1
|
Holiuk Y, Birsa R, Bukreieva T, Nemtinov P, Kyryk V, Ustymenko A, Mazevych V, Sokolov M, Lobyntseva G, Shablii V. Effectiveness and safety of multiple injections of human placenta-derived MSCs for knee osteoarthritis: a nonrandomized phase I trial. BMC Musculoskelet Disord 2025; 26:418. [PMID: 40281581 PMCID: PMC12032682 DOI: 10.1186/s12891-025-08664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
OBJECTIVE This study investigates the safety and efficacy of three intra-articular (IA) injections of cryopreserved human placenta-derived mesenchymal stem cells (hP-MSCs) for knee osteoarthritis (KOA) over a 1-year follow-up period. METHODS A total of 26 patients with stage II-III KOA were enrolled in this non-randomized, open-label study. Patients received either conventional therapy with hyaluronic acid (HA) alone (Control group, n = 11) or in combination with hP-MSCs (MSC group, n = 15) via three intra-articular injections with 4-week intervals. Clinical outcomes were assessed using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analogue Scale (VAS), and magnetic resonance imaging (MRI) at 6 and 12 months following the first injection. Blood samples were analyzed for cytokine levels. RESULTS Three injections of hP-MSCs combined with HA were well-tolerated, with no severe adverse events observed. Significant improvements in WOMAC and VAS scores were noted in the MSC group compared to the Control group at both 6 and 12 months. MRI analysis revealed no significant differences in cartilage thickness or optical density index between the groups. Additionally, serum cytokine analysis showed a significant decrease in interleukin-2 (IL-2) levels in the MSC group, indicating an anti-inflammatory effect of hP-MSCs. However, no significant changes were observed in other cytokines. CONCLUSION This study demonstrates that three intra-articular injections of cryopreserved hP-MSCs in combination with HA are safe and effective for treating KOA, providing sustained clinical improvement at the 1-year follow-up. TRIAL REGISTRATION NCT04453111, #7/09.26.2018. Registered 02 January 2020, https://www. CLINICALTRIALS gov/study/NCT04453111 .
Collapse
Affiliation(s)
- Yevhen Holiuk
- State Institution "The Institute of Traumatology and Orthopedics by NAMS of Ukraine", 27 Bulvarno-Kudriavska Street, Kyiv, 01601, Ukraine
| | - Roman Birsa
- Department of Traumatology, Kyiv City Clinical Hospital, #6, 3 Guzara Ave, Kyiv, 03680, Ukraine
| | - Tetiana Bukreieva
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 150 Zabolotnogo Str, Kyiv, 03143, Ukraine
- Placenta Stem Cell Laboratory, Institute of Cell Therapy, 9 Mokra str, Cryobank, Kyiv, 03035, Ukraine
| | - Petro Nemtinov
- Institute of Cell Therapy, 9 Mokra str, Kyiv, 03035, Ukraine
| | - Vitalii Kyryk
- Cell and Tissue Technologies Department, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, 5 Svyatoslav Khorobrygo str, Kyiv, 03151, Ukraine
- Laboratory of Pathological Physiology and Immunology, D. F. Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, 67 Vyshgorodska Street, Kyiv, 04114, Ukraine
| | - Alina Ustymenko
- Cell and Tissue Technologies Department, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, 5 Svyatoslav Khorobrygo str, Kyiv, 03151, Ukraine
- Laboratory of Pathological Physiology and Immunology, D. F. Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, 67 Vyshgorodska Street, Kyiv, 04114, Ukraine
| | - Vadym Mazevych
- State Institution "The Institute of Traumatology and Orthopedics by NAMS of Ukraine", 27 Bulvarno-Kudriavska Street, Kyiv, 01601, Ukraine
| | - Mykola Sokolov
- Institute of Cell Therapy, 9 Mokra str, Kyiv, 03035, Ukraine
| | | | - Volodymyr Shablii
- Placenta Stem Cell Laboratory, Institute of Cell Therapy, 9 Mokra str, Cryobank, Kyiv, 03035, Ukraine.
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 150 Zabolotnogo Str, 03143, Kyiv, Ukraine.
| |
Collapse
|
2
|
Vaiasicca S, James DW, Melone G, Saeed O, Francis LW, Corradetti B. Amniotic fluid-derived mesenchymal stem cells as a therapeutic tool against cytokine storm: a comparison with umbilical cord counterparts. Stem Cell Res Ther 2025; 16:151. [PMID: 40156072 PMCID: PMC11951844 DOI: 10.1186/s13287-025-04262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Several immunosuppressive therapies have been proposed as key treatment options for critically ill patients since the first appearance of severe acute respiratory syndrome coronavirus 2. Mesenchymal stem cells (MSCs) from different sources have been considered for their potential to attenuate the cytokine storm associated to COVID-19 and the consequent multi-organ failure, providing evidence for safe and efficacious treatments. Among them, administration of umbilical cord-derived MSCs (UC-MSCs) has demonstrated a significant increase in survival rates, largely due to their potent immunosuppressive properties. METHODS We applied next-generation sequencing (NGS) analysis to compare the transcriptomic profiles of MSCs isolated from two gestational sources: amniotic fluid (AF) obtained during prenatal diagnosis and their clinically relevant umbilical cord counterparts, for which datasets were publicly available. A full meta-analysis was performed to identify suitable GEO and NGS datasets for comparison between AF- and UC-MSC samples. RESULTS Transcriptome analysis revelaed significant differences between groups, despite both cell lines being strongly involved in the tissue development, crucial to achieve the complex task of wound healing. Significantly enriched hallmark genes suggest AF-MSC superior immunomodulatory features against signaling pathways actively involved in the cytokine storm (i.e., IL-2/STAT, TNF-a/NFkB, IL-2/STAT5, PI3K/AKT/mTOR). CONCLUSIONS The data presented here suggest that AF-MSCs hold significant promise for treating not only COVID-19-associated cytokine storms but also a variety of other inflammatory syndromes (i.e., those induced by bacterial infections, autoimmune disorders, and therapeutic interventions). Realizing the full potential of AF-MSCs as a comprehensive therapeutic approach in inflammatory disease management will require more extensive clinical trials and in-depth mechanistic studies.
Collapse
Affiliation(s)
- Salvatore Vaiasicca
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
- Department of Life and Environmental Life, Polytechnic University of Marche, Ancona, Italy
| | - David W James
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Gianmarco Melone
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Omar Saeed
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Lewis W Francis
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK
| | - Bruna Corradetti
- Centre of NanoHealth, Swansea University Medical School, Swansea, UK.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Section Oncology/Hematology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Ma W, Tang S, Yao P, Zhou T, Niu Q, Liu P, Tang S, Chen Y, Gan L, Cao Y. Advances in acute respiratory distress syndrome: focusing on heterogeneity, pathophysiology, and therapeutic strategies. Signal Transduct Target Ther 2025; 10:75. [PMID: 40050633 PMCID: PMC11885678 DOI: 10.1038/s41392-025-02127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 03/09/2025] Open
Abstract
In recent years, the incidence of acute respiratory distress syndrome (ARDS) has been gradually increasing. Despite advances in supportive care, ARDS remains a significant cause of morbidity and mortality in critically ill patients. ARDS is characterized by acute hypoxaemic respiratory failure with diffuse pulmonary inflammation and bilateral edema due to excessive alveolocapillary permeability in patients with non-cardiogenic pulmonary diseases. Over the past seven decades, our understanding of the pathology and clinical characteristics of ARDS has evolved significantly, yet it remains an area of active research and discovery. ARDS is highly heterogeneous, including diverse pathological causes, clinical presentations, and treatment responses, presenting a significant challenge for clinicians and researchers. In this review, we comprehensively discuss the latest advancements in ARDS research, focusing on its heterogeneity, pathophysiological mechanisms, and emerging therapeutic approaches, such as cellular therapy, immunotherapy, and targeted therapy. Moreover, we also examine the pathological characteristics of COVID-19-related ARDS and discuss the corresponding therapeutic approaches. In the face of challenges posed by ARDS heterogeneity, recent advancements offer hope for improved patient outcomes. Further research is essential to translate these findings into effective clinical interventions and personalized treatment approaches for ARDS, ultimately leading to better outcomes for patients suffering from ARDS.
Collapse
Affiliation(s)
- Wen Ma
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Songling Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Yao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingyuan Zhou
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Qingsheng Niu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyuan Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Chen
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Yu Cao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China.
| |
Collapse
|
4
|
Hussen BM, Taheri M, Yashooa RK, Abdullah GH, Abdullah SR, Kheder RK, Mustafa SA. Revolutionizing medicine: recent developments and future prospects in stem-cell therapy. Int J Surg 2024; 110:8002-8024. [PMID: 39497543 PMCID: PMC11634165 DOI: 10.1097/js9.0000000000002109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/27/2024] [Indexed: 12/13/2024]
Abstract
Stem-cell therapy is a revolutionary frontier in modern medicine, offering enormous capacity to transform the treatment landscape of numerous debilitating illnesses and injuries. This review examines the revolutionary frontier of treatments utilizing stem cells, highlighting the distinctive abilities of stem cells to undergo regeneration and specialized cell differentiation into a wide variety of phenotypes. This paper aims to guide researchers, physicians, and stakeholders through the intricate terrain of stem-cell therapy, examining the processes, applications, and challenges inherent in utilizing stem cells across diverse medical disciplines. The historical journey from foundational contributions in the late 19th and early 20th centuries to recent breakthroughs, including ESC isolation and iPSC discovery, has set the stage for monumental leaps in medical science. Stem cells' regenerative potential spans embryonic, adult, induced pluripotent, and perinatal stages, offering unprecedented therapeutic opportunities in cancer, neurodegenerative disorders, cardiovascular ailments, spinal cord injuries, diabetes, and tissue damage. However, difficulties, such as immunological rejection, tumorigenesis, and precise manipulation of stem-cell behavior, necessitate comprehensive exploration and innovative solutions. This manuscript summarizes recent biotechnological advancements, critical trial evaluations, and emerging technologies, providing a nuanced understanding of the triumphs, difficulties, and future trajectories in stem cell-based regenerative medicine. Future directions, including precision medicine integration, immune modulation strategies, advancements in gene-editing technologies, and bioengineering synergy, offer a roadmap in stem cell treatment. The focus on stem-cell therapy's potential highlights its significant influence on contemporary medicine and points to a future in which individualized regenerative therapies will alleviate various medical disorders.
Collapse
Affiliation(s)
- Bashdar M. Hussen
- Department of Biomedical Sciences, Cihan University-Erbil
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Raya Kh. Yashooa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil
| | | | - Snur R. Abdullah
- Department of Medical Laboratory Science, College of Health sciences, Lebanese French University, Erbil, Kurdistan Region, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Suhad A. Mustafa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil
| |
Collapse
|
5
|
Regmi S, Ganguly A, Pathak S, Primavera R, Chetty S, Wang J, Patel S, Thakor AS. Evaluating the therapeutic potential of different sources of mesenchymal stem cells in acute respiratory distress syndrome. Stem Cell Res Ther 2024; 15:385. [PMID: 39468662 PMCID: PMC11520775 DOI: 10.1186/s13287-024-03977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Mesenchymal stem/stromal cells (MSCs) have attracted interest as a potential therapy given their anti-inflammatory and immunomodulatory properties. However, clinical trials using MSCs for acute respiratory distress syndrome (ARDS) have produced mixed and inconclusive data. In previous work, we performed a "head-to-head" comparison between different sources of MSCs and showed that each source had a unique genomic and proteomic "signature". METHOD This study investigated which sources of MSC: bone marrow derived-MSCs (BM-MSCs), adipose tissue derived-MSCs (AD-MSCs) and umbilical cord derived-MSCs (UC-MSCs) would be the optimal candidate to be used as a therapy in an LPS-induced mouse model of ARDS. Immune cells assessment, tissue transcriptomics, animal survival, and endothelial-epithelial barrier assessment were used to evaluate their effects. RESULTS When comparing the three most commonly used MSC sources, we found that UC-MSCs exhibited greater efficacy compared to other MSCs in improving animal survival, mitigating epithelial/endothelial damage, decreasing lung inflammation via reducing neutrophil infiltration, T cell proliferation, and M1 polarization. Bulk RNA sequencing of lung tissue also showed that UC-MSCs have the capability to downregulate extracellular trap formation, by the downregulation of key genes like Elane and Padi4. Notably, treatment with UC-MSCs demonstrated a significant reduction in Fc-γ R mediated phagocytosis, which has been associated with monocyte pyroptosis and intense inflammation in the context of COVID-19. CONCLUSION Our findings suggest that UC-MSCs are an optimal source of MSC to treat acute inflammatory conditions in the lungs, such as ARDS.
Collapse
Affiliation(s)
- S Regmi
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - A Ganguly
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - S Pathak
- Division of Blood and Marrow Transplantation and Cellular Therapy, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - R Primavera
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - S Chetty
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - J Wang
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - Shaini Patel
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - A S Thakor
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA.
| |
Collapse
|
6
|
Fang L, Hu F, Li H, Chang W, Liu L. Efficacy and safety of mesenchymal stem cell therapy for acute respiratory distress syndrome-a systematic review and meta-analysis. J Thorac Dis 2024; 16:5802-5814. [PMID: 39444918 PMCID: PMC11494583 DOI: 10.21037/jtd-24-281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/26/2024] [Indexed: 10/25/2024]
Abstract
Background Mesenchymal stem cells (MSC) therapy for acute respiratory distress syndrome (ARDS) represents a burgeoning treatment approach, supported by numerous preclinical studies confirming its efficacy. Our study aims to provide a comprehensive evaluation of both the safety and effectiveness of MSC. Methods We conducted searches across three databases (PubMed, Embase, Cochrane) for randomized controlled studies up to June 23, 2024. A meta-analysis was performed on variables including adverse events, mortality, changes in the PaO2/FiO2 ratio, intensive care unit (ICU), length of stay, ventilation-free days, and changes in pro-inflammatory and anti-inflammatory cytokines. Relative risk (RR) values were employed for dichotomous variables, while mean difference (MD) and standard mean difference (SMD) were used for continuous variables. Risk bias was assessed using risk of bias 2 (ROB2). Results The meta-analysis encompassed 17 experiments involving 796 patients, with 410 undergoing MSC treatment and 386 in the control group. Primary outcomes indicated that MSC treatment did not escalate adverse events [RR =1.04; 95% confidence interval (CI): 0.90, 1.19; P=0.59; I2=0%]. On the contrary, it significantly diminishes the mortality (RR =0.79; 95% CI: 0.64, 0.97; P=0.02; I2=0%). Regarding secondary outcomes, MSCs led to a significant improvement in the PaO2/FiO2 ratio for ARDS patients (SMD =0.53; 95% CI: 0.15, 0.92; P=0.007; I2=0%). However, there were no significant differences in ICU length of stay (MD =-1.77; 95% CI: -6.97, 3.43; P=0.50; I2=63%) and ventilation-free days (MD =-1.29; 95% CI: -4.09, 1.51; P=0.37; I2=0%). MSCs significantly lowered C-reactive protein (CRP) (SMD =-0.65; 95% CI: -1.18, -0.13; P=0.01; I2=56%) and interleukin-6 (IL-6) levels compared to the control group (SMD =-0.76; 95% CI: -1.34, -0.17; P=0.01; I2=74%). However, changes in interleukin-10 (AIL-10) (SMD =-0.46; 95% CI: -1.51, 0.58; P=0.38; I2=77%), and changes in tumor necrosis factor-alpha (ATNF-α) (SMD =-1.5; 95% CI: -3.39, 0.40; P=0.12; I2=92%) levels showed no significant changes. Conclusions MSC therapy demonstrates reliable safety, with a significant impact on reducing mortality and improving certain clinical symptoms. Moreover, in certain aspects, it may alleviate the inflammatory response in ARDS. Nonetheless, these findings necessitate validation through additional high-quality randomized controlled trials.
Collapse
Affiliation(s)
- Lingyan Fang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fangyuan Hu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Han Li
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei Chang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Wang J, Yang Y, Liu Y, Liu J. Letter to editor: 'Recent trends of stem cell therapies in the management of orthopedic surgical challenges'. Int J Surg 2024; 110:6036-6037. [PMID: 38874480 PMCID: PMC11392131 DOI: 10.1097/js9.0000000000001770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Affiliation(s)
- Jie Wang
- Stem Cell and Clinical Research Institute
| | - Yanfei Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Yuhang Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Jing Liu
- Stem Cell and Clinical Research Institute
| |
Collapse
|
8
|
Lee JH, Jeon H, Lötvall J, Cho BS. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles in SARS-CoV-2 and H1N1 influenza-induced acute lung injury. J Extracell Vesicles 2024; 13:e12495. [PMID: 39254228 PMCID: PMC11386330 DOI: 10.1002/jev2.12495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/11/2024] [Indexed: 09/11/2024] Open
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have shown anti-inflammatory potential in multiple inflammatory diseases. In the March 2022 issue of the Journal of Extracellular Vesicles, it was shown that EVs from human MSCs can suppress severe acute respiratory distress syndrome, coronavirus 2 (SARS-CoV-2) replication and can mitigate the production and release of infectious virions. We therefore hypothesized that MSC-EVs have an anti-viral effect in SARS-CoV-2 infection in vivo. We extended this question to ask whether also other respiratory viral infections could be treated by MSC-EVs. Adipose stem cell-derived EVs (ASC-EVs) were isolated using tangential flow filtration from conditioned media obtained from a multi-flask cell culture system. The effects of the ASC-EVs were tested in Vero E6 cells in vitro. ASC-EVs were also given i.v. to SARS-CoV-2 infected Syrian Hamsters, and H1N1 influenza virus infected mice. The ASC-EVs attenuated SARS-CoV-2 virus replication in Vero E6 cells and reduced body weight and signs of lung injury in infected Syrian hamsters. Furthermore, ASC-EVs increased the survival rate of influenza A-infected mice and attenuated signs of lung injury. In summary, this study suggests that ASC-EVs can have beneficial therapeutic effects in models of virus-infection-associated acute lung injury and may potentially be developed to treat lung injury in humans.
Collapse
Affiliation(s)
- Jun Ho Lee
- ExoCoBio Exosome Institute (EEI)ExoCoBio Inc., STE 306, 19 Gasan digital 1‐roGeumcheon‐guSeoulRepublic of Korea
| | - Hyungtaek Jeon
- ExoCoBio Exosome Institute (EEI)ExoCoBio Inc., STE 306, 19 Gasan digital 1‐roGeumcheon‐guSeoulRepublic of Korea
| | - Jan Lötvall
- Krefting Research Centre, The Sahlgrenska AcademyBOX 424GothenburgSweden
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI)ExoCoBio Inc., STE 306, 19 Gasan digital 1‐roGeumcheon‐guSeoulRepublic of Korea
| |
Collapse
|
9
|
Chung YS, Lam CY, Tan PH, Tsang HF, Wong SCC. Comprehensive Review of COVID-19: Epidemiology, Pathogenesis, Advancement in Diagnostic and Detection Techniques, and Post-Pandemic Treatment Strategies. Int J Mol Sci 2024; 25:8155. [PMID: 39125722 PMCID: PMC11312261 DOI: 10.3390/ijms25158155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
At present, COVID-19 remains a public health concern due to the ongoing evolution of SARS-CoV-2 and its prevalence in particular countries. This paper provides an updated overview of the epidemiology and pathogenesis of COVID-19, with a focus on the emergence of SARS-CoV-2 variants and the phenomenon known as 'long COVID'. Meanwhile, diagnostic and detection advances will be mentioned. Though many inventions have been made to combat the COVID-19 pandemic, some outstanding ones include multiplex RT-PCR, which can be used for accurate diagnosis of SARS-CoV-2 infection. ELISA-based antigen tests also appear to be potential diagnostic tools to be available in the future. This paper also discusses current treatments, vaccination strategies, as well as emerging cell-based therapies for SARS-CoV-2 infection. The ongoing evolution of SARS-CoV-2 underscores the necessity for us to continuously update scientific understanding and treatments for it.
Collapse
Affiliation(s)
| | | | | | | | - Sze-Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (Y.-S.C.); (C.-Y.L.); (P.-H.T.); (H.-F.T.)
| |
Collapse
|
10
|
René CA, Parks RJ. Bioengineering extracellular vesicle cargo for optimal therapeutic efficiency. Mol Ther Methods Clin Dev 2024; 32:101259. [PMID: 38770107 PMCID: PMC11103572 DOI: 10.1016/j.omtm.2024.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Extracellular vesicles (EVs) have the innate ability to carry proteins, lipids, and nucleic acids between cells, and thus these vesicles have gained much attention as potential therapeutic delivery vehicles. Many strategies have been explored to enhance the loading of specific cargoes of interest into EVs, which could result in the delivery of more therapeutic to recipient cells, thus enhancing therapeutic efficacy. In this review, we discuss the natural biogenesis of EVs, the mechanism by which proteins and nucleic acids are selected for inclusion in EVs, and novel methods that have been employed to enhance loading of specific cargoes into EVs. As well, we discuss biodistribution of administered EVs in vivo and summarize clinical trials that have attempted to harness the therapeutic potential of EVs.
Collapse
Affiliation(s)
- Charlotte A. René
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
11
|
Lu W, Yan L, Tang X, Wang X, Du J, Zou Z, Li L, Ye J, Zhou L. Efficacy and safety of mesenchymal stem cells therapy in COVID-19 patients: a systematic review and meta-analysis of randomized controlled trials. J Transl Med 2024; 22:550. [PMID: 38851730 PMCID: PMC11162060 DOI: 10.1186/s12967-024-05358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) has become a serious public health issue. In COVID-19 patients, the elevated levels of inflammatory cytokines lead to the manifestation of COVID-19 symptoms, such as lung tissue edema, lung diffusion dysfunction, acute respiratory distress syndrome (ARDS), secondary infection, and ultimately mortality. Mesenchymal stem cells (MSCs) exhibit anti-inflammatory and immunomodulatory properties, thus providing a potential treatment option for COVID-19. The number of clinical trials of MSCs for COVID-19 has been rising. However, the treatment protocols and therapeutic effects of MSCs for COVID-19 patients are inconsistent. This meta-analysis was performed to systematically determine the safety and efficacy of MSC infusion in COVID-19 patients. METHODS We conducted a comprehensive literature search from PubMed/Medline, Web of Science, EMBASE, and Cochrane Library up to 22 November 2023 to screen for eligible randomized controlled trials. Inclusion and exclusion criteria for searched literature were formulated according to the PICOS principle, followed by the use of literature quality assessment tools to assess the risk of bias. Finally, outcome measurements including therapeutic efficacy, clinical symptoms, and adverse events of each study were extracted for statistical analysis. RESULTS A total of 14 randomized controlled trials were collected. The results of enrolled studies demonstrated that patients with COVID-19 pneumonia who received MSC inoculation showed a decreased mortality compared with counterparts who received conventional treatment (RR: 0.76; 95% CI [0.60, 0.96]; p = 0.02). Reciprocally, MSC inoculation improved the clinical symptoms in patients (RR: 1.28; 95% CI [1.06, 1.55]; p = 0.009). In terms of immune biomarkers, MSC treatment inhibited inflammation responses in COVID-19 patients, as was indicated by the decreased levels of CRP and IL-6. Importantly, our results showed that no significant differences in the incidence of adverse reactions or serious adverse events were monitored in patients after MSC inoculation. CONCLUSION This meta-analysis demonstrated that MSC inoculation is effective and safe in the treatment of patients with COVID-19 pneumonia. Without increasing the incidence of adverse events or serious adverse events, MSC treatment decreased patient mortality and inflammatory levels and improved the clinical symptoms in COVID-19 patients. However, large-cohort randomized controlled trials with expanded numbers of patients are required to further confirm our results.
Collapse
Affiliation(s)
- Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Longxiang Yan
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Jing Du
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
12
|
Martínez-Muñoz ME, Payares-Herrera C, Lipperheide I, Malo de Molina R, Salcedo I, Alonso R, Martín-Donaire T, Sánchez R, Zafra R, García-Berciano M, Trisán-Alonso A, Pérez-Torres M, Ramos-Martínez A, Ussetti P, Rubio JJ, Avendaño-Solà C, Duarte RF. Mesenchymal stromal cell therapy for COVID-19 acute respiratory distress syndrome: a double-blind randomised controlled trial. Bone Marrow Transplant 2024; 59:777-784. [PMID: 38409332 DOI: 10.1038/s41409-024-02230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/28/2024]
Abstract
Mesenchymal stromal cells (MSC) have immunomodulatory and tissue-regenerative properties and have shown promising results in acute respiratory distress syndrome (ARDS) of multiple causes, including COVID-19. We conducted a randomised (1:1), placebo-controlled, double-blind clinical trial to assess the efficacy and safety of one bone marrow-derived MSC infusion in twenty patients with moderate to severe ARDS caused by COVID-19. The primary endpoint (increase in PaO2/FiO2 ratio from baseline to day 7, MSC 83.3 versus placebo 57.6) was not statistically significant, although a clinical improvement at day 7 in the WHO scale was observed in MSC patients (5, 50% vs 0, 0%, p = 0.033). Median time to discontinuation of supplemental oxygen was also shorter in the experimental arm (14 versus 23 days, p = 0.007), resulting in a shorter hospital stay (17.5 versus 28 days, p = 0.042). No significant differences were observed for other efficacy or safety secondary endpoints. No infusion or treatment-related serious adverse events occurred during the one-year follow-up. This study did not meet the primary endpoint of PaO2/FiO2 increase by day 7, although it suggests that MSC are safe in COVID-19 ARDS and may accelerate patients' clinical recovery and hospital discharge. Larger studies are warranted to elucidate their role in ARDS and other inflammatory lung disorders.Trial Registration: EudraCT Number: 2020-002193-27, registered on July 14th, 2020, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-002193-27/ES . NCT number: NCT04615429, registered on November 4th, 2020, https://clinicaltrials.gov/ct2/show/NCT04615429 .
Collapse
Affiliation(s)
- María E Martínez-Muñoz
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Concepción Payares-Herrera
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
- Department of Clinical Pharmacology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Inés Lipperheide
- Intensive Care Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Rosa Malo de Molina
- Department of Pneumology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Isabel Salcedo
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Rosalía Alonso
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Trinidad Martín-Donaire
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Rocío Sánchez
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Rocío Zafra
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Miguel García-Berciano
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Andrea Trisán-Alonso
- Department of Pneumology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Manuel Pérez-Torres
- Intensive Care Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Antonio Ramos-Martínez
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
- Department of Internal Medicine and Infectious Diseases, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Piedad Ussetti
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
- Department of Pneumology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Juan J Rubio
- Intensive Care Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Cristina Avendaño-Solà
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
- Department of Clinical Pharmacology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Rafael F Duarte
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain.
| |
Collapse
|
13
|
Li L, Zhang X, Wu Y, Xing C, Du H. Challenges of mesenchymal stem cells in the clinical treatment of COVID-19. Cell Tissue Res 2024; 396:293-312. [PMID: 38512548 DOI: 10.1007/s00441-024-03881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
The 2019 coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has brought an enormous public health burden to the global society. The duration of the epidemic, the number of infected people, and the widespread of the epidemic are extremely rare in modern society. In the initial stage of infection, people generally show fever, cough, and dyspnea, which can lead to pneumonia, acute respiratory syndrome, kidney failure, and even death in severe cases. The strong infectivity and pathogenicity of SARS-CoV-2 make it more urgent to find an effective treatment. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with the potential for self-renewal and multi-directional differentiation. They are widely used in clinical experiments because of their low immunogenicity and immunomodulatory function. Mesenchymal stem cell-derived exosomes (MSC-Exo) can play a physiological role similar to that of stem cells. Since the COVID-19 pandemic, a series of clinical trials based on MSC therapy have been carried out. The results show that MSCs are safe and can significantly improve patients' respiratory function and prognosis of COVID-19. Here, the effects of MSCs and MSC-Exo in the treatment of COVID-19 are reviewed, and the clinical challenges that may be faced in the future are clarified.
Collapse
Affiliation(s)
- Luping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing, 100083, China
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoshuang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing, 100083, China
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yawen Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing, 100083, China
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China
| | - Cencan Xing
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing, 100083, China.
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
14
|
Krishnan I, Chan AML, Law JX, Ng MH, Jayapalan JJ, Lokanathan Y. Proteomic Analysis of Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Systematic Review. Int J Mol Sci 2024; 25:5340. [PMID: 38791378 PMCID: PMC11121203 DOI: 10.3390/ijms25105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Numerous challenges remain within conventional cell-based therapy despite the growing trend of stem cells used to treat various life-debilitating diseases. These limitations include batch-to-batch heterogeneity, induced alloreactivity, cell survival and integration, poor scalability, and high cost of treatment, thus hindering successful translation from lab to bedside. However, recent pioneering technology has enabled the isolation and enrichment of small extracellular vesicles (EVs), canonically known as exosomes. EVs are described as a membrane-enclosed cargo of functional biomolecules not limited to lipids, nucleic acid, and proteins. Interestingly, studies have correlated the biological role of MSC-EVs to the paracrine activity of MSCs. This key evidence has led to rigorous studies on MSC-EVs as an acellular alternative. Using EVs as a therapy was proposed as a model leading to improvements through increased safety; enhanced bioavailability due to size and permeability; reduced heterogeneity by selective and quantifiable properties; and prolonged shelf-life via long-term freezing or lyophilization. Yet, the identity and potency of EVs are still relatively unknown due to various methods of preparation and to qualify the final product. This is reflected by the absence of regulatory strategies overseeing manufacturing, quality control, clinical implementation, and product registration. In this review, the authors review the various production processes and the proteomic profile of MSC-EVs.
Collapse
Affiliation(s)
- Illayaraja Krishnan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (A.M.L.C.); (J.X.L.); (M.H.N.)
| | - Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (A.M.L.C.); (J.X.L.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (A.M.L.C.); (J.X.L.); (M.H.N.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (A.M.L.C.); (J.X.L.); (M.H.N.)
| | | | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (A.M.L.C.); (J.X.L.); (M.H.N.)
| |
Collapse
|
15
|
Wang Y, Dong H, Dong T, Zhao L, Fan W, Zhang Y, Yao W. Treatment of cytokine release syndrome-induced vascular endothelial injury using mesenchymal stem cells. Mol Cell Biochem 2024; 479:1149-1164. [PMID: 37392343 DOI: 10.1007/s11010-023-04785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/04/2023] [Indexed: 07/03/2023]
Abstract
Cytokine release syndrome (CRS) is an acute systemic inflammatory reaction in which hyperactivated immune cells suddenly release a large amount of cytokines, leading to exaggerated inflammatory responses, multiple organ dysfunction, and even death. Although palliative treatment strategies have significantly reduced the overall mortality, novel targeted treatment regimens with superior therapy efficacy are urgently needed. Vascular endothelial cells (ECs) are important target cells of systemic inflammation, and their destruction is considered to be the initiating event underlying many serious complications of CRS. Mesenchymal stem/stromal cells (MSCs) are multipotent cells with self-renewing differentiation capacity and immunomodulatory properties. MSC transplantation can effectively suppress the activation of immune cells, reduce the bulk release of cytokines, and repair damaged tissues and organs. Here, we review the molecular mechanisms underlying CRS-induced vascular endothelial injury and discuss potential treatments using MSCs. Preclinical studies demonstrate that MSC therapy can effectively repair endothelium damage and thus reduce the incidence and severity of ensuing CRS-induced complications. This review highlights the therapeutic role of MSCs in fighting against CRS-induced EC damage, and summarizes the possible therapeutic formulations of MSCs for improved efficacy in future clinical trials.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Health Science Center, Yangtze University, Jingzhou, China
| | - Haibo Dong
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Tengyun Dong
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Lulu Zhao
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Wen Fan
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, China.
| | - Yu Zhang
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China.
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Tianjin, China.
| | - Weiqi Yao
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China.
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China.
- Department of Biology and Medicine, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
16
|
Qin J, Wang G, Han D. Mesenchymal Stem Cells on Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Stem Cell Rev Rep 2024; 20:931-937. [PMID: 38427315 DOI: 10.1007/s12015-024-10705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The Coronavirus disease-2019 (COVID-19) pandemic continues, and the death toll continues to surge. This meta-analysis aimed to determine the efficacy of mesenchymal stem cells (MSCs) on mortality in patients with COVID-19. METHODS A systematic search was made of PubMed, Embase, Cochrane Library, and clinicaltrials.gov, without language restrictions. Randomized controlled trials (RCTs) on treatment of COVID-19 with MSCs, compared with placebo or blank, were reviewed. Studies were pooled to risk ratios (RRs), with 95% confidence intervals (CIs). RESULTS Seventeen RCTs (enrolling 1019 participants) met the inclusion criteria. MSCs showed significant effect on 28-day mortality (RR 0.76, 95% CI 0.62 to 0.93; P = 0.008). There was no statistically significant difference in 60-day mortality (RR 0.87, 95% CI 0.70 to 1.09; P = 0.22), and 90-day mortality (RR 0.91, 95% CI 0.72 to 1.15; P = 0.44) between the two groups. CONCLUSIONS MSCs significantly reduced 28-day mortality in patients with COVID-19. The long-term effect of MSCs on mortality require further study.
Collapse
Affiliation(s)
- Jinlv Qin
- Radioimmunoassay Center, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Guizuo Wang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, 710068, Shaanxi, China
| | - Dong Han
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
17
|
Hou XY, Danzeng LM, Wu YL, Ma QH, Yu Z, Li MY, Li LS. Mesenchymal stem cells and their derived exosomes for the treatment of COVID-19. World J Stem Cells 2024; 16:353-374. [PMID: 38690515 PMCID: PMC11056634 DOI: 10.4252/wjsc.v16.i4.353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection typically presents with fever and respiratory symptoms, which can progress to severe respiratory distress syndrome and multiple organ failure. In severe cases, these complications may even lead to death. One of the causes of COVID-19 deaths is the cytokine storm caused by an overactive immune response. Therefore, suppressing the overactive immune response may be an effective strategy for treating COVID-19. Mesenchymal stem cells (MSCs) and their derived exosomes (MSCs-Exo) have potent homing abilities, immunomodulatory functions, regenerative repair, and antifibrotic effects, promising an effective tool in treating COVID-19. In this paper, we review the main mechanisms and potential roles of MSCs and MSCs-Exo in treating COVID-19. We also summarize relevant recent clinical trials, including the source of cells, the dosage and the efficacy, and the clinical value and problems in this field, providing more theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment of COVID-19.
Collapse
Affiliation(s)
- Xiang-Yi Hou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - La-Mu Danzeng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Yi-Lin Wu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Qian-Hui Ma
- Department of Pharmacy, Jilin University, Changchun 130021, Jilin Province, China
| | - Zheng Yu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Mei-Ying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
18
|
Wang J, Chen ZJ, Zhang ZY, Shen MP, Zhao B, Zhang W, Zhang Y, Lei JG, Ren CJ, Chang J, Xu CL, Li M, Pi YY, Lu TL, Dai CX, Li SK, Li P. Manufacturing, quality control, and GLP-grade preclinical study of nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. Stem Cell Res Ther 2024; 15:95. [PMID: 38566259 PMCID: PMC10988864 DOI: 10.1186/s13287-024-03708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Human adipose stromal cells-derived extracellular vesicles (haMSC-EVs) have been shown to alleviate inflammation in acute lung injury (ALI) animal models. However, there are few systemic studies on clinical-grade haMSC-EVs. Our study aimed to investigate the manufacturing, quality control (QC) and preclinical safety of clinical-grade haMSC-EVs. METHODS haMSC-EVs were isolated from the conditioned medium of human adipose MSCs incubated in 2D containers. Purification was performed by PEG precipitation and differential centrifugation. Characterizations were conducted by nanoparticle tracking analysis, transmission electron microscopy (TEM), Western blotting, nanoflow cytometry analysis, and the TNF-α inhibition ratio of macrophage [after stimulated by lipopolysaccharide (LPS)]. RNA-seq and proteomic analysis with liquid chromatography tandem mass spectrometry (LC-MS/MS) were used to inspect the lot-to-lot consistency of the EV products. Repeated toxicity was evaluated in rats after administration using trace liquid endotracheal nebulizers for 28 days, and respiratory toxicity was evaluated 24 h after the first administration. In vivo therapeutic effects were assessed in an LPS-induced ALI/ acute respiratory distress syndrome (ARDS) rat model. RESULTS The quality criteria have been standardized. In a stability study, haMSC-EVs were found to remain stable after 6 months of storage at - 80°C, 3 months at - 20 °C, and 6 h at room temperature. The microRNA profile and proteome of haMSC-EVs demonstrated suitable lot-to-lot consistency, further suggesting the stability of the production processes. Intratracheally administered 1.5 × 108 particles/rat/day for four weeks elicited no significant toxicity in rats. In LPS-induced ALI/ARDS model rats, intratracheally administered haMSC-EVs alleviated lung injury, possibly by reducing the serum level of inflammatory factors. CONCLUSION haMSC-EVs, as an off-shelf drug, have suitable stability and lot-to-lot consistency. Intratracheally administered haMSC-EVs demonstrated excellent safety at the tested dosages in systematic preclinical toxicity studies. Intratracheally administered haMSC-EVs improved the lung function and exerted anti-inflammatory effects on LPS-induced ALI/ARDS model rats.
Collapse
Affiliation(s)
- Jing Wang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Zhong-Jin Chen
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Ze-Yi Zhang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Mei-Ping Shen
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Bo Zhao
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Wei Zhang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Ye Zhang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Ji-Gang Lei
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Cheng-Jie Ren
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Jing Chang
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Cui-Li Xu
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Meng Li
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Yang-Yang Pi
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Tian-Lun Lu
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China
| | - Cheng-Xiang Dai
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China.
- Daxing Research Institute, University of Science and Technology Beijing, 100083, Beijing, China.
| | - Su-Ke Li
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China.
| | - Ping Li
- Cellular Biomedicine Group (Shanghai), Co. Ltd., 85 Faladi Road, Building 3, Zhangjiang, Pudong New Area, 201210, Shanghai, China.
| |
Collapse
|
19
|
Curley GF, O’Kane CM, McAuley DF, Matthay MA, Laffey JG. Cell-based Therapies for Acute Respiratory Distress Syndrome: Where Are We Now? Am J Respir Crit Care Med 2024; 209:789-797. [PMID: 38324017 PMCID: PMC10995569 DOI: 10.1164/rccm.202311-2046cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 02/08/2024] Open
Abstract
There is considerable interest in the potential for cell-based therapies, particularly mesenchymal stromal cells (MSCs) and their products, as a therapy for acute respiratory distress syndrome (ARDS). MSCs exert effects via diverse mechanisms including reducing excessive inflammation by modulating neutrophil, macrophage and T-cell function, decreasing pulmonary permeability and lung edema, and promoting tissue repair. Clinical studies indicate that MSCs are safe and well tolerated, with promising therapeutic benefits in specific clinical settings, leading to regulatory approvals of MSCs for specific indications in some countries.This perspective reassesses the therapeutic potential of MSC-based therapies for ARDS given insights from recent cell therapy trials in both COVID-19 and in 'classic' ARDS, and discusses studies in graft-vs.-host disease, one of the few licensed indications for MSC therapies. We identify important unknowns in the current literature, address challenges to clinical translation, and propose an approach to facilitate assessment of the therapeutic promise of MSC-based therapies for ARDS.
Collapse
Affiliation(s)
- Gerard F. Curley
- Department of Anaesthesia, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cecilia M. O’Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Michael A. Matthay
- Department of Medicine and Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - John G. Laffey
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland; and
- Anaesthesia, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
20
|
Hori A, Takahashi A, Miharu Y, Yamaguchi S, Sugita M, Mukai T, Nagamura F, Nagamura-Inoue T. Superior migration ability of umbilical cord-derived mesenchymal stromal cells (MSCs) toward activated lymphocytes in comparison with those of bone marrow and adipose-derived MSCs. Front Cell Dev Biol 2024; 12:1329218. [PMID: 38529405 PMCID: PMC10961348 DOI: 10.3389/fcell.2024.1329218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction: Mesenchymal stromal cells (MSCs) are activated upon inflammation and/or tissue damage and migrate to suppress inflammation and repair tissues. Migration is the first important step for MSCs to become functional; however, the migration potency of umbilical cord-derived MSCs (UC-MSCs) remains poorly understood. Thus, we aimed to assess the migration potency of UC-MSCs in comparison with those of bone marrow-derived MSCs (BM-MSCs) and adipose tissue-derived MSCs (AD-MSCs) and investigate the influence of chemotactic factors on the migration of these cells. Methods: We compared the migration potencies of UC-, BM-, and AD-MSCs toward allogeneic stimulated mononuclear cells (MNCs) in mixed lymphocyte reaction (MLR). The number of MSCs in the upper chamber that migrated toward the MLR in the lower chamber was counted using transwell migration assay. Results and discussion: UC-MSCs showed significantly faster and higher proliferation potencies and higher migration potency toward unstimulated MNCs and MLR than BM- and AD-MSCs, although the migration potencies of the three types of MSCs were comparable when cultured in the presence of fetal bovine serum. The amounts of CCL2, CCL7, and CXCL2 in the supernatants were significantly higher in UC-MSCs co-cultured with MLR than in MLR alone and in BM- and AD-MSCs co-cultured with MLR, although they did not induce the autologous migration of UC-MSCs. The amount of CCL8 was higher in BM- and AD-MSCs than in UC-MSCs, and the amount of IP-10 was higher in AD-MSCs co-cultured with MLR than in UC- and BM-MSCs. The migration of UC-MSCs toward the MLR was partially attenuated by platelet-derived growth factor, insulin-like growth factor 1, and matrix metalloproteinase inhibitors in a dose-dependent manner. Conclusion: UC-MSCs showed faster proliferation and higher migration potency toward activated or non-activated lymphocytes than BM- and AD-MSCs. The functional chemotactic factors may vary among MSCs derived from different tissue sources, although the roles of specific chemokines in the different sources of MSCs remain to be resolved.
Collapse
Affiliation(s)
- Akiko Hori
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Somatic Stem Cell Research, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsuko Takahashi
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Somatic Stem Cell Research, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuta Miharu
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Somatic Stem Cell Research, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Masatoshi Sugita
- Department of Obstetrics, NTT Medical Center Tokyo Hospital, Tokyo, Japan
| | - Takeo Mukai
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumitaka Nagamura
- Division of Advanced Medicine Promotion, The Advanced Clinical Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Somatic Stem Cell Research, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Kikuchi T, Nishimura M, Shirakawa C, Fujita Y, Otoi T. Avoiding aggregation of human bone marrow-derived mesenchymal stem cells stored in cell preservation solutions. In Vitro Cell Dev Biol Anim 2024; 60:123-127. [PMID: 38363434 PMCID: PMC10917824 DOI: 10.1007/s11626-024-00849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024]
Affiliation(s)
- Takeshi Kikuchi
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima, 772-8601, Japan.
| | - Masuhiro Nishimura
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima, 772-8601, Japan
| | - Chikage Shirakawa
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima, 772-8601, Japan
| | - Yasutaka Fujita
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima, 772-8601, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, 2272-2 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| |
Collapse
|
22
|
Aribindi K, Lim M, Lakshminrusimha S, Albertson T. Investigational pharmacological agents for the treatment of ARDS. Expert Opin Investig Drugs 2024; 33:243-277. [PMID: 38316432 DOI: 10.1080/13543784.2024.2315128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Acute Respiratory Distress Syndrome (ARDS) is a heterogeneous form of lung injury with severe hypoxemia and bilateral infiltrates after an inciting event that results in diffuse lung inflammation with a high mortality rate. While research in COVID-related ARDS has resulted in several pharmacotherapeutic agents that have undergone successful investigation, non-COVID ARDS studies have not resulted in many widely accepted pharmacotherapeutic agents despite exhaustive research. AREAS COVERED The aim of this review is to discuss adjuvant pharmacotherapies targeting non-COVID Acute Lung Injury (ALI)/ARDS and novel therapeutics in COVID associated ALI/ARDS. In ARDS, variable data may support selective use of neuromuscular blocking agents, corticosteroids and neutrophil elastase inhibitors, but are not yet universally used. COVID-ALI/ARDS has data supporting the use of IL-6 monoclonal antibodies, corticosteroids, and JAK inhibitor therapy. EXPERT OPINION Although ALI/ARDS modifying pharmacological agents have been identified in COVID-related disease, the data in non-COVID ALI/ARDS has been less compelling. The increased use of more specific molecular phenotyping based on physiologic parameters and biomarkers, will ensure equipoise between groups, and will likely allow more precision in confirming pharmacological agent efficacy in future studies.
Collapse
Affiliation(s)
- Katyayini Aribindi
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
- Department of Medicine, Veterans Affairs North California Health Care System, Mather, CA, USA
| | - Michelle Lim
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Timothy Albertson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
23
|
Meng M, Zhang WW, Chen SF, Wang DR, Zhou CH. Therapeutic utility of human umbilical cord-derived mesenchymal stem cells-based approaches in pulmonary diseases: Recent advancements and prospects. World J Stem Cells 2024; 16:70-88. [PMID: 38455096 PMCID: PMC10915951 DOI: 10.4252/wjsc.v16.i2.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide. For diverse disease conditions, the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) isolated from the human UC have the capacity for self-renewal and multilineage differentiation. Moreover, in recent years, these cells have been demonstrated to have unique advantages in the treatment of lung diseases. We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases, including coronavirus disease 2019, acute respiratory distress syndrome, bronchopulmonary dysplasia, chronic obstructive pulmonary disease, and pulmonary fibrosis. In this review, we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application. Moreover, the underlying molecular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth. In brief, this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application.
Collapse
Affiliation(s)
- Min Meng
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Wei-Wei Zhang
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Shuang-Feng Chen
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Da-Rui Wang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Chang-Hui Zhou
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China.
| |
Collapse
|
24
|
Kheder RK, Darweesh O, Hussen BM, Abdullah SR, Basiri A, Taheri M. Mesenchymal stromal cells (MSCs) as a therapeutic agent of inflammatory disease and infectious COVID-19 virus: live or dead mesenchymal? Mol Biol Rep 2024; 51:295. [PMID: 38340168 DOI: 10.1007/s11033-023-09174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
The COVID-19 infection is a worldwide disease that causes numerous immune-inflammatory disorders, tissue damage, and lung dysfunction. COVID-19 vaccines, including those from Pfizer, AstraZeneca, and Sinopharm, are available globally as effective interventions for combating the disease. The severity of COVID-19 can be most effectively reduced by mesenchymal stromal cells (MSCs) because they possess anti-inflammatory activity and can reverse lung dysfunction. MSCs can be harvested from various sources, such as adipose tissue, bone marrow, peripheral blood, inner organs, and neonatal tissues. The regulation of inflammatory cytokines is crucial in inhibiting inflammatory diseases and promoting the presence of anti-inflammatory cytokines for infectious diseases. MSCs have been employed as therapeutic agents for tissue damage, diabetes, autoimmune diseases, and COVID-19 patients. Our research aimed to determine whether live or dead MSCs are more suitable for the treatment of COVID-19 patients. Our findings concluded that dead MSCs, when directly administered to the patient, offer advantages over viable MSCs due to their extended presence and higher levels of immune regulation, such as T-reg, B-reg, and IL-10, compared to live MSCs. Additionally, dead and apoptotic MSCs are likely to be more readily captured by monocytes and macrophages, prolonging their presence compared to live MSCs.
Collapse
Affiliation(s)
- Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Sulaymaniyah, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Omeed Darweesh
- College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Erbil, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Scineces, Tehran, Iran
| | - Mohammad Taheri
- Institue of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
25
|
Cao JK, Hong XY, Feng ZC, Li QP. Mesenchymal stem cells-based therapies for severe ARDS with ECMO: a review. Intensive Care Med Exp 2024; 12:12. [PMID: 38332384 PMCID: PMC10853094 DOI: 10.1186/s40635-024-00596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the primary cause of respiratory failure in critically ill patients. Despite remarkable therapeutic advances in recent years, ARDS remains a life-threatening clinical complication with high morbidity and mortality, especially during the global spread of the coronavirus disease 2019 (COVID-19) pandemic. Previous studies have demonstrated that mesenchymal stem cell (MSC)-based therapy is a potential alternative strategy for the treatment of refractory respiratory diseases including ARDS, while extracorporeal membrane oxygenation (ECMO) as the last resort treatment to sustain life can help improve the survival of ARDS patients. In recent years, several studies have explored the effects of ECMO combined with MSC-based therapies in the treatment of ARDS, and some of them have demonstrated that this combination can provide better therapeutic effects, while others have argued that some critical issues need to be solved before it can be applied to clinical practice. This review presents an overview of the current status, clinical challenges and future prospects of ECMO combined with MSCs in the treatment of ARDS.
Collapse
Affiliation(s)
- Jing-Ke Cao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Yang Hong
- Department of Pediatric Intensive Care Unit, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO.5 Nanmencang, Dongcheng District, 100700, Beijing, China
| | - Zhi-Chun Feng
- Department of Neonatology, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Qiu-Ping Li
- Department of Neonatology, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO. 5 Nanmencang, Dongcheng District, Beijing, 100700, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
26
|
Huang X, Tan X, Xie X, Jiang T, Xiao Y, Liu Z. Successful salvage of a severe COVID-19 patient previously with lung cancer and radiation pneumonitis by mesenchymal stem cells: a case report and literature review. Front Immunol 2024; 15:1321236. [PMID: 38380312 PMCID: PMC10876893 DOI: 10.3389/fimmu.2024.1321236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
During the COVID-19 pandemic, elderly patients with underlying condition, such as tumors, had poor prognoses after progressing to severe pneumonia and often had poor response to standard treatment. Mesenchymal stem cells (MSCs) may be a promising treatment for patients with severe pneumonia, but MSCs are rarely used for patients with carcinoma. Here, we reported a 67-year-old female patient with lung adenocarcinoma who underwent osimertinib and radiotherapy and suffered from radiation pneumonitis. Unfortunately, she contracted COVID-19 and that rapidly progressed to severe pneumonia. She responded poorly to frontline treatment and was in danger. Subsequently, she received a salvage treatment with four doses of MSCs, and her symptoms surprisingly improved quickly. After a lung CT scan that presented with a significantly improved infection, she was discharged eventually. Her primary disease was stable after 6 months of follow-up, and no tumor recurrence or progression was observed. MSCs may be an effective treatment for hyperactive inflammation due to their ability related to immunomodulation and tissue repair. Our case suggests a potential value of MSCs for severe pneumonia that is unresponsive to conventional therapy after a COVID-19 infection. However, unless the situation is urgent, it needs to be considered with caution for patients with tumors. The safety in tumor patients still needs to be observed.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Hematology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xin Tan
- Department of Rehabilitation Medicine, Southern Theater General Hospital, Guangzhou, China
| | - Xiuwen Xie
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingshu Jiang
- Department of Respiratory and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, China
| | - Yang Xiao
- Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, China
| | - Zenghui Liu
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Alavi-Dana SMM, Gholami Y, Meghdadi M, Fadaei MS, Askari VR. Mesenchymal stem cell therapy for COVID-19 infection. Inflammopharmacology 2024; 32:319-334. [PMID: 38117433 DOI: 10.1007/s10787-023-01394-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
COVID-19 emerged in December 2019 in Wuhan, China, spread worldwide rapidly, and caused millions of deaths in a short time. Many preclinical and clinical studies were performed to discover the most efficient therapy to reduce the mortality of COVID-19 patients. Among various approaches for preventing and treating COVID-19, mesenchymal stem cell (MSC) therapy can be regarded as a novel and efficient treatment for managing COVID-19 patients. In this review, we explain the pathogenesis of COVID-19 infection in humans and discuss the role of MSCs in suppressing the inflammation and cytokine storm produced by COVID-19. Then, we reviewed the clinical trial and systematic review studies that investigated the safety and efficacy of MSC therapy in the treatment of COVID-19 infection.
Collapse
Affiliation(s)
| | - Yazdan Gholami
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Meghdadi
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Zendedel E, Tayebi L, Nikbakht M, Hasanzadeh E, Asadpour S. Clinical Trials of Mesenchymal Stem Cells for the Treatment of COVID 19. Curr Stem Cell Res Ther 2024; 19:1055-1071. [PMID: 37815188 DOI: 10.2174/011574888x260032230925052240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 10/11/2023]
Abstract
Mesenchymal Stem Cells (MSCs) are being investigated as a treatment for a novel viral disease owing to their immunomodulatory, anti-inflammatory, tissue repair and regeneration characteristics, however, the exact processes are unknown. MSC therapy was found to be effective in lowering immune system overactivation and increasing endogenous healing after SARS-CoV-2 infection by improving the pulmonary microenvironment. Many studies on mesenchymal stem cells have been undertaken concurrently, and we may help speed up the effectiveness of these studies by collecting and statistically analyzing data from them. Based on clinical trial information found on clinicaltrials. gov and on 16 November 2020, which includes 63 clinical trials in the field of patient treatment with COVID-19 using MSCs, according to the trend of increasing studies in this field, and with the help of meta-analysis studies, it is possible to hope that the promise of MSCs will one day be realized. The potential therapeutic applications of MSCs for COVID-19 are investigated in this study.
Collapse
Affiliation(s)
- Elham Zendedel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Lobat Tayebi
- Marquett University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Mohammad Nikbakht
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
29
|
Tao YC, Chen EQ. Mesenchymal Stem Cells Therapy for COVID-19: From Basic Research to Clinical Trial. Curr Stem Cell Res Ther 2024; 19:55-62. [PMID: 36654468 DOI: 10.2174/1574888x18666230118122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 01/19/2023]
Abstract
The novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a serious challenge for human health. In severe cases, patients suffer from acute respiratory distress syndrome even organ failure, usually owing to the dysregulated immune response and widespread inflammation. Considering that there is no known cure for COVID-19 despite the increased morbidity and mortality rate of COVID-19, modalities targeting immunity and inflammation may be promising therapeutics against COVID-19. Mesenchymal stem cells (MSCs) possessing immunomodulatory, anti-inflammatory, anti-apoptotic, and antiviral properties, can be of potential benefit to a subset of severe and critically ill patients with COVID-19. In the present study, we described the underlying mechanisms of MSCs therapy and provided a thorough research study on the recent clinical trials of MSCs for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan-610041, P.R. China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan-610041, P.R. China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan-610041, P.R. China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan-610041, P.R. China
| |
Collapse
|
30
|
de Dios C, Vij R, Kim H, Park H, Chang D. Safety of multiple intravenous infusions of adipose-derived mesenchymal stem cells for hospitalized cases of COVID-19: a randomized controlled trial. Front Med (Lausanne) 2023; 10:1321303. [PMID: 38188343 PMCID: PMC10770855 DOI: 10.3389/fmed.2023.1321303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Objective The purpose of the study was to assess the safety of allogeneic, Hope Biosciences Adipose Derived Mesenchymal Stem Cells (HB-adMSCs) for the treatment of hospitalized subjects with COVID-19. Methods N = 48 patients were randomly assigned to HB-adMSC (100 MM) or placebo group. Four intravenous infusions of HB-adMSCs or saline were administered at days 0, 3, 7, 10. The primary safety endpoint was incidence of adverse and serious adverse events (AE/SAEs); secondary endpoints were incidence of specific AEs and alterations in hematology, biochemistry, and coagulation parameters. Results Majority of AEs were mild in severity. HB-adMSC group showed a higher incidence of cardiopulmonary failure, anemia, anxiety, and diarrhea, while placebo group showed a higher incidence of headaches, fatigue, and chest discomfort (posterior probabilities ≥80%). Deaths were attributed to severe complications due to COVID-19 and were unrelated to study drug. No AEs were attributed to the treatment. Hematology and coagulation panel alterations were not associated with HB-adMSCs. Analyses of inflammatory markers showed increased levels of interleukin-6 and C-reactive protein over time in HB-adMSC group (posterior probabilities ≥78%). Conclusion Multiple infusions of 100MM allogeneic HB-adMSCs were considered safe for the study population. More research is needed to determine the safety of MSC therapy. Clinical trial registration (www.ClinicalTrials.gov) identifier NCT04362189.
Collapse
Affiliation(s)
- Constanza de Dios
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Ridhima Vij
- Hope Biosciences Research Foundation, Sugar Land, TX, United States
| | - Hosu Kim
- Hope Biosciences, Sugar Land, TX, United States
| | | | - Donna Chang
- Hope Biosciences Research Foundation, Sugar Land, TX, United States
- Hope Biosciences, Sugar Land, TX, United States
| |
Collapse
|
31
|
Nagamura-Inoue T, Nagamura F. Umbilical cord blood and cord tissue banking as somatic stem cell resources to support medical cell modalities. Inflamm Regen 2023; 43:59. [PMID: 38053217 PMCID: PMC10696687 DOI: 10.1186/s41232-023-00311-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Human umbilical cord blood (CB) and umbilical cord tissue (UC) are attractive sources of somatic stem cells for gene and cell therapies. CB and UC can be obtained noninvasively from donors. CB, a known source of hematopoietic stem cells for transplantation, has attracted attention as a new source of immune cells, including universal chimeric antigen receptor-T cell therapy (CAR-T) and, more recently, universal CAR-natural killer cells. UC-derived mesenchymal stromal cells (UC-MSCs) have a higher proliferation potency than those derived from adult tissues and can be used anon-HLA restrictively. UC-MSCs meet the MSC criteria outlined by the International Society of Gene and Cellular Therapy. UC-MSCs are negative for HLA-DR, CD80, and CD86 and have an immunosuppressive ability that mitigates the proliferation of activated lymphocytes through secreting indoleamine 2,3-dioxygenase 1 and prostaglandin E2, and the expression of PD-L2 and PD-L1. We established the off-the-shelf cord blood/cord bank IMSUT CORD to support novel cell therapy modalities, including the CB-derived immune cells, MSCs, MSCs-derived extracellular vesicles, biological carriers loaded with chemotherapy drugs, prodrug, oncolytic viruses, nanoparticles, human artificial chromosome, combinational products with a scaffold, bio3D printing, and so on.
Collapse
Affiliation(s)
- Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Fumitaka Nagamura
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Advanced Medicine Promotion, The Advanced Clinical Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Kikuchi T, Nishimura M, Shirakawa C, Fujita Y, Otoi T. Relationship between oxygen partial pressure and inhibition of cell aggregation of human adipose tissue-derived mesenchymal stem cells stored in cell preservation solutions. Regen Ther 2023; 24:25-31. [PMID: 37303463 PMCID: PMC10247950 DOI: 10.1016/j.reth.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/21/2023] [Accepted: 05/20/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction This study investigated the storage conditions under which cell aggregation occurs and the conditions that inhibit cell aggregation when human adipose tissue-derived mesenchymal stem cells (hADSCs) are stored in lactated Ringer's solution (LR) supplemented with 3% trehalose and 5% dextran 40 (LR-3T-5D). Methods We first examined the effects of storage temperature and time on the aggregation and viability of hADSCs stored in LR and LR-3T-5D. The cells were stored at 5 °C or 25 °C for various times up to 24 h. We then evaluated the effects of storage volume (250-2,000 μL), cell density (2.5-20 × 105 cells/mL), and nitrogen gas replacement on aggregation, oxygen partial pressure (pO2), and viability of hADSCs stored for 24 h at 25 °C in LR-3T-5D. Results When stored in LR-3T-5D, viability did not change under either condition compared with pre-storage, but the cell aggregation rate increased significantly with storage at 25 °C for 24 h (p<0.001). In LR, the aggregation rate did not change under either condition, but cell viability decreased significantly after 24 h at both 5 °C and 25 °C (p < 0.05). The cell aggregation rates and pO2 tended to decrease with increasing solution volume and cell density. Nitrogen gas replacement significantly decreased the cell aggregation rate and pO2 (p < 0.05). However, there were no differences in viability among cells stored under conditions of different storage volumes, densities, and nitrogen gas replacement. Conclusions Aggregation of cells after storage at 25 °C in LR-3T-5D may be suppressed by increasing the storage volume and cell density as well as by incorporating nitrogen replacement, which lowers the pO2 in the solution.
Collapse
Affiliation(s)
- Takeshi Kikuchi
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, 772-8601, Japan
| | - Masuhiro Nishimura
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, 772-8601, Japan
| | - Chikage Shirakawa
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, 772-8601, Japan
| | - Yasutaka Fujita
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, 772-8601, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, Myozai-gun, Tokushima, 779-3233, Japan
| |
Collapse
|
33
|
Wang Y, Liang Q, Chen F, Zheng J, Chen Y, Chen Z, Li R, Li X. Immune-Cell-Based Therapy for COVID-19: Current Status. Viruses 2023; 15:2148. [PMID: 38005826 PMCID: PMC10674523 DOI: 10.3390/v15112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic. The interplay between innate and adaptive immune responses plays a crucial role in managing COVID-19. Cell therapy has recently emerged as a promising strategy to modulate the immune system, offering immense potential for the treatment of COVID-19 due to its customizability and regenerative capabilities. This review provides an overview of the various subsets of immune cell subsets implicated in the pathogenesis of COVID-19 and a comprehensive summary of the current status of immune cell therapy in COVID-19 treatment.
Collapse
Affiliation(s)
- Yiyuan Wang
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinghe Liang
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengsheng Chen
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiehuang Zheng
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Chen
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziye Chen
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruopeng Li
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaojuan Li
- Laboratory of Anti-Inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, Southern Medical University, Guangzhou 510515, China; (Y.W.); (Q.L.); (F.C.); (J.Z.); (Y.C.); (Z.C.); (R.L.)
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
34
|
An N, Chen Z, Zhao P, Yin W. Extracellular Vesicles in Sepsis: Pathogenic Roles, Organ Damage, and Therapeutic Implications. Int J Med Sci 2023; 20:1722-1731. [PMID: 37928875 PMCID: PMC10620861 DOI: 10.7150/ijms.86832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Despite significant advances in anti-infective treatment and organ function support technology in recent years, the mortality rate of sepsis remains high. In addition to the high costs of sepsis treatment, the increasing consumption of medical resources also aggravates economic pressure and social burden. Extracellular vesicles (EVs) are membrane vesicles released from different types of activated or apoptotic cells to mediate intercellular communication, which can be detected in both human and animal body fluids. A growing body of researches suggest that EVs play an important role in the pathogenesis of sepsis. In this review, we summarize the predominant roles of EVs in various pathological processes during sepsis and its related organ dysfunction.
Collapse
Affiliation(s)
- Ni An
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhe Chen
- University College London, London, UK
| | - Peng Zhao
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
35
|
Vij R, Kim H, Park H, Cheng T, Lotfi D, Chang D. Adipose-derived, autologous mesenchymal stem cell therapy for patients with post-COVID-19 syndrome: an intermediate-size expanded access program. Stem Cell Res Ther 2023; 14:287. [PMID: 37798650 PMCID: PMC10557203 DOI: 10.1186/s13287-023-03522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Evolving mutations of the novel coronavirus continue to fuel up the pandemic. The virus affects the human respiratory system along with other body systems, causing several sequelae in the survivors of the disease, presented as post-COVID-19 syndrome or long-COVID-19. This protocol utilized Hope Biosciences' autologous, adipose-derived mesenchymal stem cells (HB-adMSCs) to evaluate safety and efficacy of HB-adMSC therapy to improve signs and symptoms associated with post-COVID-19 syndrome. METHODS Ten eligible subjects with post-COVID-19 syndrome were enrolled in the program for a duration of 40 weeks who received 5 intravenous infusions of 2 × 108 autologous HB-adMSCs each at week 0, 2, 6, 10 and 14 with a follow-up at week 18 and end of the study at week 40. Safety assessments included incidence of adverse and serious adverse events along with the laboratory measures of hematologic, hepatic, and renal function. Efficacy was examined by quality-of-life assessments, fatigue assessments, Visual analog scale (VAS) of symptoms and monitoring of respiration and oxygen saturation rates. RESULTS VAS scores and Fatigue Assessment scores (FAS) showed significant improvements post-treatment (P = 0.0039, ES = 0.91) compared to baseline. Respiration rates and oxygen saturation levels that were within the normal range at the baseline remained unchanged at the end of the study (EOS). Paired comparison between baseline and EOS for short-form-36 health survey questionnaire (SF-36) scores also showed improved quality-of-life with significant improvements in individual SF-36 evaluations. Mostly mild AEs were reported during the study period with no incidence of serious AEs. Also, no detrimental effects in laboratory values were seen. CONCLUSIONS The results of the expanded access program indicated that treatment with autologous HB-adMSCs resulted in significant improvements in the signs and symptoms associated with post-COVID-19 syndrome as assessed by VAS and FAS scores. Additionally, improvements in the patients' quality-of-life as demonstrated using SF-36 scores that also showed significant improvements in individual scaled scores. Overall, administration of multiple infusions of autologous HB-adMSCs is safe and efficacious for improvements in the quality-of life of patients with post-COVID-19 syndrome. TRIAL REGISTRATION Clinical trial registration number: NCT04798066. Registered on March 15, 2021. ( https://clinicaltrials.gov/ct2/show/NCT04798066?term=hope+biosciences&cond=Post-COVID-19+Syndrome&draw=2&rank=2 ).
Collapse
Affiliation(s)
- Ridhima Vij
- Hope Biosciences Research Foundation, 16700 Creek Bend Dr., Sugar Land, TX, 77478, USA.
| | - Hosu Kim
- Hope Biosciences, Sugar Land, TX, 77478, USA
| | | | - Thanh Cheng
- Hope Biosciences Research Foundation, 16700 Creek Bend Dr., Sugar Land, TX, 77478, USA
| | - Djamchid Lotfi
- Hope Biosciences Research Foundation, 16700 Creek Bend Dr., Sugar Land, TX, 77478, USA
| | - Donna Chang
- Hope Biosciences Research Foundation, 16700 Creek Bend Dr., Sugar Land, TX, 77478, USA
- Hope Biosciences, Sugar Land, TX, 77478, USA
| |
Collapse
|
36
|
Qin Z, Li Y, Sun W, Lu Y, Zhang N, Yang R, Liu Y, Tang L, Liu Q. Effect of anti-inflammatory drugs on the storm of inflammatory factors in respiratory tract infection caused by SARS-CoV-2: an updated meta-analysis. Front Public Health 2023; 11:1198987. [PMID: 37920591 PMCID: PMC10619852 DOI: 10.3389/fpubh.2023.1198987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Background New reports suggest that anti-inflammatory drugs are widely used to treat respiratory tract infections caused by SARS-CoV-2. Anti-inflammatory drugs were the most frequently used treatment for the COVID-19-related cytokine storm in China. However, the efficacy of anti-inflammatory drugs has yet to be systematically analyzed, and clinicians are often uncertain which class of anti-inflammatory drug is the most effective in treating patients with respiratory tract infections caused by SARS-CoV-2, especially those with severe disease. Methods From 1 October 2022, relevant studies were searched in the PubMed, Embase, Medline, Cochrane Library, and Web of Science databases. A total of 16,268 publications were retrieved and collated according to inclusion and exclusion criteria, and sensitivity analyses were performed using STATA 14 software. Publication bias was assessed using funnel plots and Egger's test. Study quality was assessed using the PEDro scale, and the combined advantage ratio was expressed as a 95% confidence interval (CI). In total, 19 randomized controlled trials were included in the study. STATA 14 software was used for all random effects model analyses, and the results are expressed as relative risk ratios (RR) with 95% CI. Results Quantitative analyses were performed on 14,514 patients from 19 relevant randomized controlled clinical trials. Pooled estimates (RR = 0.59, 95% CI 0.44-0.80) revealed that the use of anti-inflammatory drugs resulted in a significant reduction in mortality in patients with respiratory tract infection caused by SARS-CoV-2 compared with controls, and methylprednisolone (RR = 0.14, 95% CI 0.03-0.56) was more effective than other anti-inflammatory drugs. Anti-inflammatory drugs were effective in reducing mortality in critically ill patients (RR = 0.67, 95% CI 0.45-0.98) compared with non-critically ill patients (RR = 0.50, 95% CI 0.34-0.76); however, more clinical evidence is needed to confirm these findings. Conclusion The use of anti-inflammatory drugs in patients with respiratory infections caused by SARS-CoV-2 reduces patient mortality, especially in severe cases. In individual studies, methylprednisolone was more effective than other drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Tang
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Qingshan Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|
37
|
Guo BC, Wu KH, Chen CY, Lin WY, Chang YJ, Lee TA, Lin MJ, Wu HP. Mesenchymal Stem Cells in the Treatment of COVID-19. Int J Mol Sci 2023; 24:14800. [PMID: 37834246 PMCID: PMC10573267 DOI: 10.3390/ijms241914800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Since the emergence of the coronavirus disease 2019 (COVID-19) pandemic, many lives have been tragically lost to severe infections. The COVID-19 impact extends beyond the respiratory system, affecting various organs and functions. In severe cases, it can progress to acute respiratory distress syndrome (ARDS) and multi-organ failure, often fueled by an excessive immune response known as a cytokine storm. Mesenchymal stem cells (MSCs) have considerable potential because they can mitigate inflammation, modulate immune responses, and promote tissue regeneration. Accumulating evidence underscores the efficacy and safety of MSCs in treating severe COVID-19 and ARDS. Nonetheless, critical aspects, such as optimal routes of MSC administration, appropriate dosage, treatment intervals, management of extrapulmonary complications, and potential pediatric applications, warrant further exploration. These research avenues hold promise for enriching our understanding and refining the application of MSCs in confronting the multifaceted challenges posed by COVID-19.
Collapse
Affiliation(s)
- Bei-Cyuan Guo
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chun-Yu Chen
- Department of Emergency Medicine, Tungs’ Taichung Metro Harbor Hospital, Taichung 43503, Taiwan;
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
| | - Wen-Ya Lin
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 43503, Taiwan
| | - Yu-Jun Chang
- Laboratory of Epidemiology and Biostastics, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Tai-An Lee
- Department of Emergency Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan;
| | - Mao-Jen Lin
- Division of Cardiology, Department of Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97002, Taiwan
| | - Han-Ping Wu
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| |
Collapse
|
38
|
Gonzaga A, Andreu E, Hernández-Blasco LM, Meseguer R, Al-Akioui-Sanz K, Soria-Juan B, Sanjuan-Gimenez JC, Ferreras C, Tejedo JR, Lopez-Lluch G, Goterris R, Maciá L, Sempere-Ortells JM, Hmadcha A, Borobia A, Vicario JL, Bonora A, Aguilar-Gallardo C, Poveda JL, Arbona C, Alenda C, Tarín F, Marco FM, Merino E, Jaime F, Ferreres J, Figueira JC, Cañada-Illana C, Querol S, Guerreiro M, Eguizabal C, Martín-Quirós A, Robles-Marhuenda Á, Pérez-Martínez A, Solano C, Soria B. Rationale for combined therapies in severe-to-critical COVID-19 patients. Front Immunol 2023; 14:1232472. [PMID: 37767093 PMCID: PMC10520558 DOI: 10.3389/fimmu.2023.1232472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
An unprecedented global social and economic impact as well as a significant number of fatalities have been brought on by the coronavirus disease 2019 (COVID-19), produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Acute SARS-CoV-2 infection can, in certain situations, cause immunological abnormalities, leading to an anomalous innate and adaptive immune response. While most patients only experience mild symptoms and recover without the need for mechanical ventilation, a substantial percentage of those who are affected develop severe respiratory illness, which can be fatal. The absence of effective therapies when disease progresses to a very severe condition coupled with the incomplete understanding of COVID-19's pathogenesis triggers the need to develop innovative therapeutic approaches for patients at high risk of mortality. As a result, we investigate the potential contribution of promising combinatorial cell therapy to prevent death in critical patients.
Collapse
Affiliation(s)
- Aitor Gonzaga
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Institute of Bioengineering, Miguel Hernández University, Elche, Spain
| | - Etelvina Andreu
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Applied Physics Department, Miguel Hernández University, Elche, Spain
| | | | - Rut Meseguer
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Clinic University Hospital, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA) Health Research Institute, Valencia, Spain
| | - Karima Al-Akioui-Sanz
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Bárbara Soria-Juan
- Réseau Hospitalier Neuchâtelois, Hôpital Pourtalès, Neuchâtel, Switzerland
| | | | - Cristina Ferreras
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Juan R. Tejedo
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Seville, Spain
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Guillermo Lopez-Lluch
- University Pablo de Olavide, Centro Andaluz de Biología del Desarrollo - Consejo Superior de Investigaciones Científicas (CABD-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain
| | - Rosa Goterris
- Clinic University Hospital, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA) Health Research Institute, Valencia, Spain
| | - Loreto Maciá
- Nursing Department, University of Alicante, Alicante, Spain
| | - Jose M. Sempere-Ortells
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Biotechnology Department, University of Alicante, Alicante, Spain
| | - Abdelkrim Hmadcha
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Seville, Spain
- Biosanitary Research Institute (IIB-VIU), Valencian International University (VIU), Valencia, Spain
| | - Alberto Borobia
- Clinical Pharmacology Department, La Paz University Hospital, School of Medicine, Universidad Autónoma de Madrid, IdiPAz, Madrid, Spain
| | - Jose L. Vicario
- Transfusion Center of the Autonomous Community of Madrid, Madrid, Spain
| | - Ana Bonora
- Health Research Institute Hospital La Fe, Valencia, Spain
| | | | - Jose L. Poveda
- Health Research Institute Hospital La Fe, Valencia, Spain
| | - Cristina Arbona
- Valencian Community Blood Transfusion Center, Valencia, Spain
| | - Cristina Alenda
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Fabian Tarín
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Francisco M. Marco
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Immunology Department, Dr. Balmis General University Hospital, Alicante, Spain
| | - Esperanza Merino
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Department of Clinical Medicine, Miguel Hernández University, Elche, Spain
- Infectious Diseases Unit, Dr. Balmis General University Hospital, Alicante, Spain
| | - Francisco Jaime
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - José Ferreres
- Intensive Care Service, Hospital Clinico Universitario, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain
| | | | | | | | - Manuel Guerreiro
- Department of Hematology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Cristina Eguizabal
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | | | - Antonio Pérez-Martínez
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Solano
- Hematology Service, Hospital Clínico Universitario, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain
| | - Bernat Soria
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Institute of Bioengineering, Miguel Hernández University, Elche, Spain
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| |
Collapse
|
39
|
Yan C, Hu M, Dai R. Safety and efficacy of mesenchymal stem cells in COVID-19 patients: A systematic review and meta-analysis. Immun Inflamm Dis 2023; 11:e1000. [PMID: 37773722 PMCID: PMC10515507 DOI: 10.1002/iid3.1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Coronavirus disease-19 (COVID-19) is a zoonotic disease that has become a global pandemic. The fast evolution of the COVID-19 pandemic and persist problems make COVID-19 highly infectious; publicly accessible literature and other sources of information continue to expand in volume. The mesenchymal stem cells (MSCs) therapy efficacy for COVID-19 is debatable. OBJECTIVE This systematic review and meta-analysis (SRMA) aimed to evaluate the usefulness of MSCs in treating COVID-19. METHODS Relevant publications were retrieved from databases up to April 30, 2022. In the case of dichotomous data, the 95% confidence intervals (CIs) and pooled risk ratio (RR) were estimated with a random effects model (REM) or fixed effects model (FEM). The pooled mean difference (MD) and 95% CIs were calculated with REM or FEM in continuous data. In the outcomes, studies with insufficient or unusable data were reported descriptively. RESULTS A total of eight randomized controlled trials (RCTs) with 464 people were chosen for this SRMA. Relative to the control group, mortality was significantly lower in the MSCs group (RR: 0.66, 95% CI: 0.44, 0.99, Z = 2.01, p = .04); other secondary outcomes, such as the clinical symptom improvement rate improved in the MSCs group (RR: 1.44, 95% CI: 1.05, 1.99, Z = 2.24, p = .03), clinical symptom improvement time (MD: -4.01, 95% CI: -6.33, -1.68, Z = 3.38, p = .0007), C-reactive protein (CRP) (MD: -39.16, 95% CI: -44.39, -33.94, Z = 14.70, p < .00001) and days to hospital discharge (MD: -3.83, 95% CI: -6.19, -1.48, Z = 3.19, p = .001) reduced significantly in MSCs group. However, the adverse reaction incidence did not change significantly. CONCLUSIONS MSCs are a viable therapy option for COVID-19 because of their safety and potential efficacy. With no significant adverse effects, MSCs can reduce mortality, clinical symptom improvement time, and days to hospital discharge, improve clinical symptoms, and reduce inflammatory cytokines CRP in COVID-19. However, further high-quality clinical studies are required to confirm these results.
Collapse
Affiliation(s)
- Cai Yan
- Xiangtan Central HospitalDepartment of Infectious diseasesXiangtanHunan provincePeople's Republic of China
| | - Minjie Hu
- The First Affiliated Hospital, Department of Cardiothoracic Surgery, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan provincePeople's Republic of China
| | - Rongjuan Dai
- The First Affiliated Hospital, Department of Infectious Diseases, Hengyang Medical SchoolUniversity of South ChinaHengyangHunan provincePeople's Republic of China
| |
Collapse
|
40
|
Sikora JP, Karawani J, Sobczak J. Neutrophils and the Systemic Inflammatory Response Syndrome (SIRS). Int J Mol Sci 2023; 24:13469. [PMID: 37686271 PMCID: PMC10488036 DOI: 10.3390/ijms241713469] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
We are not entirely able to understand, assess, and modulate the functioning of the immune system in clinical situations that lead to a systemic inflammatory response. In the search for diagnostic and treatment strategies (which are still far from perfect), it became very important to study the pathogenesis and participation of endogenous inflammation mediators. This study attempts to more precisely establish the role of neutrophils in individual phenomena occurring during an inflammatory and anti-inflammatory reaction, taking into account their cidal, immunoregulatory, and reparative abilities. Pro- and anticoagulatory properties of endothelium in systemic inflammatory response syndrome (SIRS) are emphasised, along with the resulting clinical implications (the application of immunotherapy using mesenchymal stem/stromal cells (MSCs) or IL-6 antagonists in sepsis and COVID-19 treatment, among others). Special attention is paid to reactive oxygen species (ROS), produced by neutrophils activated during "respiratory burst" in the course of SIRS; the protective and pathogenic role of these endogenous mediators is highlighted. Moreover, clinically useful biomarkers of SIRS (neutrophil extracellular traps, cell-free DNA, DAMP, TREMs, NGAL, miRNA, selected cytokines, ROS, and recognised markers of endothelial damage from the group of adhesins by means of immunohistochemical techniques) related to the neutrophils are presented, and their role in the diagnosing and forecasting of sepsis, burn disease, and COVID-19 is emphasised. Finally, examples of immunomodulation of sepsis and antioxidative thermal injury therapy are presented.
Collapse
Affiliation(s)
- Janusz P. Sikora
- Department of Paediatric Emergency Medicine, 2nd Chair of Paediatrics, Central Clinical Hospital, Medical University of Łódź, ul. Sporna 36/50, 91-738 Łódź, Poland;
| | - Jakub Karawani
- Faculty of Medicine, Lazarski University, ul. Świeradowska 43, 02-662 Warsaw, Poland;
| | - Jarosław Sobczak
- Department of Paediatric Emergency Medicine, 2nd Chair of Paediatrics, Central Clinical Hospital, Medical University of Łódź, ul. Sporna 36/50, 91-738 Łódź, Poland;
- Department of Management and Logistics in Healthcare, Medical University of Łódź, ul. Lindleya 6, 90-131 Łódź, Poland
| |
Collapse
|
41
|
Pochon C, Laroye C, Kimmoun A, Reppel L, Dhuyser A, Rousseau H, Gauthier M, Petitpain N, Chabot JF, Valentin S, de Carvalho Bittencourt M, Peres M, Aarnink A, Decot V, Bensoussan D, Gibot S. Efficacy of Wharton Jelly Mesenchymal Stromal Cells infusions in moderate to severe SARS-Cov-2 related acute respiratory distress syndrome: a phase 2a double-blind randomized controlled trial. Front Med (Lausanne) 2023; 10:1224865. [PMID: 37706025 PMCID: PMC10495568 DOI: 10.3389/fmed.2023.1224865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
Background The COVID-19 pandemic caused a wave of acute respiratory distress syndrome (ARDS) with a high in-hospital mortality, especially in patients requiring invasive mechanical ventilation. Wharton Jelly-derived Mesenchymal Stromal Cells (WJ-MSCs) may counteract the pulmonary damage induced by the SARS-CoV-2 infection through pro-angiogenic effects, lung epithelial cell protection, and immunomodulation. Methods In this randomized, double-blind, placebo-controlled phase 2a trial, adult patients receiving invasive mechanical ventilation for SARS-CoV-2 induced moderate or severe ARDS were assigned to receive 1 intravenous infusion of 1 × 106 WJ-MSCs/kg or placebo within 48 h of invasive ventilation followed by 2 infusions of 0.5 × 106 WJ-MSCs/kg or placebo over 5 days. The primary endpoint was the percentage of patients with a PaO2/FiO2 > 200 on day 10. Results Thirty patients were included from November 2020 to May 2021, 15 in the WJ-MSC group and 15 in the placebo group. We did not find any significant difference in the PaO2/FiO2 ratio at day 10, with 18 and 15% of WJ-MSCs and placebo-treated patients reaching a ratio >200, respectively. Survival did not differ in the 2 groups with a 20% mortality rate at day 90. While we observed a higher number of ventilation-free days at 28 days in the WJ-MSC arm, this difference was not statistically significant (median of 11 (0-22) vs. 0 (0-18), p = 0.2). The infusions were well tolerated, with a low incidence of anti-HLA alloimmunization after 90 days. Conclusion While treatment with WJ-MSCs appeared safe and feasible in patients with SARS-CoV2 moderate or severe ARDS in this phase 2a trial, the treatment was not associated with an increased percentage of patients with P/F > 200 at 10d, nor did 90 day mortality improve in the treated group. Clinical trial registration https://beta.clinicaltrials.gov/study/NCT04625738, identifier NCT04625738.
Collapse
Affiliation(s)
- Cécile Pochon
- CHRU-Nancy, Pediatric Onco-Hematology Department, Nancy, France
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
| | - Caroline Laroye
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Antoine Kimmoun
- CHRU-Nancy, Service de Médecine Intensive et Réanimation, Hôpitaux de Brabois, Nancy, France
- Université de Lorraine, Nancy, France
| | - Loic Reppel
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Adéle Dhuyser
- CHRU-Nancy, HLA and Histocompatibility Laboratory, Nancy, France
| | - Hélène Rousseau
- CHRU-Nancy, Département Méthodologie, Promotion, Investigation, Hôpitaux de Brabois, Nancy, France
| | - Mélanie Gauthier
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Nadine Petitpain
- CHRU-Nancy, Département de Pharmacovigilance, Hôpitaux de Brabois, Nancy, France
| | - Jean-François Chabot
- CHRU-Nancy, Pôle des Spécialités Médicales/Département de Pneumologie, Hôpitaux de Brabois, Nancy, France
| | - Simon Valentin
- CHRU-Nancy, Pôle des Spécialités Médicales/Département de Pneumologie, Hôpitaux de Brabois, Nancy, France
| | | | - Michael Peres
- CHRU-Nancy, HLA and Histocompatibility Laboratory, Nancy, France
| | - Alice Aarnink
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, HLA and Histocompatibility Laboratory, Nancy, France
| | - Véronique Decot
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Danièle Bensoussan
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Sébastien Gibot
- CHRU-Nancy, Service de Médecine Intensive et Réanimation, Hôpital Central, Nancy, France
| |
Collapse
|
42
|
Ichikado K, Kotani T, Kondoh Y, Imanaka H, Johkoh T, Fujimoto K, Nunomiya S, Kawayama T, Sawada M, Jenkins E, Tasaka S, Hashimoto S. Clinical efficacy and safety of multipotent adult progenitor cells (invimestrocel) for acute respiratory distress syndrome (ARDS) caused by pneumonia: a randomized, open-label, standard therapy-controlled, phase 2 multicenter study (ONE-BRIDGE). Stem Cell Res Ther 2023; 14:217. [PMID: 37608287 PMCID: PMC10464414 DOI: 10.1186/s13287-023-03451-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a life-threatening inflammatory lung injury with high mortality; no approved medication exists. Efficacy and safety of bone marrow-derived, allogeneic, multipotent adult progenitor cells (invimestrocel) plus standard treatment in patients with ARDS caused by pneumonia was evaluated. METHODS A randomized, open-label, standard therapy-controlled, phase 2 study (January 2019-September 2021) conducted in 29 centers in Japan. Patients with ARDS caused by pneumonia, with extensive early fibroproliferation on high-resolution computed tomography and low risk of systemic organ failure identified by an Acute Physiology and Chronic Health Evaluation (APACHE II) score were included. Patients were randomized 2:1 to receive a single intravenous infusion of 9.0 × 108 cells of invimestrocel (administered at a rate of up to 10 mL/min over 30-60 min by free flow) plus standard treatment (N = 20) or standard treatment (N = 10) consistent with the clinical practice guidelines of the Japanese Respiratory Society for the management of ARDS. Primary endpoint was ventilator-free days (VFDs) through day 28 after study treatment. Analysis of covariance was performed with treatment group, age, partial pressure arterial oxygen/fraction of inspired oxygen ratio, and APACHE II score as covariates. RESULTS Median (interquartile range) number of VFDs was numerically higher in the invimestrocel group versus standard group (20.0 [0.0-24.0] vs 11.0 [0.0-14.0]) but was not statistically significantly different (least square [LS] means [95% confidence interval (CI)]: invimestrocel group, 11.6 [6.9-16.3]; standard group, 6.2 [- 0.4 to 12.8]; LS mean difference [95% CI], 5.4 [- 1.9 to 12.8]; p = 0.1397). Ventilator weaning rate at day 28 was 65% (13/20) versus 30% (3/10), and mortality rate was 21% (4/19) versus 29% (2/7) at day 28 and 26% (5/19 patients) versus 43% (3/7 patients) at day 180, for the invimestrocel and standard groups, respectively. No allergic or serious adverse reactions were associated with invimestrocel. CONCLUSIONS In Japanese patients with ARDS caused by pneumonia, invimestrocel plus standard treatment resulted in no significant difference in the number of VFDs but may result in improved survival compared with standard treatment. Invimestrocel was well tolerated. TRIAL REGISTRATION ClinicalTrials.gov, Identifier: NCT03807804; January 8, 2019; https://clinicaltrials.gov/ct2/show/NCT03807804 .
Collapse
Affiliation(s)
- Kazuya Ichikado
- Division of Respiratory Medicine, Social Welfare Organization Saiseikai Imperial Gift Foundation, Inc., Saiseikai Kumamoto Hospital, 5-3-1 Chikami, Minami-ku, Kumamoto City, 8614101, Japan.
| | - Toru Kotani
- Department of Intensive Care Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Hideaki Imanaka
- Department of Emergency Medicine, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Takeshi Johkoh
- Department of Radiology, Kansai Rosai Hospital, Amagasaki, Hyogo, Japan
| | - Kiminori Fujimoto
- Department of Radiology, Kurume University School of Medicine, Fukuoka, Japan
| | - Shin Nunomiya
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
- Department of Intensive Care, Yokosuka General Hospital Uwamachi, Kanagawa, Japan
| | - Tomotaka Kawayama
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | | | - Eric Jenkins
- Athersys, Inc., Cleveland, OH, USA
- Kiniksa Pharmaceuticals, Lexington, MA, USA
| | - Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Satoru Hashimoto
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
43
|
Hsueh PR, Ho SJ, Hsieh PC, Liu IM, Jean SS. Use of Multiple Doses of Intravenous Infusion of Umbilical Cord-Mesenchymal Stem Cells for the Treatment of Adult Patients with Severe COVID-19-Related Acute Respiratory Distress Syndrome: Literature Review. Stem Cells Int 2023; 2023:7179592. [PMID: 37638334 PMCID: PMC10457163 DOI: 10.1155/2023/7179592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Objectives Acute respiratory distress syndrome (ARDS) is a critical complication in severe COVID-19 patients. The intravenous infusion (IVF) of umbilical cord- (UC-) mesenchymal stem cells (MSCs), validated to substantially reduce the release of several inflammatory cytokines in vivo, was also shown to exhibit benefits in improving hypoxemia among severe COVID-19 patients. A single dose of IVF-UC-MSCs therapy for severe COVID-19 patients was shown to alleviate the initial ARDS severity, but have 50%-67% case-fatality rates. In Taiwan, few adult patients with severe COVID-19-induced ARDS receiving compassionate adjuvant treatment consisting of either a single dose (1-10 × 106 cells/kg body weight (kg BW)) or three doses (5 × 106 cells/kg BW in each dose) of IVF-UC-MSCs had good outcomes. However, the optimal dosage and rounds of IVF-UC-MSCs administration for the treatment of severe COVID-19 patients with ARDS are undetermined. Methods We reviewed the 2020-2022 PubMed literature database concerning the clinical efficacy of IVF-UC-MSCs among severe COVID-19 patients. Results The data of COVID-19 case series in the PubMed literature revealed a notable heterogeneity in the therapeutic dosage (a single dose: 1-10 × 106 cells/kg BW; and three doses: 50-200 × 106 cells/kg BW in each dose) and the post-ARDS days of IVF-UC-MSCs administration (a single dose: 1-12; and multiple doses: 5-14) for the treatment of severe COVID-19-associated ARDS. The survival rates among these severe COVID-19 patients ranged from 50% to 76%. However, an overall rate of 93.1% of significant improvement in hypoxemia was observed for the COVID-19 survivors receiving IVF-UC-MSCs at the initial ARDS stage. Conclusions According to our analysis, the ideal treatment dosage of IVF-UC-MSCs for severe COVID-19-induced ARDS is likely 5 × 106 cells/kg BW for three cycles within 5 days of ARDS onset in severe COVID-19 patients.
Collapse
Affiliation(s)
- Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Jung Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Po-Chuen Hsieh
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Shio-Shin Jean
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| |
Collapse
|
44
|
Soetjahjo B, Malueka RG, Nurudhin A, Purwoko, Sumardi, Wisaksana R, Adhiputri A, Sudadi, Soeroto AY, Sidharta BRA, Thobari JA, Murni TW, Soewondo W, Herningtyas EH, Sudjud RW, Trisnawati I, Ananda NR, Faried A. Effectiveness and safety of normoxic allogenic umbilical cord mesenchymal stem cells administered as adjunctive treatment in patients with severe COVID-19. Sci Rep 2023; 13:12520. [PMID: 37532730 PMCID: PMC10397314 DOI: 10.1038/s41598-023-39268-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/22/2023] [Indexed: 08/04/2023] Open
Abstract
Inflammatory response in COVID-19 contributes greatly to disease severity. Mesenchymal Stem Cells (MSCs) have the potential to alleviate inflammation and reduce mortality and length of stay in COVID-19 patients. We investigated the safety and effectiveness of normoxic-allogenic umbilical cord (NA-UC)-MSCs as an adjunctive treatment in severe COVID-19 patients. A double-blind, multicentric, randomized, placebo-controlled trial involving severe COVID-19 patients was performed from January to June 2021 in three major hospitals across Java, Indonesia. Eligible participants (n = 42) were randomly assigned to two groups (1:1), namely the intervention (n = 21) and control (n = 21) groups. UC-MSCs dose was 1 × 106 /kg body weight on day D0, D3, and D6. The primary outcome was the duration of hospitalization. Meanwhile, the secondary outcomes were radiographical progression (Brixia score), respiratory and oxygenation parameters, and inflammatory markers, in addition to the safety profile of NA-UC-MSCs. NA-UC-MSCs administration did not affect the length of hospital stay of severe COVID-19 patients, nor did it improve the Brixia score or mMRC dyspnoea scale better than placebo. Nevertheless, NA-UC-MSCs led to a better recuperation in oxygenation index (120.80 ± 72.70 baseline vs. 309.63 ± 319.30 D + 22, p = 0.038) and oxygen saturation (97.24 ± 4.10% vs. 96.19 ± 3.75% in placebo, p = 0.028). Additionally, compared to the placebo group, the treatment group had a significantly smaller increase in PCT level at D + 22 (1.43 vs. 12.76, p = 0.011). No adverse effects, including serious ones, were recorded until D + 91. NA-UC-MSCs therapy is a very safe adjunct for COVID-19 patients. It improves the oxygenation profile and carries potential to suppress inflammation.
Collapse
Affiliation(s)
- Bintang Soetjahjo
- Department of Orthopaedics and Traumatology, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Rusdy Ghazali Malueka
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Arief Nurudhin
- Department of Internal Medicine, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Purwoko
- Department of Anesthesiology and Intensive Therapy, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Sumardi
- Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Rudi Wisaksana
- Department of Internal Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Artrien Adhiputri
- Department of Pulmonology and Respiratory Medicine, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Sudadi
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Arto Yuwono Soeroto
- Department of Internal Medicine, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | | | - Jarir At Thobari
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Wahyu Murni
- Department of Surgery, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Widiastuti Soewondo
- Department of Radiology, Universitas Sebelas Maret-Dr. Moewardi Hospital, Solo, Indonesia
| | - Elizabeth Henny Herningtyas
- Department of Clinical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Reza Widianto Sudjud
- Department of Anesthesiology-Intensive Therapy, Universitas Padjadjaran-Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Ika Trisnawati
- Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Nur Rahmi Ananda
- Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ahmad Faried
- Department of Neurosurgery, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, 40161, Indonesia.
| |
Collapse
|
45
|
Gorman EA, Rynne J, Gardiner HJ, Rostron AJ, Bannard-Smith J, Bentley AM, Brealey D, Campbell C, Curley G, Clarke M, Dushianthan A, Hopkins P, Jackson C, Kefela K, Krasnodembskaya A, Laffey JG, McDowell C, McFarland M, McFerran J, McGuigan P, Perkins GD, Silversides J, Smythe J, Thompson J, Tunnicliffe WS, Welters IDM, Amado-Rodríguez L, Albaiceta G, Williams B, Shankar-Hari M, McAuley DF, O'Kane CM. Repair of Acute Respiratory Distress Syndrome in COVID-19 by Stromal Cells (REALIST-COVID Trial): A Multicenter, Randomized, Controlled Clinical Trial. Am J Respir Crit Care Med 2023; 208:256-269. [PMID: 37154608 DOI: 10.1164/rccm.202302-0297oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Rationale: Mesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in coronavirus disease (COVID-19)-related acute respiratory distress syndrome (ARDS). Objectives: We investigated the safety and efficacy of ORBCEL-C (CD362 [cluster of differentiation 362]-enriched, umbilical cord-derived MSCs) in COVID-19-related ARDS. Methods: In this multicenter, randomized, double-blind, allocation-concealed, placebo-controlled trial (NCT03042143), patients with moderate to severe COVID-19-related ARDS were randomized to receive ORBCEL-C (400 million cells) or placebo (Plasma-Lyte 148). The primary safety and efficacy outcomes were the incidence of serious adverse events and oxygenation index at Day 7, respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2:FiO2 ratio, and Sequential Organ Failure Assessment score. Clinical outcomes relating to duration of ventilation, lengths of ICU and hospital stays, and mortality were collected. Long-term follow-up included diagnosis of interstitial lung disease at 1 year and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at Days 0, 4, and 7. Measurements and Main Results: Sixty participants were recruited (final analysis: n = 30 received ORBCEL-C, n = 29 received placebo; 1 participant in the placebo group withdrew consent). Six serious adverse events occurred in the ORBCEL-C group and three in the placebo group (risk ratio, 2.9 [95% confidence interval, 0.6-13.2]; P = 0.25). Day 7 mean (SD) oxygenation index did not differ (ORBCEL-C, 98.3 [57.2] cm H2O/kPa; placebo, 96.6 [67.3] cm H2O/kPa). There were no differences in secondary surrogate outcomes or in mortality at Day 28, Day 90, 1 year, or 2 years. There was no difference in the prevalence of interstitial lung disease at 1 year or significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome. Conclusion: ORBCEL-C MSCs were safe in subjects with moderate to severe COVID-19-related ARDS but did not improve surrogates of pulmonary organ dysfunction.
Collapse
Affiliation(s)
- Ellen A Gorman
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jennifer Rynne
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah J Gardiner
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Anthony J Rostron
- Sunderland Royal Hospital, South Tyneside and Sunderland National Health Service Foundation Trust, Sunderland, United Kingdom
- Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Andrew M Bentley
- Acute Intensive Care Unit, Wythenshawe Hospital, Manchester, United Kingdom
| | - David Brealey
- University College Hospital London, London, United Kingdom
| | | | - Gerard Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mike Clarke
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Ahilanadan Dushianthan
- University Hospital Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Phillip Hopkins
- King's Trauma Centre, King's College Hospital, London, United Kingdom
| | - Colette Jackson
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Kallirroi Kefela
- Department of Critical Care, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Anna Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - John G Laffey
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Cliona McDowell
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Margaret McFarland
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Jamie McFerran
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Peter McGuigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Gavin D Perkins
- Critical Care Unit, University Hospitals Birmingham, Birmingham, United Kingdom
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jonathan Silversides
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Jon Smythe
- National Health Service Blood and Transplant, Oxford, United Kingdom
| | - Jacqui Thompson
- National Health Service Blood and Transplant, Birmingham, United Kingdom
| | | | - Ingeborg D M Welters
- Intensive Care Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- Institute of Life Course Medical Sciences, University of Liverpool, Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| | - Laura Amado-Rodríguez
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Guillermo Albaiceta
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; and
| | - Barry Williams
- Independent Patient and Public Representative, Sherborne, United Kingdom
| | - Manu Shankar-Hari
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
46
|
Roham PH, Kamath JJ, Sharma S. Dissecting the Interrelationship between COVID-19 and Diabetes Mellitus. Adv Biol (Weinh) 2023; 7:e2300107. [PMID: 37246237 DOI: 10.1002/adbi.202300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/20/2023] [Indexed: 05/30/2023]
Abstract
COVID-19 disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to enormous morbidity and mortality worldwide. After gaining entry into the human host, the virus initially infects the upper and lower respiratory tract, subsequently invading multiple organs, including the pancreas. While on one hand, diabetes mellitus (DM) is a significant risk factor for severe COVID-19 infection and associated death, recent reports have shown the onset of DM in COVID-19-recovered patients. SARS-CoV-2 infiltrates the pancreatic islets and activates stress response and inflammatory signaling pathways, impairs glucose metabolism, and consequently leads to their death. Indeed, the pancreatic autopsy samples of COVID-19 patients reveal the presence of SARS-CoV-2 particles in β-cells. The current review describes how the virus enters the host cells and activates an immunological response. Further, it takes a closer look into the interrelationship between COVID-19 and DM with the aim to provide mechanistic insights into the process by which SARS-CoV-2 infects the pancreas and mediates dysfunction and death of endocrine islets. The effects of known anti-diabetic interventions for COVID-19 management are also discussed. The application of mesenchymal stem cells (MSCs) as a future therapy for pancreatic β-cells damage to reverse COVID-19-induced DM is also emphasized.
Collapse
Affiliation(s)
- Pratiksha H Roham
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Jayesh J Kamath
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| |
Collapse
|
47
|
Wu J, Shi Y, Yang S, Tang Z, Li Z, Li Z, Zuo J, Ji W, Niu Y. Current state of stem cell research in non-human primates: an overview. MEDICAL REVIEW (2021) 2023; 3:277-304. [PMID: 38235400 PMCID: PMC10790211 DOI: 10.1515/mr-2023-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 01/19/2024]
Abstract
The remarkable similarity between non-human primates (NHPs) and humans establishes them as essential models for understanding human biology and diseases, as well as for developing novel therapeutic strategies, thereby providing more comprehensive reference data for clinical treatment. Pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells provide unprecedented opportunities for cell therapies against intractable diseases and injuries. As continue to harness the potential of these biotechnological therapies, NHPs are increasingly being employed in preclinical trials, serving as a pivotal tool to evaluate the safety and efficacy of these interventions. Here, we review the recent advancements in the fundamental research of stem cells and the progress made in studies involving NHPs.
Collapse
Affiliation(s)
- Junmo Wu
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Yuxi Shi
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shanshan Yang
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zengli Tang
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zifan Li
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhuoyao Li
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Jiawei Zuo
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Weizhi Ji
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Yuyu Niu
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
48
|
Zarrabi M, Shahrbaf MA, Nouri M, Shekari F, Hosseini SE, Hashemian SMR, Aliannejad R, Jamaati H, Khavandgar N, Alemi H, Madani H, Nazari A, Amini A, Hassani SN, Abbasi F, Jarooghi N, Fallah N, Taghiyar L, Ganjibakhsh M, Hajizadeh-Saffar E, Vosough M, Baharvand H. Allogenic mesenchymal stromal cells and their extracellular vesicles in COVID-19 induced ARDS: a randomized controlled trial. Stem Cell Res Ther 2023; 14:169. [PMID: 37365605 PMCID: PMC10294333 DOI: 10.1186/s13287-023-03402-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND AND AIMS The main causes of death in patients with severe Coronavirus disease-2019 (COVID-19) are acute respiratory distress syndrome (ARDS) and multiorgan failure caused by a severe inflammatory cascade. Novel treatment strategies, such as stem-cell-based therapy and their derivatives can be used to relieve inflammation in these cases. In this study, we aimed to evaluate the safety and efficacy of therapy using mesenchymal stromal cells (MSCs) and their derived extracellular vesicles in COVID-19 patients. MATERIALS AND METHODS COVID-19 patients with ARDS were included in this study and allocated into two study and control groups using block randomization. While all patients received recommended treatment based on guidelines from the national advisory committee for COVID-19 pandemic, the two intervention groups received two consecutive injections of MSCs (100 × 106 cells) or one dose of MSCs (100 × 106 cells) followed by one dose of MSC-derived extracellular vesicles (EVs). Patients were assessed for safety and efficacy by evaluating clinical symptoms, laboratory parameters, and inflammatory markers at baseline and 48 h after the second intervention. RESULTS A total number of 43 patients (the MSC alone group = 11, MSC plus EV group = 8, and control group = 24) were included in the final analysis. Mortality was reported in three patients in the MSC alone group (RR: 0.49; 95% CI 0.14-1.11; P = 0.08); zero patient in the MSC plus EV group (RR: 0.08; 95% CI 0.005-1.26; P = 0.07) and eight patients in the control group. MSC infusion was associated with a decrease in inflammatory cytokines such as IL-6 (P = 0.015), TNF-α (P = 0.034), IFN-γ (P = 0.024), and CRP (P = 0.041). CONCLUSION MSCs and their extracellular vesicles can significantly reduce the serum levels of inflammatory markers in COVID-19 patients, with no serious adverse events. Trial registration IRCT, IRCT registration number: IRCT20200217046526N2. Registered 13th April 2020, http://www.irct.ir/trial/47073 .
Collapse
Affiliation(s)
- Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Amin Shahrbaf
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Nouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Esmat Hosseini
- Nursing and Midwifery Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed-Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Aliannejad
- Pulmonary Department, Thoracic Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghmeh Khavandgar
- Pulmonary Department, Thoracic Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hediyeh Alemi
- Pulmonary Department, Thoracic Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Madani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abdoreza Nazari
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Amini
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Abbasi
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Jarooghi
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasrin Fallah
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Meysam Ganjibakhsh
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
49
|
Couto PS, Al-Arawe N, Filgueiras IS, Fonseca DLM, Hinterseher I, Catar RA, Chinnadurai R, Bersenev A, Cabral-Marques O, Moll G, Verter F. Systematic review and meta-analysis of cell therapy for COVID-19: global clinical trial landscape, published safety/efficacy outcomes, cell product manufacturing and clinical delivery. Front Immunol 2023; 14:1200180. [PMID: 37415976 PMCID: PMC10321603 DOI: 10.3389/fimmu.2023.1200180] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
During the pandemic of severe respiratory distress syndrome coronavirus 2 (SARS-CoV2), many novel therapeutic modalities to treat Coronavirus 2019 induced disease (COVID-19) were explored. This study summarizes 195 clinical trials of advanced cell therapies targeting COVID-19 that were registered over the two years between January 2020 to December 2021. In addition, this work also analyzed the cell manufacturing and clinical delivery experience of 26 trials that published their outcomes by July 2022. Our demographic analysis found the highest number of cell therapy trials for COVID-19 was in United States, China, and Iran (N=53, 43, and 19, respectively), with the highest number per capita in Israel, Spain, Iran, Australia, and Sweden (N=0.641, 0.232, 0,223, 0.194, and 0.192 trials per million inhabitants). The leading cell types were multipotent mesenchymal stromal/stem cells (MSCs), natural killer (NK) cells, and mononuclear cells (MNCs), accounting for 72%, 9%, and 6% of the studies, respectively. There were 24 published clinical trials that reported on infusions of MSCs. A pooled analysis of these MSC studies found that MSCs provide a relative risk reduction for all-cause COVID-19 mortality of RR=0.63 (95% CI 0.46 to 0.85). This result corroborates previously published smaller meta-analyses, which suggested that MSC therapy demonstrated a clinical benefit for COVID-19 patients. The sources of the MSCs used in these studies and their manufacturing and clinical delivery methods were remarkably heterogeneous, with some predominance of perinatal tissue-derived products. Our results highlight the important role that cell therapy products may play as an adjunct therapy in the management of COVID-19 and its related complications, as well as the importance of controlling key manufacturing parameters to ensure comparability between studies. Thus, we support ongoing calls for a global registry of clinical studies with MSC products that could better link cell product manufacturing and delivery methods to clinical outcomes. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the near future, preventing pathology through vaccination still remains the best protection to date. We conducted a systematic review and meta-analysis of advanced cell therapy clinical trials as potential novel treatment for COVID-19 (resulting from SARS-CoV-2 coronavirus infection), including analysis of the global clinical trial landscape, published safety/efficacy outcomes (RR/OR), and details on cell product manufacturing and clinical delivery. This study had a 2-year observation interval from start of January 2020 to end of December 2021, including a follow-up period until end of July to identify published outcomes, which covers the most vivid period of clinical trial activity, and is also the longest observation period studied until today. In total, we identified 195 registered advanced cell therapy studies for COVID-19, employing 204 individual cell products. Leading registered trial activity was attributed to the USA, China, and Iran. Through the end of July 2022, 26 clinical trials were published, with 24 out of 26 articles employing intravenous infusions (IV) of mesenchymal stromal/stem cell (MSC) products. Most of the published trials were attributed to China and Iran. The cumulative results from the 24 published studies employing infusions of MSCs indicated an improved survival (RR=0.63 with 95% Confidence Interval 0.46 to 0.85). Our study is the most comprehensive systematic review and meta-analysis on cell therapy trials for COVID-19 conducted to date, clearly identifying the USA, China, and Iran as leading advanced cell therapy trial countries for COVID-19, with further strong contributions from Israel, Spain, Australia and Sweden. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the future, preventing pathology through vaccination remains the best protection.
Collapse
Affiliation(s)
- Pedro S. Couto
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
- CellTrials.org and Parent’s Guide to Cord Blood Foundation, a non-profit organization headquartered in Brookeville, Brookeville, MD, United States
| | - Nada Al-Arawe
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
- Vascular Surgery Clinic, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Igor S. Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Dennyson L. M. Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Irene Hinterseher
- Vascular Surgery Clinic, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Brandenburg Theodor Fontane, Neuruppin, Germany
- Fakultät der Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane, und der Brandenburg Technischen Universität (BTU) Cottbus-Senftenberg, Potsdam, Germany
| | - Rusan A. Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Alexey Bersenev
- Advanced Cell Therapy (ACT) Laboratory, Yale School of Medicine, New Haven, CT, United States
| | - Otávio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo (USP), São Paulo, SP, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frances Verter
- CellTrials.org and Parent’s Guide to Cord Blood Foundation, a non-profit organization headquartered in Brookeville, Brookeville, MD, United States
| |
Collapse
|
50
|
Russo E, Corrao S, Di Gaudio F, Alberti G, Caprnda M, Kubatka P, Kruzliak P, Miceli V, Conaldi PG, Borlongan CV, La Rocca G. Facing the Challenges in the COVID-19 Pandemic Era: From Standard Treatments to the Umbilical Cord-Derived Mesenchymal Stromal Cells as a New Therapeutic Strategy. Cells 2023; 12:1664. [PMID: 37371134 PMCID: PMC10297457 DOI: 10.3390/cells12121664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which counts more than 650 million cases and more than 6.6 million of deaths worldwide, affects the respiratory system with typical symptoms such as fever, cough, sore throat, acute respiratory distress syndrome (ARDS), and fatigue. Other nonpulmonary manifestations are related with abnormal inflammatory response, the "cytokine storm", that could lead to a multiorgan disease and to death. Evolution of effective vaccines against SARS-CoV-2 provided multiple options to prevent the infection, but the treatment of the severe forms remains difficult to manage. The cytokine storm is usually counteracted with standard medical care and anti-inflammatory drugs, but researchers moved forward their studies on new strategies based on cell therapy approaches. The perinatal tissues, such as placental membranes, amniotic fluid, and umbilical cord derivatives, are enriched in mesenchymal stromal cells (MSCs) that exert a well-known anti-inflammatory role, immune response modulation, and tissue repair. In this review, we focused on umbilical-cord-derived MSCs (UC-MSCs) used in in vitro and in vivo studies in order to evaluate the weakening of the severe symptoms, and on recent clinical trials from different databases, supporting the favorable potential of UC-MSCs as therapeutic strategy.
Collapse
Affiliation(s)
- Eleonora Russo
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| | - Simona Corrao
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | | | - Giusi Alberti
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University, University Hospital Bratislava, 81499 Bratislava, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03649 Martin, Slovakia;
| | - Peter Kruzliak
- Research and Development Services, Pradlacka 18, 61300 Brno, Czech Republic;
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Cesario Venturina Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Giampiero La Rocca
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| |
Collapse
|