1
|
He W, Wei W, Zhao Y, Wang Y, Liu C, Wei Y, Lu X, Zhao L, Wang C, Chen J, Tan X, You M, Liu Y. Poly-T-Modified Gold Nanorods Suppress Macrophage-Mediated Inflammation for Periodontitis Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26216-26226. [PMID: 40172480 DOI: 10.1021/acsami.5c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Traditional treatments for periodontitis are limited by their inability to adequately modulate the immune response and control inflammation. Recently, nucleic acid-modified nanomaterials have attracted significant attention for their potential in regulating inflammation. Among these, most nanomaterials, such as spherical nucleic acids, tend to exhibit pro-inflammatory effects. In this study, we identified for the first time that poly-T sequence-modified gold nanorods (PTM AuNRs) possess significant anti-inflammatory properties. The PTM AuNRs demonstrated excellent biocompatibility and efficacy in treating ligation-induced periodontitis. PTM AuNRs modulate immune responses by inhibiting the differentiation of pro-inflammatory M1 macrophages and reducing pro-inflammatory cytokine levels through promoting AMPK activation. When administered via local injection, PTM AuNRs effectively suppress inflammatory response and inflammatory cell infiltration, downregulate inflammatory cytokine levels, and mitigate collagen fiber degradation and alveolar bone loss. Together, these findings highlight PTM AuNRs as a promising and innovative therapeutic strategy for periodontitis management.
Collapse
Affiliation(s)
- Wanghong He
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100070, China
| | - Wei Wei
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100070, China
| | - Yifan Zhao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100070, China
| | - Yanxue Wang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100070, China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Yi Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Xueting Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Chengxin Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, P. R. China
| | - Junge Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, P. R. China
| | - Xinfeng Tan
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100070, China
| |
Collapse
|
2
|
Huang X, Ji M, Shang X, Zhang H, Zhang X, Zhou J, Yin T. Smart on-demand drug release strategies for cancer combination therapy. J Control Release 2025; 383:113782. [PMID: 40294796 DOI: 10.1016/j.jconrel.2025.113782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/06/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
In cancer therapy, enhancing therapeutic indices and patient compliance has been a central focus in recent drug delivery technology development. However, achieving a delicate balance between improving anti-tumor efficacy and minimizing toxicity to normal tissues remains a significant challenge. With the advent of smart on-demand drug release strategies, new opportunities have emerged. These strategies represent a promising approach to drug delivery, enabling precise control over the release of therapeutic agents in a programmed and spatiotemporal manner. Recent studies have focused on designing delivery systems capable of releasing multiple therapeutic agents sequentially, while achieving spatial resolution in vivo. Smart on-demand drug release strategies have demonstrated considerable potential in tumor combination therapy for achieving precision drug delivery and controlled release by responding to specific physiological signals or external physical stimuli in the tumor microenvironment. These strategies not only improve tumor targeting and reduce toxicity to healthy tissues but also enable sequential release in combination therapy, allowing multiple drugs to be released in a specific spatiotemporal order to enhance synergistic treatment effects. In this paper, we systematically reviewed the current research progress of smart on-demand drug release drug delivery strategies in anti-tumor combination therapy. We highlighted representative integrated drug delivery systems and discussed the challenges associated with their clinical application. Additionally, potential future research directions are proposed to further advance this promising field.
Collapse
Affiliation(s)
- Xiaolin Huang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Mengfei Ji
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xinyu Shang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Hengchuan Zhang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xin Zhang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
3
|
Yang D, Zhou Y, Wang M, Yuan Y, Feng Y, Fang Y, Li G, Liu D, Yao X. Protein Precoating with Concentration-Dependent Manner Breaks through the Biomacromolecular Barrier of Transferrin-Functionalized Nanoparticle in Intestinal Mucosa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4231-4239. [PMID: 39918287 DOI: 10.1021/acs.jafc.4c08452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Biomacromolecules in physiological environments would adsorb onto the nanoparticles (NPs) to form corona layers, in which protein coronas (PCs) are the major constituent. PCs always play diverse influences on the fate of NPs in vitro and in vivo, especially for active-targeting NPs (e.g., transferrin-modified nanoparticles, Tf-NP). In order to eliminate the inhibition of PCs on the efficiency of Tf-NP, the precoated Tf-NP with bovine serum albumin (BSA, B@Tf-NP) was designed to fabricate an "active PCs" (PCs formed by artificial modification) against the "passive PCs" (PCs formed in the biological environments), which was inspired by the formation pattern of PCs. The results indicated that B@Tf-NP had similar particle size, dispersion, and physical stability with Tf-NP. Surprisingly, B@Tf-NP enhanced the cellular uptake in enterocytes and permeability in intestinal tract of mice. Notably, the concentration ratio of BSA to Tf that could ensure Tf revealed timely during the interacted process was considered to be appropriate. These findings provide an easy while efficient design platform for active-targeting NPs to overcome the biomacromolecular barrier in oral administration.
Collapse
Affiliation(s)
- Dan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
- Xi'an Key Laboratory of Antiviral and Antimicrobial Resistant Bacteria Therapeutics Research, Xi'an 710021, China
| | - Yao Zhou
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
- Xi'an Key Laboratory of Antiviral and Antimicrobial Resistant Bacteria Therapeutics Research, Xi'an 710021, China
| | - Mengqi Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
- Xi'an Key Laboratory of Antiviral and Antimicrobial Resistant Bacteria Therapeutics Research, Xi'an 710021, China
| | - Ying Yuan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yuqi Feng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Dechun Liu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
4
|
Auchynnikava T, Äärelä A, Moisio O, Liljenbäck H, Andriana P, Iqbal I, Laine T, Palani S, Lehtimäki J, Rajander J, Salo H, Airaksinen AJ, Virta P, Roivainen A. Biological Evaluation of Molecular Spherical Nucleic Acids: Targeting Tumors via a Hybridization-Based Folate Decoration. ACS OMEGA 2025; 10:6003-6014. [PMID: 39989783 PMCID: PMC11840764 DOI: 10.1021/acsomega.4c10047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 01/23/2025] [Indexed: 02/25/2025]
Abstract
Folate receptors (FRs), membrane-bound proteins that bind specifically to folate with high affinity, are overexpressed by various cancer types and are therefore used as targets for delivery of therapeutic agents. Molecular spherical nucleic acids (MSNAs) are dendritic formulations of oligonucleotides (ONs) that may have advantages over linear parent ONs with respect to delivery properties. Here, we assembled folate-decorated MSNAs, site-specifically radiolabeled them, and then biologically evaluated their effects in mice bearing HCC1954 breast cancer xenograft tumors. The biodistribution of intravenously administered 18F-radiolabeled MSNAs was monitored using positron emission tomography/computed tomography imaging. The results revealed higher accumulation of folate-decorated MSNAs in FR-expressing organs such as the liver, kidney, and spleen, as well as a higher tumor-to-muscle ratio than that observed for MSNAs without the folate decoration. However, the observed increase was statistically significant only for MSNA structures with a PO backbone. The observed selective uptake of folate-decorated MSNAs highlights their potential as targeted delivery vehicles for therapeutic and diagnostic agents in FR-overexpressing cancers.
Collapse
Affiliation(s)
- Tatsiana Auchynnikava
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Antti Äärelä
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
- Research
and Development, Orion Pharma, Turku FI-20380, Finland
| | - Olli Moisio
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Heidi Liljenbäck
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Turku
Center for Disease Modeling, University
of Turku, Turku FI-20520, Finland
| | - Putri Andriana
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Imran Iqbal
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Toni Laine
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Senthil Palani
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Jyrki Lehtimäki
- Research
and Development, Orion Pharma, Turku FI-20380, Finland
| | - Johan Rajander
- Turku
PET Centre, Accelerator Laboratory, Åbo
Akademi University, Turku FI-20520, Finland
| | - Harri Salo
- Research
and Development, Orion Pharma, Turku FI-20380, Finland
| | - Anu J. Airaksinen
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Pasi Virta
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Anne Roivainen
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Turku
Center for Disease Modeling, University
of Turku, Turku FI-20520, Finland
- InFLAMES
Research Flagship, University of Turku, Turku FI-20520, Finland
| |
Collapse
|
5
|
Kaviani S, Bai H, Das T, Asohan J, Elmanzalawy A, Marlyn J, Choueiri LE, Damha MJ, Laurent Q, Sleiman HF. Photochemical Stabilization of Self-Assembled Spherical Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407742. [PMID: 39790078 PMCID: PMC11840461 DOI: 10.1002/smll.202407742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Indexed: 01/12/2025]
Abstract
Oligonucleotide therapeutics, including antisense oligonucleotides and small interfering RNA, offer promising avenues for modulating the expression of disease-associated proteins. However, challenges such as nuclease degradation, poor cellular uptake, and unspecific targeting hinder their application. To overcome these obstacles, spherical nucleic acids have emerged as versatile tools for nucleic acid delivery in biomedical applications. Our laboratory has introduced sequence-defined DNA amphiphiles which self-assemble in aqueous solutions. Despite their advantages, self-assembled SNAs can be inherently fragile due to their reliance on non-covalent interactions and fall apart in biologically relevant conditions, specifically by interaction with serum proteins. Herein, this challenge is addressed by introducing two methods of covalent crosslinking of SNAs via UV irradiation. Thymine photodimerization or disulfide crosslinking at the micellar interface enhance SNA stability against human serum albumin binding. This enhanced stability, particularly for disulfide crosslinked SNAs, leads to increased cellular uptake. Furthermore, this crosslinking results in sustained activity and accessibility for release of the therapeutic nucleic acid, along with improvement in unaided gene silencing. The findings demonstrate the efficient stabilization of SNAs through UV crosslinking, influencing their cellular uptake, therapeutic release, and ultimately, gene silencing activity. These studies offer promising avenues for further optimization and exploration of pre-clinical, in vivo studies.
Collapse
Affiliation(s)
- Sepideh Kaviani
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Haochen Bai
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Trishalina Das
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Jathavan Asohan
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | | | - Julian Marlyn
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Lea El Choueiri
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Masad J. Damha
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Quentin Laurent
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
- University Grenoble Alpes, DCM UMR 5250Grenoble Cedex 938058France
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| |
Collapse
|
6
|
Li J, Mao X, Zhao T, Fang W, Jin Y, Liu M, Fan C, Tian Y. Tetrahedral DNA Framework-Based Spherical Nucleic Acids for Efficient siRNA Delivery. Angew Chem Int Ed Engl 2025; 64:e202416988. [PMID: 39497620 DOI: 10.1002/anie.202416988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Indexed: 11/20/2024]
Abstract
Spherical nucleic acids (SNAs) hold substantial therapeutic potential for the delivery of small interfering RNAs (siRNAs). Nevertheless, their potential remains largely untapped due to the challenges of cytosolic delivery. Inspired by the dynamic, spiky architecture of coronavirus, an interface engineering approach based on a tetrahedral DNA framework (tDF) is demonstrated for the development of coronavirus-mimicking SNAs. By exploiting their robustness and precise construction, tDFs are evenly arranged on the surface of core nanoparticles (NPs) with flexible conformations, generating a dynamic, spiky architecture. This spiky architecture in tetrahedral DNA framework-based SNAs (tDF-SNAs) substantially improve siRNAs duplex efficiency from 20 % to 95 %. Meanwhile, tDF-SNAs changed the endocytosis pathway to clathrin-independent cellular engulfment pathway and enhanced the cellular uptake efficiency. Due to these advances, the delivery efficiency of siRNA molecules by tDF-SNAs is 1-2 orders of magnitude higher than that of SNAs, resulting in a 2-fold increase in gene silencing efficacy. These results show promise in the development of bioinspired siRNAs delivery systems for intracellular applications.
Collapse
Affiliation(s)
- Jie Li
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200241, China
| | - Xiuhai Mao
- Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Tiantian Zhao
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200241, China
| | - Weina Fang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200241, China
| | - Yangyang Jin
- Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengmeng Liu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200241, China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
7
|
Du L, Yang P, Yang F, Lai D, Hou X, Chen J. Preadsorbed Particles with Cross-Shaped DNA Scaffolds Enable Spherical Nucleic Acid to Directly Respond to Protein in Complex Matrices. Anal Chem 2025; 97:694-702. [PMID: 39723745 DOI: 10.1021/acs.analchem.4c05096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Spherical nucleic acids (SNAs) usually suffer from an undesired protein corona and disrupt the function of nucleic acids (e.g., aptamer), thereby compromising recognition and response to proteins in the biological environment. To overcome the unexpected protein interference, specific proteins were initially adsorbed onto magnetic particles (MPs) as a customized protein corona "shield" with fabricated nucleic acid scaffolds, forming a preadsorbed particle-based spherical nucleic acid (pap-SNA). By comparing with AuNPs-SNA or COOH-MPs, it was found that such a protein corona "shield" of pap-SNA significantly eliminated the adsorption of nonspecific proteins or other biomolecules onto the MPs' interface, thereby enabling the SNA to directly respond to proteins in complex matrices. To further reduce the interference of protein on SNA performance, a series of nucleic acid scaffolds (Z-type, dsDNA type, circle type, T-type, and cross-shaped type) were designed by changing the rigidity and thermal stability of functional nucleic acids on the MPs. As a consequence, the pap-SNA with a cross-shaped scaffold improved the sensitivity of the pap-SNA-based detection platform in that the orderly arrangement of functional nucleic acids provides a steric hindrance to interferents. Moreover, the presence of the cross-shaped scaffold not only enables pap-SNA to exhibit a proportional response to varied protein concentrations but also enhances the detection sensitivity of pap-SNA by 160% in serum and by 190% in urine. Therefore, incorporating optimized DNA scaffolds maintained and facilitated the function of a probe (aptamer) on the surface of SNA. This approach offers a pathway for creating SNA with direct response and anti-interference capability applicable to detecting diverse biomolecules such as nucleic acids and proteins in biological matrices.
Collapse
Affiliation(s)
- Lijie Du
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Peng Yang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fengyi Yang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Dongmei Lai
- Sichuan Institute of Product Quality Supervision & Inspection, Chengdu, Sichuan 610014, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Junbo Chen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
8
|
Shah YY, Partain BD, Aldrich JL, Strinden M, Dobson J, Rinaldi-Ramos C, Allen KD. Proteomic characterization of particle-protein coronas shows differences between osteoarthritic and contralateral knees in a rat model. Connect Tissue Res 2025; 66:59-72. [PMID: 39988892 DOI: 10.1080/03008207.2025.2459242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/11/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025]
Abstract
OBJECTIVE When synthetic particles are injected into a biofluid, proteins nonspecifically adsorb onto the particle surface and form a protein corona. Protein coronas are known to alter how particles function in blood; however, little is known about protein corona formation in synovial fluid or how these coronas change with osteoarthritis (OA). In this study, protein coronas were characterized on particles incubated within OA-affected or healthy rat knees. DESIGN First, to evaluate particle collection techniques, magnetic polystyrene particles were placed in bovine synovial fluid and separated using either magnetics or centrifugation. In a second experiment, 12 male and 12 female Lewis rats received a simulated medial meniscal injury. At 2, 5, or 8 weeks post-surgery, operated and contralateral limbs were injected with clean magnetic particles (n = 8 per timepoint). After a 4-h incubation, animals were euthanized and particles were magnetically recovered. In both experiments, protein coronas were characterized using an Orbitrap fusion mass spectrometer. RESULTS In the first experiment, the particle separation method affected the identified proteins, likely due to centrifugation forces causing some large proteins to spin-down with the particles. In the OA model, 300-500 proteins were identified in the particle-protein coronas with 35, 59, and 13 proteins differing between the OA-affected and contralateral limbs at 2, 5, and 8 weeks, respectively. In particular, plectin, a serine (or cysteine) proteinase inhibitor, and cathepsin B were more prominent in the particle-protein coronas of OA-affected knees. CONCLUSIONS Synthetic particles nonspecifically adsorb proteins in synovial fluid, and these binding events differ with OA severity.
Collapse
Affiliation(s)
- Yash Y Shah
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Brittany D Partain
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jessica L Aldrich
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michael Strinden
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jon Dobson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Carlos Rinaldi-Ramos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Wang G, Han S, Lu Y. From Structure to Application: The Evolutionary Trajectory of Spherical Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310026. [PMID: 38860348 DOI: 10.1002/smll.202310026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/09/2024] [Indexed: 06/12/2024]
Abstract
Since the proposal of the concept of spherical nucleic acids (SNAs) in 1996, numerous studies have focused on this topic and have achieved great advances. As a new delivery system for nucleic acids, SNAs have advantages over conventional deoxyribonucleic acid (DNA) nanostructures, including independence from transfection reagents, tolerance to nucleases, and lower immune reactions. The flexible structure of SNAs proves that various inorganic or organic materials can be used as the core, and different types of nucleic acids can be conjugated to realize diverse functions and achieve surprising and exciting outcomes. The special DNA nanostructures have been employed for immunomodulation, gene regulation, drug delivery, biosensing, and bioimaging. Despite the lack of rational design strategies, potential cytotoxicity, and structural defects of this technology, various successful examples demonstrate the bright and convincing future of SNAs in fields such as new materials, clinical practice, and pharmacy.
Collapse
Affiliation(s)
- Guijia Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Zhao Y, Hou J, Guo L, Zhu S, Hou X, Cao S, Zhou M, Shi J, Li J, Liu K, Zhang H, Wang L, Fan C, Zhu Y. DNA-Engineered Degradable Invisibility Cloaking for Tumor-Targeting Nanoparticles. J Am Chem Soc 2024; 146:25253-25262. [PMID: 39196310 DOI: 10.1021/jacs.4c09479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Nanoparticle (NP) delivery systems have been actively exploited for cancer therapy and vaccine development. Nevertheless, the major obstacle to targeted delivery lies in the substantial liver sequestration of NPs. Here we report a DNA-engineered approach to circumvent liver phagocytosis for enhanced tumor-targeted delivery of nanoagents in vivo. We find that a monolayer of DNA molecules on the NP can preferentially adsorb a dysopsonin protein in the serum to induce functionally invisibility to livers; whereas the tumor-specific uptake is triggered by the subsequent degradation of the DNA shell in vivo. The degradation rate of DNA shells is readily tunable by the length of coated DNA molecules. This DNA-engineered invisibility cloaking (DEIC) is potentially generic as manifested in both Ag2S quantum dot- and nanoliposome-based tumor-targeted delivery in mice. Near-infrared-II imaging reveals a high tumor-to-liver ratio of up to ∼5.1, approximately 18-fold higher than those with conventional nanomaterials. This approach may provide a universal strategy for high-efficiency targeted delivery of theranostic agents in vivo.
Collapse
Affiliation(s)
- Yan Zhao
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Junjun Hou
- Zhangjiang Laboratory, 100 Haike Rd, Shanghai 201210, China
| | - Linjie Guo
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Shitai Zhu
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaoling Hou
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | | | - Mo Zhou
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiye Shi
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
- Zhangjiang Laboratory, 100 Haike Rd, Shanghai 201210, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Corner Stone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Zhu
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
Daramy K, Punnabhum P, Hussain M, Minelli C, Pei Y, Rattray NJW, Perrie Y, Rattray Z. Nanoparticle Isolation from Biological Media for Protein Corona Analysis: The Impact of Incubation and Recovery Protocols on Nanoparticle Properties. J Pharm Sci 2024; 113:2826-2836. [PMID: 38163549 DOI: 10.1016/j.xphs.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Nanoparticles are increasingly implemented in biomedical applications, including the diagnosis and treatment of disease. When exposed to complex biological media, nanoparticles spontaneously interact with their surrounding environment, leading to the surface-adsorption of small and bio- macromolecules- termed the "corona". Corona composition is governed by nanoparticle properties and incubation parameters. While the focus of most studies is on the protein signature of the nanoparticle corona, the impact of experimental protocols on nanoparticle size in the presence of complex biological media, and the impact of nanoparticle recovery from biological media has not yet been reported. Here using a non-degradable robust model, we show how centrifugation-resuspension protocols used for the isolation of nanoparticles from incubation media, incubation duration and shear flow conditions alter nanoparticle parameters including particle size, zeta potential and total protein content. Our results show significant changes in nanoparticle size following exposure to media containing protein under different flow conditions, which also altered the composition of surface-adsorbed proteins profiled by SDS-PAGE. Our in situ analysis of nanoparticle size in media containing protein using particle tracking analysis highlights that centrifugation-resuspension is disruptive to agglomerates that are spontaneously formed in protein containing media, highlighting the need for in situ analytical methods that do not alter the intermediates formed following nanoparticle exposure to biological media. Nanomedicines are mostly intended for parenteral administration, and our findings show that parameters such as shear flow can significantly alter nanoparticle physicochemical parameters. Overall, we show that the centrifugation-resuspension isolation of nanoparticles from media significantly alters particle parameters in addition to the overall protein composition of surface-adsorbed proteins. We recommend that nanoparticle characterization pipelines studying bio-nano interactions during early nanomedicine development consider biologically-relevant shear flow conditions and media composition that can significantly alter particle physical parameters and subsequent conclusions from these studies.
Collapse
Affiliation(s)
- Karim Daramy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Panida Punnabhum
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Muattaz Hussain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Caterina Minelli
- Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, UK
| | - Yiwen Pei
- Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, UK
| | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
12
|
Wu Y, Luo L, Hao Z, Liu D. DNA-based nanostructures for RNA delivery. MEDICAL REVIEW (2021) 2024; 4:207-224. [PMID: 38919398 PMCID: PMC11195427 DOI: 10.1515/mr-2023-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 06/27/2024]
Abstract
RNA-based therapeutics have emerged as a promising approach for the treatment of various diseases, including cancer, genetic disorders, and infectious diseases. However, the delivery of RNA molecules into target cells has been a major challenge due to their susceptibility to degradation and inefficient cellular uptake. To overcome these hurdles, DNA-based nano technology offers an unprecedented opportunity as a potential delivery platform for RNA therapeutics. Due to its excellent characteristics such as programmability and biocompatibility, these DNA-based nanostructures, composed of DNA molecules assembled into precise and programmable structures, have garnered significant attention as ideal building materials for protecting and delivering RNA payloads to the desired cellular destinations. In this review, we highlight the current progress in the design and application of three DNA-based nanostructures: DNA origami, lipid-nanoparticle (LNP) technology related to frame guided assembly (FGA), and DNA hydrogel for the delivery of RNA molecules. Their biomedical applications are briefly discussed and the challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Beijing SupraCirc Biotechnology Co., Ltd, Beijing, China
| | - Liangzhi Luo
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Ziyang Hao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Dongsheng Liu
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Narum S, Deal B, Ogasawara H, Mancuso JN, Zhang J, Salaita K. An Endosomal Escape Trojan Horse Platform to Improve Cytosolic Delivery of Nucleic Acids. ACS NANO 2024; 18:6186-6201. [PMID: 38346399 PMCID: PMC10906071 DOI: 10.1021/acsnano.3c09027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 02/17/2024]
Abstract
Endocytosis is a major bottleneck toward cytosolic delivery of nucleic acids, as the vast majority of nucleic acid drugs remain trapped within endosomes. Current trends to overcome endosomal entrapment and subsequent degradation provide varied success; however, active delivery agents such as cell-penetrating peptides have emerged as a prominent strategy to improve cytosolic delivery. Yet, these membrane-active agents have poor selectivity for endosomal membranes, leading to toxicity. A hallmark of endosomes is their acidic environment, which aids in degradation of foreign materials. Here, we develop a pH-triggered spherical nucleic acid that provides smart antisense oligonucleotide (ASO) release upon endosomal acidification and selective membrane disruption, termed DNA EndosomaL Escape Vehicle Response (DELVR). We anchor i-Motif DNA to a nanoparticle (AuNP), where the complement strand contains both an ASO sequence and a functionalized endosomal escape peptide (EEP). By orienting the EEP toward the AuNP core, the EEP is inactive until it is released through acidification-induced i-Motif folding. In this study, we characterize a small library of i-Motif duplexes to develop a structure-switching nucleic acid sequence triggered by endosomal acidification. We evaluate antisense efficacy using HIF1a, a hypoxic indicator upregulated in many cancers, and demonstrate dose-dependent activity through RT-qPCR. We show that DELVR significantly improves ASO efficacy in vitro. Finally, we use fluorescence lifetime imaging and activity measurement to show that DELVR benefits synergistically from nuclease- and pH-driven release strategies with increased ASO endosomal escape efficiency. Overall, this study develops a modular platform that improves the cytosolic delivery of nucleic acid therapeutics and offers key insights for overcoming intracellular barriers.
Collapse
Affiliation(s)
- Steven Narum
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Brendan Deal
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hiroaki Ogasawara
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Jiahui Zhang
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
14
|
Wu H, Li CS, Tang XR, Guo Y, Tang H, Cao A, Wang H. Impact of calcium ions at physiological concentrations on the adsorption behavior of proteins on silica nanoparticles. J Colloid Interface Sci 2024; 656:35-46. [PMID: 37984169 DOI: 10.1016/j.jcis.2023.11.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
The adsorption of proteins on nanoparticles (NPs) largely decides the fate and bioeffects of NPs in vivo. However, bio-fluids are too complicated to directly study in them to reveal related mechanisms, and current studies on model systems often ignore some important biological factors, such as metal ions. Herein, we evaluate the effect of Ca2+ at physiological concentrations on the protein adsorption on negatively-charged silica NP (SNP50). It is found that Ca2+, as well as Mg2+ and several transition metal ions, significantly enhances the adsorption of negatively-charged proteins on SNP50. Moreover, the Ca2+-induced enhancement of protein adsorption leads to the reduced uptake of SNP50 by HeLa cells. A double-chelating mechanism is proposed for the enhanced adsorption of negatively-charged proteins by multivalent metal ions that can form 6 (or more) coordinate bonds, where the metal ions are chelated by both the surface groups of NPs and the surface residues of the adsorbed proteins. This mechanism is consistent with all experimental evidences from metal ions-induced changes of physicochemical properties of NPs to protein adsorption isotherms, and is validated with several model proteins as well as complicated serum. The findings highlight the importance of investigating the influences of physiological factors on the interaction between proteins and NPs.
Collapse
Affiliation(s)
- Hao Wu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Chen-Si Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xue-Rui Tang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan Guo
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Huan Tang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
15
|
Chou WC, Lin Z. Impact of protein coronas on nanoparticle interactions with tissues and targeted delivery. Curr Opin Biotechnol 2024; 85:103046. [PMID: 38103519 PMCID: PMC11000521 DOI: 10.1016/j.copbio.2023.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/08/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
A major challenge in advancing nanoparticle (NP)-based delivery systems stems from the intricate interactions between NPs and biological systems. These interactions are largely determined by the formation of the NP-protein corona (PC), in which proteins spontaneously adsorb to the surface of NPs. The PC endows the NPs with a new biological identity, capable of altering the interactions of NPs with targeting organs and subsequent biological fate. This review discusses the mechanisms behind PC-mediated effects on tissue distribution of NPs, aiming to provide insights into the role of PC and its potential applications in NP-based drug delivery.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
16
|
Trencsényi G, Csikos C, Képes Z. Targeted Radium Alpha Therapy in the Era of Nanomedicine: In Vivo Results. Int J Mol Sci 2024; 25:664. [PMID: 38203834 PMCID: PMC10779852 DOI: 10.3390/ijms25010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes-Radium-223 and Radium-224 (223/224Ra)-in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of 223/224Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of 223/224Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with 223/224Ra-doped nanoparticles and related advances in targeted alpha radiotherapy.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| | - Csaba Csikos
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| |
Collapse
|
17
|
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B 2023; 13:4391-4416. [PMID: 37969727 PMCID: PMC10638504 DOI: 10.1016/j.apsb.2023.05.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 11/17/2023] Open
Abstract
Owing to the inherent shortcomings of traditional therapeutic drugs in terms of inadequate therapeutic efficacy and toxicity in clinical treatment, nanomedicine designs have received widespread attention with significantly improved efficacy and reduced non-target side effects. Nanomedicines hold tremendous theranostic potential for treating, monitoring, diagnosing, and controlling various diseases and are attracting an unfathomable amount of input of research resources. Against the backdrop of an exponentially growing number of publications, it is imperative to help the audience get a panorama image of the research activities in the field of nanomedicines. Herein, this review elaborates on the development trends of nanomedicines, emerging nanocarriers, in vivo fate and safety of nanomedicines, and their extensive applications. Moreover, the potential challenges and the obstacles hindering the clinical translation of nanomedicines are also discussed. The elaboration on various aspects of the research trends of nanomedicines may help enlighten the readers and set the route for future endeavors.
Collapse
Affiliation(s)
- Qiuyue Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
18
|
Zhou L, Ren L, Bai Z, Xia Q, Wang Y, Peng H, Yan Q, Shi J, Li B, Guo L, Wang L. DNA Framework Programmed Conformational Reconstruction of Antibody Complementary Determining Region. JACS AU 2023; 3:2709-2714. [PMID: 37885585 PMCID: PMC10598557 DOI: 10.1021/jacsau.3c00492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
The conformation of complementary determining region (CDR) is crucial in dictating its specificity and affinity for binding with an antigen, making it a focal point in artificial antibody engineering. Although desirable, programmable scaffolds that can regulate the conformation of individual CDRs with nanometer precision are still lacking. Here, we devise a strategy to program the CDR conformation by anchoring both ends of a free CDR loop to specific sites of a DNA framework structure. This method allows us to define the span of a single CDR loop with an ∼2 nm resolution. Using this approach, we create a series of DNA framework based artificial antibodies (DNFbodies) with varied CDR loop spans, leading to different antibody-antigen binding affinities. We find that an optimized single CDR loop (∼2.3 nm span) exhibits ∼3-fold improved affinity relative to natural antibodies, confirming the critical role of the CDR conformation. This study may inspire the rational design of artificial antibodies.
Collapse
Affiliation(s)
- Liqi Zhou
- National
Laboratory of Solid State Microstructures, Jiangsu Key Laboratory
of Artificial Functional Materials, College of Engineering and Applied
Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
| | - Lei Ren
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Zhiang Bai
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
| | - Qinglin Xia
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Yue Wang
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Hongzhen Peng
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
| | - Qinglong Yan
- Xiangfu
Laboratory, Jiashan 314102, People’s Republic
of China
| | - Jiye Shi
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Bin Li
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, People’s
Republic of China
| | - Linjie Guo
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
| | - Lihua Wang
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, People’s
Republic of China
| |
Collapse
|
19
|
Äärelä A, Auchynnikava T, Moisio O, Liljenbäck H, Andriana P, Iqbal I, Lehtimäki J, Rajander J, Salo H, Roivainen A, Airaksinen AJ, Virta P. In Vivo Imaging of [60]Fullerene-Based Molecular Spherical Nucleic Acids by Positron Emission Tomography. Mol Pharm 2023; 20:5043-5051. [PMID: 37531591 PMCID: PMC10548468 DOI: 10.1021/acs.molpharmaceut.3c00370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
18F-Labeled [60]fullerene-based molecular spherical nucleic acids (MSNAs), consisting of a human epidermal growth factor receptor 2 (HER2) mRNA antisense oligonucleotide sequence with a native phosphodiester and phosphorothioate backbone, were synthesized, site-specifically labeled with a positron emitting fluorine-18 and intravenously administrated via tail vein to HER2 expressing HCC1954 tumor-bearing mice. The biodistribution of the MSNAs was monitored in vivo by positron emission tomography/computed tomography (PET/CT) imaging. MSNA with a native phosphodiester backbone (MSNA-PO) was prone to rapid nuclease-mediated degradation, whereas the corresponding phosphorothioate analogue (MSNA-PS) with improved enzymatic stability showed an interesting biodistribution profile in vivo. One hour after the injection, majority of the radioactivity was observed in spleen and liver but also in blood with an average tumor-to-muscle ratio of 2. The prolonged radioactivity in blood circulation may open possibilities to the targeted delivery of the MSNAs.
Collapse
Affiliation(s)
- Antti Äärelä
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
- Research
and Development, Orion Pharma, FI-20380 Turku, Finland
| | - Tatsiana Auchynnikava
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
- Turku
PET Centre, University of Turku, FI-20520 Turku, Finland
| | - Olli Moisio
- Turku
PET Centre, University of Turku, FI-20520 Turku, Finland
| | - Heidi Liljenbäck
- Turku
PET Centre, University of Turku, FI-20520 Turku, Finland
- Turku
Center for Disease Modeling, University
of Turku, FI-20520 Turku Finland
| | - Putri Andriana
- Turku
PET Centre, University of Turku, FI-20520 Turku, Finland
| | - Imran Iqbal
- Turku
PET Centre, University of Turku, FI-20520 Turku, Finland
| | - Jyrki Lehtimäki
- Research
and Development, Orion Pharma, FI-20380 Turku, Finland
| | - Johan Rajander
- Accelerator
Laboratory, Åbo Akademi University, FI-20520 Turku, Finland
| | - Harri Salo
- Research
and Development, Orion Pharma, FI-20380 Turku, Finland
| | - Anne Roivainen
- Turku
PET Centre, University of Turku, FI-20520 Turku, Finland
- Turku
Center for Disease Modeling, University
of Turku, FI-20520 Turku Finland
- Turku PET
Centre, Turku University Hospital, FI-20520 Turku, Finland
| | - Anu J. Airaksinen
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
- Turku
PET Centre, University of Turku, FI-20520 Turku, Finland
| | - Pasi Virta
- Department
of Chemistry, University of Turku, FI-20500 Turku, Finland
| |
Collapse
|
20
|
Liu S, Yu CY, Wei H. Spherical nucleic acids-based nanoplatforms for tumor precision medicine and immunotherapy. Mater Today Bio 2023; 22:100750. [PMID: 37545568 PMCID: PMC10400933 DOI: 10.1016/j.mtbio.2023.100750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Precise diagnosis and treatment of tumors currently still face considerable challenges due to the development of highly degreed heterogeneity in the dynamic evolution of tumors. With the rapid development of genomics, personalized diagnosis and treatment using specific genes may be a robust strategy to break through the bottleneck of traditional tumor treatment. Nevertheless, efficient in vivo gene delivery has been frequently hampered by the inherent defects of vectors and various biological barriers. Encouragingly, spherical nucleic acids (SNAs) with good modularity and programmability are excellent candidates capable of addressing traditional gene transfer-associated issues, which enables SNAs a precision nanoplatform with great potential for diverse biomedical applications. In this regard, there have been detailed reviews of SNA in drug delivery, gene regulation, and dermatology treatment. Still, to the best of our knowledge, there is no published systematic review summarizing the use of SNAs in oncology precision medicine and immunotherapy, which are considered new guidelines for oncology treatment. To this end, we summarized the notable advances in SNAs-based precision therapy and immunotherapy for tumors following a classification standard of different types of precise spatiotemporal control on active species by SNAs. Specifically, we focus on the structural diversity and programmability of SNAs. Finally, the challenges and possible solutions were discussed in the concluding remarks. This review will promote the rational design and development of SNAs for tumor-precise medicine and immunotherapy.
Collapse
Affiliation(s)
- Songbin Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
21
|
Rodríguez-Franco HJ, Weiden J, Bastings MMC. Stabilizing Polymer Coatings Alter the Protein Corona of DNA Origami and Can Be Engineered to Bias the Cellular Uptake. ACS POLYMERS AU 2023; 3:344-353. [PMID: 37576710 PMCID: PMC10416322 DOI: 10.1021/acspolymersau.3c00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 08/15/2023]
Abstract
With DNA-based nanomaterials being designed for applications in cellular environments, the need arises to accurately understand their surface interactions toward biological targets. As for any material exposed to protein-rich cell culture conditions, a protein corona will establish around DNA nanoparticles, potentially altering the a-priori designed particle function. Here, we first set out to identify the protein corona around DNA origami nanomaterials, taking into account the application of stabilizing block co-polymer coatings (oligolysine-1kPEG or oligolysine-5kPEG) widely used to ensure particle integrity. By implementing a label-free methodology, the distinct polymer coating conditions show unique protein profiles, predominantly defined by differences in the molecular weight and isoelectric point of the adsorbed proteins. Interestingly, none of the applied coatings reduced the diversity of the proteins detected within the specific coronae. We then biased the protein corona through pre-incubation with selected proteins and show significant changes in the cell uptake. Our study contributes to a deeper understanding of the complex interplay between DNA nanomaterials, proteins, and cells at the bio-interface.
Collapse
Affiliation(s)
- Hugo J. Rodríguez-Franco
- Programmable Biomaterials Laboratory,
Institute of Materials, Interfaculty Bioengineering Institute, School
of Engineering, Ecole Polytechnique Fédérale
Lausanne, Lausanne 1015, Switzerland
| | - Jorieke Weiden
- Programmable Biomaterials Laboratory,
Institute of Materials, Interfaculty Bioengineering Institute, School
of Engineering, Ecole Polytechnique Fédérale
Lausanne, Lausanne 1015, Switzerland
| | - Maartje M. C. Bastings
- Programmable Biomaterials Laboratory,
Institute of Materials, Interfaculty Bioengineering Institute, School
of Engineering, Ecole Polytechnique Fédérale
Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
22
|
Wang S, Zhang J, Zhou H, Lu YC, Jin X, Luo L, You J. The role of protein corona on nanodrugs for organ-targeting and its prospects of application. J Control Release 2023; 360:15-43. [PMID: 37328008 DOI: 10.1016/j.jconrel.2023.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, nanodrugs become a hotspot in the high-end medical field. They have the ability to deliver drugs to reach their destination more effectively due to their unique properties and flexible functionalization. However, the fate of nanodrugs in vivo is not the same as those presented in vitro, which indeed influenced their therapeutic efficacy in vivo. When entering the biological organism, nanodrugs will first come into contact with biological fluids and then be covered by some biomacromolecules, especially proteins. The proteins adsorbed on the surface of nanodrugs are known as protein corona (PC), which causes the loss of prospective organ-targeting abilities. Fortunately, the reasonable utilization of PC may determine the organ-targeting efficiency of systemically administered nanodrugs based on the diverse expression of receptors on cells in different organs. In addition, the nanodrugs for local administration targeting diverse lesion sites will also form unique PC, which plays an important role in the therapeutic effect of nanodrugs. This article introduced the formation of PC on the surface of nanodrugs and summarized the recent studies about the roles of diversified proteins adsorbed on nanodrugs and relevant protein for organ-targeting receptor through different administration pathways, which may deepen our understanding of the role that PC played on organ-targeting and improve the therapeutic efficacy of nanodrugs to promote their clinical translation.
Collapse
Affiliation(s)
- Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yi Chao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xizhi Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
23
|
Pal S, de la Fuente IF, Sawant SS, Cannata JN, He W, Rouge JL. Cellular Uptake Mechanism of Nucleic Acid Nanocapsules and Their DNA-Surfactant Building Blocks. Bioconjug Chem 2023; 34:1004-1013. [PMID: 37231780 PMCID: PMC10330902 DOI: 10.1021/acs.bioconjchem.3c00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nucleic acid nanocapsules (NANs) are enzyme-responsive DNA-functionalized micelles built for the controlled release of DNA-surfactant conjugates (DSCs) that present sequences with demonstrated therapeutic potential. Here, we investigate the mechanisms by which DSCs gain access to intracellular space in vitro and determine the effects of serum on the overall uptake and internalization mechanism of NANs. Using pharmacological inhibitors to selectively block certain pathways, we show, through confocal visualization of cellular distribution and flow cytometry quantification of total cellular association, that scavenger receptor-mediated, caveolae-dependent endocytosis is the major cellular uptake pathway of NANs in the presence and absence of serum. Furthermore, as NANs can be triggered to release DSCs by external stimuli such as enzymes, we sought to examine the uptake profile of particles degraded by enzymes prior to cell-based assays. We found that while scavenger receptor-mediated, caveolae-dependent endocytosis is still at play, energy-independent pathways as well as clathrin-mediated endocytosis are also involved. Overall, this study has helped to elucidate early steps in the cytosolic delivery and therapeutic activity of DSCs packaged into a micellular NAN platform while shedding light on the way in which DNA functionalized nanomaterials in general can be trafficked into cells both as nanostructures and as molecular entities. Importantly, our study also shows that the NAN design in particular is able to stabilize nucleic acids when delivered in the presence of serum, a critical step for effective therapeutic nucleic acid delivery.
Collapse
Affiliation(s)
- Suman Pal
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ina F de la Fuente
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shraddha S Sawant
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jenna N Cannata
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Wu He
- Flow Cytometry Facility, Center for Open Research Resources and Equipment, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jessica L Rouge
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
24
|
Callmann CE, Vasher MK, Das A, Kusmierz CD, Mirkin CA. In Vivo Behavior of Ultrasmall Spherical Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300097. [PMID: 36905236 PMCID: PMC10272074 DOI: 10.1002/smll.202300097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Indexed: 05/10/2023]
Abstract
The biological properties of spherical nucleic acids (SNAs) are largely independent of nanoparticle core identity but significantly affected by oligonucleotide surface density. Additionally, the payload-to-carrier (i.e., DNA-to-nanoparticle) mass ratio of SNAs is inversely proportional to core size. While SNAs with many core types and sizes have been developed, all in vivo analyses of SNA behavior have been limited to cores >10 nm in diameter. However, "ultrasmall" nanoparticle constructs (<10 nm diameter) can exhibit increased payload-to-carrier ratios, reduced liver accumulation, renal clearance, and enhanced tumor infiltration. Therefore, we hypothesized that SNAs with ultrasmall cores exhibit SNA-like properties, but with in vivo behavior akin to traditional ultrasmall nanoparticles. To investigate, we compared the behavior of SNAs with 1.4-nm Au102 nanocluster cores (AuNC-SNAs) and SNAs with 10-nm gold nanoparticle cores (AuNP-SNAs). Significantly, AuNC-SNAs possess SNA-like properties (e.g., high cellular uptake, low cytotoxicity) but show distinct in vivo behavior. When intravenously injected in mice, AuNC-SNAs display prolonged blood circulation, lower liver accumulation, and higher tumor accumulation than AuNP-SNAs. Thus, SNA-like properties persist at the sub-10-nm length scale and oligonucleotide arrangement and surface density are responsible for the biological properties of SNAs. This work has implications for the design of new nanocarriers for therapeutic applications.
Collapse
Affiliation(s)
- Cassandra E Callmann
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Matthew K Vasher
- Department of Biomedical Engineering, International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Anindita Das
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Caroline D Kusmierz
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
25
|
Anwar S, Mir F, Yokota T. Enhancing the Effectiveness of Oligonucleotide Therapeutics Using Cell-Penetrating Peptide Conjugation, Chemical Modification, and Carrier-Based Delivery Strategies. Pharmaceutics 2023; 15:pharmaceutics15041130. [PMID: 37111616 PMCID: PMC10140998 DOI: 10.3390/pharmaceutics15041130] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Oligonucleotide-based therapies are a promising approach for treating a wide range of hard-to-treat diseases, particularly genetic and rare diseases. These therapies involve the use of short synthetic sequences of DNA or RNA that can modulate gene expression or inhibit proteins through various mechanisms. Despite the potential of these therapies, a significant barrier to their widespread use is the difficulty in ensuring their uptake by target cells/tissues. Strategies to overcome this challenge include cell-penetrating peptide conjugation, chemical modification, nanoparticle formulation, and the use of endogenous vesicles, spherical nucleic acids, and smart material-based delivery vehicles. This article provides an overview of these strategies and their potential for the efficient delivery of oligonucleotide drugs, as well as the safety and toxicity considerations, regulatory requirements, and challenges in translating these therapies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Farin Mir
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
26
|
El-Baz N, Nunn BM, Bates PJ, O’Toole MG. The Impact of PEGylation on Cellular Uptake and In Vivo Biodistribution of Gold Nanoparticle MRI Contrast Agents. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120766. [PMID: 36550972 PMCID: PMC9774698 DOI: 10.3390/bioengineering9120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Gold nanoparticles (GNPs) have immense potential in biomedicine, but understanding their interactions with serum proteins is crucial as it could change their biological profile due to the formation of a protein corona, which could then affect their ultimate biodistribution in the body. Grafting GNPs with polyethylene glycol (PEG) is a widely used practice in research in order to decrease opsonization of the particles by serum proteins and to decrease particle uptake by the mononuclear phagocyte system. We investigated the impact of PEGylation on the formation of protein coronae and the subsequent uptake by macrophages and MDA-MB-231 cancer cells. Furthermore, we investigated the in vivo biodistribution in xenograft tumor-bearing mice using a library of 4 and 10 nm GNPs conjugated with a gadolinium chelate as MRI contrast agent, cancer-targeting aptamer AS1411 (or CRO control oligonucleotide), and with or without PEG molecules of different molecular weight (Mw: 1, 2, and 5 kDa). In vitro results showed that PEG failed to decrease the adsorption of proteins; moreover, the cellular uptake by macrophage cells was contingent on the different configurations of the aptamers and the length of the PEG chain. In vivo biodistribution studies showed that PEG increased the uptake by tumor cells for some GNPs, albeit it did not decrease the uptake of GNPs by macrophage-rich organs.
Collapse
Affiliation(s)
- Nagwa El-Baz
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Betty M. Nunn
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| | - Paula J. Bates
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Martin G. O’Toole
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
27
|
Ashkarran AA, Gharibi H, Voke E, Landry MP, Saei AA, Mahmoudi M. Measurements of heterogeneity in proteomics analysis of the nanoparticle protein corona across core facilities. Nat Commun 2022; 13:6610. [PMID: 36329043 PMCID: PMC9633814 DOI: 10.1038/s41467-022-34438-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Robust characterization of the protein corona-the layer of proteins that spontaneously forms on the surface of nanoparticles immersed in biological fluids-is vital for prediction of the safety, biodistribution, and diagnostic/therapeutic efficacy of nanomedicines. Protein corona identity and abundance characterization is entirely dependent on liquid chromatography coupled to mass spectroscopy (LC-MS/MS), though the variability of this technique for the purpose of protein corona characterization remains poorly understood. Here we investigate the variability of LC-MS/MS workflows in analysis of identical aliquots of protein coronas by sending them to different proteomics core-facilities and analyzing the retrieved datasets. While the shared data between the cores correlate well, there is considerable heterogeneity in the data retrieved from different cores. Specifically, out of 4022 identified unique proteins, only 73 (1.8%) are shared across the core facilities providing semiquantitative analysis. These findings suggest that protein corona datasets cannot be easily compared across independent studies and more broadly compromise the interpretation of protein corona research, with implications in biomarker discovery as well as the safety and efficacy of our nanoscale biotechnologies.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- grid.17088.360000 0001 2150 1785Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI USA
| | - Hassan Gharibi
- grid.4714.60000 0004 1937 0626Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth Voke
- grid.47840.3f0000 0001 2181 7878Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA USA
| | - Markita P. Landry
- grid.47840.3f0000 0001 2181 7878Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA USA ,grid.510960.b0000 0004 7798 3869Innovative Genomics Institute, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA USA ,grid.499295.a0000 0004 9234 0175Chan Zuckerberg Biohub, San Francisco, CA USA
| | - Amir Ata Saei
- grid.4714.60000 0004 1937 0626Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden ,grid.38142.3c000000041936754XDepartment of Cell Biology, Harvard Medical School, Boston, MA USA ,grid.6612.30000 0004 1937 0642Present Address: Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Morteza Mahmoudi
- grid.17088.360000 0001 2150 1785Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI USA
| |
Collapse
|
28
|
Afshari N, Al-Gazally ME, Rasulova I, Jalil AT, Matinfar S, Momeninejad M. Sensitive bioanalytical methods for telomerase activity detection: a cancer biomarker. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4174-4184. [PMID: 36254582 DOI: 10.1039/d2ay01315k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Telomerase is an enzyme that protects the length of telomeres by adding guanine-rich repetitive sequences. In tumors, gametes, and stem cells, telomerase activity is exerted. Telomerase activity can be a cancer biomarker for therapeutic and diagnosis approaches. So, a number of studies concentrating on the discovery of telomerase activity were reported. Bioanalytical devices, in comparison with other tests, have numerous advantages including low expense, simplicity, and excellent sensitivity and specificity. In this article we reviewed recent studies on the subject of various bioanalytical methods based on different nanomaterials. Optical, electrochemical, and quartz crystal microbalance (QCM) are prominent analytical techniques that are mentioned in this paper.
Collapse
Affiliation(s)
- Nasim Afshari
- Department of Microbiology, Islamic Azad University Science & Research Branch, Tehran, Iran
| | | | - Iroda Rasulova
- "Kasmed" Private Medical Centre, Tashkent, Uzbekistan
- School of Medicine, Akfa University, Tashkent, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Solmaz Matinfar
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Momeninejad
- Department of Social Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
29
|
Chen Q, Riviere JE, Lin Z. Toxicokinetics, dose-response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1808. [PMID: 36416026 PMCID: PMC9699155 DOI: 10.1002/wnan.1808] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
Abstract
The rapid growth of nanomaterial applications has raised safety concerns for human health. A number of studies have been conducted to assess the toxicokinetics, toxicology, dose-response, and risk assessment of different nanomaterials using in vitro and in vivo animal and human models. However, current studies cannot meet the demand for efficient assessment of toxicokinetics, dose-response relationships, or the toxicological risk arising from the rapidly increasing number of newly synthesized nanomaterials. In this article, we review the methods for conducting toxicokinetics, hazard identification, dose-response, exposure, and risk assessment studies of nanomaterials, identify the knowledge gaps, and discuss the challenges remaining. We provide the rationale behind the appropriate design of nanomaterial plasma toxicokinetic and tissue distribution studies, including caveats on the interpretation and correlation of in vitro and in vivo toxicology studies. The potential of using physiologically based pharmacokinetic (PBPK) models to extrapolate toxicokinetic and toxicity findings from in vitro to in vivo and from animals to humans is discussed, and the knowledge gaps of PBPK modeling for nanomaterials are identified. While challenges still exist, there has been progress in the toxicokinetics, hazard identification, and risk assessment of nanomaterials in the past two decades. Recent advancements in the field are highlighted with relevant examples. We also share latest guidelines as well as our perspectives on future studies needed to characterize the toxicokinetics, toxicity, and dose-response relationship in support of nanomaterial risk assessment. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Qiran Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - Jim E. Riviere
- 1Data Consortium, Kansas State University, Olathe, Kansas, USA
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
30
|
Quantitative comparison of the protein corona of nanoparticles with different matrices. Int J Pharm X 2022; 4:100136. [PMID: 36304137 PMCID: PMC9594119 DOI: 10.1016/j.ijpx.2022.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Nanoparticles (NPs) are paving the way for improved treatments for difficult to treat diseases diseases; however, much is unknown about their fate in the body. One important factor is the interaction between NPs and blood proteins leading to the formation known as the “protein corona” (PC). The PC, consisting of the Hard (HC) and Soft Corona (SC), varies greatly based on the NP composition, size, and surface properties. This highlights the need for specific studies to differentiate the PC formation for each individual NP system. This work focused on comparing the HC and SC of three NPs with different matrix compositions: a) polymeric NPs based on poly(lactic-co-glycolic) acid (PLGA), b) hybrid NPs consisting of PLGA and Cholesterol, and c) lipidic NPs made only of Cholesterol. NPs were formulated and characterized for their physico-chemical characteristics and composition, and then were incubated in human plasma. In-depth purification, identification, and statistical analysis were then performed to identify the HC and SC components. Finally, similar investigations demonstrated whether the presence of a targeting ligand on the NP surface would affect the PC makeup. These results highlighted the different PC fingerprints of these NPs, which will be critical to better understand the biological influences of the PC and improve future NP designs. NPs with different matrices were formulated: PLGA, Cholesterol, or mixed PLGA-Chol hybrids. The hard and soft corona of each formulation was quantified and compared. The PC seems to be more strongly affected by the polymer rather than the lipid in mixed NPs. The soft corona depends more on the hard corona composition than on the matrix. Surface modification with a targeting ligand did not influence PC composition.
Collapse
|
31
|
Kusmierz CD, Callmann CE, Kudruk S, Distler ME, Mirkin CA. Transferrin Aptamers Increase the In Vivo Blood-Brain Barrier Targeting of Protein Spherical Nucleic Acids. Bioconjug Chem 2022; 33:1803-1810. [PMID: 36194889 PMCID: PMC10424462 DOI: 10.1021/acs.bioconjchem.2c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The systemic delivery of exogenous proteins to cells within the brain and central nervous system (CNS) is challenging due to the selective impermeability of the blood-brain barrier (BBB). Herein, we hypothesized that protein delivery to the brain could be improved via functionalization with DNA aptamers designed to bind transferrin (TfR) receptors present on the endothelial cells that line the BBB. Using β-galactosidase (β-Gal) as a model protein, we synthesized protein spherical nucleic acids (ProSNAs) comprised of β-Gal decorated with TfR aptamers (Transferrin-ProSNAs). The TfR aptamer motif significantly increases the accumulation of β-Gal in brain tissue in vivo following intravenous injection over both the native protein and ProSNAs containing nontargeting DNA sequences. Furthermore, the widespread distribution of β-Gal throughout the brain is only observed for Transferrin-ProSNAs. Together, this work shows that the SNA architecture can be used to selectively deliver protein cargo to the brain and CNS if the appropriate aptamer sequence is employed as the DNA shell. Moreover, this highlights the importance of DNA sequence design and provides a potential new avenue for designing highly targeted protein delivery systems by combining the power of DNA aptamers together with the SNA platform.
Collapse
Affiliation(s)
- Caroline D. Kusmierz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cassandra E. Callmann
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sergej Kudruk
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Max E. Distler
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
32
|
Arezki Y, Delalande F, Schaeffer-Reiss C, Cianférani S, Rapp M, Lebeau L, Pons F, Ronzani C. Surface charge influences protein corona, cell uptake and biological effects of carbon dots. NANOSCALE 2022; 14:14695-14710. [PMID: 36168840 DOI: 10.1039/d2nr03611h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon dots are emerging nanoparticles (NPs) with tremendous applications, especially in the biomedical field. Herein is reported the first quantitative proteomic analysis of the protein corona formed on CDs with different surface charge properties. Four CDs were synthesized from citric acid and various amine group-containing passivation reagents, resulting in cationic NPs with increasing zeta (ζ)-potential and density of positive charges. After CD contact with serum, we show that protein corona identity is influenced by CD surface charge properties, which in turn impacts CD uptake and viability loss in macrophages. In particular, CDs with high ζ-potential (>+30 mV) and charge density (>2 μmol mg-1) are the most highly internalized, and their cell uptake is strongly correlated with a corona enriched in vitronectin, fibulin, fetuin, adiponectin and alpha-glycoprotein. On the contrary, CDs with a lower ζ-potential (+11 mV) and charge density (0.01 μmol mg-1) are poorly internalized, while having a corona with a very different protein signature characterized by a high abundance of apolipoproteins (APOA1, APOB and APOC), albumin and hemoglobin. These data illustrate how corona characterization may contribute to a better understanding of CD cellular fate and biological effects, and provide useful information for the development of CDs for biomedical applications.
Collapse
Affiliation(s)
- Yasmin Arezki
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - François Delalande
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Mickaël Rapp
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Carole Ronzani
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
33
|
Cao J, Yang Q, Jiang J, Dalu T, Kadushkin A, Singh J, Fakhrullin R, Wang F, Cai X, Li R. Coronas of micro/nano plastics: a key determinant in their risk assessments. Part Fibre Toxicol 2022; 19:55. [PMID: 35933442 PMCID: PMC9356472 DOI: 10.1186/s12989-022-00492-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/08/2022] [Indexed: 12/17/2022] Open
Abstract
As an emerging pollutant in the life cycle of plastic products, micro/nanoplastics (M/NPs) are increasingly being released into the natural environment. Substantial concerns have been raised regarding the environmental and health impacts of M/NPs. Although diverse M/NPs have been detected in natural environment, most of them display two similar features, i.e.,high surface area and strong binding affinity, which enable extensive interactions between M/NPs and surrounding substances. This results in the formation of coronas, including eco-coronas and bio-coronas, on the plastic surface in different media. In real exposure scenarios, corona formation on M/NPs is inevitable and often displays variable and complex structures. The surface coronas have been found to impact the transportation, uptake, distribution, biotransformation and toxicity of particulates. Different from conventional toxins, packages on M/NPs rather than bare particles are more dangerous. We, therefore, recommend seriously consideration of the role of surface coronas in safety assessments. This review summarizes recent progress on the eco-coronas and bio-coronas of M/NPs, and further discusses the analytical methods to interpret corona structures, highlights the impacts of the corona on toxicity and provides future perspectives.
Collapse
Affiliation(s)
- Jiayu Cao
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qing Yang
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China
| | - Tatenda Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa
| | - Aliaksei Kadushkin
- Department of Biological Chemistry, Belarusian State Medical University, 220116, Minsk, Belarus
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rawil Fakhrullin
- Kazan Federal University, Institute of Fundamental Medicine & Biology, Kreml Uramı 18, Kazan, Republic of Tatarstan, Russian Federation, 420008
| | - Fangjun Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, Liaoning, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
34
|
Prasad R, Conde J. Bioinspired soft nanovesicles for site-selective cancer imaging and targeted therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1792. [PMID: 35318815 DOI: 10.1002/wnan.1792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Cell-to-cell communication within the heterogeneous solid tumor environment plays a significant role in the uncontrolled metastasis of cancer. To inhibit the metastasis and growth of cancer cells, various chemically designed and biologically derived nanosized biomaterials have been applied for targeted cancer therapeutics applications. Over the years, bioinspired soft nanovesicles have gained tremendous attention for targeted cancer therapeutics due to their easy binding with tumor microenvironment, natural targeting ability, bio-responsive nature, better biocompatibility, high cargo capacity for multiple therapeutics agents, and long circulation time. These cell-derived nanovesicles guard their loaded cargo molecules from immune clearance and make them site-selective to cancer cells due to their natural binding and delivery abilities. Furthermore, bioinspired soft nanovesicles prevent cell-to-cell communication and secretion of cancer cell markers by delivering the therapeutics agents predominantly. Cell-derived vesicles, namely, exosomes, extracellular vesicles, and so forth have been recognized as versatile carriers for therapeutic biomolecules. However, low product yield, poor reproducibility, and uncontrolled particle size distribution have remained as major challenges of these soft nanovesicles. Furthermore, the surface biomarkers and molecular contents of these vesicles change with respect to the stage of disease and types. Here in this review, we have discussed numerous examples of bioinspired soft vesicles for targeted imaging and cancer therapeutic applications with their advantages and limitations. Importance of bioengineered soft nanovesicles for localized therapies with their clinical relevance has also been addressed in this article. Overall, cell-derived nanovesicles could be considered as clinically relevant platforms for cancer therapeutics. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Rajendra Prasad
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
35
|
Xiao Q, Zoulikha M, Qiu M, Teng C, Lin C, Li X, Sallam MA, Xu Q, He W. The effects of protein corona on in vivo fate of nanocarriers. Adv Drug Deliv Rev 2022; 186:114356. [PMID: 35595022 DOI: 10.1016/j.addr.2022.114356] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
With the emerging advances in utilizing nanocarriers for biomedical applications, a molecular-level understanding of the in vivo fate of nanocarriers is necessary. After administration into human fluids, nanocarriers can attract proteins onto their surfaces, forming an assembled adsorption layer called protein corona (PC). The formed PC can influence the physicochemical properties and subsequently determine nanocarriers' biological behaviors. Therefore, an in-depth understanding of the features and effects of the PC on the nanocarriers' surface is the first and most important step towards controlling their in vivo fate. This review introduces fundamental knowledge such as the definition, formation, composition, conformation, and characterization of the PC, emphasizing the in vivo environmental factors that control the PC formation. The effect of PC on the physicochemical properties and thus biological behaviors of nanocarriers was then presented and thoroughly discussed. Finally, we proposed the design strategies available for engineering PC onto nanocarriers to manipulate them with the desired surface properties and achieve the best biomedical outcomes.
Collapse
|
36
|
Ashraf S, Qadri S, Akbar S, Parray A, Haik Y. Biogenesis of Exosomes Laden with Metallic Silver-Copper Nanoparticles Liaised by Wheat Germ Agglutinin for Targeted Delivery of Therapeutics to Breast Cancer. Adv Biol (Weinh) 2022; 6:e2200005. [PMID: 35398976 DOI: 10.1002/adbi.202200005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/27/2022] [Indexed: 01/28/2023]
Abstract
The anticancer property of silver-copper metallic nanoparticles (AgCu-NPs) is of greater interest in cancer therapeutics; however, its off-target toxicity limits its therapeutic application. Exosomes emerge as one of the leading idiosyncratic nanocarrier choices for cancer therapeutics due to their size, stability, and phenotypic diversity; however, to encapsulate NPs in extracellular vesicles (EVs) without disrupting their inherited functions is far from the expectations. Here, the loading strategy of AgCu-NP conjugated with wheat germ agglutinin (AgCu-NP-WGA) in exosomes during biogenesis for the targeted delivery of anticancer therapeutics to breast cancer is reported. Based on the intrinsic mechanism of endocytosis of WGA, results show that internalization of WGA or AgCu-NP-WGA bypasses the lysosomal pathway and recycles in EVs. On the contrary, the transport of naked AgCu-NPs to lysosomes; mechanistically, an acidic environment causes oxidation of AgCu-NP. Next, the analysis of EVs harvested by differential centrifugation shows that only AgCu-NPs-WGA (Exo-NP) retain their metallic state. Furthermore, Exo-NP cytotoxicity results manifest that MCF10A-derived Exo-NPs are toxic to its homologous breast cancer cells (MCF-7 and MDA-MB 231) and nontoxic to heterologous cancers NC1-1975 and MCF 10A. In conclusion, this study shows the self-assembly of AgCu-NP in exosomes to target and deliver therapeutics for breast cancer.
Collapse
Affiliation(s)
- Sarmadia Ashraf
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education city - Gate 8, Ar-Rayan, Qatar
| | - Shahnaz Qadri
- College of Science and Engineering, Hamad Bin Khalifa University, Education city - Gate 8, Ar-Rayan, Qatar
| | - Shayista Akbar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education city - Gate 8, Ar-Rayan, Qatar
| | - Aijaz Parray
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Medical City, Bldg. 320, Doha, Qatar
| | - Yousef Haik
- Department of Mechanical and Industrial Engineering, Texas A & M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| |
Collapse
|
37
|
Huang Z, Callmann CE, Wang S, Vasher MK, Evangelopoulos M, Petrosko SH, Mirkin CA. Rational Vaccinology: Harnessing Nanoscale Chemical Design for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2022; 8:692-704. [PMID: 35756370 PMCID: PMC9228553 DOI: 10.1021/acscentsci.2c00227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 05/12/2023]
Abstract
Cancer immunotherapy is a powerful treatment strategy that mobilizes the immune system to fight disease. Cancer vaccination is one form of cancer immunotherapy, where spatiotemporal control of the delivery of tumor-specific antigens, adjuvants, and/or cytokines has been key to successfully activating the immune system. Nanoscale materials that take advantage of chemistry to control the nanoscale structural arrangement, composition, and release of immunostimulatory components have shown significant promise in this regard. In this Outlook, we examine how the nanoscale structure, chemistry, and composition of immunostimulatory compounds can be modulated to maximize immune response and mitigate off-target effects, focusing on spherical nucleic acids as a model system. Furthermore, we emphasize how chemistry and materials science are driving the rational design and development of next-generation cancer vaccines. Finally, we identify gaps in the field that should be addressed moving forward and outline future directions to galvanize researchers from multiple disciplines to help realize the full potential of this form of cancer immunotherapy through chemistry and rational vaccinology.
Collapse
Affiliation(s)
- Ziyin Huang
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Cassandra E. Callmann
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuya Wang
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew K. Vasher
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael Evangelopoulos
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarah Hurst Petrosko
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
38
|
Conjeevaram SB, Blanchard RM, Kadaba A, Adjei IM. Vascular bifurcation influences the protein corona composition on nanoparticles and impacts their cellular uptake. NANOSCALE ADVANCES 2022; 4:2671-2681. [PMID: 36132292 PMCID: PMC9419771 DOI: 10.1039/d2na00066k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The protein corona (PC) that forms on nanoparticles (NPs) after in vivo injection influences their biodistribution, pharmacokinetics, and cell interaction. Although injected NPs traverse vascular networks, the impact of vascular features on the protein corona composition is mainly unexplored. Using an in vitro flow model that introduces bifurcations, a common feature of blood vessels, we show that vessels are not passive bystanders in the formation of the PC but that their features play active roles in defining the PC on NPs. The addition of bifurcation significantly increased the amount of proteins associated with NP. The bifurcation's introduction also changed the PC's composition on the NPs and affected the NP interactions with cells. Correlation analysis and modeling showed that these changes in the PC are mediated by both the branching and diameter reduction associated with vessel bifurcation and the resulting change in flow rate. The results indicate that blood vessel structures play an active part in the information of the PC, and their role should be studied critically for a better understanding of the PC and its biological implications.
Collapse
Affiliation(s)
- Sridevi B Conjeevaram
- Department of Biomedical Engineering, Texas A&M University College Station TX 77843 USA
| | - Ryan M Blanchard
- Department of Biomedical Engineering, Texas A&M University College Station TX 77843 USA
| | - Amulya Kadaba
- Department of Biomedical Engineering, Texas A&M University College Station TX 77843 USA
| | - Isaac M Adjei
- Department of Biomedical Engineering, Texas A&M University College Station TX 77843 USA
| |
Collapse
|
39
|
Zhang X, Zhang J, Wang Q, Ghimire S, Mei L, Wu C. Effects of Particle Size and Surface Charge on Mutagenicity and Chicken Embryonic Toxicity of New Silver Nanoclusters. ACS OMEGA 2022; 7:17703-17712. [PMID: 35664612 PMCID: PMC9161408 DOI: 10.1021/acsomega.2c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Though there are many toxicological studies on metal nanoparticles (NPs), it remains difficult to explain discrepancies observed between studies, largely due to the lack of positive controls and disconnection between physicochemical properties of nanomaterials with their toxicities at feasible exposures in a specified test system. In this study, we investigated effects of particle size and surface charge on in vitro mutagenic response and in vivo embryonic toxicity for newly synthesized silver nanoclusters (AgNCs) at human or environmental relevant exposure and compared the new findings with one of the most common nanoscale particles, titanium dioxide NPs (TiO2 NPs as a positive control). We hypothesized that the interaction of the test system and physicochemical properties of nanomaterials are critical in determining their toxicities at concentrations relevant with human or environmental exposures. We assessed the mutagenicity of the AgNCs (around 2 nm) and two sizes of TiO2 NPs (i.e., small: 5-15 nm, big: 30-50 nm) using a Salmonella reverse mutation assay (Ames test). The smallest size of AgNCs showed the highest mutagenic activity with the Salmonella strain TA100 in the absence and presence of the S9 mixture, because the AgNCs maintained the nano-size scale in the Ames test, compared with two other NPs. For TiO2 NPs, the size effect was interfered by the agglomeration of TiO2 NPs in media and the generation of oxidative stress from the NPs. The embryonic toxicity and the liver oxidative stress were evaluated using a chicken embryo model at three doses (0.03, 0.33, and 3.3 μg/g egg), with adverse effects on chicken embryonic development in both sizes of TiO2 NPs. The non-monotonic response was determined for developmental toxicity for the tested NPs. Our data on AgNCs was different from previous findings on AgNPs. The chicken embryo results showed some size dependency of nanomaterials, but they were more well correlated with lipid peroxidation (malondialdehyde) in chicken fetal livers. A different level of agglomeration of TiO2 NPs and AgNCs was observed in the assay media of Ames and chicken embryo tests. These results suggest that the test nanotoxicities are greatly impacted by the experimental conditions and the nanoparticle's size and surface charge.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Jinglin Zhang
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Qin Wang
- Department
of Nutrition and Food Science, University
of Maryland, College Park, Maryland 20740, United States
| | - Shweta Ghimire
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| | - Lei Mei
- Department
of Nutrition and Food Science, University
of Maryland, College Park, Maryland 20740, United States
| | - Changqing Wu
- Department
of Animal and Food Sciences, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
40
|
Mahajan AS, Stegh AH. Spherical Nucleic Acids as Precision Therapeutics for the Treatment of Cancer-From Bench to Bedside. Cancers (Basel) 2022; 14:cancers14071615. [PMID: 35406387 PMCID: PMC8996871 DOI: 10.3390/cancers14071615] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Spherical Nucleic Acids (SNAs) emerged as a new class of nanotherapeutics consisting of a nanoparticle core densely functionalized with a shell of radially oriented synthetic oligonucleotides. The unique three-dimensional architecture of SNAs protects the oligonucleotides from nuclease-mediated degradation, increases oligonucleotide bioavailability, and in the absence of auxiliary transfection agents, enables robust uptake into tumor and immune cells through polyvalent association with cell surface pattern recognition receptors. When composed of gene-regulatory small interfering (si)RNA or immunostimulatory DNA or RNA oligonucleotides, SNAs silence gene expression and induce immune responses superior to those raised by the oligonucleotides in their "free" form. Early phase clinical trials of gene-regulatory siRNA-based SNAs in glioblastoma (NCT03020017) and immunostimulatory Toll-like receptor 9 (TLR9)-agonistic SNAs carrying unmethylated CpG-rich oligonucleotides in solid tumors (NCT03086278) have shown that SNAs represent a safe, brain-penetrant therapy for inhibiting oncogene expression and stimulating immune responses against tumors. This review focuses on the application of SNAs as precision cancer therapeutics, summarizes the findings from first-in-human clinical trials of SNAs in solid tumors, describes the most recent preclinical efforts to rationally design next-generation multimodal SNA architectures, and provides an outlook on future efforts to maximize the anti-neoplastic activity of the SNA platform.
Collapse
Affiliation(s)
- Akanksha S. Mahajan
- Ken and Ruth Davee Department of Neurology, The International Institute for Nanotechnology, The Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA;
| | - Alexander H. Stegh
- Ken and Ruth Davee Department of Neurology, The International Institute for Nanotechnology, The Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA;
- Department of Neurological Surgery, The Brain Tumor Center, Washington University School of Medicine, Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
41
|
Yerneni SS, Solomon T, Smith J, Campbell PG. Radioiodination of extravesicular surface constituents to study the biocorona, cell trafficking and storage stability of extracellular vesicles. Biochim Biophys Acta Gen Subj 2022; 1866:130069. [PMID: 34906563 DOI: 10.1016/j.bbagen.2021.130069] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) are produced by all cell types and serve as biological packets delivering a wide variety of molecules for cell-to-cell communication. However, the biology of the EV extravesicular surface domain that we have termed EV 'biocorona' remains underexplored. Upon cell secretion, EVs possess an innate biocorona containing membrane integral and peripheral constituents that is modified by acquired constituents post secretion. This distinguishes EVs from synthetic nanoparticulate biomaterials that are limited to an adsorption-based, acquired biocorona. METHODS The EV biocorona molecular constituents were radiolabeled with 125I to study biocorona constituents and its surface dynamics. As example toolset applications, 125I-EVs were utilized to study EV cell trafficking and the stability of the EV biocorona during storage. RESULTS The biocorona of EVs consisted of proteins, lipids, DNA and RNA. The cellular uptake of 125I-EVs was temperature dependent and internalized 125I-EVs were rapidly recycled by cells. When 125I-EVs were stored in a purified state, they exhibited time and temperature dependent biocorona shedding and proteolytic degradation that was partially inhibited in the presence of serum. CONCLUSION The EV biocorona is complex and dynamic. Radiolabeling of the EV biocorona enables a unique platform methodology to study the biocorona and will facilitate unlocking EV's full clinical translation potential. GENERAL SIGNIFICANCE The EV biocorona affects EV mediated biological processes in health and disease. Acquiring knowledge of the EV biocorona composition, dynamics, stability and structure not only informs the diagnostic and therapeutic translation of EVs but also aids in designing biomimetic nanomaterials for drug delivery.
Collapse
Affiliation(s)
- Saigopalakrishna S Yerneni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Talia Solomon
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America; Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Jason Smith
- Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Phil G Campbell
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America; Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA, United States of America.
| |
Collapse
|
42
|
Song Y, Song W, Lan X, Cai W, Jiang D. Spherical nucleic acids: Organized nucleotide aggregates as versatile nanomedicine. AGGREGATE (HOBOKEN, N.J.) 2022; 3:e120. [PMID: 35386748 PMCID: PMC8982904 DOI: 10.1002/agt2.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Spherical nucleic acids (SNAs) are composed of a nanoparticle core and a layer of densely arranged oligonucleotide shells. After the first report of SNA by Mirkin and coworkers in 1996, it has created a significant interest by offering new possibilities in the field of gene and drug delivery. The controlled aggregation of oligonucleotides on the surface of organic/inorganic nanoparticles improves the delivery of genes and nucleic acid-based drugs and alters and regulates the biological profiles of the nanoparticle core within living organisms. Here in this review, we present an overview of the recent progress of SNAs that has speeded up their biomedical application and their potential transition to clinical use. We start with introducing the concept and characteristics of SNAs as drug/gene delivery systems and highlight recent efforts of bioengineering SNA by imaging and treatmenting various diseases. Finally, we discuss potential challenges and opportunities of SNAs, their ongoing clinical trials, and future translation, and how they may affect the current landscape of clinical practices. We hope that this review will update our current understanding of SNA, organized oligonucleotide aggregates, for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
43
|
Engineering surface amphiphilicity of polymer nanostructures. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Li YJ, Wu JY, Liu J, Qiu X, Xu W, Tang T, Xiang DX. From blood to brain: blood cell-based biomimetic drug delivery systems. Drug Deliv 2021; 28:1214-1225. [PMID: 34142628 PMCID: PMC8259840 DOI: 10.1080/10717544.2021.1937384] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023] Open
Abstract
Brain drug delivery remains a major difficulty for several challenges including the blood-brain barrier, lesion spot targeting, and stability during circulation. Blood cells including erythrocytes, platelets, and various subpopulations of leukocytes have distinct features such as long-circulation, natural targeting, and chemotaxis. The development of biomimetic drug delivery systems based on blood cells for brain drug delivery is growing fast by using living cells, membrane coating nanotechnology, or cell membrane-derived nanovesicles. Blood cell-based vehicles are superior delivery systems for their engineering feasibility and versatile delivery ability of chemicals, proteins, and all kinds of nanoparticles. Here, we focus on advances of blood cell-based biomimetic carriers for from blood to brain drug delivery and discuss their translational challenges in the future.
Collapse
Affiliation(s)
- Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jun-Yong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jihua Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiaohan Qiu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
45
|
Lee D, Minko T. Nanotherapeutics for Nose-to-Brain Drug Delivery: An Approach to Bypass the Blood Brain Barrier. Pharmaceutics 2021; 13:2049. [PMID: 34959331 PMCID: PMC8704573 DOI: 10.3390/pharmaceutics13122049] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/01/2023] Open
Abstract
Treatment of neurodegenerative diseases or other central nervous system (CNS) disorders has always been a significant challenge. The nature of the blood-brain barrier (BBB) limits the penetration of therapeutic molecules to the brain after oral or parenteral administration, which, in combination with hepatic metabolism and drug elimination and inactivation during its journey in the systemic circulation, decreases the efficacy of the treatment, requires high drug doses and often induces adverse side effects. Nose-to-brain drug delivery allows the direct transport of therapeutic molecules by bypassing the BBB and increases drug concentration in the brain. The present review describes mechanisms of nose-to-brain drug delivery and discusses recent advances in this area with especial emphasis on nanotechnology-based approaches.
Collapse
Affiliation(s)
- David Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
- Environmental and Occupational Health Science Institute, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
46
|
Akhter MH, Khalilullah H, Gupta M, Alfaleh MA, Alhakamy NA, Riadi Y, Md S. Impact of Protein Corona on the Biological Identity of Nanomedicine: Understanding the Fate of Nanomaterials in the Biological Milieu. Biomedicines 2021; 9:1496. [PMID: 34680613 PMCID: PMC8533425 DOI: 10.3390/biomedicines9101496] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Nanoparticles (NPs) in contact with a biological medium are rapidly comprehended by a number of protein molecules resulting in the formation of an NP-protein complex called protein corona (PC). The cell sees the protein-coated NPs as the synthetic identity is masked by protein surfacing. The PC formation ultimately has a substantial impact on various biological processes including drug release, drug targeting, cell recognition, biodistribution, cellular uptake, and therapeutic efficacy. Further, the composition of PC is largely influenced by the physico-chemical properties of NPs viz. the size, shape, surface charge, and surface chemistry in the biological milieu. However, the change in the biological responses of the new substrate depends on the quantity of protein access by the NPs. The PC-layered NPs act as new biological entities and are recognized as different targeting agents for the receptor-mediated ingress of therapeutics in the biological cells. The corona-enveloped NPs have both pros and cons in the biological system. The review provides a brief insight into the impact of biomolecules on nanomaterials carrying cargos and their ultimate fate in the biological milieu.
Collapse
Affiliation(s)
- Md Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Manish Gupta
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Petroleum and Energy Studies (UPES), Dehradun 248007, India;
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.A.); (N.A.A.)
- King Fahd Medical Research Center, Vaccines and Immunotherapy Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.A.); (N.A.A.)
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.A.); (N.A.A.)
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
47
|
Liu Y, Choi CKK, Hong H, Xiao Y, Kwok ML, Liu H, Tian XY, Choi CHJ. Dopamine Receptor-Mediated Binding and Cellular Uptake of Polydopamine-Coated Nanoparticles. ACS NANO 2021; 15:13871-13890. [PMID: 34379407 DOI: 10.1021/acsnano.1c06081] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polydopamine (PDA)-coated nanoparticles (NPs) are emerging carriers of therapeutic agents for nanomedicine applications due to their biocompatibility and abundant entry to various cell types, yet it remains unknown whether their cellular entry engages cell-surface receptors. As monomeric dopamine (DA) is an endogenous ligand of dopamine receptor and raw ingredient of PDA, we elucidate the interaction between polyethylene glycol-stabilized, PDA-coated gold NPs (Au@PDA@PEG NPs) and dopamine receptors, particularly D2 (D2DR). After proving the binding of Au@PDA@PEG NPs to recombinant and cellular D2DR, we employ antibody blocking, gene knockdown, and gene overexpression to establish the role of D2DR in the cellular uptake of Au@PDA@PEG NPs in vitro. By preparing a series of PEG-coated AuNPs that contain different structural analogues of DA (Au@PEG-X NPs), we demonstrate that catechol and amine groups collectively enhance the binding of NPs to D2DR and their cellular uptake. By intravenously injecting Au@PDA@PEG NPs to Balb/c mice, we reveal their in vivo binding to D2DR in the liver by competitive inhibition and immunohistochemistry together with their preferential association to D2DR-rich resident Kupffer cells by flow cytometry, a result consistent with the profuse expression of D2DR by resident Kupffer cells. Catechol and amine groups jointly contribute to the preferential association of NPs to D2DR-rich Kupffer cells. Our data highlight the importance of D2DR expression and DA-related functional groups in mediating the cell-nano interactions of PDA-based nanomedicines.
Collapse
|
48
|
Sinegra AJ, Evangelopoulos M, Park J, Huang Z, Mirkin CA. Lipid Nanoparticle Spherical Nucleic Acids for Intracellular DNA and RNA Delivery. NANO LETTERS 2021; 21:6584-6591. [PMID: 34286581 PMCID: PMC8385759 DOI: 10.1021/acs.nanolett.1c01973] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lipid nanoparticle SNAs (LNP-SNAs) have been synthesized for the delivery of DNA and RNA to targets in the cytoplasm of cells. Both the composition of the LNP core and surface-presented DNA sequences contribute to LNP-SNA activity. G-rich sequences enhance the activity of LNP-SNAs compared to T-rich sequences. In the LNP core, increased cholesterol content leads to greater activity. Optimized LNP-SNA candidates reduce the siRNA concentration required to silence mRNA by 2 orders of magnitude compared to liposome-based SNAs. In addition, the LNP-SNA architectures alter biodistribution and efficacy profiles in mice. For example, mRNA within LNP-SNAs injected intravenously is primarily expressed in the spleen, while mRNA encapsulated by LNPs (no DNA on the surface) was expressed primarily in the liver with a relatively small amount in the spleen. These data show that the activity and biodistribution of LNP-SNA architectures are different from those of conventional liposomal SNAs and therefore potentially can be used to target tissues.
Collapse
|
49
|
Magnetothermal regulation of in vivo protein corona formation on magnetic nanoparticles for improved cancer nanotherapy. Biomaterials 2021; 276:121021. [PMID: 34274776 DOI: 10.1016/j.biomaterials.2021.121021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022]
Abstract
Engineering the protein corona (PC) on nanodrugs is emerging as an effective approach to improve their pharmacokinetics and therapeutic efficacy, but conventional in vitro pre-programmed methods have shown great limitation for regulation of the PC in the complex and dynamic in vivo physiological environment. Here, we demonstrate an magnetothermal regulation approach that allows us to in situ modulate the in vivo PC composition on iron oxide nanoparticles for improved cancer nanotherapy. Experimental results revealed that the relative levels of major opsonins and dysopsonins in the PC can be tuned quantitatively by means of heat induction mediated by the nanoparticles under an alternating magnetic field. When the PC was magnetically optimized in vivo, the nanoparticles exhibited prolonged circulation and enhanced tumor delivery efficiency in mice, 2.53-fold and 2.02-fold higher respectively than the control. This led to a superior thermotherapeutic efficacy of systemically delivered nanoparticles. In vivo magnetothermal regulation of the PC on nanodrugs will find wide applications in biomedicine.
Collapse
|
50
|
Xu F, Dong B, Li X, Gao F, Yang D, Xue W, Wang P. Profiling and Regulating Proteins That Adsorb to DNA Materials in Human Serum. Anal Chem 2021; 93:8671-8679. [PMID: 34107681 DOI: 10.1021/acs.analchem.1c02075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA aptamers and framework DNA nanostructures are emerging DNA materials with many appealing biological applications including biosensing, bioimaging, drug delivery, and so forth. When placed in physiological fluids, they inevitably encounter biomolecules (majorly proteins) and form complexes that largely affect their biological fate. Nevertheless, little is known regarding the quantitative profile of proteins that adsorb to DNA aptamers and DNA nanostructures in biological environments, and there are no potent strategies to regulate protein profiles. Herein, we performed a proteomic analysis to profile proteins that bind to DNA aptamers (Sgc8c and SYLC3) and nanostructures (a tetrahedral DNA nanostructure and a DNA origami rod) in human serum using liquid chromatography-mass spectrometry (LC-MS). Dozens to hundreds of proteins were identified with each DNA material exhibiting highly distinctive profiles. It was also revealed that the origin of serum (from healthy donor vs from prostate cancer patients) causes significant differences in profiles of bound proteins. Furthermore, we demonstrated that the protein profile may be regulated by tethering a layer of single-stranded DNA (polythymine) onto the DNA origami rod to alleviate the adsorption of complement-associated proteins, which significantly reduced its sequestration by macrophages. Taken together, this study has provided qualitative and quantitative proteomic profiles regarding serum proteins that adsorb to various DNA materials and have demonstrated that the composition of interacted proteins may be regulated toward better biological performances.
Collapse
Affiliation(s)
- Fan Xu
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Baijun Dong
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xue Li
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fei Gao
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Xue
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|