NCT03426150.
Collapse
Affiliation(s)
- Hao Yu
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fujian, China; Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Neng-Wu Jiang
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Xin-Yi Ye
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fujian, China
| | - Hai-Yan Zheng
- Department of Prosthodontics, School and Hospital of Stomatology, Zhejiang University, Zhejiang, China
| | - Thomas Attin
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University Zurich, Zurich, Switzerland
| | - Hui Cheng
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fujian, China.
| |
Collapse
|
15
|
Torres Toro CV, Faraoni JJ, de Matos LLM, Palma-Dibb RG. Efficacy of different strategies to treat root dentin eroded by liquid or gaseous hydrochloric acid associated with brushing abrasion. Arch Oral Biol 2018; 89:65-69. [PMID: 29475189 DOI: 10.1016/j.archoralbio.2018.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 01/30/2018] [Accepted: 02/11/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This study aims to evaluate how casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) associated with Nd:YAG or Diode laser affects dentin exposed to hydrochloric acid (HCl) with or without tooth brushing. DESIGN One hundred and sixty human root dentin blocks were selected after they were initially eroded with liquid HCl (pH 1.2) 3x for one day. The blocks were divided into the following groups: G1- liquid HCl (HCl-l), G2- HCl-l + brushing, G3- gaseous HCl (HCl-g), and G4- HCl-g + brushing. Each group was randomly assigned to the following treatments (n = 10): A) Control (no treatment), B) CPP-ACP, C) CPP-ACP associated with Nd:YAG laser (λ = 1064 nm) (40 mJ, 10 Hz, 0.4 W, 15 s), and D) CPP-ACP associated with Diode laser (λ = 980 nm) (0.5 W, 200 μs, 15 s). The treatment with CPP-ACP (G2, G3 and G4) was applied on the dentine surface for 5 min. Erosion (6x/day/20 s) and erosion (6x/day/20 s) with abrasion (2x/10 s) were performed for five days. Dentin volume loss was determined by 3D confocal laser microscopy. Data were analyzed with two-way ANOVA and Tukey's tests. RESULTS G1 - CPP-ACP (10.77 ± 1.66) and CPP-ACP associated with Diode laser (9.98 ± 0.89) showed lower volume loss in relation Control group (12.86 ± 0.63) (p < 0.05). G2 - CPP-ACP associated with Diode laser (12.41 ± 1.08) elicited lower volume loss as compared to the Control (14.42 ± 1.24) (p < 0.05). As for G3 and G4, all treatments showed similar volume loss. CONCLUSION CPP-ACP and CPP-ACP associated with Diode laser could control dental tissue loss in dentin eroded by liquid HCl. Moreover, CPP-ACP associated with Diode laser could effectively decrease dental tissue loss in dentin exposed to liquid HCl and brushing.
Collapse
Affiliation(s)
- Carmen Victoria Torres Toro
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-904, Ribeirão Preto, SP, Brazil.
| | - Juliana Jendiroba Faraoni
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-904, Ribeirão Preto, SP, Brazil.
| | - Laís Lopes Machado de Matos
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-904, Ribeirão Preto, SP, Brazil.
| | - Regina Guenka Palma-Dibb
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-904, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
16
|
Bayrak S, Tuloglu N, Bicer H, Sen Tunc E. Effect of Fluoride Varnish Containing CPP-ACP on Preventing Enamel Erosion. SCANNING 2017; 2017:1897825. [PMID: 29109803 PMCID: PMC5661827 DOI: 10.1155/2017/1897825] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/14/2016] [Indexed: 06/07/2023]
Abstract
This study aimed to investigate the effect of a fluoride varnish with added casein phosphopeptide-amorphous calcium phosphate treatment on the prevention of enamel erosion, and it compared the results with those of other fluoride varnishes. Fifty enamel specimens obtained from bovine incisors were randomly divided into five groups (n = 10) based on the type of surface pretreatment used: intact enamel (Group 1); intact enamel+erosive cycles (Group 2); intact enamel+MI varnish+erosive cycles (Group 3); intact enamel+Clinpro White varnish+erosive cycles (Group 4); and intact enamel+Duraphat varnish+erosive cycles (Group 5). The specimens were subjected to erosive cycles for five days. The surface roughness was evaluated using atomic force microscopy. The results were statistically analyzed using one-way ANOVA and Tukey's tests. Group 1 had the smoothest surfaces. After the erosive cycles, the greatest surface roughness values were observed in Group 2, followed by Groups 5, 4, and 3, respectively. Statistically significant differences were observed among all groups (p < 0.05). The application of fluoride varnishes had some positive effects on preventing enamel erosion; however, the most effective agent was fluoride varnish with added casein phosphopeptide-amorphous calcium phosphate.
Collapse
Affiliation(s)
- Sule Bayrak
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Nuray Tuloglu
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Huseyin Bicer
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Emine Sen Tunc
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Ondokuz Mayıs, Samsun, Turkey
| |
Collapse
|
17
|
Ceci M, Mirando M, Beltrami R, Chiesa M, Colombo M, Poggio C. Effect of self-assembling peptide P11 -4 on enamel erosion: AFM and SEM studies. SCANNING 2016; 38:344-351. [PMID: 26435410 DOI: 10.1002/sca.21276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
The aim of the present in vitro study was to evaluate the protective effect of self-assembling peptide P11 -4 (Curodont™ Protect/Credentis) on enamel erosion produced by a soft-drink, by using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Thirty human incisors were equally and randomly assigned to 6 groups. Group 1: intact enamel, group 2: soft drink, group 3: Curodont(™) Protect applied, group 4: Curodont(™) Protect applied + soft drink, group 5: soft drink + Curodont(™) Protect applied, group 6: soft drink + Curodont(™) Protect applied + soft drink. Specimens were observed through atomic force microscopy (AFM). The root mean-square roughness (Rrms) was obtained from the AFM images and the differences in the averaged values among the groups were analyzed by Shapiro-Wilk test in order to assess the normality of the distribution. Parametric ANOVA and post hoc Tuckey test were performed to assess the differences between the different groups. After demineralization process, enamel demonstrated a high degree of surface porosity. This morphological aspect was reflected in the increase of Rrms values. No significant differences (p > 0.05) were reported between intact enamel and enamel only treated with P11 -4 and between eroded enamel and enamel treated with P11 -4 and then demineralized. However significant differences (p < 0.05) were recorded when comparing softened enamel with softened enamel further remineralized with biomimetic self-assembling peptides and enamel treated with the protective paste between two acid attacks. The use of P11 -4 remineralizing may offer a degree of protection from enamel erosion. SCANNING 38:344-351, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matteo Ceci
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences-Section of Dentistry, University of Pavia, Italy
| | - Maria Mirando
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences-Section of Dentistry, University of Pavia, Italy
| | - Riccardo Beltrami
- Deptartment of Brain and Behavioral Sciences-Section of Statistics, University of Pavia, Italy
| | - Marco Chiesa
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences-Section of Dentistry, University of Pavia, Italy
| | - Marco Colombo
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences-Section of Dentistry, University of Pavia, Italy
| | - Claudio Poggio
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences-Section of Dentistry, University of Pavia, Italy
| |
Collapse
|
18
|
Influence of Calcium Phosphate and Apatite Containing Products on Enamel Erosion. ScientificWorldJournal 2016; 2016:7959273. [PMID: 27430013 PMCID: PMC4939184 DOI: 10.1155/2016/7959273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
For the purpose of erosion prevention the present study aimed to compare the efficacy of two biomimetic products and a fluoride solution to optimize the protective properties of the pellicle. After 1 min of in situ pellicle formation on bovine enamel slabs, 8 subjects adopted CPP-ACP (GC Tooth Mousse), a mouthwash with hydroxyapatite microclusters (Biorepair), or a fluoride based mouthwash (elmex Kariesschutz) for 1 min each. Afterwards, samples were exposed in the oral cavity for 28 min. Native enamel slabs and slabs exposed to the oral cavity for 30 min without any rinse served as controls. After oral exposure, slabs were incubated in HCl (pH values 2, 2.3, and 3) for 120 s and kinetics of calcium and phosphate release were measured photometrically; representative samples were evaluated by SEM and TEM. The physiological pellicle reduced demineralization at all pH values; the protective effect was enhanced by fluoride. The biomimetic materials also reduced ion release but their effect was less pronounced. SEM indicated no layer formation after use of the different products. However, TEM confirmed the potential accumulation of mineral components at the pellicle surface. The tested products improve the protective properties of the in situ pellicle but not as effectively as fluorides.
Collapse
|