1
|
Zhai X, Guo H, Li X, Zhang Y, Cheng W, Wang Y, Huynh TP, Wang T, Xuan F, Li J, Shi G, Zhang M. Spatiotemporal E-Nose with Laser Tailoring and Chromatography Inspiration. ACS Sens 2025; 10:3530-3538. [PMID: 40302040 DOI: 10.1021/acssensors.5c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The study introduces a spatiotemporal chromatography-mimicking (SCM) e-nose that integrates laser-tailored graphene paper with a microchamber for precise volatile organic compound (VOC) discrimination. The SCM e-nose overcomes traditional array limitations with a single multifunctional component capable of accurate VOC differentiation via chromatography-mimic features. Advanced laser-engraving techniques fabricate a gas-permeable interdigitated electrode from graphene paper as the sieving framework. Key achievements include its single multifunctional component, economical and scalable design, distinct response patterns for different VOCs, remarkable ability to discriminate mixed VOCs, versatility for diverse applications including real-time on-site analysis, and ease of integration with electronic systems. The SCM e-nose represents a significant advancement in electronic nose technology, offering a compact, cost-effective solution for precise VOC detection and analysis.
Collapse
Affiliation(s)
- Xingchun Zhai
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Haowen Guo
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Xiaolu Li
- School of Mathematical Sciences, Key Laboratory of Mathematics and Engineering Applications (MOE), Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai 200241, China
| | - Yongheng Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Weiwei Cheng
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yitong Wang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Tan-Phat Huynh
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland
| | - Tao Wang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fuzhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junjie Li
- Key Laboratory of Cigarette Smoke for Tobacco Industry, Shanghai Tobacco Group Co. LTD, Shanghai 201315, China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Xiong Q, Xu J, Li H, Li J, Li L, Wu J, Liang X, Zhou W, Qing P, Lan Z, Li G, Huang H. Planar Patterning Design and Energy Storage Performance Comparison of Laser-Induced Graphene Flexible Supercapacitors. Chemphyschem 2025:e2500145. [PMID: 40355983 DOI: 10.1002/cphc.202500145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/15/2025]
Abstract
Laser-induced graphene (LIG) has gained significant attention due to its efficient and rapid production, and ability to create patterned electrodes. However, the operating voltage of LIG supercapacitor (LIG SC) unit devices is relatively low, and the different patterning LIG SC devices show different performances. Additionally, the size of the laser power also has a significant impact on the performance of the device. Herein, the energy storage performance of LIG SC devices in a variety of patterns and at different laser powers is investigated. The LIG SC device based on the interdigital pattern shows the best performance compared with the spiral pattern, mirror circular pattern, and concentric circular pattern LIG devices. When the laser power is 2.75 W, the area-specific capacitance of the interdigital LIG SCs is up to 10.78 mF cm- 2 at 0.2 mA cm- 2, with a wide operating voltage (1.8 V) and a maximum energy density of 4.85 μWh cm- 2. Additionally, it maintained 84.1% of its capacitance after 8000 charge-discharge cycles and achieved an area-specific capacitance of 8.33 mF cm- 2 when bent at an angle of 60°. This digital interpattern LIG device etched by a laser power of 2.75 W can provide important insights into the development of planar flexible supercapacitors.
Collapse
Affiliation(s)
- Qi Xiong
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physics Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Jiaheng Xu
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physics Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Huiting Li
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physics Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Jianghai Li
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physics Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Lin Li
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physics Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Jinyu Wu
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physics Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Xianqing Liang
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physics Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Wenzheng Zhou
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physics Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Peilin Qing
- Guangxi Key Laboratory of Green Manufacturing for Ecological Aluminum Industry & Department of Materials Science and Engineering, Baise College, Baise, 533000, China
| | - Zhiqiang Lan
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physics Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Guangxu Li
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physics Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Haifu Huang
- Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physics Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
3
|
Liang C, Zhang W, Fan Y, Mei Z, Zhang L, Sun Z, You R, You Z, Zhao X. On Demand Copper Electrochemical Deposition on Laser Induced Graphene for Flexible Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408943. [PMID: 39806858 DOI: 10.1002/smll.202408943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Indexed: 01/16/2025]
Abstract
The rapid development of flexible electronics necessitates simplified processes that integrate heterogeneous materials and structures. In this study, laser engraving is combined with electrochemical deposition (ECD) to directly fabricate various micro/nano-structured components and flexible electronic circuits. A theoretical framework and simulation model are developed to design the on-demand ECD on laser induced graphene (LIG), enabling the generation of multi-scale copper (Cu) materials with controllable oxidation states. The Cu-LIG composites exhibit high surface quality and reliability, meeting the requirements of flexible circuits. The study fabricates and characterizes multilayer circuits and complex functional devices, including electrochemical sensors, thin-film heaters, and wireless humidity sensors, to showcase the versatility of the LIG-ECD process. This approach can be extended to various polymer and metal deposition processes, paving the way for the development of high-performance flexible electronic devices.
Collapse
Affiliation(s)
- Chao Liang
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuxuan Fan
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Ziqi Mei
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, China
| | - Lingyun Zhang
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, China
| | - Zhenci Sun
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, China
| | - Rui You
- School of Instrument Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, China
| | - Zheng You
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, China
| | - Xiaoguang Zhao
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, China
| |
Collapse
|
4
|
Wang Y, Hao P, Luo S, Gao Y, Han M, Sun M, Wu X. Reversible and Programmable Wettability of Laser-Induced Graphene Papers via In Situ Joule Heating-Triggered Superslippery Surfaces. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24644-24653. [PMID: 40207426 DOI: 10.1021/acsami.5c04045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Reversible surface materials with programmable wettability play an increasingly vital role in a wide variety of fields from science to industry. Based on laser-induced graphene (LIG) technology, we innovatively propose a paraffin-infused porous LIG paper (P-LIGP) with tunable superslippery wettability. On account of graphene's excellent electrical property, paraffin in P-LIGP can transit rapidly from a solid-to-liquid state in response to the in situ Joule heating effect. Thus, a LIGP surface is created with a dynamic and reversible transition between slippery and nonslippery state. In addition, combining the patternable performance with tunable LIGP resistance, the paraffin layer from P-LIGP can be selectively melted based on Ohm's law and Kirchhoff's laws, thus enabling special flow pathways with programmable wettability for manipulating the droplets with various straight/oblique/arc/S-shaped sliding patterns. These applications with customizable LIG resistance performance promise the in situ Joule heating of P-LIGP for designing intelligent and flexible temperature-responsive surfaces.
Collapse
Affiliation(s)
- Yanan Wang
- Aviation Key Lab of Science and Technology on High Performance Electromagnetic Windows, AVIC Research Institute for Special Structures of Aeronautical Composite, Jinan 250023, China
| | - Pingping Hao
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Sida Luo
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Yan Gao
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Mingguang Han
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Mengchen Sun
- Aviation Key Lab of Science and Technology on High Performance Electromagnetic Windows, AVIC Research Institute for Special Structures of Aeronautical Composite, Jinan 250023, China
| | - Xiao Wu
- Aviation Key Lab of Science and Technology on High Performance Electromagnetic Windows, AVIC Research Institute for Special Structures of Aeronautical Composite, Jinan 250023, China
| |
Collapse
|
5
|
Guo J, Zhao M, Kuang X, Chen Z, Wang F. β-Cyclodextrin-Modified Laser-Induced Graphene Electrode for Detection of N6-Methyladenosine in RNA. Molecules 2024; 29:4718. [PMID: 39407646 PMCID: PMC11478181 DOI: 10.3390/molecules29194718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Laser-induced graphene (LIG) possesses characteristics of easy handling, miniaturization, and unique electrical properties. We modified the surface of LIG by electropolymerizing β-cyclodextrin (β-CD), which was used to immobilize antibodies on the electrode surface for highly sensitive detection of targets. N6-methyladenosine (m6A) is the most prevalent reversible modification in mammalian messenger RNA and noncoding RNA, influencing the development of various cancers. Here, β-CD was electropolymerized to immobilize the anti-m6A antibody, which subsequently recognized the target m6A. This was integrated into the catalytic hydrogen peroxide-hydroquinone (H2O2-HQ) redox system using phos-tag-biotin to generate electrochemical signals from streptavidin-modified horseradish peroxidase (SA-HRP). Under optimal conditions, the biosensor exhibited a linear range from 0.1 to 100 nM with a minimum detection limit of 96 pM. The method was successfully applied to the recovery analysis of m6A from HeLa cells through spiking experiments and aims to inspire strategies for point-of-care testing (POCT).
Collapse
Affiliation(s)
| | | | | | | | - Fang Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (J.G.)
| |
Collapse
|
6
|
Su R, Liang M, Yuan Y, Huang C, Xing W, Bian X, Lian Y, Wang B, You Z, You R. High-Performance Sensing Platform Based on Morphology/Lattice Collaborative Control of Femtosecond-Laser-Induced MXene-Composited Graphene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404889. [PMID: 39041832 PMCID: PMC11423250 DOI: 10.1002/advs.202404889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Flexible sensors based on laser-induced graphene (LIG) are widely used in wearable personal devices, with the morphology and lattice arrangement of LIG the key factors affecting their performance in various applications. In this study, femtosecond-laser-induced MXene-composited graphene (LIMG) is used to improve the electrical conductivity of graphene by incorporating MXene, a 2D material with a high concentration of free electrons, into the LIG structure. By combining pump-probe detection, laser-induced breakdown spectroscopy (LIBS), and density functional theory (DFT) calculations, the morphogenesis and lattice structuring principles of LIMG is explored, with the results indicating that MXene materials are successfully embedded in the graphene lattice, altering both their morphology and electrical properties. The structural sparsity and electrical conductivity of LIMG composites (up to 3187 S m-1) are significantly enhanced compared to those of LIG. Based on these findings, LIMG has been used in wearable electronics. LIMG electrodes are used to detect uric acid, with a minimum detection limit of 2.48 µM. Additionally, LIMG-based pressure and bending sensors have been successfully used to monitor human limb movement and pulse. The direct in situ femtosecond laser patterning synthesis of LIMG has significant implications for developing flexible wearable electronic sensors.
Collapse
Affiliation(s)
- Ruige Su
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Misheng Liang
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Yongjiu Yuan
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Chaojun Huang
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Wenqiang Xing
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Xiaomeng Bian
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Yiling Lian
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Wang
- Institute of Medical Equipment Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zheng You
- State Key Laboratory of Precision Testing Technology and Instruments, Tsinghua University, Beijing, 100084, P. R. China
| | - Rui You
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| |
Collapse
|
7
|
Yang W, Han M, Liu F, Wang D, Gao Y, Wang G, Ding X, Luo S. Structure-Foldable and Performance-Tailorable PI Paper-Based Triboelectric Nanogenerators Processed and Controlled by Laser-Induced Graphene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310017. [PMID: 38747256 PMCID: PMC11267377 DOI: 10.1002/advs.202310017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Indexed: 07/25/2024]
Abstract
Laser-induced graphene (LIG) technology has provided a new manufacturing strategy for the rapid and scalable assembling of triboelectric nanogenerators (TENG). However, current LIG-based TENG commonly rely on polymer films, e.g., polyimide (PI) as both friction material and carbon precursor of electrodes, which limit the structural diversity and performance escalation due to its incapability of folding and creasing. Using specialized PI paper composed of randomly distributed PI fibers to substantially enhance its foldability, this work creates a new type of TENG, which are structurally foldable and stackable, and performance tailorable. First, by systematically investigating the laser power-regulated performance of single-unit TENG, the open-circuit voltage can be effectively improved. By further exploiting the folding process, multiple TENG units can be assembled together to form multi-layered structures to continuously expand the open-circuit voltage from 5.3 to 34.4 V cm-2, as the increase of friction units from 1 to 16. Last, by fully utilizing the unique structure and performance, representative energy-harvesting and smart-sensing applications are demonstrated, including a smart shoe to recognize running motions and power LEDs, a smart leaf to power a thermometer by wind, a matrix sensor to recognize writing trajectories, as well as a smart glove to recognize different objects.
Collapse
Affiliation(s)
- Weixiong Yang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Mingguang Han
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Fu Liu
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Dan Wang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Yan Gao
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Guantao Wang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
- Shenzhen Institute of Beihang UniversityNo. 51 GaoxinSouth 9th RoadGuangdong518063China
| | - Xilun Ding
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Sida Luo
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| |
Collapse
|
8
|
Chen J, Shi Y, Ying B, Hu Y, Gao Y, Luo S, Liu X. Kirigami-enabled stretchable laser-induced graphene heaters for wearable thermotherapy. MATERIALS HORIZONS 2024; 11:2010-2020. [PMID: 38362790 DOI: 10.1039/d3mh01884a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Flexible and stretchable heaters are increasingly recognized for their great potential in wearable thermotherapy to treat muscle spasms, joint injuries and arthritis. However, issues like lengthy processing, high fabrication cost, and toxic chemical involvement are obstacles on the way to popularize stretchable heaters for medical use. Herein, using a single-step customizable laser fabrication method, we put forward the design of cost-effective wearable laser-induced graphene (LIG) heaters with kirigami patterns, which offer multimodal stretchability and conformal fit to the skin around the human body. First, we develop the manufacturing process of the LIG heaters with three different kirigami patterns enabling reliable stretchability by out-of-plane buckling. Then, by adjusting the laser parameters, we confirm that the LIG produced by medium laser power could maintain a balance between mechanical strength and electrical conductivity. By optimizing cutting-spacing ratios through experimental measurements of stress, resistance and temperature profiles, as well as finite element analysis (FEA), we determine that a larger cutting-spacing ratio within the machining precision will lead to better mechanical, electrical and heating performance. The optimized stretchable heater in this paper could bear significant unidirectional strain over 100% or multidirectional strain over 20% without major loss in conductivity and heating performance. On-body tests and fatigue tests also proved great robustness in practical scenarios. With the advantage of safe usage, simple and customizable fabrication, easy bonding with skin, and multidirectional stretchability, the on-skin heaters are promising to substitute the traditional heating packs/wraps for thermotherapy.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada.
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China.
| | - Yichao Shi
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada.
| | - Binbin Ying
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada.
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 0C3, Canada
| | - Yajie Hu
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China.
| | - Yan Gao
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China.
| | - Sida Luo
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China.
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada.
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
9
|
Kim SY, Kim JH, Kim KN, Oh H, Myung S, Kim DH. Highly conductive, conformable ionic laser-induced graphene electrodes for flexible iontronic devices. Sci Rep 2024; 14:4599. [PMID: 38409202 PMCID: PMC10897153 DOI: 10.1038/s41598-024-55082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
Iontronic devices, recognized for user-friendly soft electronics, establish an electrical double layer (EDL) at the interface between ion gels and electrodes, significantly influencing device performance. Despite extensive research on ion gels and diverse electrode materials, achieving a stable interfacial formation remains a persistent challenge. In this work, we report a solution to address this challenge by employing CO2 irradiation as a bottom-up methodology to directly fabricate highly conductive, conformable laser-induced graphene (LIG) electrodes on a polyimide (PI)-based ion gel. The PI ion gel exhibits exceptional EDL formation at the electrode interface, primarily attributable to efficient ion migration. Particularly, ionic laser-induced graphene (i-LIG) electrodes, derived from the PI ion gel as a precursor, yield high-quality graphene with enhanced crystallinity and an expanded porous structure in the upward direction. This outcome is achieved through a pronounced thermal transfer effect and intercalation phenomenon between graphene layers, facilitated by the presence of ionic liquids (ILs) within the PI ion gel. Ultimately, in comparison to alternative soft electrode-based vertical capacitors, the utilization of i-LIGs and PI ion gels in the vertical capacitor demonstrates reduced interfacial resistance and increased EDL capacitance, emphasizing the extensive potential of iontronic devices. These results not only highlight these features but also introduce a new perspective for advancing next-generation iontronic devices.
Collapse
Affiliation(s)
- So Young Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ji Hong Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kyeong Nam Kim
- Division of Energy Technology, DGIST, Daegu, 42988, Republic of Korea
| | - Hayoung Oh
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sung Myung
- Thin Film Material Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
10
|
Zhong M, Li S, Zou Y, Fan H, Jiang Y, Qiu C, Luo J, Yang L. Hydrophobic Surface Array Structure Based on Laser-Induced Graphene for Deicing and Anti-Icing Applications. MICROMACHINES 2024; 15:285. [PMID: 38399013 PMCID: PMC10892466 DOI: 10.3390/mi15020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
The exceptional performance of graphene has driven the advancement of its preparation techniques and applications. Laser-induced graphene (LIG), as a novel graphene preparation technique, has been applied in various fields. Graphene periodic structures created by the LIG technique exhibit superhydrophobic characteristics and can be used for deicing and anti-icing applications, which are significantly influenced by the laser parameters. The laser surface treatment process was simulated by a finite element software analysis (COMSOL Multiphysics) to optimize the scanning parameter range, and the linear array surface structure was subsequently fabricated by the LIG technique. The generation of graphene was confirmed by Raman spectroscopy and energy-dispersive X-ray spectroscopy. The periodic linear array structure was observed by scanning electron microscopy (SEM) and confocal laser imaging (CLSM). In addition, CLSM testings, contact angle measurements, and delayed icing experiments were systematically performed to investigate the effect of scanning speed on surface hydrophobicity. The results show that high-quality and uniform graphene can be achieved using the laser scanning speed of 125 mm/s. The periodic linear array structures can obviously increase the contact angle and suppress delayed icing. Furthermore, these structures have the enhanced ability of the electric heating deicing, which can reach 100 °C and 240 °C within 15 s and within 60 s under the DC voltage power supply ranging from 3 to 7 V, respectively. These results indicate that the LIG technique can be developed to provide an efficient, economical, and convenient approach for preparing graphene and that the hydrophobic surface array structure based on LIG has considerable potential for deicing and anti-icing applications.
Collapse
Affiliation(s)
- Mian Zhong
- Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Deyang 618307, China (H.F.)
| | - Shichen Li
- Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Deyang 618307, China (H.F.)
| | - Yao Zou
- Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Deyang 618307, China (H.F.)
| | - Hongyun Fan
- Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Deyang 618307, China (H.F.)
| | - Yong Jiang
- School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Chao Qiu
- College of Aviation Engineering, Civil Aviation Flight University of China, Deyang 618307, China;
| | - Jinling Luo
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
| | - Liang Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
| |
Collapse
|
11
|
Cao J, Yan C, Chai Z, Wang Z, Du M, Li G, Wang H, Deng H. Laser-induced transient conversion of rhodochrosite/polyimide into multifunctional MnO 2/graphene electrodes for energy storage applications. J Colloid Interface Sci 2024; 653:606-616. [PMID: 37738933 DOI: 10.1016/j.jcis.2023.09.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Laser-induced graphene (LIG) has been extensively investigated for electrochemical energy storage due to its easy synthesis and highly conductive nature. However, the limited charge accumulation in LIG usually leads to significantly low energy densities. In this work, we report a novel strategy to directly transform natural rhodochrosite into ultrafine manganese dioxide (MnO2) nanoparticles (NPs) in the polyimide (PI) substrate for high-performance micro-supercapacitors (MSCs) and lithium-ion batteries (LIBs) through a scalable and cost-effective laser processing method. Specifically, laser treatment on rhodochrosite/polyimide precursors induces the thermal explosion, which splits rhodochrosite (10 μm) into MnO2 NPs (12-16 nm) on the carbon matrix of LIG due to the sputtering effect. Benefiting from largely exposed active sites from the ultrafine MnO2 and the synergetic effect from highly conductive LIG, the MnO2/LIG MSCs show a high specific capacitance of 544.0 F g-1 (154.3 mF cm-2; 14.16 F cm-3) at 3 A/g and 82.1% capacitance retention after 10,000 cycles at 5A/g, in contrast to pure LIG (<100 F g-1). Moreover, the MnO2/LIG-based LIBs show the highest reversible discharge capacity of ∼1097 mAh g-1 at 0.2 A/g and ∼ 866.4 mAh g-1 at 1.0 A/g. This study opens a new route for synthesizing novel LIG-based composites from natural minerals.
Collapse
Affiliation(s)
- Jun Cao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chunjie Yan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zefan Chai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhigang Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Minghe Du
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Gen Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Heng Deng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Shenzhen Research Institute, China University of Geosciences, Shenzhen 518000, China.
| |
Collapse
|
12
|
He J, Cao L, Cui J, Fu G, Jiang R, Xu X, Guan C. Flexible Energy Storage Devices to Power the Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306090. [PMID: 37543995 DOI: 10.1002/adma.202306090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Indexed: 08/08/2023]
Abstract
The field of flexible electronics is a crucial driver of technological advancement, with a strong connection to human life and a unique role in various areas such as wearable devices and healthcare. Consequently, there is an urgent demand for flexible energy storage devices (FESDs) to cater to the energy storage needs of various forms of flexible products. FESDs can be classified into three categories based on spatial dimension, all of which share the features of excellent electrochemical performance, reliable safety, and superb flexibility. In this review, the application scenarios of FESDs are introduced and the main representative devices applied in disparate fields are summarized first. More specifically, it focuses on three types of FESDs in matched application scenarios from both structural and material aspects. Finally, the challenges that hinder the practical application of FESDs and the views on current barriers are presented.
Collapse
Affiliation(s)
- Junyuan He
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| | - Leiqing Cao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| | - Jiaojiao Cui
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| | - Gangwen Fu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| | - Ruiyi Jiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| | - Xi Xu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science &Technology Building, No. 45th, Gaoxin South 9th Road, Nanshan District, Shenzhen City, 518063, China
| | - Cao Guan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, China
| |
Collapse
|
13
|
Zhao T, Zhu H, Zhang H. Rapid Prototyping Flexible Capacitive Pressure Sensors Based on Porous Electrodes. BIOSENSORS 2023; 13:bios13050546. [PMID: 37232907 DOI: 10.3390/bios13050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Flexible pressure sensors are widely applied in tactile perception, fingerprint recognition, medical monitoring, human-machine interfaces, and the Internet of Things. Among them, flexible capacitive pressure sensors have the advantages of low energy consumption, slight signal drift, and high response repeatability. However, current research on flexible capacitive pressure sensors focuses on optimizing the dielectric layer for improved sensitivity and pressure response range. Moreover, complicated and time-consuming fabrication methods are commonly applied to generate microstructure dielectric layers. Here, we propose a rapid and straightforward fabrication approach to prototyping flexible capacitive pressure sensors based on porous electrodes. Laser-induced graphene (LIG) is produced on both sides of the polyimide paper, resulting in paired compressible electrodes with 3D porous structures. When the elastic LIG electrodes are compressed, the effective electrode area, the relative distance between electrodes, and the dielectric property vary accordingly, thereby generating a sensitive pressure sensor in a relatively large working range (0-9.6 kPa). The sensitivity of the sensor is up to 7.71%/kPa-1, and it can detect pressure as small as 10 Pa. The simple and robust structure allows the sensor to produce quick and repeatable responses. Our pressure sensor exhibits broad potential in practical applications in health monitoring, given its outstanding comprehensive performance combined with its simple and quick fabrication method.
Collapse
Affiliation(s)
- Tiancong Zhao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Huichao Zhu
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
- School of Artificial Intelligence, Dalian University of Technology, Dalian 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Han M, Ding X, Duan H, Luo S, Chen G. Ultrasensitive Humidity Sensors with Synergy between Superhydrophilic Porous Carbon Electrodes and Phosphorus-Doped Dielectric Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9740-9750. [PMID: 36759946 DOI: 10.1021/acsami.2c21051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Capacitive humidity sensors have been used for human health monitoring, but their performance may be poor in terms of sensitivity and response time, because of limitations in sensing materials and insufficient knowledge about sensing mechanisms. Herein, a new combination of humidity sensing materials to assemble thin-film based capacitive-type sensors is proposed by using PA-doped polybenzimidazole (PA-PBI) as an electrolyte and laser-carbonized PA-PBI as a carbon electrode (PA-PBI-C). Based on PA involved laser scribing, the flexible sensor can reach excellent humidity-sensing performances with an ultrahigh sensitivity (1.16 × 106 pF RH%-1, where RH represents the relative humidity), a superior linearity (R2 = 0.9982), a fast response time (0.72 s), and a low hysteresis in a wide RH range from 1% to 95%. By further studying P-O decorated porous carbon electrode with superhydrophilicity and the solid-state dielectric electrolyte featured by a high dielectric constant, a synergistic sensing mechanism consisting of a "Water reservoir" and a "Bridge" is established to support advanced health-monitoring applications such as the respiration patterns and skin condition where both sensitivity and response time are critical.
Collapse
Affiliation(s)
- Mingguang Han
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| | - Xilun Ding
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| | - Haibin Duan
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Sida Luo
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| | - Geng Chen
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
15
|
Hu X, Zuo D, Cheng S, Chen S, Liu Y, Bao W, Deng S, Harris SJ, Wan J. Ultrafast materials synthesis and manufacturing techniques for emerging energy and environmental applications. Chem Soc Rev 2023; 52:1103-1128. [PMID: 36651148 DOI: 10.1039/d2cs00322h] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Energy and environmental issues have attracted increasing attention globally, where sustainability and low-carbon emissions are seriously considered and widely accepted by government officials. In response to this situation, the development of renewable energy and environmental technologies is urgently needed to complement the usage of traditional fossil fuels. While a big part of advancement in these technologies relies on materials innovations, new materials discovery is limited by sluggish conventional materials synthesis methods, greatly hindering the advancement of related technologies. To address this issue, this review introduces and comprehensively summarizes emerging ultrafast materials synthesis methods that could synthesize materials in times as short as nanoseconds, significantly improving research efficiency. We discuss the unique advantages of these methods, followed by how they benefit individual applications for renewable energy and the environment. We also highlight the scalability of ultrafast manufacturing towards their potential industrial utilization. Finally, we provide our perspectives on challenges and opportunities for the future development of ultrafast synthesis and manufacturing technologies. We anticipate that fertile opportunities exist not only for energy and the environment but also for many other applications.
Collapse
Affiliation(s)
- Xueshan Hu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Daxian Zuo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Shaoru Cheng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Sihui Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yang Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wenzhong Bao
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Sili Deng
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Stephen J Harris
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA
| | - Jiayu Wan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Liu F, Gao Y, Wang G, Wang D, Wang Y, He M, Ding X, Duan H, Luo S. Laser-Induced Graphene Enabled Additive Manufacturing of Multifunctional 3D Architectures with Freeform Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204990. [PMID: 36437047 PMCID: PMC9896062 DOI: 10.1002/advs.202204990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
3D printing has become an important strategy for constructing graphene smart structures with arbitrary shapes and complexities. Compared with graphene oxide ink/gel/resin based manners, laser-induced graphene (LIG) is unique for facile and scalable assembly of 1D and 2D structures but still faces size and shape obstacles for constructing 3D macrostructures. In this work, a brand-new LIG based additive manufacturing (LIG-AM) protocol is developed to form bulk 3D graphene with freeform structures without introducing extra binders, templates, and catalysts. On the basis of selective laser sintering, LIG-AM creatively irradiates polyimide (PI) powder-bed for triggering both particle-sintering and graphene-converting processes layer-by-layer, which is unique for assembling varied types of graphene architectures including identical-section, variable-section, and graphene/PI hybrid structures. In addition to exploring combined graphitizing and fusing discipline, processing efficiency and assembling resolution of LIG-AM are also balanceable through synergistic control of lasing power and powder-feeding thickness. By further studying various process dependent properties, a LIG-AM enabled aircraft-wing section model is finally printed to comprehensively demonstrate its shiftable process, hybridizable structure, and multifunctional performance including force-sensing, anti-icing/deicing, and microwave shielding and absorption.
Collapse
Affiliation(s)
- Fu Liu
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Yan Gao
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Guantao Wang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Dan Wang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Yanan Wang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Meihong He
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Xilun Ding
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Haibin Duan
- School of Automation Science and Electrical EngineeringBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Sida Luo
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| |
Collapse
|
17
|
Wang Z, Wu Y, Zhu B, Chen Q, Zhang Y, Xu Z, Sun D, Lin L, Wu D. Self-Patterning of Highly Stretchable and Electrically Conductive Liquid Metal Conductors by Direct-Write Super-Hydrophilic Laser-Induced Graphene and Electroless Copper Plating. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4713-4723. [PMID: 36623166 DOI: 10.1021/acsami.2c18814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stretchable electrodes are desirable in flexible electronics for the transmission and acquisition of electrical signals, but their fabrication process remains challenging. Herein, we report an approach based on patterned liquid metals (LMs) as stretchable electrodes using a super-hydrophilic laser-induced graphene (SHL-LIG) process with electroless plating copper on a polyimide (PI) film. The LMs/SHL-LIG structures are then transferred from the PI film to an Ecoflex substrate as stretchable electrodes with an ultralow sheet resistance of 3.54 mΩ per square and excellent stretchability up to 480% in elongation. Furthermore, these electrodes show outstanding performances of only 8% electrical resistance changes under a tensile strain of 300%, and strong immunity to temperature and pressure changes. As demonstration examples, these electrodes are integrated with a stretchable strain sensing system and a smart magnetic soft robot toward practical applications.
Collapse
Affiliation(s)
- Zhongbao Wang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Yigen Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Bin Zhu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Qixiang Chen
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Yang Zhang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Zhenjin Xu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| | - Daoheng Sun
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
| | - Liwei Lin
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California94720, United States
| | - Dezhi Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518057, China
| |
Collapse
|
18
|
Kim D, Chhetry A, Zahed MA, Sharma S, Jeong S, Song H, Park JY. Highly Sensitive and Reliable Piezoresistive Strain Sensor Based on Cobalt Nanoporous Carbon-Incorporated Laser-Induced Graphene for Smart Healthcare Wearables. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1475-1485. [PMID: 36571793 DOI: 10.1021/acsami.2c15500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of highly sensitive, reliable, and cost-effective strain sensors is a big challenge for wearable smart electronics and healthcare applications, such as soft robotics, point-of-care systems, and electronic skins. In this study, we newly fabricated a highly sensitive and reliable piezoresistive strain sensor based on polyhedral cobalt nanoporous carbon (Co-NPC)-incorporated laser-induced graphene (LIG) for wearable smart healthcare applications. The synergistic integration of Co-NPC and LIG enables the performance improvement of the strain sensor by providing an additional conductive pathway and robust mechanical properties with a high surface area of Co-NPC nanoparticles. The proposed porous graphene nanosheets exploited with Co-NPC nanoparticles demonstrated an outstanding sensitivity of 1,177 up to a strain of 18%, which increased to 39,548 beyond 18%. Additionally, the fabricated sensor exhibited an ultralow limit of detection (0.02%) and excellent stability over 20,000 cycles even under high strain conditions (10%). Finally, we successfully demonstrated and evaluated the sensor performance for practical use in healthcare wearables by monitoring wrist pulse, neck pulse, and joint flexion movement. Owing to the outstanding performance of the sensor, the fabricated sensor has great potential in electronic skins, human-machine interactions, and soft robotics applications.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Ashok Chhetry
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Md Abu Zahed
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Sudeep Sharma
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Seonghoon Jeong
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Hyesu Song
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Kwangwoon University, Seoul01897, Republic of Korea
| |
Collapse
|
19
|
Goel S, Amreen K. Laser induced graphanized microfluidic devices. BIOMICROFLUIDICS 2022; 16:061505. [PMID: 36483020 PMCID: PMC9726225 DOI: 10.1063/5.0111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
With the advent of cyber-physical system-based automation and intelligence, the development of flexible and wearable devices has dramatically enhanced. Evidently, this has led to the thrust to realize standalone and sufficiently-self-powered miniaturized devices for a variety of sensing and monitoring applications. To this end, a range of aspects needs to be carefully and synergistically optimized. These include the choice of material, micro-reservoir to suitably place the analytes, integrable electrodes, detection mechanism, microprocessor/microcontroller architecture, signal-processing, software, etc. In this context, several researchers are working toward developing novel flexible devices having a micro-reservoir, both in flow-through and stationary phases, integrated with graphanized zones created by simple benchtop lasers. Various substrates, like different kinds of cloths, papers, and polymers, have been harnessed to develop laser-ablated graphene regions along with a micro-reservoir to aptly place various analytes to be sensed/monitored. Likewise, similar substrates have been utilized for energy harvesting by fuel cell or solar routes and supercapacitor-based energy storage. Overall, realization of a prototype is envisioned by integrating various sub-systems, including sensory, energy harvesting, energy storage, and IoT sub-systems, on a single mini-platform. In this work, the diversified work toward developing such prototypes will be showcased and current and future commercialization potential will be projected.
Collapse
Affiliation(s)
- Sanket Goel
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Khairunnisa Amreen
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
20
|
Hong Q, Zhu W, Wang S, Jiang L, He J, Zhan J, Li X, Zhao X, Zhao B. High-Resolution Femtosecond Laser-Induced Carbon and Ag Hybrid Structure for Bend Sensing. ACS OMEGA 2022; 7:42256-42263. [PMID: 36440162 PMCID: PMC9685746 DOI: 10.1021/acsomega.2c05060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Miniaturized resistance-based portable bending sensors have been widely used for human health monitoring in recent years. Their sensitivities are defined by their resistance variations (ΔR/R), which strongly rely on the conductivity and minimum line width of the sensing unit. Laser-induced carbonization is a fast and simple method to fabricate porous-sensing structures. However, the fabrication resolution of conductive and deformation-sensitive structures is limited by the thermal effect of commonly used laser sources. With the assistance of femtosecond laser temporal shaping, plasma ejection confinement, and silver nitrate doping, the sheet resistance of the sensing structure was improved from 15 to 0.0004 Ω/□. A thin line with a lateral resolution of 6.5 μm is fabricated as the sensing unit. The fFabricated structures are characterized by electron microscopy, Raman spectroscopy, energy-dispersive spectroscopy, X-ray scattering, and time-resolved images. The strain sensor demonstrates a ΔR/R of 25.8% with a rising edge of 109 ms in the cyclic bending test. The sensor is further applied for detecting human pulse and finger bending.
Collapse
Affiliation(s)
- Quan Hong
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Weihua Zhu
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Sumei Wang
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Lan Jiang
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
- Beijing
Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Jiahua He
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Jie Zhan
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Xin Li
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
- Beijing
Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Xiaoming Zhao
- Tianjin
Navigation Instruments Research Institute, No. 268 Dingzigu No. 1 Street,
Hong Qiao District, Tianjin 300131, China
| | - Bingquan Zhao
- Tianjin
Navigation Instruments Research Institute, No. 268 Dingzigu No. 1 Street,
Hong Qiao District, Tianjin 300131, China
| |
Collapse
|
21
|
Ben-Shimon Y, Sharma CP, Arnusch CJ, Ya'akobovitz A. Freestanding Laser-Induced Graphene Ultrasensitive Resonative Viral Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44713-44723. [PMID: 36083630 DOI: 10.1021/acsami.2c08302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Early and reliable detection of an infectious viral disease is critical to accurately monitor outbreaks and to provide individuals and health care professionals the opportunity to treat patients at the early stages of a disease. The accuracy of such information is essential to define appropriate actions to protect the population and to reduce the likelihood of a possible pandemic. Here, we show the fabrication of freestanding laser-induced graphene (FLIG) flakes that are highly sensitive sensors for high-fidelity viral detection. As a case study, we show the detection of SARS-CoV-2 spike proteins. FLIG flakes are nonembedded porous graphene foams ca. 30 μm thick that are generated using laser irradiation of polyimide and can be fabricated in seconds at a low cost. Larger pieces of FLIG were cut forming a cantilever, used as suspended resonators, and characterized for their electromechanics behavior. Thermomechanical analysis showed FLIG stiffness comparable to other porous materials such as boron nitride foam, and electrostatic excitation showed amplification of the vibrations at frequencies in the range of several kilo-hertz. We developed a protocol for aqueous biological sensing by characterizing the wetting dynamic response of the sensor in buffer solution and in water, and devices functionalized with COVID-19 antibodies specifically detected SARS-CoV-2 spike protein binding, while not detecting other viruses such as MS2. The FLIG sensors showed a clear mass-dependent frequency response shift of ∼1 Hz/pg, and low nanomolar concentrations could be detected. Ultimately, the sensors demonstrated an outstanding limit of detection of 2.63 pg, which is equivalent to as few as ∼5000 SARS-CoV-2 viruses. Thus, the FLIG platform technology can be utilized to develop portable and highly accurate sensors, including biological applications where the fast and reliable protein or infectious particle detection is critical.
Collapse
Affiliation(s)
- Yahav Ben-Shimon
- Faculty of Engineering Sciences, Ben-Gurion University of the Negev, 8410501 Be'er Sheva, Israel
| | - Chetan Prakash Sharma
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990 Be'er Sheva, Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990 Be'er Sheva, Israel
| | - Assaf Ya'akobovitz
- Faculty of Engineering Sciences, Ben-Gurion University of the Negev, 8410501 Be'er Sheva, Israel
| |
Collapse
|
22
|
Yen YH, Hsu CS, Lei ZY, Wang HJ, Su CY, Dai CL, Tsai YC. Laser-Induced Graphene Stretchable Strain Sensor with Vertical and Parallel Patterns. MICROMACHINES 2022; 13:1220. [PMID: 36014142 PMCID: PMC9412498 DOI: 10.3390/mi13081220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023]
Abstract
In intelligent manufacturing and robotic technology, various sensors must be integrated with equipment. In addition to traditional sensors, stretchable sensors are particularly attractive for applications in robotics and wearable devices. In this study, a piezoresistive stretchable strain sensor based on laser-induced graphene (LIG) was proposed and developed. A three-dimensional, porous LIG structure fabricated from polyimide (PI) film using laser scanning was used as the sensing layer of the strain sensor. Two LIG pattern structures (parallel and vertical) were fabricated and integrated within the LIG strain sensors. Scanning electron microscopy, an X-ray energy dispersive spectrometer, and Raman scattering spectroscopy were used to examine the microstructure of the LIG sensing layer. The performance and strain sensing properties of the parallel and vertical stretchable LIG strain sensors were investigated in tensile tests. The relative resistance changes and the gauge factors of the parallel and vertical LIG strain sensors were quantified. The parallel strain sensor achieved a high gauge factor of 15.79 in the applied strain range of 10% to 20%. It also had high sensitivity, excellent repeatability, good durability, and fast response times during the tensile experiments. The developed LIG strain sensor can be used for the real-time monitoring of human motions such like finger bending, wrist bending, and throat swallowing.
Collapse
Affiliation(s)
- Yu-Hsin Yen
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan; (Y.-H.Y.); (C.-S.H.); (Z.-Y.L.); (H.-J.W.)
| | - Chao-Shin Hsu
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan; (Y.-H.Y.); (C.-S.H.); (Z.-Y.L.); (H.-J.W.)
| | - Zheng-Yan Lei
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan; (Y.-H.Y.); (C.-S.H.); (Z.-Y.L.); (H.-J.W.)
- Smart Sustainable New Agriculture Research Center (SMARTer), Taichung City 402, Taiwan;
| | - Hsin-Jou Wang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan; (Y.-H.Y.); (C.-S.H.); (Z.-Y.L.); (H.-J.W.)
| | - Ching-Yuan Su
- Graduate Institute of Energy Engineering, National Central University, Taoyuan City 320, Taiwan;
| | - Ching-Liang Dai
- Smart Sustainable New Agriculture Research Center (SMARTer), Taichung City 402, Taiwan;
- Department of Mechanical Engineering, National Chung Hsing University, Taichung City 402, Taiwan
| | - Yao-Chuan Tsai
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan; (Y.-H.Y.); (C.-S.H.); (Z.-Y.L.); (H.-J.W.)
- Smart Sustainable New Agriculture Research Center (SMARTer), Taichung City 402, Taiwan;
| |
Collapse
|
23
|
Liu H, Sun Z, Chen Y, Zhang W, Chen X, Wong CP. Laser Processing of Flexible In-Plane Micro-supercapacitors: Progresses in Advanced Manufacturing of Nanostructured Electrodes. ACS NANO 2022; 16:10088-10129. [PMID: 35786945 DOI: 10.1021/acsnano.2c02812] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible in-plane architecture micro-supercapacitors (MSCs) are competitive candidates for on-chip miniature energy storage applications owing to their light weight, small size, high flexibility, as well as the advantages of short charging time, high power density, and long cycle life. However, tedious and time-consuming processes are required for the manufacturing of high-resolution interdigital electrodes using conventional approaches. In contrast, the laser processing technique enables high-efficiency high-precision patterning and advanced manufacturing of nanostructured electrodes. In this review, the recent advances in laser manufacturing and patterning of nanostructured electrodes for applications in flexible in-plane MSCs are comprehensively summarized. Various laser processing techniques for the synthesis, modification, and processing of interdigital electrode materials, including laser pyrolysis, reduction, oxidation, growth, activation, sintering, doping, and ablation, are discussed. In particular, some special features and merits of laser processing techniques are highlighted, including the impacts of laser types and parameters on manufacturing electrodes with desired morphologies/structures and their applications on the formation of high-quality nanoshaped graphene, the selective deposition of nanostructured materials, the controllable nanopore etching and heteroatom doping, and the efficient sintering of nanometal products. Finally, the current challenges and prospects associated with the laser processing of in-plane MSCs are also discussed. This review will provide a useful guidance for the advanced manufacturing of nanostructured electrodes in flexible in-plane energy storage devices and beyond.
Collapse
Affiliation(s)
- Huilong Liu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhijian Sun
- School of Materials Science and Engineering, Georgia Institute of Technology, 711 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Yun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xin Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, 711 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. NANOMATERIALS 2022; 12:nano12142336. [PMID: 35889560 PMCID: PMC9317010 DOI: 10.3390/nano12142336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
Graphene has been regarded as a potential application material in the field of new energy conversion and storage because of its unique two-dimensional structure and excellent physical and chemical properties. However, traditional graphene preparation methods are complicated in-process and difficult to form patterned structures. In recent years, laser-induced graphene (LIG) technology has received a large amount of attention from scholars and has a wide range of applications in supercapacitors, batteries, sensors, air filters, water treatment, etc. In this paper, we summarized a variety of preparation methods for graphene. The effects of laser processing parameters, laser type, precursor materials, and process atmosphere on the properties of the prepared LIG were reviewed. Then, two strategies for large-scale production of LIG were briefly described. We also discussed the wide applications of LIG in the fields of signal sensing, environmental protection, and energy storage. Finally, we briefly outlined the future trends of this research direction.
Collapse
|
25
|
Developing Wound Moisture Sensors: Opportunities and Challenges for Laser-Induced Graphene-Based Materials. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6060176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent advances in polymer composites have led to new, multifunctional wound dressings that can greatly improve healing processes, but assessing the moisture status of the underlying wound site still requires frequent visual inspection. Moisture is a key mediator in tissue regeneration and it has long been recognised that there is an opportunity for smart systems to provide quantitative information such that dressing selection can be optimised and nursing time prioritised. Composite technologies have a rich history in the development of moisture/humidity sensors but the challenges presented within the clinical context have been considerable. This review aims to train a spotlight on existing barriers and highlight how laser-induced graphene could lead to emerging material design strategies that could allow clinically acceptable systems to emerge.
Collapse
|
26
|
Wang W, Lu L, Lu X, Liang Z, Tang B, Xie Y. Laser-induced jigsaw-like graphene structure inspired by Oxalis corniculata Linn. leaf. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00197-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Hui X, Sharma S, Sharifuzzaman M, Zahed MA, Shin YD, Seonu SK, Song HS, Park JY. Siloxene-Functionalized Laser-Induced Graphene via COSi Bonding for High-Performance Heavy Metal Sensing Patch Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201247. [PMID: 35595710 DOI: 10.1002/smll.202201247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser-induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene-CNT/LIG-based Cu-ion sensor shows linear response within a wide range of 10-500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu-ion sensor. The polyaniline-deposited pH sensor demonstrates a good sensitivity of -64.81 mV pH-1 over the pH range of 3-10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C-1 (correlation coefficient of 0.139% °C-1 ). The flexible hybrid sensor is promising in applications of noninvasive heavy-metal ion detection and prediction of related diseases.
Collapse
Affiliation(s)
- Xue Hui
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Sudeep Sharma
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Md Sharifuzzaman
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Md Abu Zahed
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Young Do Shin
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Soo Kyeong Seonu
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Hye Su Song
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea
| |
Collapse
|
28
|
Gao Y, Zhai Y, Wang G, Liu F, Duan H, Ding X, Luo S. 3D-Laminated Graphene with Combined Laser Irradiation and Resin Infiltration toward Designable Macrostructure and Multifunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200362. [PMID: 35322597 PMCID: PMC9130875 DOI: 10.1002/advs.202200362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Macroscopic 3D graphene has become a significant topic for satisfying the continuously upgraded smart structures and devices. Compared with liquid assembling and catalytic templating methods, laser-induced graphene (LIG) is showing facile and scalable advantages but still faces limited sizes and geometries by using template induction or on-site lay-up strategies. In this work, a new LIG protocol is developed for facile stacking and shaping 3D LIG macrostructures by laminating layers of LIG papers (LIGPs) with combined resin infiltration and hot pressing. Specifically, the constructed 3D LIGP composites (LIGP-C) are compatible with large area, high thickness, and customizable flat or curved shapes. Additionally, systematic research is explored for investigating critical processing parameters on tuning its multifunctional properties. As the laminated layers are stacked from 1 to 10, it is discovered that piezoresistivity (i.e., gauge factor) of LIGP-C dramatically reflects an ≈3900% improvement from 0.39 to 15.7 while mechanical and electrical properties maintain simultaneously at the highest levels, attributed to the formation of densely packed fusion layers. Along with excellent durability for resisting multiple harsh environments, a sensor-array system with 5 × 5 LIGP-C elements is finally demonstrated on fiber-reinforced polymeric composites for accurate strain mapping.
Collapse
Affiliation(s)
- Yan Gao
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Yujiang Zhai
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Guantao Wang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Fu Liu
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Haibin Duan
- School of Automation Science and Electrical EngineeringBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Xilun Ding
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Sida Luo
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| |
Collapse
|
29
|
Sadighbayan D, Minhas-Khan A, Ghafar-Zadeh E. Laser-Induced Graphene-Functionalized Field-Effect Transistor-Based Biosensing: A Potent Candidate for COVID-19 Detection. IEEE Trans Nanobioscience 2022; 21:232-245. [PMID: 34648455 PMCID: PMC9088816 DOI: 10.1109/tnb.2021.3119996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Speedy and on-time detection of coronavirus disease 2019 (COVID-19) is of high importance to control the pandemic effectively and stop its disastrous consequences. A widely available, reliable, label-free, and rapid test that can recognize tiny amounts of specific biomarkers might be the solution. Nanobiosensors are one of the most attractive candidates for this purpose. Integration of graphene with biosensing devices shifts the performance of these systems to an incomparable level. Between the various arrangements using this wonder material, field-effect transistors (FETs) display a precise detection even in complex samples. The emergence of pioneering biosensors for detecting a wide range of diseases especially COVID-19 created the incentive to prepare a review of the recent graphene-FET biosensing platforms. However, the graphene fabrication and transfer to the surface of the device is an imperative factor for researchers to take into account. Therefore, we also reviewed the common methods of manufacturing graphene for biosensing applications and discuss their advantages and disadvantages. One of the most recent synthesizing techniques - laser-induced graphene (LIG) - is attracting attention owing to its extraordinary benefits which are thoroughly explained in this article. Finally, a conclusion highlighting the current challenges is presented.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators Laboratory (BioSA)York UniversityTorontoONM3J 1P3Canada
| | - Aamir Minhas-Khan
- Biologically Inspired Sensors and Actuators Laboratory (BioSA)York UniversityTorontoONM3J 1P3Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BioSA)York UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
30
|
Naseri I, Ziaee M, Nilsson ZN, Lustig DR, Yourdkhani M. Electrothermal Performance of Heaters Based on Laser-Induced Graphene on Aramid Fabric. ACS OMEGA 2022; 7:3746-3757. [PMID: 35128283 PMCID: PMC8811899 DOI: 10.1021/acsomega.1c06572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/11/2022] [Indexed: 05/26/2023]
Abstract
Nanostructured heaters based on laser-induced graphene (LIG) are promising for heat generation and temperature control in a variety of applications due to their high efficiency as well as a fast, facile, and highly scalable fabrication process. While recent studies have shown that LIG can be written on a wide range of precursors, the reports on LIG-based heaters are mainly limited to polyimide film substrates. Here, we develop and characterize nanostructured heaters by direct writing of laser-induced graphene on nonuniform and structurally porous aramid woven fabric. The synthesis and writing of graphene on aramid fabric is conducted using a 10.6 μm CO2 laser. The quality of laser-induced graphene and electrical properties of the heater fabric is tuned by controlling the lasing process parameters. Produced heaters exhibit good electrothermal efficiency with steady-state temperatures up to 170 °C when subjected to an input power density of 1.5 W cm-2. In addition, the permeable texture of LIG-aramid fabric heaters allows for easy impregnation with thermosetting resins. We demonstrate the encapsulation of fabric heaters with two different types of thermosetting resins to develop both flexible and stiff composites. A flexible heater is produced by the impregnation of LIG-aramid fabric by silicone rubber. While the flexible composite heater exhibits inferior electrothermal performance compared to neat LIG-aramid fabric, it shows consistent electrothermal performance under various electrical and mechanical loading conditions. A multifunctional fiber-reinforced composite panel with integrated de-icing functionality is also manufactured using one ply of LIG-aramid fabric heater as part of the composite layup. The results of de-icing experiments show excellent de-icing capability, where a 5 mm thick piece of ice is completely melted away within 2 min using an input power of 12.8 W.
Collapse
Affiliation(s)
- Iman Naseri
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Morteza Ziaee
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Zach N. Nilsson
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Danielle R. Lustig
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mostafa Yourdkhani
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
- School
of Advanced Materials Discovery, Colorado
State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
31
|
Wang H, Zhao Z, Liu P, Guo X. Laser-Induced Graphene Based Flexible Electronic Devices. BIOSENSORS 2022; 12:55. [PMID: 35200316 PMCID: PMC8869335 DOI: 10.3390/bios12020055] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 05/05/2023]
Abstract
Since it was reported in 2014, laser-induced graphene (LIG) has received growing attention for its fast speed, non-mask, and low-cost customizable preparation, and has shown its potential in the fields of wearable electronics and biological sensors that require high flexibility and versatility. Laser-induced graphene has been successfully prepared on various substrates with contents from various carbon sources, e.g., from organic films, plants, textiles, and papers. This paper reviews the recent progress on the state-of-the-art preparations and applications of LIG including mechanical sensors, temperature and humidity sensors, electrochemical sensors, electrophysiological sensors, heaters, and actuators. The achievements of LIG based devices for detecting diverse bio-signal, serving as monitoring human motions, energy storage, and heaters are highlighted here, referring to the advantages of LIG in flexible designability, excellent electrical conductivity, and diverse choice of substrates. Finally, we provide some perspectives on the remaining challenges and opportunities of LIG.
Collapse
Affiliation(s)
| | | | | | - Xiaogang Guo
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (H.W.); (Z.Z.); (P.L.)
| |
Collapse
|
32
|
Wang W, Lu L, Li Z, Lin L, Liang Z, Lu X, Xie Y. Fingerprint-Inspired Strain Sensor with Balanced Sensitivity and Strain Range Using Laser-Induced Graphene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1315-1325. [PMID: 34931519 DOI: 10.1021/acsami.1c16646] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sensitivity and strain range are two mutually exclusive features of strain sensors, where a significant improvement in flexibility is usually accompanied by a reduction in sensitivity. The skin of a human fingertip, due to its undulating fingerprint pattern, can easily detect environmental signals and enhances sensitivity without losing elasticity. Inspired by this characteristic, laser-induced graphene (LIG) with a fingerprint structure is prepared in one step on a polyimide (PI) film and transferred into an Ecoflex substrate to assemble resistive strain sensors. Experimentally, the fingerprint-inspired strain sensor exhibits a superfast response time (∼70 ms), balanced sensitivity and strain range (a gauge factor of 191.55 in the 42-50% strain range), and good reliability (>1500 cycles). Self-organized microcracks, initiated in weak mechanical areas, cause prominent resistance changes during reconnection/disconnection but irreversibly fail after excessive stretching. The robust function of fingerprint-inspired sensors is further demonstrated by real-time monitoring of tiny pulses, large body movements, gestures, and voice recognition.
Collapse
Affiliation(s)
- Wentao Wang
- School of Mechanical & Automotive Engineering, South China University of Technology, 381#Wushan Road, Guangzhou 510641, China
| | - Longsheng Lu
- School of Mechanical & Automotive Engineering, South China University of Technology, 381#Wushan Road, Guangzhou 510641, China
| | - Zehong Li
- School of Mechanical & Automotive Engineering, South China University of Technology, 381#Wushan Road, Guangzhou 510641, China
| | - Lihui Lin
- School of Mechanical & Automotive Engineering, South China University of Technology, 381#Wushan Road, Guangzhou 510641, China
| | - Zhanbo Liang
- School of Mechanical & Automotive Engineering, South China University of Technology, 381#Wushan Road, Guangzhou 510641, China
| | - Xiaoyu Lu
- School of Mechanical & Automotive Engineering, South China University of Technology, 381#Wushan Road, Guangzhou 510641, China
| | - Yingxi Xie
- School of Mechanical & Automotive Engineering, South China University of Technology, 381#Wushan Road, Guangzhou 510641, China
| |
Collapse
|
33
|
Peng Y, Zhao W, Ni F, Yu W, Liu X. Forest-like Laser-Induced Graphene Film with Ultrahigh Solar Energy Utilization Efficiency. ACS NANO 2021; 15:19490-19502. [PMID: 34797050 DOI: 10.1021/acsnano.1c06277] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To achieve high solar energy utilization efficiency, photothermal materials with broadband absorption of sunlight and high conversion efficiency are becoming a fast-growing research focus. Inspired by the forest structure with efficient sunlight utilization, we designed and fabricated a graphene film consisting of densely arranged porous graphene though laser scribing on polybenzoxazine resin (poly(Ph-ddm)). This hierarchical structure significantly reduced the light reflection of graphene as a 2D material. With a combination of advanced photothermal conversion properties of graphene, the 3D structured graphene film, named forest-like laser-induced graphene (forest-like LIG), was endowed with a very high light absorption of 99.0% over the whole wavelength range of sunlight as well as advanced light-to-heat conversion performance (reaching up to 87.7 °C within 30 s under the illumination of simulated sunlight and showing an equilibrium temperature of 90.7 ± 0.4 °C). As a further benefit of its superhydrophobicity, a photothermal actuator with quick actuated response and high motion velocity, as well as a solar-driven interfacial desalination membrane with durable salt-rejecting properties and high solar evaporation efficiencies, was demonstrated.
Collapse
Affiliation(s)
- Yunyan Peng
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Feng Ni
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Yu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqing Liu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| |
Collapse
|
34
|
Zhu J, Huang X, Song W. Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS NANO 2021; 15:18708-18741. [PMID: 34881870 DOI: 10.1021/acsnano.1c05806] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Laser-induced graphene (LIG) is produced rapidly by directly irradiating carbonaceous precursors, and it naturally exhibits as a three-dimensional porous structure. Due to advantages such as simple preparation, time-saving, environmental friendliness, low cost, and expanding categories of raw materials, LIG and its derivatives have achieved broad applications in sensors. This has been witnessed in various fields such as wearable devices, disease diagnosis, intelligent robots, and pollution detection. However, despite LIG sensors having demonstrated an excellent capability to monitor physical and chemical parameters, the systematic review of synthesis, sensing mechanisms, and applications of them combined with comparison against other preparation approaches of graphene is still lacking. Here, graphene-based sensors for physical, biological, and chemical detection are reviewed first, followed by the introduction of general preparation methods for the laser-induced method to yield graphene. The preparation and advantages of LIG, sensing mechanisms, and the properties of different types of emerging LIG-based sensors are comprehensively reviewed. Finally, possible solutions to the problems and challenges of preparing LIG and LIG-based sensors are proposed. This review may serve as a detailed reference to guide the development of LIG-based sensors that possess properties for future smart sensors in health care, environmental protection, and industrial production.
Collapse
Affiliation(s)
- Junbo Zhu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Beijing 100048, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Weixing Song
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Beijing 100048, China
| |
Collapse
|
35
|
Wang Y, Wang G, He M, Liu F, Han M, Tang T, Luo S. Multifunctional Laser-Induced Graphene Papers with Combined Defocusing and Grafting Processes for Patternable and Continuously Tunable Wettability from Superlyophilicity to Superlyophobicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103322. [PMID: 34523240 DOI: 10.1002/smll.202103322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Functional surfaces with tunable and patternable wettability have attracted significant research interests because of remarkable advantages in biomedicine, environmental, and energy storage applications. Based on combined defocusing and grafting strategy for processing laser-induced graphene papers (LIGPs) with variable surface roughness (58.18-6.08 µm) and F content (0-25.9%), their wettability can be tuned continuously from superlyophilicity (contact angle CA ≈ 0° ) to superlyophobicity (CA > 150° ), for various liquids with a wide range of surface tensions from 27.5 to 72.8 mN m-1 . In addition to reaching multiple wetting characteristics including amphiphilic, amphiphobic, and hydrophobic-oleophilic states, three designable processes are further developed for achieving LIGPs with various wetting patterns, including hydrophilic arrays or channels, hydrophobic-to-hydrophilic gradients, and Janus. Activated by the customly designed structures and properties, multifunctional and multi-scenario applications are successfully attempted, including 2D-/3D- directional cell cultivation, water transportation diode, self-triggered liquid transfer & collection, etc.
Collapse
Affiliation(s)
- Yanan Wang
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China
| | - Guantao Wang
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China
| | - Meihong He
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China
| | - Fu Liu
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China
| | - Mingguang Han
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China
| | - Tan Tang
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China
| | - Sida Luo
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
36
|
Xiong G, Jia J, Zhao L, Liu X, Zhang X, Liu H, Zhou W. Non-thermal radiation heating synthesis of nanomaterials. Sci Bull (Beijing) 2021; 66:386-406. [PMID: 36654418 DOI: 10.1016/j.scib.2020.08.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/18/2020] [Accepted: 08/21/2020] [Indexed: 01/20/2023]
Abstract
The nanoscale effect enables the unique magnetic, optical, thermal and electrical properties of nanostructured materials and has attracted extensive investigation for applications in catalysis, biomedicine, sensors, and energy storage and conversion. The widely used synthesis methods, such as traditional hydrothermal reaction and calcination, are bulk heating processes based on thermal radiation. Differing from traditional heating methods, non-thermal radiation heating technique is a local heating mode. In this regard, this review summarizes various non-thermal radiation heating methods for synthesis of nanomaterials, including microwave heating, induction heating, Joule heating, laser heating and electron beam heating. The advantages and disadvantages of these non-thermal radiation heating methods for the synthesis of nanomaterials are compared and discussed. Finally, the future development and challenges of non-thermal radiation heating method for potential synthesis of nanomaterials are discussed.
Collapse
Affiliation(s)
- Guowei Xiong
- Collaorative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Jin Jia
- Collaorative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China.
| | - Lili Zhao
- Collaorative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Xiaoyan Liu
- Collaorative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hong Liu
- Collaorative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China; State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Weijia Zhou
- Collaorative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China.
| |
Collapse
|
37
|
Zhao L, Liu Z, Chen D, Liu F, Yang Z, Li X, Yu H, Liu H, Zhou W. Laser Synthesis and Microfabrication of Micro/Nanostructured Materials Toward Energy Conversion and Storage. NANO-MICRO LETTERS 2021; 13:49. [PMID: 34138243 PMCID: PMC8187667 DOI: 10.1007/s40820-020-00577-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/19/2020] [Indexed: 05/27/2023]
Abstract
Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications, including energy conversion and storage, nanoscale electronics, sensors and actuators, photonics devices and even for biomedical purposes. In the past decade, laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction, including the laser processing-induced carbon and non-carbon nanomaterials, hierarchical structure construction, patterning, heteroatom doping, sputtering etching, and so on. The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices, such as light-thermal conversion, batteries, supercapacitors, sensor devices, actuators and electrocatalytic electrodes. Here, the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized. An extensive overview on laser-enabled electronic devices for various applications is depicted. With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies, laser synthesis and microfabrication toward energy conversion and storage will undergo fast development.
Collapse
Affiliation(s)
- Lili Zhao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Zhen Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Duo Chen
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Fan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Zhiyuan Yang
- School of Information Science and Engineering, Shandong University, 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Xiao Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Haohai Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China.
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
38
|
Xu Y, Fei Q, Page M, Zhao G, Ling Y, Chen D, Yan Z. Laser-induced graphene for bioelectronics and soft actuators. NANO RESEARCH 2021; 14:3033-3050. [PMID: 33841746 PMCID: PMC8023525 DOI: 10.1007/s12274-021-3441-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 05/18/2023]
Abstract
Laser-assisted process can enable facile, mask-free, large-area, inexpensive, customizable, and miniaturized patterning of laser-induced porous graphene (LIG) on versatile carbonaceous substrates (e.g., polymers, wood, food, textiles) in a programmed manner at ambient conditions. Together with high tailorability of its porosity, morphology, composition, and electrical conductivity, LIG can find wide applications in emerging bioelectronics (e.g., biophysical and biochemical sensing) and soft robots (e.g., soft actuators). In this review paper, we first introduce the methods to make LIG on various carbonaceous substrates and then discuss its electrical, mechanical, and antibacterial properties and biocompatibility that are critical for applications in bioelectronics and soft robots. Next, we overview the recent studies of LIG-based biophysical (e.g., strain, pressure, temperature, hydration, humidity, electrophysiological) sensors and biochemical (e.g., gases, electrolytes, metabolites, pathogens, nucleic acids, immunology) sensors. The applications of LIG in flexible energy generators and photodetectors are also introduced. In addition, LIG-enabled soft actuators that can respond to chemicals, electricity, and light stimulus are overviewed. Finally, we briefly discuss the future challenges and opportunities of LIG fabrications and applications.
Collapse
Affiliation(s)
- Yadong Xu
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Qihui Fei
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Margaret Page
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Ganggang Zhao
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Yun Ling
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Dick Chen
- Rock Bridge High School, Columbia, Missouri 65203 USA
| | - Zheng Yan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| |
Collapse
|
39
|
Mamleyev ER, Falk F, Weidler PG, Heissler S, Wadhwa S, Nassar O, Shyam Kumar CN, Kübel C, Wöll C, Islam M, Mager D, Korvink JG. Polyaramid-Based Flexible Antibacterial Coatings Fabricated Using Laser-Induced Carbonization and Copper Electroplating. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53193-53205. [PMID: 33186021 DOI: 10.1021/acsami.0c13058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A method for the fabrication of flexible electrical circuits on polyaramid substrates is presented based on laser-induced carbonization followed by copper electroplating. Locally carbonized flexible sheets of polyaramid (Nomex), by laser radiation, create rough and highly porous microstructures that show a higher degree of graphitization than thermally carbonized Nomex sheets. The found recipe for laser-induced carbonization creates conductivities of up to ∼45 S cm-1, thereby exceeding that observed for thermally pyrolyzed materials (∼38 S cm-1) and laser carbon derived from Kapton using the same laser wavelength (∼35 S cm-1). The electrical conductivity of the carbonized tracks was further improved by electroplating with copper. To demonstrate the electrical performance, fabricated circuits were tested and improvement of the sheet resistance was determined. Copper films exhibit antimicrobial activity and were used to fabricate customized flexible antibacterial coatings. The integration of laser carbonization and electroplating technologies in a polyaramid substrate points to the development of customized circuit designs for smart textiles operating in high-temperature environments.
Collapse
Affiliation(s)
- Emil R Mamleyev
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Fabian Falk
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Peter G Weidler
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Heissler
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sagar Wadhwa
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Omar Nassar
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - C N Shyam Kumar
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Materials and Earth Sciences, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Christian Kübel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Materials and Earth Sciences, Technical University Darmstadt, 64287 Darmstadt, Germany
- Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Monsur Islam
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
40
|
Lahcen AA, Rauf S, Beduk T, Durmus C, Aljedaibi A, Timur S, Alshareef HN, Amine A, Wolfbeis OS, Salama KN. Electrochemical sensors and biosensors using laser-derived graphene: A comprehensive review. Biosens Bioelectron 2020; 168:112565. [PMID: 32927277 DOI: 10.1016/j.bios.2020.112565] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Laser-derived graphene (LDG) technology is gaining attention as a promising material for the development of novel electrochemical sensors and biosensors. Compared to established methods for graphene synthesis, LDG provides many advantages such as cost-effectiveness, fast electron mobility, mask-free, green synthesis, good electrical conductivity, porosity, mechanical stability, and large surface area. This review discusses, in a critical way, recent advancements in this field. First, we focused on the fabrication and doping of LDG platforms using different strategies. Next, the techniques for the modification of LDG sensors using nanomaterials, conducting polymers, biological and artificial receptors are presented. We then discussed the advances achieved for various LDG sensing and biosensing schemes and their applications in the fields of environmental monitoring, food safety, and clinical diagnosis. Finally, the drawbacks and limitations of LDG based electrochemical biosensors are addressed, and future trends are also highlighted.
Collapse
Affiliation(s)
- Abdellatif Ait Lahcen
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Sakandar Rauf
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tutku Beduk
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ceren Durmus
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Abdulrahman Aljedaibi
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science & Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Aziz Amine
- Chemical Analysis and Biosensors Group, Laboratory of Process Engineering and Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146. Mohammedia, Morocco.
| | - Otto S Wolfbeis
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040, Regensburg, Germany.
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
41
|
Danish M, Luo S. A New Route to Enhance the Packing Density of Buckypaper for Superior Piezoresistive Sensor Characteristics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2904. [PMID: 32443850 PMCID: PMC7287720 DOI: 10.3390/s20102904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Abstract
Transforming individual carbon nanotubes (CNTs) into bulk form is necessary for the utilization of the extraordinary properties of CNTs in sensor applications. Individual CNTs are randomly arranged when transformed into the bulk structure in the form of buckypaper. The random arrangement has many pores among individual CNTs, which can be treated as gaps or defects contributing to the degradation of CNT properties in the bulk form. A novel technique of filling these gaps is successfully developed in this study and termed as a gap-filling technique (GFT). The GFT is implemented on SWCNT-based buckypaper in which the pores are filled through small-size MWCNTs, resulting in a ~45.9% improvement in packing density. The GFT is validated through the analysis of packing density along with characterization and surface morphological study of buckypaper using Raman spectrum, particle size analysis, scanning electron microscopy, atomic force microscopy and optical microscopy. The sensor characteristics parameters of buckypaper are investigated using a dynamic mechanical analyzer attached with a digital multimeter. The percentage improvement in the electrical conductivity, tensile gauge factor, tensile strength and failure strain of a GFT-implemented buckypaper sensor are calculated as 4.11 ± 0.61, 44.81 ± 1.72, 49.82 ± 8.21 and 113.36 ± 28.74, respectively.
Collapse
Affiliation(s)
| | - Sida Luo
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China;
| |
Collapse
|
42
|
Chen J, Wang Y, Liu F, Luo S. Laser-Induced Graphene Paper Heaters with Multimodally Patternable Electrothermal Performance for Low-Energy Manufacturing of Composites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23284-23297. [PMID: 32329998 DOI: 10.1021/acsami.0c02188] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Low-energy manufacturing of polymeric composites through two-dimensional electrothermal heaters is a promising strategy over the traditional autoclave and oven. Laser-induced graphene paper (LIGP) is a recent emergent multifunctional material with the merits of one-step computer aided design and manufacturing (CAD/CAM) as well as a flexible thin nature. To fully explore its capabilities of in situ heating, herein, we adventurously propose and investigate the customizable manufacture and modulation of LIGP enabled heaters with multimodally patternable performance. Developed by two modes (uniform and nonuniform) of laser processing, the LIGP heaters (LIGP-H) show distinctively unique characteristics, including high working range (>600 °C), fast stabilization (<8 s), high temperature efficiency (∼370 °C·cm2/W), and superb robustness. Most innovatively, the nonuniform processing could section LIGP-H into subzones with independently controlled heating performance, rendering various designable patterns. The above unique characteristics guarantee the LIGP-H to be highly reliable for in situ curing composites with flat, curved, and even inhomogeneous structures. With enormous energy-savings (∼85%), superb curing accuracy, and comparable mechanical strength, the proposed device is advantageous for assuring high-quality and highly efficient manufacturing.
Collapse
Affiliation(s)
- Junyu Chen
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing 100191, P. R. China
| | - Yanan Wang
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing 100191, P. R. China
| | - Fu Liu
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing 100191, P. R. China
| | - Sida Luo
- School of Mechanical Engineering & Automation, Beihang University, No. 37 Xueyuan Road, Beijing 100191, P. R. China
| |
Collapse
|
43
|
Zhang C, Ping J, Ying Y. Evaluation of trans-resveratrol level in grape wine using laser-induced porous graphene-based electrochemical sensor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136687. [PMID: 31978771 DOI: 10.1016/j.scitotenv.2020.136687] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 05/20/2023]
Abstract
trans-Resveratrol (TRA), is one of the indicators to evaluate the quality of red wines. In this study, a novel flexible electrochemical sensor using direct laser-induced graphene (LIG) technique that transforms the commercial Kapton tape into three-dimensional (3D) porous graphene was developed for sensitive detection of TRA molecules in red wines. For the first time, the strategy of 'double layer' (Kapton/polyimide) was employed to obtain the LIG with undamaged shape and excellent electrical properties. The mechanism of heat absorption and dissipation of laser-induced process was investigated in detail. The prepared electrochemical sensor with excellent repeatability, stability, reproducibility, and reliability, appears an excellent linear response within the TRA concentration range from 0.2 to 50 μmol L-1 and a low limit of detection (LOD) of 0.16 μmol L-1. Furthermore, the developed sensor can be applied for the evaluation of TRA level in red wines and grape skins with a satisfactory result. The sensor may be potential in analysis of active compounds in food or environmental samples.
Collapse
Affiliation(s)
- Chao Zhang
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
| | - Yibin Ying
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Zhejiang A&F University, Hangzhou 311300, PR China
| |
Collapse
|
44
|
You R, Liu YQ, Hao YL, Han DD, Zhang YL, You Z. Laser Fabrication of Graphene-Based Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901981. [PMID: 31441164 DOI: 10.1002/adma.201901981] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/30/2019] [Indexed: 05/21/2023]
Abstract
Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility, transparency, conductivity, and mechanical robustness, graphene has emerged as a versatile material for flexible electronics. In the past decade, facilitated by various laser processing technologies, including the laser-treatment-induced photoreduction of graphene oxides, flexible patterning, hierarchical structuring, heteroatom doping, controllable thinning, etching, and shock of graphene, along with laser-induced graphene on polyimide, graphene has found broad applications in a wide range of electronic devices, such as power generators, supercapacitors, optoelectronic devices, sensors, and actuators. Here, the recent advancements in the laser fabrication of graphene-based flexible electronic devices are comprehensively summarized. The various laser fabrication technologies that have been employed for the preparation, processing, and modification of graphene and its derivatives are reviewed. A thorough overview of typical laser-enabled flexible electronic devices that are based on various graphene sources is presented. With the rapid progress that has been made in the research on graphene preparation methodologies and laser micronanofabrication technologies, graphene-based electronics may soon undergo fast development.
Collapse
Affiliation(s)
- Rui You
- Institute of Microelectronics, Peking University, Beijing, 100871, China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing, 100871, China
| | - Yu-Qing Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yi-Long Hao
- Institute of Microelectronics, Peking University, Beijing, 100871, China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing, 100871, China
| | - Dong-Dong Han
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yong-Lai Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Zheng You
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
45
|
Laser-induced noble metal nanoparticle-graphene composites enabled flexible biosensor for pathogen detection. Biosens Bioelectron 2020; 150:111896. [DOI: 10.1016/j.bios.2019.111896] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 01/04/2023]
|
46
|
Song Y, Zhang J, Li N, Han S, Xu S, Yin J, Qu W, Liu C, Zhang S, Wang Z. Design of a high performance electrode composed of porous nickel–cobalt layered double hydroxide nanosheets supported on vertical graphene fibers for flexible supercapacitors. NEW J CHEM 2020. [DOI: 10.1039/d0nj00477d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A flexible supercapacitor based on a NC-LDH/LIG composite with high electrochemical performance was prepared via a laser-induced technology.
Collapse
Affiliation(s)
- Yanping Song
- School of Mechanotronics & Vehicle Engineering
- Chongqing Jiaotong University
- Chongqing
- China
| | - Jixiang Zhang
- School of Mechanotronics & Vehicle Engineering
- Chongqing Jiaotong University
- Chongqing
- China
| | - Nian Li
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| | - Shuai Han
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
- Department of Chemistry
| | - Shihao Xu
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
- Department of Chemistry
| | - Jun Yin
- School of Mechanotronics & Vehicle Engineering
- Chongqing Jiaotong University
- Chongqing
- China
| | - WanLi Qu
- School of Mechanotronics & Vehicle Engineering
- Chongqing Jiaotong University
- Chongqing
- China
| | - Cui Liu
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| | - Shudong Zhang
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| | - Zhenyang Wang
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| |
Collapse
|
47
|
Huang L, Su J, Song Y, Ye R. Laser-Induced Graphene: En Route to Smart Sensing. NANO-MICRO LETTERS 2020; 12:157. [PMID: 32835028 PMCID: PMC7396264 DOI: 10.1007/s40820-020-00496-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/09/2020] [Indexed: 05/02/2023]
Abstract
The discovery of laser-induced graphene (LIG) from polymers in 2014 has aroused much attention in recent years. A broad range of applications, including batteries, catalysis, sterilization, and separation, have been explored. The advantages of LIG technology over conventional graphene synthesis methods are conspicuous, which include designable patterning, environmental friendliness, tunable compositions, and controllable morphologies. In addition, LIG possesses high porosity, great flexibility, and mechanical robustness, and excellent electric and thermal conductivity. The patternable and printable manufacturing process and the advantageous properties of LIG illuminate a new pathway for developing miniaturized graphene devices. Its use in sensing applications has grown swiftly from a single detection component to an integrated smart detection system. In this minireview, we start with the introduction of synthetic efforts related to the fabrication of LIG sensors. Then, we highlight the achievement of LIG sensors for the detection of a diversity of stimuli with a focus on the design principle and working mechanism. Future development of the techniques toward in situ and smart detection of multiple stimuli in widespread applications will be discussed.
Collapse
Affiliation(s)
- Libei Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| | - Jianjun Su
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| | - Yun Song
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
- State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| |
Collapse
|
48
|
Stretchable Graphene Thin Film Enabled Yarn Sensors with Tunable Piezoresistivity for Human Motion Monitoring. Sci Rep 2019; 9:18644. [PMID: 31819146 PMCID: PMC6901454 DOI: 10.1038/s41598-019-55262-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/26/2019] [Indexed: 11/08/2022] Open
Abstract
1D graphene based flexible sensors as wearable electronics have recently attracted considerable attentions because of lightweight, high extensibility, easy to wind and weave, and superior sensitivity. In this research, we established a facile and low-cost strategy to construct graphene thin film enabled yarn sensors (GYS) by combining the process of graphene oxide (GO) coating and reducing on polyester (PE) wound spandex yarns. According to systematic processing-property relationship study, a key finding of this work discovers that the degree of resistance recovery as well as gauge sensitivity of GYS can be well controlled and modulated by a pre-stretch treatment. Specifically, as the level of pre-stretch increases from 0 to 60%, the deformable range of sensor that guarantees full resistance recovery prolongs evidently from 0% to ~50%. Meanwhile, the gauge factor of GYS is tunable in the range from 6.40 to 12.06. To understand the pre-stretch process dependent sensing performance, SEM analysis was assisted to evidence the growing size of micro-cracks determining dominantly the behavior of electron transport. Lastly, to take better advantage of GYS, a new wearing mode was demonstrated by direct winding the yarn sensor on varied portions of human body for monitoring different body movements and muscle contracting & relaxing.
Collapse
|
49
|
Danish M, Luo S. Micro-Crack Induced Buckypaper/PI Tape Hybrid Sensors with Enhanced and Tunable Piezo-Resistive Properties. Sci Rep 2019; 9:16920. [PMID: 31729448 PMCID: PMC6858318 DOI: 10.1038/s41598-019-53222-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/30/2019] [Indexed: 11/09/2022] Open
Abstract
Piezoresistive properties play a vital role in the development of sensor for structural health monitoring (SHM) applications. Novel stable crack initiation method (SCIM) is established to improve the gauge factor (GF) with maximum achievable working strain region for PI tape enabled buckypaper hybrid sensors. Cracks are generated by applying strain rate-controlled tension force using dynamic mechanical analyzer (DMA). The sensor has been cycled in tension to characterize GF with crack opening. It is determined experimentally that GF increases with increasing crack opening and crack becomes unstable when opening increases above 8 µm. Tremendous improvement in GF has been observed which improved from single-digit to several hundreds. The highest GF obtained so far is ~255, showing 75 times improvement compared with the ones without the SCIM implementation. The crack initiation strain (CIS) is characterized by sonication and centrifugation time. It is determined experimentally that the maximum CIS of 3.5% can be achieved with sonication time of 40 min and increasing centrifuge time has an in-significantly dropping effect on CIS. Excellent stability/reproducibility has been proved/demonstrated on SCIM implemented sensors through a rigorous 12,500 tensile cycle test on DMA. The performance of sensor is practically demonstrated in tension and bending on glass fiber reinforced polymer (GFRP) structures.
Collapse
Affiliation(s)
- Mustafa Danish
- Beihang University, School of Mechanical Engineering & Automation, Beijing, 100191, China
| | - Sida Luo
- Beihang University, School of Mechanical Engineering & Automation, Beijing, 100191, China.
| |
Collapse
|
50
|
First Principles Simulations of Phenol and Methanol Detector Based on Pristine Graphene Nanosheet and Armchair Graphene Nanoribbons. SENSORS 2019; 19:s19122731. [PMID: 31216657 PMCID: PMC6631773 DOI: 10.3390/s19122731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/13/2023]
Abstract
Over the last decade graphene based electronic devices have attracted the interest of researchers due to their exceptional chemical, electrical and optical properties. Graphene is very sensitive to any physical changes in its surrounding environment and, inherently, has very low electronic noise. This property of graphene makes it a suitable candidate for sensor applications. The purpose of the work presented in this article is to demonstrate the ability of graphene derivatives to detect toxic organic compounds like phenol and methanol. A novel method for the detection of organic compounds (phenol and methanol) has been introduced in this article. In this method, a change in the photocurrent, as well as electric current, have been used as detection signals to improve the sensor accuracy and selectivity for specific target molecules. A nanoscale electronic device simulator, Quantumwise Atomistix Toolkit (ATK), has been used to simulate graphene nanosheet and armchair graphene nanoribbon based sensors. Devices density of states (DOS), current–voltage curves and photocurrent curves have been calculated with the ATK simulator. In the proximity of target molecules, a significant change in DOS, electric current and photocurrent have been observed. The simulated graphene based structures can be converted into physical sensors to obtain a low cost, small sized, integrated sensing device.
Collapse
|