1
|
Ma G, Cheng K, Wang X, Zeng Y, Hu C, He L, Shi Z, Lin H, Zhang T, Sun S, Huang P. Dual oxygen supply system of carbon dot-loaded microbubbles with acoustic cavitation for enhanced sonodynamic therapy in diabetic wound healing. Biomaterials 2025; 318:123145. [PMID: 39874643 DOI: 10.1016/j.biomaterials.2025.123145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Diabetic wounds present significant treatment challenges due to their complex microenvironment, marked by persistent inflammation from bacterial infections, hypoxia caused by diabetic microangiopathy, and biofilm colonization. Sonodynamic therapy (SDT) offers potential for treating such wounds by targeting deep tissues with antibacterial effects, but its efficacy is limited by hypoxic conditions and biofilm barriers. To overcome these obstacles, we developed a novel approach using oxygen-carrying microbubbles loaded with Mn2+-doped carbon dots (MnCDs@O2MBs) to enhance SDT and disrupt biofilms. Through precursor screening and design, MnCDs are engineered to exhibit tailored properties of sonodynamic activity and enzyme-like catalytic capabilities. This system provides a dual oxygen supply for amplifying the SDT effects: MnCDs, serving as a sonosensitizer, also chemically convert excess H2O2 at infection sites into oxygen, while the O2MBs physically release oxygen through ultrasound-induced cavitation. The cavitation effect also disrupts biofilms, improving the delivery of sonosensitizers and boosting SDT efficacy. In a diabetic wound model, this strategy downregulated TLR, NF-κB, and TNF inflammatory pathways, reduced pro-inflammatory factor secretion, promoted angiogenesis, and accelerated wound healing, thereby acting as a promising treatment approach for diabetic wound healing.
Collapse
Affiliation(s)
- Guangrong Ma
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Ke Cheng
- International Joint Research Center for Photo-Responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xue Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Yiqing Zeng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Chenlu Hu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Luying He
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Hengwei Lin
- International Joint Research Center for Photo-Responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China.
| | - Shan Sun
- International Joint Research Center for Photo-Responsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, No. 66 Dongxin Avenue, Binjiang District, Hangzhou, 310053, PR China.
| |
Collapse
|
2
|
Hu J, Huang Y, Hao H, Tian P, Yin Y, He Y, Hao F, Jiang W, Zhang Y, Wan Y, Luo Q. Bioinspired programmed antibiofilm strategies for accelerated wound healing via spatiotemporally controlled enzyme nanoreactors. J Control Release 2025; 381:113582. [PMID: 40032010 DOI: 10.1016/j.jconrel.2025.113582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Biofilms, protected by their dense, self-produced matrix, pose a significant clinical challenge due to their antibiotic resistance, leading to persistent infections and delayed wound healing, particularly in diabetic patients. Tailored to the biofilm life cycle, a double-layered nanoreactor was developed for rapid and complete antibiofilm therapy. The inner layer, cross-linked with poly(allylamine hydrochloride) (PAH)/phosphate, dimeric indocyanine green (dICG), and bromothymol blue (BTB), shields glucose oxidase (GOx) and β-glucanase (β-DEX) from unfavorable environment. The outer layer is coated with bacteria-targeted gold nanozymes (AuNEs). The healing of biofilm-infected diabetic wounds progresses three spatiotemporal stages activated by light irradiation and pH changes. Initially, the photothermal effect of dICG triggers nitric oxide (NO)-mediated biofilm dispersion and lowers the wound pH via a GOx/AuNEs cascade reaction. The resulting acidic environment then induces nanoreactor disassembly, releasing β-DEX to degrade the biofilm matrix and facilitate deeper penetration. Finally, AuNEs specifically recognize and eliminate planktonic bacteria, further disrupting the biofilms and accelerating wound healing by generating reactive oxygen species (ROS) and more toxic reactive nitrogen species (RNS). The wound status can be monitored in real-time using BTB's colorimetric pH analysis for visual feedback on treatment progress. This multifunctional design offers a programmed antibiofilm strategy for dynamic wound management.
Collapse
Affiliation(s)
- Juntao Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hao Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Pujing Tian
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yinuo Yin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuting He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fengjie Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wantong Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yanping Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China.
| | - Quan Luo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Zhu J, Xia F, Wang S, Guan Y, Hu F, Yu F. Recent advances in nanomaterials and their mechanisms for infected wounds management. Mater Today Bio 2025; 31:101553. [PMID: 40182659 PMCID: PMC11966735 DOI: 10.1016/j.mtbio.2025.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 04/05/2025] Open
Abstract
Wounds infected by bacteria pose a considerable challenge in the field of healthcare, particularly with the increasing prevalence of antibiotic-resistant pathogens. Traditional antibiotics often fail to achieve effective results due to limited penetration, resistance development, and inadequate local concentration at wound sites. These limitations necessitate the exploration of alternative strategies that can overcome the drawbacks of conventional therapies. Nanomaterials have emerged as a promising solution for tackling bacterial infections and facilitating wound healing, thanks to their distinct physicochemical characteristics and multifunctional capabilities. This review highlights the latest developments in nanomaterials that demonstrated enhanced antibacterial efficacy and improved wound healing outcomes. The antibacterial mechanisms of nanomaterials are varied, including ion release, chemodynamic therapy, photothermal/photodynamic therapy, electrostatic interactions, and delivery of antibacterial drugs, which not only combat bacterial infections but also address the challenges posed by biofilms and antibiotic resistance. Furthermore, these nanomaterials create an optimal environment for tissue regeneration, promoting faster wound closure. By leveraging the unique attributes of nanomaterials, there is a significant opportunity to revolutionize the management of infected wounds and markedly improve patient outcomes.
Collapse
Affiliation(s)
- Jianping Zhu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Fan Xia
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Shuaifei Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yan Guan
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fangying Yu
- Department of Ultrasound in Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
4
|
Zhai X, Liu Y, Hao X, Luo M, Gao Z, Wu J, Yang Z, Gan Y, Zhao S, Song Z, Guan J. Photothermal-Driven α-Amylase-Modified Polydopamine Pot-Like Nanomotors for Enhancing Penetration and Elimination of Drug-Resistant Biofilms. Adv Healthc Mater 2025; 14:e2403033. [PMID: 39901377 DOI: 10.1002/adhm.202403033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/17/2025] [Indexed: 02/05/2025]
Abstract
Biological enzyme-functionalized antibacterial nanoparticles, which can degrade biofilm and kill bacteria under mild reaction conditions, have attracted much attention for the elimination of deep-seated bacterial infections. However, the poor diffusion and penetration capabilities of recently developed biological enzyme-functionalized antibacterial nanoparticles in biofilm severely impair the eradication efficacy of deep-seated bacteria. Herein, a photothermal-driven nanomotor (denoted as APPNM) is developed for enhancing the elimination of drug-resistant biofilms and the eradication of deep-seated bacteria. The nanomotor contained a pot-like polydopamine (PDA) nanostructure and its outer surface is chemically immobilized with a layer of α-amylases. Under exposure to 808 nm near-infrared (NIR) laser irradiation, the self-propelled nanomotors, integrating the α-amylases to destroy the compact structure of biofilms, can penetrate deeply into biofilms and effectively eliminate them. Subsequently, they can accumulate on the surface of bacteria using the inherent bio-adhesion property of PDA, thereby completely eradicating deep-seated bacteria by photothermal effect. These synergistic effects enable them to exhibit superior antibiofilm effects and produce remarkable therapeutic efficacy with accelerated wound healing in vivo. With excellent biocompatibility, the as-developed nanomotors have great potential to be applied for treating biofilm-related infections.
Collapse
Affiliation(s)
- Xiangxiang Zhai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Liu
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomeng Hao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ming Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhixue Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinmei Wu
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zili Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ying Gan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Suling Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhiyong Song
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
5
|
Zhang S, He W, Dong J, Chan YK, Lai S, Deng Y. Tailoring Versatile Nanoheterojunction-Incorporated Hydrogel Dressing for Wound Bacterial Biofilm Infection Theranostics. ACS NANO 2025; 19:10922-10942. [PMID: 40071724 DOI: 10.1021/acsnano.4c15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Wound-infected bacterial biofilms are protected by self-secreted extracellular polymer substances (EPS), which can confer them with formidable resistance to the host's immune responses and antibiotics, and thus delays in diagnosis and treatment can cause stubborn infections and life-threatening complications. However, tailoring an integrated theranostic platform with the capability to promptly diagnose and treat wound biofilm infection still remains a challenge. Herein, a versatile erbium-doped carbon dot-encapsulated zeolitic imidazolate framework-8 (Er:CDs@ZIF-8) nanoheterojunction (C@Z nano-HJ) is tailored and incorporated into gelatin methacrylate/poly(N-hydroxyethyl acrylamide) (GelMA/PHEAA)-based tough and sticky hydrogel dressing (GH-C@Z) to achieve wound biofilm infection-integrated theranostic application. Stimulated by the acidic microenvironment of the biofilm, the turn-on response of the C@Z in the dressing assists the biofilm infection monitoring by exhibiting cyan fluorescence. Meanwhile, C@Z can effectively destroy the EPS barrier and accomplish photothermal-photodynamic-ion interference synergistic antibacterial therapy under near-infrared light. Furthermore, after the effective eradication of biofilm, the potent antioxidant properties of released Er:CDs allow the dressing to attenuate reactive oxygen species and mitigate inflammatory responses, which finally promote collagen deposition and neovascularization to accelerate wound healing. Overall, this tailored wound dressing provides insight into the development of versatile diagnostic and therapeutic platforms for bacterial biofilm infections.
Collapse
Affiliation(s)
- Shuting Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenxuan He
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jianwen Dong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Shuangquan Lai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
6
|
Almatroudi A. Biofilm Resilience: Molecular Mechanisms Driving Antibiotic Resistance in Clinical Contexts. BIOLOGY 2025; 14:165. [PMID: 40001933 PMCID: PMC11852148 DOI: 10.3390/biology14020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Healthcare-associated infections pose a significant global health challenge, negatively impacting patient outcomes and burdening healthcare systems. A major contributing factor to healthcare-associated infections is the formation of biofilms, structured microbial communities encased in a self-produced extracellular polymeric substance matrix. Biofilms are critical in disease etiology and antibiotic resistance, complicating treatment and infection control efforts. Their inherent resistance mechanisms enable them to withstand antibiotic therapies, leading to recurrent infections and increased morbidity. This review explores the development of biofilms and their dual roles in health and disease. It highlights the structural and protective functions of the EPS matrix, which shields microbial populations from immune responses and antimicrobial agents. Key molecular mechanisms of biofilm resistance, including restricted antibiotic penetration, persister cell dormancy, and genetic adaptations, are identified as significant barriers to effective management. Biofilms are implicated in various clinical contexts, including chronic wounds, medical device-associated infections, oral health complications, and surgical site infections. Their prevalence in hospital environments exacerbates infection control challenges and underscores the urgent need for innovative preventive and therapeutic strategies. This review evaluates cutting-edge approaches such as DNase-mediated biofilm disruption, RNAIII-inhibiting peptides, DNABII proteins, bacteriophage therapies, antimicrobial peptides, nanoparticle-based solutions, antimicrobial coatings, and antimicrobial lock therapies. It also examines critical challenges associated with biofilm-related healthcare-associated infections, including diagnostic difficulties, disinfectant resistance, and economic implications. This review emphasizes the need for a multidisciplinary approach and underscores the importance of understanding biofilm dynamics, their role in disease pathogenesis, and the advancements in therapeutic strategies to combat biofilm-associated infections effectively in clinical settings. These insights aim to enhance treatment outcomes and reduce the burden of biofilm-related diseases.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
7
|
Ángyán VD, Balázs VL, Kocsis M, Kocsis B, Horváth G, Farkas Á, Nagy-Radványi L. Synergistic Antibiofilm Effects of Chestnut and Linden Honey with Lavender Essential Oil Against Multidrug-Resistant Otitis Media Pathogens. Antibiotics (Basel) 2025; 14:146. [PMID: 40001390 PMCID: PMC11851655 DOI: 10.3390/antibiotics14020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bacterial resistance to antibiotics is a major problem in healthcare, complicated by the ability of bacteria to form biofilms. Complementary therapy for infectious diseases can rely on natural substances with antibacterial activity, e.g., essential oils and honeys. The aim of the study was to investigate the effects of linden and chestnut honeys, lavender essential oil, and their combinations against the multidrug-resistant otitis media pathogens Haemophilus influenzae, H. parainfluenzae, Moraxella catarrhalis, Pseudomonas aeruginosa, and Streptococcus pneumoniae. The efficacy of these natural substances was compared with each other and antibiotics used in clinical practice. METHODS Microscopic pollen analysis and physicochemical traits were used to confirm the botanical origin of honey samples. The antibiotic sensitivity of bacteria was tested with a disk diffusion assay. Minimum inhibitory concentrations were determined using a microdilution assay. A 24 h immature biofilm eradication test was performed with a crystal violet assay. The efficacy of combinations was tested with a checkerboard titration method. The DNA release of damaged bacterial cells was measured using a membrane degradation assay. RESULTS Lavender essential oil displayed more potent antibacterial activity compared to the honey samples. However, honey-essential oil combinations showed higher inhibition rates for biofilm eradication, with P. aeruginosa being the most resistant bacterium. The combined use of chestnut honey and lavender oil resulted in a higher degree of membrane degradation in a shorter time, and their synergistic effect was proven with checkerboard titration. CONCLUSIONS The combination of linden or chestnut honey with lavender essential oil was shown to be effective in the eradication of a 24 h immature biofilm formed by H. parainfluenzae, M. catarrhalis, and S. pneumoniae.
Collapse
Affiliation(s)
- Virág D. Ángyán
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (V.D.Á.); (V.L.B.); (G.H.); (L.N.-R.)
| | - Viktória L. Balázs
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (V.D.Á.); (V.L.B.); (G.H.); (L.N.-R.)
| | - Marianna Kocsis
- Department of Agricultural Biology, Institute of Biology, University of Pécs, 7624 Pécs, Hungary;
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (V.D.Á.); (V.L.B.); (G.H.); (L.N.-R.)
| | - Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (V.D.Á.); (V.L.B.); (G.H.); (L.N.-R.)
| | - Lilla Nagy-Radványi
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (V.D.Á.); (V.L.B.); (G.H.); (L.N.-R.)
| |
Collapse
|
8
|
Upadhyay A, Jaiswal N, Kumar A. Biofilm battle: New transformative tactics to tackle the bacterial biofilm infections. Microb Pathog 2025; 199:107277. [PMID: 39756524 DOI: 10.1016/j.micpath.2025.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Bacterial biofilm infections are the root cause of persistent infections and the prevalence of resistance to specific or multiple antibiotics. Biofilms have unique features that provide a protective environment for bacteria under various stress conditions and contribute significantly to the pathogenesis of chronic infections. They cover bacterial cells with a self-produced extracellular polymeric matrix, effectively hiding the bacterial cells and their targets. Conventional therapies cannot effectively treat and control bacterial biofilm infections. Therefore, advanced therapeutic means like microneedles, targeted tissue therapy, phage therapy, nanodrug therapy, combination drug therapy, microbial therapy, and immune cell hijacking therapy are needed to tackle the complex issue. These advanced therapies have shown promising results not only in bacterial biofilm infections but also in diseases such as cancer and genetic disorders. Due to their unique features and mechanisms, they significantly contribute to preventing bacterial infections by disrupting biofilm. This article aims to serve as a comprehensive overview of the ongoing battle against biofilms with transformative therapies. This article compiles advancements in new therapies that have demonstrated effective roles in the disruption of bacterial biofilms. We also discuss the current developments and Food and Drug Administration-approved status of these therapies. Additionally, this article summarizes the limitations and future steps needed for these therapies in the field of bacterial biofilm prevention. Thus, these therapies represent the future of preventing bacterial biofilm infections and could be also effective in the reversal of resistance.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India
| | - Neha Jaiswal
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India.
| |
Collapse
|
9
|
Xu H, Jia D, Guo S, Zheng X, Yang W, Chen H, Zhang Y, Yu Q. Dual-action defense: A photothermal and controlled nitric oxide-releasing coating for preventing biofilm formation. J Colloid Interface Sci 2025; 679:191-200. [PMID: 39447462 DOI: 10.1016/j.jcis.2024.10.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Biofilms formed by pathogenic bacteria on biomedical devices and implants pose a considerable challenge due to their resistance to conventional treatments and their role in severe infections. Preventing biofilm formation is strategically more advantageous than attempting to eliminate the mature biofilms, particularly in addressing the persistence of such formations. In this context, a dual-action antibiofilm coating is developed, utilizing S-nitrosothiols functionalized candle soot (CS), which capitalizes on CS's strong light absorption for photothermal therapy and the controlled release of nitric oxide (NO) from S-nitrosothiols to inhibit biofilm formation. This coating exhibits stable and efficient light-to-heat conversion, along with the ability to release NO gradually at physiological temperatures and to rapidly release NO on demand when triggered by a near-infrared (NIR) laser. Under NIR irradition, the coating generates heat swiftly and releases substantial amounts of NO, which synergistically disrupts bacterial membranes, leading to the leakage of intracellular components and the effective eradication of surface-adhered bacteria. In the absence of NIR irradiation, the coating continuously releases low concentrations of NO, which depletes exopolysaccharides and impedes biofilm formation. The antibiofilm efficacy of this coating is assessed against Staphylococcus aureus and Pseudomonas aeruginosa, demonstrating marked reductions in bacterial viability and biofilm formation in vitro. Additionally, the coating exhibits minimal cytotoxicity and can be easily applied to diverse substrates. This study underscores the potential of this coating as a broad-spectrum, non-toxic approach for preventing biofilm-related complications in biomedical applications.
Collapse
Affiliation(s)
- Hu Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Dongxu Jia
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Shuaihang Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xinyan Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Wei Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, PR China.
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
10
|
Ren J, Wang C, Gao H, Lu S, Fu C, Wang H, Wang G, Zhu Z, Wu H, Luo W, Zhang Y. Multitasking Asynchronous Collaborative Nanosystem for Diabetic Wound Healing Based on Hypoglycemic, Antimicrobial, and Angiogenesis-Promoting Effects. Adv Healthc Mater 2025; 14:e2403282. [PMID: 39686780 DOI: 10.1002/adhm.202403282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/03/2024] [Indexed: 12/18/2024]
Abstract
A diabetic foot ulcer (DFU) is a common and serious complication of diabetes. This complication can result in amputation and death because of the several challenges associated with wound healing that can be attributed to the complex wound microenvironment, including biofilm infection, hyperglycemia, and diabetic angiopathy. Existing investigations on the wound-healing rate consider only one or two pathogenic factors, and therefore, despite the extensive research on these pathological microenvironments, there is an urgent need to optimize the wound-healing rate in patients with diabetic foot ulcers. To this end, a multitasking asynchronous collaborative nanosystem is designed in this study. The designed nanosystem can efficiently clear biofilm infections using optimized photodynamic therapy based on a poly photosensitizer ionic liquid (i.e., Ce6IL), reduce local blood glucose concentration using glucose oxidase, and reconstruct blood vessels by stimulating endothelial cell proliferation and migration using nitric oxide. The experimental results indicate that the three-step sequential collaboration strategy for clearing biofilm infections, reducing glucose concentrations, and reconstructing damaged blood vessels can help significantly accelerate wound healing rate in patients with diabetic foot ulcers.
Collapse
Affiliation(s)
- Jun Ren
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| | - Chaoli Wang
- Department of pharmacy, Air Force Medical University, 169 Changlexi Rd, Xi'an, Shaanxi, 710032, China
| | - Hao Gao
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| | - Shuaikun Lu
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| | - Congxiao Fu
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| | - Hu Wang
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| | - Guoliang Wang
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| | - Zhenfeng Zhu
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| | - Hong Wu
- Department of pharmacy, Air Force Medical University, 169 Changlexi Rd, Xi'an, Shaanxi, 710032, China
| | - Wen Luo
- Department of Ultrasonography, First Affiliated Hospital, Air Force Medical University, 169 Changlexi Rd, Xi'an, Shaanxi, 710032, China
| | - Yunfei Zhang
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| |
Collapse
|
11
|
Yu W, Wang Q, Liu Z, Gan H, Wu Q, Guo N, Zeng W, Li S, Liu Y. Metal-phenolic network crosslinked nanogel with prolonged biofilm retention for dihydroartemisinin/NIR synergistically enhanced chemodynamic therapy. J Colloid Interface Sci 2025; 678:841-853. [PMID: 39321640 DOI: 10.1016/j.jcis.2024.09.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Chemodynamic therapy (CDT) is emerging as a promising treatment for biofilm infections. However, its effectiveness is significantly hindered by several factors: the body's stable temperature, a limited supply of Fe2+ ions, and inadequate endogenous levels of H2O2 at the infection sites. Herin, our study introduces MPN-crosslinked hyaluronic acid (HA) nanogels as an effective strategy for treating biofilm-associated infections. The DHA@HA-TA/Fe (DHTF) nanogel is synthesized through the coordination reaction between Fe2+ ions and tannic acid (TA)-modified HA, with dihydroartemisinin (DHA) encapsulated within the structure. DHTF exhibits pH-/hyaluronidase-responsiveness in the biofilm infection microenvironment, enabling sustained release of DHA as a substitute for H2O2 and Fe2+ for CDT. The incorporation of Fe2+/TA-based MPN and DHA within the nanogels enables photothermal/DHA dually-enhanced CDT, facilitating efficient disruption of biofilm matrices and bacterial eradication through boosting reactive oxygen species production. In vivo studies demonstrate that DHTF exhibit prolonged retention within biofilms. This ensures a sustained release of therapeutic agents and continuous anti-biofilm activity. Eventually, both in vitro and in vivo evaluations consistently confirm the significant anti-biofilm capacity of DHTF. Our findings highlight the potential of DHTF as a promising nanomedicine for biofilm-related infections, offering efficient treatment strategies that could improve clinical management of these challenging conditions.
Collapse
Affiliation(s)
- Wenhua Yu
- School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Qing Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Zhongjia Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Huixuan Gan
- School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Quanxin Wu
- School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Ning Guo
- School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Weishen Zeng
- Dongguan Children's Hospital, Dongguan 523000, China.
| | - Shiying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Yun Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523000, China.
| |
Collapse
|
12
|
Zhang J, Dong H, Liu B, Yang D. Biomimetic Materials for Antibacterial Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408543. [PMID: 39575483 DOI: 10.1002/smll.202408543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Indexed: 01/23/2025]
Abstract
The rise of antibiotic resistance poses a critical threat to global health, necessitating the development of novel antibacterial strategies to mitigate this growing challenge. Biomimetic materials, inspired by natural biological systems, have emerged as a promising solution in this context. These materials, by mimicking biological entities such as plants, animals, cells, viruses, and enzymes, offer innovative approaches to combat bacterial infections effectively. This review delves into the integration of biomimicry with materials science to develop antibacterial agents that are not only effective but also biocompatible and less likely to induce resistance. The study explores the design and function of various biomimetic antibacterial materials, highlighting their therapeutic potential in anti-infection applications. Further, the study provides a comprehensive summary of recent advancements in this field, illustrating how these materials have been engineered to enhance their efficacy and safety. The review also discusses the critical challenges facing the transition of these biomimetic strategies from the laboratory to clinical settings, such as scalability, cost-effectiveness, and long-term stability. Lastly, the study discusses the vast opportunities that biomimetic materials hold for the future of antibacterial therapy, suggesting that continued research and multidisciplinary collaboration will be essential to realize their full potential.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Bing Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| |
Collapse
|
13
|
Zhang K, Li Q, Gong C, Mao H, Han D. Inhibitory effect of andrographolide on the expression of key regulatory genes in Staphylococcus epidermidis biofilm formation. J Mol Histol 2024; 56:53. [PMID: 39714542 DOI: 10.1007/s10735-024-10295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024]
Abstract
The purpose of this study was to explore the inhibitory effect of andrographolide on the expression of key regulatory genes involved in the biofilm formation of Staphylococcus epidermidis (SE). Taking the film-producing strain Staphylococcus epidermidis SE1457 as the research object, the effect of andrographolide on the formation of Staphylococcus epidermidis biofilms was analyzed via crystal violet staining, and biofilm models of SE adhesion, aggregation and maturity were established in vitro. RT‒PCR was used to detect the effects of the expression of icaA-, atlE-, aap- and luxS-related genes of andrographolide on biofilm formation in SE. Congo red qualitative test to evaluate the ability of andrographolide to inhibit biofilm formation of Staphylococcus epidermidis. Compared with that of the control group, the light absorption value of the low- and high-concentration andrographolide groups was significantly lower, and the light absorption value of the high-concentration andrographolide group was significantly lower than that of the low-concentration andrographolide group. The levels of key genes involved in the adhesion, aggregation and maturation of icaA, atlE, aap and luxS in group C were greater than those in group B. The biofilm-forming ability of SE in group A was strong, and the colonies were obviously black. The colony in the direction of the arrow in group B was red, and the SE biofilm was inhibited. Most of the colonies in group C were red. SE biofilms were significantly inhibited. Andrographolide inhibits SE biofilm formation, and its mechanism may involve inhibition of the expression of the related genes icaA, atlE, aap and luxS.
Collapse
Affiliation(s)
- Kangjian Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan City, 250000, Shandong Province, China
| | - Qing Li
- Department of Clinical Laboratory, The Third People's Hospital of Jinan, Jinan, 250000, Shandong Province, China
| | - Chengxia Gong
- Department of Emergency, The Second Hospital of Shandong University, Jinan, 250000, Shandong Province, China
| | - Huihui Mao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan City, 250000, Shandong Province, China
| | - Daobin Han
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan City, 250000, Shandong Province, China.
| |
Collapse
|
14
|
Mei L, Zhang Y, Wang K, Chen S, Song T. Nanomaterials at the forefront of antimicrobial therapy by photodynamic and photothermal strategies. Mater Today Bio 2024; 29:101354. [PMID: 39655165 PMCID: PMC11626539 DOI: 10.1016/j.mtbio.2024.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
In the face of the increasing resistance of microorganisms to traditional antibiotics, the development of innovative treatment methods is becoming increasingly urgent. Nanophototherapy technology can precisely target the infected area and achieve synergistic antibacterial effects in multiple modes. This phototherapy method has shown significant efficacy in treating diseases caused by drug-resistant bacteria, especially in the elimination of biofilms, where it has demonstrated strong dissolution capabilities. PTT utilizes photothermal agents to convert near-infrared light into heat, effectively killing bacteria and promoting tissue regeneration. Similarly, PDT utilizes photosensitizers, which produce reactive oxygen species (ROS) when activated by light, destroying the structure and function of bacterial cells. This review summarizes photothermal agents and photosensitizers used for antibacterial purposes. In conducting our literature review, we employed a systematic approach to ensure a comprehensive and representative selection of studies. Additionally, this article explores the potential of phototherapy in regulating wound microenvironments, promoting wound healing, and activating the immune system. Nanophototherapeutic materials show great potential for application in antibacterial treatment and are expected to provide innovative solutions for drug-resistant bacterial infections that traditional antibiotics are struggling to address.
Collapse
Affiliation(s)
- Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yifan Zhang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Kaixi Wang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Sijing Chen
- Sichuan Electric Power Hospital, Chengdu, Sichuan Province, China
| | - Tao Song
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
15
|
Ge M, Jiang F, Lin H. Nanocatalytic medicine enabled next-generation therapeutics for bacterial infections. Mater Today Bio 2024; 29:101255. [PMID: 39381264 PMCID: PMC11459013 DOI: 10.1016/j.mtbio.2024.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024] Open
Abstract
The rapid rise of antibiotic-resistant strains and the persistence of biofilm-associated infections have significantly challenged global public health. Unfortunately, current clinical high-dose antibiotic regimens and combination therapies often fail to completely eradicate these infections, which can lead to adverse side effects and further drug resistance. Amidst this challenge, however, the burgeoning development in nanotechnology and nanomaterials brings hopes. This review provides a comprehensive summary of recent advancements in nanomaterials for treating bacterial infections. Firstly, the research progress of catalytic therapies in the field of antimicrobials is comprehensively discussed. Thereafter, we systematically discuss the strategies of nanomaterials for anti-bacterial infection therapies, including endogenous response catalytic therapy, exogenous stimulation catalytic therapy, and catalytic immunotherapy, in order to elucidate the mechanism of nanocatalytic anti-infections. Based on the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.
Collapse
Affiliation(s)
- Min Ge
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feng Jiang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Han Lin
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, China
| |
Collapse
|
16
|
Sun Q, Jia A, Zhao M, Wang K, Sun T, Xie Z. A BODIPY derivative for PDT/PTT synergistic treatment of bacterial infections. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113049. [PMID: 39476745 DOI: 10.1016/j.jphotobiol.2024.113049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 12/10/2024]
Abstract
Phototherapeutic antimicrobials, including photodynamic and photothermal antimicrobials, are considered effective alternatives for antibiotic strategy due to their broad-spectrum antibacterial activity and low risk of resistance. Here, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivative containing triphenylamine groups was co-assembled with Pluronic F-127 (F-127) to form nanoparticles (BICF NPs). BICF NPs have excellent photodynamic and photothermal properties and are demonstrated to be effective in inhibiting and disrupting bacterial biofilms, thereby promoting the healing of subcutaneous abscesses. This work provides a new avenue for antibiotic replacement therapy.
Collapse
Affiliation(s)
- Qijia Sun
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Aoqing Jia
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Min Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China.
| | - Tingting Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | - Zhigang Xie
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| |
Collapse
|
17
|
Hu Y, Ding M, Lv X, Jiang J, Zhang J, Yang D. Stimuli-Responsive NO Delivery Platforms for Bacterial Infection Treatment. Adv Healthc Mater 2024; 13:e2402240. [PMID: 39171769 DOI: 10.1002/adhm.202402240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Indexed: 08/23/2024]
Abstract
The prevalence of drug-resistant bacterial infections has emerged as a grave threat to clinical treatment and global human health, presenting one of the foremost challenges in medical care. Thus, there is an urgent imperative to develop safe and efficacious novel antimicrobial strategies. Nitric oxide (NO) is a recognized endogenous signaling molecule, which plays a pivotal role in numerous pathological processes. Currently, NO has garnered significant interest as an antibacterial agent due to its capability to eradicate bacteria, disrupt biofilms, and facilitate wound healing, all while circumventing the emergence of drug resistance. However, the inherently unstable characteristic of NO therapeutic gas renders the controlled administration of NO gases exceedingly challenging. Hence, in this review, the current challenge of bacterial infection is discussed; then it is briefly elucidated the antibacterial mechanism of NO and comprehensively delineate the recent advancements in stimulus-responsive NO delivery platforms, along with their merits, obstacles, and prospective avenues for clinical application. This review offers guidance for future advancements in NO-medicated anti-infection therapy is hoped.
Collapse
Affiliation(s)
- Yanling Hu
- College of Life and Health, Nanjing Polytechnic Institute, Nanjing, 210048, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| |
Collapse
|
18
|
Nagy-Radványi L, Ormai E, Koloh R, Ángyán VD, Kocsis B, Bencsik-Kerekes E, Szabó P, Csikós E, Farkas Á, Horváth G, Kocsis M, Balázs VL. Biofilm Inhibition Activity of Fennel Honey, Fennel Essential Oil and Their Combination. Microorganisms 2024; 12:2309. [PMID: 39597697 PMCID: PMC11596660 DOI: 10.3390/microorganisms12112309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
The eradication of bacterial biofilms remains a persistent challenge in medicine, particularly because an increasing number of biofilms exhibit resistance to conventional antibiotics. This underscores the importance of searching for novel compounds that present antibacterial and biofilm inhibition activity. Various types of honey and essential oil were proven to be effective against a number of biofilm-forming bacterial strains. The current study demonstrated the effectiveness of the relatively unexplored fennel honey (FH), fennel essential oil (FEO), and their combination against biofilm-forming bacterial strains Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and Escherichia coli, with a series of in vitro experiments. The authenticity of FH and FEO was checked with light microscopy and gas chromatography-mass spectrometry, respectively. Minimum inhibitory concentrations were determined using the microdilution method, and antibiofilm activity was assessed with crystal violet assay. Structural changes in bacterial cells and biofilms, induced by the treatments, were monitored with scanning electron microscopy. FEO and FH inhibited the biofilm formation of each bacterial strain, with FEO being more effective compared to FH. Their combination was the most effective, with inhibitory rates ranging between 87 and 92%, depending on the bacterial strain. The most sensitive bacterium was E. coli, while P. aeruginosa was the most resistant. These results provide justification for the combined use of honey and essential oil to suppress bacterial biofilms and can serve as a starting point to develop an effective surface disinfectant with natural ingredients.
Collapse
Affiliation(s)
- Lilla Nagy-Radványi
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (L.N.-R.); (E.O.); (R.K.); (V.D.Á.); (E.C.); (Á.F.); (G.H.); (V.L.B.)
| | - Edit Ormai
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (L.N.-R.); (E.O.); (R.K.); (V.D.Á.); (E.C.); (Á.F.); (G.H.); (V.L.B.)
| | - Regina Koloh
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (L.N.-R.); (E.O.); (R.K.); (V.D.Á.); (E.C.); (Á.F.); (G.H.); (V.L.B.)
| | - Virág Diána Ángyán
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (L.N.-R.); (E.O.); (R.K.); (V.D.Á.); (E.C.); (Á.F.); (G.H.); (V.L.B.)
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Erika Bencsik-Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary;
| | - Péter Szabó
- Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary;
| | - Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (L.N.-R.); (E.O.); (R.K.); (V.D.Á.); (E.C.); (Á.F.); (G.H.); (V.L.B.)
| | - Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (L.N.-R.); (E.O.); (R.K.); (V.D.Á.); (E.C.); (Á.F.); (G.H.); (V.L.B.)
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (L.N.-R.); (E.O.); (R.K.); (V.D.Á.); (E.C.); (Á.F.); (G.H.); (V.L.B.)
| | - Marianna Kocsis
- Department of Agricultural Biology, Institute of Biology, University of Pécs, 7624 Pécs, Hungary
| | - Viktória Lilla Balázs
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (L.N.-R.); (E.O.); (R.K.); (V.D.Á.); (E.C.); (Á.F.); (G.H.); (V.L.B.)
| |
Collapse
|
19
|
Du J, Yang C, Deng Y, Guo H, Gu M, Chen D, Liu X, Huang J, Yan W, Liu J. Discovery of AMPs from random peptides via deep learning-based model and biological activity validation. Eur J Med Chem 2024; 277:116797. [PMID: 39197254 DOI: 10.1016/j.ejmech.2024.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
The ample peptide field is the best source for discovering clinically available novel antimicrobial peptides (AMPs) to address emerging drug resistance. However, discovering novel AMPs is complex and expensive, representing a major challenge. Recent advances in artificial intelligence (AI) have significantly improved the efficiency of identifying antimicrobial peptides from large libraries, whereas using random peptides as negative data increases the difficulty of discovering antimicrobial peptides from random peptides using discriminative models. In this study, we constructed three multi-discriminator models using deep learning and successfully screened twelve AMPs from a library of 30,000 random peptides. three candidate peptides (P2, P11, and P12) were screened by antimicrobial experiments, and further experiments showed that they not only possessed excellent antimicrobial activity but also had extremely low hemolytic activity. Mechanistic studies showed that these peptides exerted their bactericidal effects through membrane disruption, thus reducing the possibility of bacterial resistance. Notably, peptide 12 (P12) showed significant efficacy in a mouse model of Staphylococcus aureus wound infection with low toxicity to major organs at the highest tested dose (400 mg/kg). These results suggest deep learning-based multi-discriminator models can identify AMPs from random peptides with potential clinical applications.
Collapse
Affiliation(s)
- Jun Du
- School of Basic Medical Sciences, Lanzhou University, Donggang West Road, Lanzhou, 730000, China; Gansu Provincial Maternity and Child Care Hospital, North Road 143, Qilihe District, Lanzhou, 730000, China
| | - Changyan Yang
- School of Basic Medical Sciences, Lanzhou University, Donggang West Road, Lanzhou, 730000, China; Gansu Provincial Maternity and Child Care Hospital, North Road 143, Qilihe District, Lanzhou, 730000, China
| | - Yabo Deng
- School of Basic Medical Sciences, Lanzhou University, Donggang West Road, Lanzhou, 730000, China
| | - Hai Guo
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Mengyun Gu
- School of Basic Medical Sciences, Lanzhou University, Donggang West Road, Lanzhou, 730000, China
| | - Danna Chen
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Xia Liu
- School of Basic Medical Sciences, Lanzhou University, Donggang West Road, Lanzhou, 730000, China.
| | - Jinqi Huang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Wenjin Yan
- School of Basic Medical Sciences, Lanzhou University, Donggang West Road, Lanzhou, 730000, China.
| | - Jian Liu
- Gansu Provincial Maternity and Child Care Hospital, North Road 143, Qilihe District, Lanzhou, 730000, China.
| |
Collapse
|
20
|
Lin S, Li X, Zhang W, Shu G, Li H, Xu F, Lin J, Peng G, Zhang L, Fu H. Encapsulation nanoarchitectonics of glabridin with sophorolipid micelles for addressing biofilm hazards via extracellular polymeric substance permeation and srtA gene suppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117150. [PMID: 39423506 DOI: 10.1016/j.ecoenv.2024.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Biofilm, a common drug-resistant phenotype of Staphylococcus aureus (S. aureus), demonstrates significant drug resistance and recurrence due to its extracellular polymeric substance (EPS) barrier and subsequent bacterial migration. Hence, there is an urgent need for effective solutions to mitigate the hazards posed by biofilms. RESULT This study developed a stable, low-toxicity multifunctional nanomicelle, GLA@SOL/EYL, by encapsulating glabridin (GLA) using sophorolipid (SOL) and egg yolk lecithin (EYL). Optimizations were performed for the hydration medium, the ratio of carrier materials to GLA, and EYL additions. GLA@SOL/EYL exhibited a particle size of 122.1 ± 0.8 nm and a surface potential of -66.4 ± 1.7 mV, endowing it with the ability to permeate biofilms EPS effectively. GLA@SOL/EYL encapsulated 98.3 ± 1.2 % of GLA and demonstrated a slow-release effect, significantly enhancing the bioavailability of GLA. The addition of EYL reduced the hemolytic toxicity of GLA@SOL/EYL and improved its encapsulation rate and stability. GLA@SOL/EYL reduced the minimum inhibitory concentration of GLA to 8 μg/mL and extended its inhibitory effect at low concentrations by rapidly disrupting the structural integrity of S. aureus. GLA@SOL/EYL may penetrate biofilms to disperse EPS and remove twice as much biofilm as GLA alone, thereby eliminating 99.99 % of S. aureus within biofilms, compared to 99 % bactericidal efficacy of GLA. Additionally, GLA@SOL/EYL inhibited 63.8 ± 1.8 % of biofilm formation by affecting the expression of the srtA gene, thereby reducing the expression of cell wall-anchoring protein genes. In contrast, the biofilm inhibition rates of GLA and blank micelles were less than 10 %. CONCLUSION GLA@SOL/EYL utilizes the nanoparticle effect to penetrate biofilms and deliver antimicrobial GLA. The SOL disperses the biofilm matrix while GLA is released to kill S. aureus, preventing bacterial dissemination and colonization. Thus, GLA@SOL/EYL presents an innovative strategy for effectively eradicating S. aureus biofilms and preventing new hazards in a one-step approach.
Collapse
Affiliation(s)
- Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaojuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Li Zhang
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan 610041, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
21
|
Bai X, Peng W, Tang Y, Wang Z, Guo J, Song F, Yang H, Huang C. An NIR-propelled janus nanomotor with enhanced ROS-scavenging, immunomodulating and biofilm-eradicating capacity for periodontitis treatment. Bioact Mater 2024; 41:271-292. [PMID: 39149593 PMCID: PMC11324457 DOI: 10.1016/j.bioactmat.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Periodontitis is an inflammatory disease caused by bacterial biofilms, which leads to the destruction of periodontal tissue. Current treatments, such as mechanical cleaning and antibiotics, struggle to effectively address the persistent biofilms, inflammation, and tissue damage. A new approach involves developing a Janus nanomotor (J-CeM@Au) by coating cerium dioxide-doped mesoporous silica (CeM) with gold nanoparticles (AuNPs). This nanomotor exhibits thermophoretic motion when exposed to near-infrared (NIR) laser light due to the temperature gradient produced by the photothermal effects of asymmetrically distributed AuNPs. The NIR laser provides the energy for propulsion and activates the nanomotor's antibacterial properties, allowing it to penetrate biofilms and kill bacteria. Additionally, the nanomotor's ability to scavenge reactive oxygen species (ROS) can modulate the immune response and create a regenerative environment, promoting the healing of periodontal tissue. Overall, this multifunctional nanomotor offers a promising new approach for treating periodontitis by simultaneously addressing biofilm management and immune modulation with autonomous movement.
Collapse
Affiliation(s)
- Xuan Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wenan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ying Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ziming Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingmei Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Fangfang Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Hongye Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
22
|
Huang J, Feng X, Zhao Y, Yi B, Li W, Zeng X, Xu H. Coral-like AgNPs hybrided MOFs modulated with biopolymer polydopamine for synergistic antibacterial and biofilm eradication. Int J Biol Macromol 2024; 282:137080. [PMID: 39481715 DOI: 10.1016/j.ijbiomac.2024.137080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Bacterial contamination is an intractable challenge in food safety, environments and biomedicine fields, and places a heavy burden on society. Polydopamine (PDA), a high molecular biopolymer, is considered as a promising candidate to participate in the design of novel antibacterial agents with unique contributions in biocompatibility, adherence, photothermal and metal coordination ability. In this study, coral-like ZIFL-PDA@AgNPs with excellent antibacterial properties and biocompatibility were prepared by embedding AgNPs into the biopolymer PDA-modulated ZIFL-PDA nanostructures by green reduction method to solve the problem with poor stability of AgNPs. Based on the plasma resonance effect of AgNPs, coral-like ZIFL-PDA@AgNPs had enhanced photothermal properties compared with ZIFL-PDA. Due to the synergistic effect between antibacterial metal ions mainly Ag+ and the photothermal effect, coral-like ZIFL-PDA@AgNPs showed enhanced anti-mature biofilm and antibacterial properties, which was dependent on its concentration and sterilization time. In addition, regulated by the ZIFL-PDA nanostructure, coral-like ZIFL-PDA@AgNPs demonstrated a unique Ag+ long-time sustained release behavior, giving it an extended antibacterial validity period and good biocompatibility. Antibacterial mechanism experiments indicated that coral-like ZIFL-PDA@AgNPs can significantly damage the integrity of bacterial cell membrane, reduce the content of ATP in bacterial by affecting the activity of succinate dehydrogenase, and induce the accumulation of reactive oxygen species, ultimately leading to bacterial death.
Collapse
Affiliation(s)
- Jin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Yi Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Bo Yi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Xianxiang Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, PR China.
| |
Collapse
|
23
|
Bi Y, Chen X, Luo F, Wang X, Chen X, Yao J, Shao Z. Magnetic silk fibroin nanospheres loaded with amphiphilic polypeptides and antibiotics for biofilm eradication. Biomater Sci 2024; 12:5337-5348. [PMID: 39248307 DOI: 10.1039/d4bm01065e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The eradication of established biofilms is a highly challenging task, due to the protective barrier effect of extracellular polymeric substances (EPS) and the presence of persister cells. Both increased drug permeability and elimination of persister cells are essential for the eradication of biofilms. Here, magnetic silk fibroin nanospheres loaded with antibiotics and host defense peptide (HDP) mimics (MPSN/S@P) were developed to demonstrate a new strategy for biofilm eradication. As an HDP mimic, an amphiphilic polypeptide containing 90% L-lysine and 10% L-valine (Lys90Val10) was selected for loading onto magnetic silk fibroin nanospheres via electrostatic interactions. Lys90Val10 exhibited excellent antibacterial activities against both planktonic and persister cells of Staphylococcus aureus (S. aureus). As a representative of the hydrophobic drug, spiramycin (SPM) was conveniently embedded into the β-sheet domain during the self-assembly process of silk fibroin. The sustained release of SPM during biofilm eradication enhanced the antibacterial efficacy of MPSN/S@P. The antibacterial test demonstrated that the extract from the MPSN/S@P suspension can kill both planktonic and persister cells of S. aureus, as well as inhibiting biofilm formation. Importantly, with the assistance of magnetic guidance and photothermal effects derived from Fe3O4 nanoparticles (Fe3O4 NPs), over 92% of bacteria in the biofilm were killed by MPSN/S@P, indicating the successful eradication of mature biofilms. The simple preparation method, integration of photothermal and magnetic responsiveness, and persister cell killing functions of MPSN/S@P provide an accessible strategy and illustrative paradigm for efficient biofilm eradication.
Collapse
Affiliation(s)
- Yufang Bi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P.R. China.
| | - Xuyang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P.R. China.
| | - Feiyu Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P.R. China.
| | - Xiehe Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P.R. China.
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P.R. China.
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P.R. China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P.R. China.
| |
Collapse
|
24
|
Li H, Jiang J, Lv X, Xu Y, Wang W, Yang D, Dong X. Enzyme-Like Photocatalytic Octahedral Rh/Ag 2MoO 4 Accelerates Diabetic Wound Healing by Photo-Eradication of Pathogen and Relieving Wound Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402723. [PMID: 38895951 DOI: 10.1002/smll.202402723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The harsh environment of diabetic wounds, including bacterial infection and wound hypoxia, is not conducive to wound healing. Herein, an enzyme-like photocatalytic octahedral Rh/Ag2MoO4 is developed to manage diabetic-infected wounds. The introduction of Rh nanoparticles with catalase-like catalytic activity can enhance the photothermal conversion and photocatalytic performance of Rh/Ag2MoO4 by improving near-infrared absorbance and promoting the separation of electron-hole pairs, respectively. Rh/Ag2MoO4 can effectively eliminate pathogens through a combination of photothermal and photocatalytic antibacterial therapy. After bacteria inactivation, Rh/Ag2MoO4 can catalyze hydrogen peroxide to produce oxygen to alleviate the hypoxic environment of diabetic wounds. The in vivo treatment effect demonstrated the excellent therapeutic performance of Rh/Ag2MoO4 on diabetic infected wounds by removing infectious pathogens and relieving oxygen deficiency, confirming the potential application of Rh/Ag2MoO4 in the treatment of diabetic infected wounds.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yan Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
25
|
Hou Z, Ren X, Sun Z, An R, Huang M, Gao C, Yin M, Liu G, He D, Du H, Tang R. Trash into Treasure: Nano-coating of Catheter Utilizes Urine to Deprive H 2S Against Persister and Rip Biofilm Matrix. Adv Healthc Mater 2024; 13:e2401067. [PMID: 39030869 DOI: 10.1002/adhm.202401067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/27/2024] [Indexed: 07/22/2024]
Abstract
Bacteria-derived hydrogen sulfide (H2S) often contributes to the emergence of antibiotic-recalcitrant bacteria, especially persister (a sub-population of dormant bacteria), thus causing the treatment failure of Catheter-associated urinary tract infection (CAUTI). Here, an H2S harvester nanosystem to prevent the generation of persister bacteria and disrupt the dense biofilm matrix by the self-adaptive ability of shape-morphing is prepared. The nanosystem possesses a core-shell structure that is composed of liquid metal nanoparticle (LM NP), AgNPs, and immobilized urease. The nanosystem decomposes urea contained in urine to generate ammonia for eliminating bacteria-derived H2S. Depending on the oxidative layer of liquid metal, the nanosystem also constitutes a long-lasting reservoir for temporarily storing bacteria-derived H2S, when urease transiently overloads or in the absence of urine in a catheter. Depriving H2S can prevent the emergence of persistent bacteria, enhancing the bacteria-killing efficiency of Ga3+ and Ag+ ions. Even when the biofilm has formed, the urine flow provides heat to trigger shape morphing of the LM NP, tearing the biofilm matrix. Collectively, this strategy can turn trash (urea) into treasure (H2S scavengers and biofilm rippers), and provides a new direction for the antibacterial materials application in the medical field.
Collapse
Affiliation(s)
- Zhiming Hou
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Xinyu Ren
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Zhuangzhuang Sun
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Ruoqi An
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Mingzhi Huang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Cen Gao
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Mengying Yin
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Guangxiu Liu
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Dengqi He
- Department of Stomatology, The First Hospital of Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hongliang Du
- Department of Stomatology, The First Hospital of Lanzhou University, Lanzhou, 730000, P. R. China
| | - Rongbing Tang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
26
|
Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Strategies for controlling polymicrobial biofilms: A focus on antibiofilm agents. Int J Antimicrob Agents 2024; 64:107243. [PMID: 38908533 DOI: 10.1016/j.ijantimicag.2024.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Polymicrobial biofilms are among the leading causes of antimicrobial treatment failure. In these biofilms, bacterial and fungal pathogens interact synergistically at the interspecies, intraspecies, and interkingdom levels. Consequently, combating polymicrobial biofilms is substantially more difficult compared to single-species biofilms due to their distinct properties and the resulting potential variation in antimicrobial drug efficiency. In recent years, there has been an increased focus on developing alternative strategies for controlling polymicrobial biofilms formed by bacterial and fungal pathogens. Current approaches for controlling polymicrobial biofilms include monotherapy (using either natural or synthetic compounds), combination treatments, and nanomaterials. Here, a comprehensive review of different types of polymicrobial interactions between pathogenic bacterial species or bacteria and fungi is provided along with a discussion of their relevance. The mechanisms of action of individual compounds, combination treatments, and nanomaterials against polymicrobial biofilms are thoroughly explored. This review provides various future perspectives that can advance the strategies used to control polymicrobial biofilms and their likely modes of action. Since the majority of research on combating polymicrobial biofilms has been conducted in vitro, it would be an essential step in performing in vivo tests to determine the clinical effectiveness of different treatments against polymicrobial biofilms.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
27
|
Xu Q, Li Q, Ding M, Xiu W, Zhang B, Xue Y, Wang Q, Yang D, Dong H, Teng Z, Mou Y. Flexible nanoplatform facilitates antibacterial phototherapy by simultaneously enhancing photosensitizer permeation and relieving hypoxia in bacterial biofilms. Acta Biomater 2024; 184:313-322. [PMID: 38897337 DOI: 10.1016/j.actbio.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Antimicrobial phototherapy has gained recognition as a promising approach for addressing bacterial biofilms, however, its effectiveness is often impeded by the robust physical and chemical defenses of the biofilms. Traditional antibacterial nanoplatforms face challenges in breaching the extracellular polymeric substances barrier to efficiently deliver photosensitizers deep into biofilms. Moreover, the prevalent hypoxia within biofilms restricts the success of oxygen-reliant phototherapy. In this study, we engineered a soft mesoporous organosilica nanoplatform (SMONs) by incorporating polyethylene glycol (PEG), catalase (CAT), and indocyanine green (ICG), forming SMONs-PEG-CAT-ICG (SPCI). We compared the antimicrobial efficacy of SPCI with more rigid nanoplatforms. Our results demonstrated that unique flexible mechanical properties of SPCI enable it to navigate through biofilm barriers, markedly enhancing ICG penetration in methicillin-resistant Staphylococcus aureus (MRSA) biofilms. Notably, in a murine subcutaneous MRSA biofilm infection model, SPCI showed superior biofilm penetration and pharmacokinetic benefits over its rigid counterparts. The embedded catalase in SPCI effectively converts excess H2O2 present in infected tissues into O2, alleviating hypoxia and significantly boosting the antibacterial performance of phototherapy. Both in vitro and in vivo experiments confirmed that SPCI surpasses traditional rigid nanoplatforms in overcoming biofilm barriers, offering improved treatment outcomes for infections associated with bacterial biofilms. This study presents a viable strategy for managing bacterial biofilm-induced diseases by leveraging the unique attributes of a soft mesoporous organosilica-based nanoplatform. STATEMENT OF SIGNIFICANCE: This research introduces an innovative antimicrobial phototherapy soft nanoplatform that overcomes the inherent limitations posed by the protective barriers of bacterial biofilms. By soft nanoplatform with flexible mechanical properties, we enhance the penetration and delivery of photosensitizers into biofilms. The inclusion of catalase within this soft nanoplatform addresses the hypoxia in biofilms by converting hydrogen peroxide into oxygen in infected tissues, thereby amplifying the antibacterial effectiveness of phototherapy. Compared to traditional rigid nanoplatforms, this flexible nanoplatform not only promotes the delivery of therapeutic agents but also sets a new direction for treating bacterial biofilm infections, offering significant implications for future antimicrobial therapies.
Collapse
Affiliation(s)
- Qinglin Xu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Qiang Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Weijun Xiu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Bingqing Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yiwen Xue
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Qiyu Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
28
|
Pang C, Li B, Tu Z, Ling J, Tan Y, Chen S, Hong L. Self-Assembled Borneol-Guanidine-Based Amphiphilic Polymers as an Efficient Antibiofilm Agent. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38429-38441. [PMID: 38943568 DOI: 10.1021/acsami.4c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Biofilm-associated infections remain a tremendous obstacle to the treatment of microbial infections globally. However, the poor penetrability to a dense extracellular polymeric substance matrix of traditional antibacterial agents limits their antibiofilm activity. Here, we show that nanoaggregates formed by self-assembly of amphiphilic borneol-guanidine-based cationic polymers (BGNx-n) possess strong antibacterial activity and can eliminate mature Staphylococcus aureus (S. aureus) biofilms. The introduction of the guanidine moiety improves the hydrophilicity and membrane penetrability of BGNx-n. The self-assembled nanoaggregates with highly localized positive charges are expected to enhance their interaction with negatively charged bacteria and biofilms. Furthermore, nanoaggregates dissociate on the surface of biofilms into smaller BGNx-n polymers, which enhances their ability to penetrate biofilms. BGNx-n nanoaggregates that exhibit superior antibacterial activity have the minimum inhibitory concentration (MIC) of 62.5 μg·mL-1 against S. aureus and eradicate mature biofilms at 4 × MIC with negligible hemolysis. Taken together, this size-variable self-assembly system offers a promising strategy for the development of effective antibiofilm agents.
Collapse
Affiliation(s)
- Chuming Pang
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Biao Li
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zishan Tu
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Jiahao Ling
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Yingxin Tan
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Shiguo Chen
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Liangzhi Hong
- Faculty of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
29
|
He Z, Li Y, Yang L, Li Y, Cao D, Wang S, Xie J, Yan X. Sunlight-triggered prebiotic nanomotors for inhibition and elimination of pathogen and biofilm in aquatic environment. J Colloid Interface Sci 2024; 665:634-642. [PMID: 38552580 DOI: 10.1016/j.jcis.2024.03.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Pathogen contamination in drinking water sources causes waterborne infectious diseases, seriously threatening human health. Nowadays, stimuli-responsive self-propelled nanomotors are appealing therapeutic agents for antibacterial therapy in vivo. However, achieving water disinfection using these nanobots is still a great challenge. Herein, we report on prebiotic galactooligosaccharide-based nanomotors for sunlight-regulated water disinfection. The nanomotors can utilize galactooligosaccharide-based N-nitrosamines as sunlight-responsive fuels for the spontaneous production of antibacterial nitric oxide. Such a solar-to-chemical energy conversion would power the nanomotors for self-diffusiophoresis, which could promote the diffusion of the nanomotors in water and their penetration in the biofilm, significantly enhancing the inhibition and elimination of the pathogens and their biofilms in aquatic environments. After water treatments, the prebiotic-based residual disinfectants can be selectively utilized by beneficial bacteria to effectively relieve safety risks to the environment and human health. The low-energy-cost, green and potent antibacterial nanobots show promising potential in water disinfection.
Collapse
Affiliation(s)
- Zhaoxia He
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yun Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lianjiao Yang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dongsheng Cao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shuai Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jianchun Xie
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xibo Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
30
|
Su Y, Shahriar SSM, Andrabi SM, Wang C, Sharma NS, Xiao Y, Wong SL, Wang G, Xie J. It Takes Two to Tangle: Microneedle Patches Co-delivering Monoclonal Antibodies and Engineered Antimicrobial Peptides Effectively Eradicate Wound Biofilms. Macromol Biosci 2024; 24:e2300519. [PMID: 38217528 DOI: 10.1002/mabi.202300519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/20/2023] [Indexed: 01/15/2024]
Abstract
Wound biofilms pose a great clinical challenge. Herein, this work reports a dissolvable microneedle patch for dual delivery of monoclonal antibodies anti-PBP2a and engineers antimicrobial peptides W379. In vitro antibacterial efficacy testing with microneedle patches containing a combination of 250 ng mL-1 W379 and 250 ng mL-1 anti-BPB2a decreases the bacterial count from ≈3.31 × 107 CFU mL-1 to 1.28 × 102 CFU mL-1 within 2 h without eliciting evident cytotoxicity. Ex vivo testing indicates W379 and anti-PBP2a co-loaded microneedle patch displayed a remarkable reduction of bacterial load by ≈7.18 log CFU after administered only once within 48 h. The bacterial count is significantly diminished compared to the treatment by either W379 or anti-PBP2a-loaded alone microneedle patches. When administered twice within 48 h, no bacteria are identified. Further in vivo study also reveals that after two treatments of W379 and anti-PBP2a co-loaded PVP microneedle patches within 48 h, the bacterial colonies are undetectable in a type II diabetic mouse wound biofilm model. Taken together, W379 and anti-PBP2a co-loaded PVP microneedle patches hold great promise in treating wound biofilms.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shatil S M Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Syed Muntazir Andrabi
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chenlong Wang
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yizhu Xiao
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shannon L Wong
- Department of Surgery-Plastic Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
31
|
Guo X, Zhang X, Yu M, Cheng Z, Feng Y, Chen B. Iron decoration in binary graphene oxide and copper iron sulfide nanocomposites boosting catalytic antibacterial activity in acidic microenvironment against antimicrobial resistance. J Colloid Interface Sci 2024; 661:802-814. [PMID: 38330653 DOI: 10.1016/j.jcis.2024.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
The strong antimicrobial resistance (AMR) of multidrug-resistant (MDR) bacteria and biofilm, especially the biofilm with extracellular polymeric substance (EPS) protection and persister cells, not only renders antibiotics ineffective but also causes chronic infections and makes the infectious tissue difficult to repair. Considering the acidic properties of bacterial infection microenvironment and biofilm, herein, a binary graphene oxide and copper iron sulfide nanocomposite (GO/CuFeSx NC) is synthesized by a surfactant free strategy and utilized as an alternative smart nanozyme to fight against the MDR bacteria and biofilm. For the GO/CuFeSx NC, the iron decoration facilitates the well distribution of bimetallic CuFeSx NPs on the GO surfaces compared to monometallic CuS NPs, providing synergistically enhanced peroxidase (POD)-like activity in acidic medium (pH 4 ∼ 5) and intrinsic strong near infrared (NIR) light responsive photothermal activity, while the ultrathin and sharp structure of 2D GO nanosheet allows the GO/CuFeSx NC to strongly interact with the bacteria and biofilm, facilitating the catalytic and photothermal attacks on the bacterial surfaces. In addition, the GO in GO/CuFeSx NC exhibits a "Pseudo-Photo-Fenton" effect to promote the ROS generation. Therefore, the GO/CuFeSx NC can effectively kill bacteria and biofilm both in vitro and in vivo, finally eliminating the infections and accelerating the tissue repair when treating the biofilm-infected wound. This work paves a new way to the design of novel nanozyme for smart antibacterial therapy against antimicrobial resistance.
Collapse
Affiliation(s)
- Xiaobin Guo
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang 830054, China
| | - Xiaogang Zhang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang 830054, China
| | - Min Yu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zerui Cheng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yonghai Feng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China; Institute of Translational Medicine of Jiangsu University, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
32
|
Zhang J, Liu M, Guo H, Gao S, Hu Y, Zeng G, Yang D. Nanotechnology-driven strategies to enhance the treatment of drug-resistant bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1968. [PMID: 38772565 DOI: 10.1002/wnan.1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
The misuse of antibiotics has led to increased bacterial resistance, posing a global public health crisis and seriously endangering lives. Currently, antibiotic therapy remains the most common approach for treating bacterial infections, but its effectiveness against multidrug-resistant bacteria is diminishing due to the slow development of new antibiotics and the increase of bacterial drug resistance. Consequently, developing new a\ntimicrobial strategies and improving antibiotic efficacy to combat bacterial infection has become an urgent priority. The emergence of nanotechnology has revolutionized the traditional antibiotic treatment, presenting new opportunities for refractory bacterial infection. Here we comprehensively review the research progress in nanotechnology-based antimicrobial drug delivery and highlight diverse platforms designed to target different bacterial resistance mechanisms. We also outline the use of nanotechnology in combining antibiotic therapy with other therapeutic modalities to enhance the therapeutic effectiveness of drug-resistant bacterial infections. These innovative therapeutic strategies have the potential to enhance bacterial susceptibility and overcome bacterial resistance. Finally, the challenges and prospects for the application of nanomaterial-based antimicrobial strategies in combating bacterial resistance are discussed. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Ming Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Haiyang Guo
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Shuwen Gao
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Yanling Hu
- College of Life and Health, Nanjing Polytechnic Institute, Nanjing, China
| | - Guisheng Zeng
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| |
Collapse
|
33
|
Ouyang J, Sun L, She Z, Li R, Zeng F, Yao Z, Wu S. Microneedle System with Biomarker-Activatable Chromophore as Both Optical Imaging Probe and Anti-bacterial Agent for Combination Therapy of Bacterial-Infected Wounds and Outcome Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38593207 DOI: 10.1021/acsami.4c03534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Wounds infected with bacteria, if left untreated, have the potential to escalate into life-threatening conditions, such as sepsis, which is characterized by widespread inflammation and organ damage. A comprehensive approach to treating bacterial-infected wounds, encompassing the control of bacterial infection, biofilm eradication, and inflammation regulation, holds significant importance. Herein, a microneedle (MN) patch (FM@ST MN) has been developed, with silk fibroin (SF) and tannic acid-based hydrogel serving as the matrix. Encapsulated within the MNs are the AIEgen-based activatable probe (FQ-H2O2) and the NLRP3 inhibitor MCC950, serving as the optical reporter/antibacterial agent and the inflammation regulator, respectively. When applied onto bacterial-infected wounds, the MNs in FM@ST MN penetrate bacterial biofilms and gradually degrade, releasing FQ-H2O2 and MCC950. The released FQ-H2O2 responds to endogenously overexpressed reactive oxygen species (H2O2) at the wound site, generating a chromophore FQ-OH which emits noticeable NIR-II fluorescence and optoacoustic signals, enabling real-time imaging for outcome monitoring; and this chromophore also exhibits potent antibacterial capability due to its dual positive charges and shows negligible antibacterial resistance. However, the NLRP3 inhibitor MCC950, upon release, suppresses the activation of NLRP3 inflammasomes, thereby mitigating the inflammation triggered by bacterial infections and facilitating wound healing. Furthermore, SF in FM@ST MN aids in tissue repair and regeneration by promoting the proliferation of epidermal cells and fibroblasts and collagen synthesis. This MN system, free from antibiotics, holds promise as a solution for treating and monitoring bacterially infected wounds without the associated risk of antimicrobial resistance.
Collapse
Affiliation(s)
- Juan Ouyang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lihe Sun
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zunpan She
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rong Li
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhicheng Yao
- Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
34
|
Zhang J, Guo H, Liu M, Tang K, Li S, Fang Q, Du H, Zhou X, Lin X, Yang Y, Huang B, Yang D. Recent design strategies for boosting chemodynamic therapy of bacterial infections. EXPLORATION (BEIJING, CHINA) 2024; 4:20230087. [PMID: 38855616 PMCID: PMC11022619 DOI: 10.1002/exp.20230087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 06/11/2024]
Abstract
The emergence of drug-resistant bacteria poses a significant threat to people's lives and health as bacterial infections continue to persist. Currently, antibiotic therapy remains the primary approach for tackling bacterial infections. However, the escalating rates of drug resistance coupled with the lag in the development of novel drugs have led to diminishing effectiveness of conventional treatments. Therefore, the development of nonantibiotic-dependent therapeutic strategies has become imperative to impede the rise of bacterial resistance. The emergence of chemodynamic therapy (CDT) has opened up a new possibility due to the CDT can convert H2O2 into •OH via Fenton/Fenton-like reaction for drug-resistant bacterial treatment. However, the efficacy of CDT is limited by a variety of practical factors. To overcome this limitation, the sterilization efficiency of CDT can be enhanced by introducing the therapeutics with inherent antimicrobial capability. In addition, researchers have explored CDT-based combined therapies to augment its antimicrobial effects and mitigate its potential toxic side effects toward normal tissues. This review examines the research progress of CDT in the antimicrobial field, explores various strategies to enhance CDT efficacy and presents the synergistic effects of CDT in combination with other modalities. And last, the current challenges faced by CDT and the future research directions are discussed.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Haiyang Guo
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Ming Liu
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Kaiyuan Tang
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Shengke Li
- Macao Centre for Research and Development in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacau SARChina
| | - Qiang Fang
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Hengda Du
- School of Fundamental SciencesBengbu Medical CollegeBengbuChina
| | - Xiaogang Zhou
- Anhui Key Laboratory of Infection and Immunity, School of Basic MedicineBengbu Medical CollegeBengbuChina
| | - Xin Lin
- School of Optometry and Ophthalmology and Eye Hospital, State Key Laboratory of OptometryOphthalmology and Vision ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| | - Bin Huang
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical SciencesNanjing Tech University (NanjingTech)NanjingChina
| |
Collapse
|
35
|
Lu L, Zhao Y, Li M, Wang X, Zhu J, Liao L, Wang J. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. J Pharm Anal 2024; 14:100906. [PMID: 38634060 PMCID: PMC11022105 DOI: 10.1016/j.jpha.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 04/19/2024] Open
Abstract
Extracellular polymeric substances (EPS) constitutes crucial elements within bacterial biofilms, facilitating accelerated antimicrobial resistance and conferring defense against the host's immune cells. Developing precise and effective antibiofilm approaches and strategies, tailored to the specific characteristics of EPS composition, can offer valuable insights for the creation of novel antimicrobial drugs. This, in turn, holds the potential to mitigate the alarming issue of bacterial drug resistance. Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias, which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds. Considering the pivotal role of EPS in biofilm functionality, it is imperative for EPS research to delve deeper into the analysis of intricate compositions, moving beyond the current focus on polymeric materials. This necessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches. In this study, we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions. Additionally, novel strategies aimed at targeting EPS to enhance biofilm penetration were explored, with a specific focus on highlighting the limitations associated with colorimetric methods. Furthermore, we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges. This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS, thereby inhibiting biofilm formation. This insight opens up a new avenue for exploration within this research domain.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yuting Zhao
- Meishan Pharmaceutical Vocational College, School of Pharmacy, Meishan, Sichuan, 620200, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaobo Wang
- Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, 646000, China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
36
|
Hu C, He G, Yang Y, Wang N, Zhang Y, Su Y, Zhao F, Wu J, Wang L, Lin Y, Shao L. Nanomaterials Regulate Bacterial Quorum Sensing: Applications, Mechanisms, and Optimization Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306070. [PMID: 38350718 PMCID: PMC11022734 DOI: 10.1002/advs.202306070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Anti-virulence therapy that interferes with bacterial communication, known as "quorum sensing (QS)", is a promising strategy for circumventing bacterial resistance. Using nanomaterials to regulate bacterial QS in anti-virulence therapy has attracted much attention, which is mainly attributed to unique physicochemical properties and excellent designability of nanomaterials. However, bacterial QS is a dynamic and multistep process, and there are significant differences in the specific regulatory mechanisms and related influencing factors of nanomaterials in different steps of the QS process. An in-depth understanding of the specific regulatory mechanisms and related influencing factors of nanomaterials in each step can significantly optimize QS regulatory activity and enhance the development of novel nanomaterials with better comprehensive performance. Therefore, this review focuses on the mechanisms by which nanomaterials regulate bacterial QS in the signal supply (including signal synthesis, secretion, and accumulation) and signal transduction cascade (including signal perception and response) processes. Moreover, based on the two key influencing factors (i.e., the nanomaterial itself and the environment), optimization strategies to enhance the QS regulatory activity are comprehensively summarized. Collectively, applying nanomaterials to regulate bacterial QS is a promising strategy for anti-virulence therapy. This review provides reference and inspiration for further research on the anti-virulence application of nanomaterials.
Collapse
Affiliation(s)
- Chen Hu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Guixin He
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yujun Yang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Ning Wang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yanli Zhang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yuan Su
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
- Stomatology CenterShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)Foshan528399China
| | - Fujian Zhao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Junrong Wu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Linlin Wang
- Hainan General Hospital·Hainan Affiliated Hospital of Hainan medical UniversityHaikou570311China
| | - Yuqing Lin
- Shenzhen Luohu People's HospitalShenzhen518000China
| | - Longquan Shao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
37
|
Jiang J, Lv X, Cheng H, Yang D, Xu W, Hu Y, Song Y, Zeng G. Type I photodynamic antimicrobial therapy: Principles, progress, and future perspectives. Acta Biomater 2024; 177:1-19. [PMID: 38336269 DOI: 10.1016/j.actbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The emergence of drug-resistant bacteria has significantly diminished the efficacy of existing antibiotics in the treatment of bacterial infections. Consequently, the need for finding a strategy capable of effectively combating bacterial infections has become increasingly urgent. Photodynamic therapy (PDT) is considered one of the most promising emerging antibacterial strategies due to its non-invasiveness, low adverse effect, and the fact that it does not lead to the development of drug resistance. However, bacteria at the infection sites often exist in the form of biofilm instead of the planktonic form, resulting in a hypoxic microenvironment. This phenomenon compromises the treatment outcome of oxygen-dependent type-II PDT. Compared to type-II PDT, type-I PDT is not constrained by the oxygen concentration in the infected tissues. Therefore, in the treatment of bacterial infections, type-I PDT exhibits significant advantages over type-II PDT. In this review, we first introduce the fundamental principles of type-I PDT in details, including its physicochemical properties and how it generates reactive oxygen species (ROS). Next, we explore several specific antimicrobial mechanisms utilized by type-I PDT and summarize the recent applications of type-I PDT in antimicrobial treatment. Finally, the limitations and future development directions of type-I photosensitizers are discussed. STATEMENT OF SIGNIFICANCE: The misuse and overuse of antibiotics have accelerated the development of bacterial resistance. To achieve the effective eradication of resistant bacteria, pathfinders have devised various treatment strategies. Among these strategies, type I photodynamic therapy has garnered considerable attention owing to its non-oxygen dependence. The utilization of non-oxygen-dependent photodynamic therapy not only enables the effective elimination of drug-resistant bacteria but also facilitates the successful eradication of hypoxic biofilms, which exhibits promising prospects for treating biofilm-associated infections. Based on the current research status, we anticipate that the novel type I photodynamic therapy agent can surmount the biofilm barrier, enabling efficient treatment of hypoxic biofilm infections.
Collapse
Affiliation(s)
- Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Huijuan Cheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wenjia Xu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China.
| | - Yanling Hu
- Nanjing Polytechnic Institute, Nanjing 210048, China.
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Guisheng Zeng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648.
| |
Collapse
|
38
|
Cheng JH, Du R, Sun DW. Regulating bacterial biofilms in food and biomedicine: unraveling mechanisms and Innovating strategies. Crit Rev Food Sci Nutr 2024; 65:1894-1910. [PMID: 38384205 DOI: 10.1080/10408398.2024.2312539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial biofilm has brought a lot of intractable problems in food and biomedicine areas. Conventional biofilm control mainly focuses on inactivation and removal of biofilm. However, with robust construction and enhanced resistance, the established biofilm is extremely difficult to eradicate. According to the mechanism of biofilm development, biofilm formation can be modulated by intervening in the key factors and regulatory systems. Therefore, regulation of biofilm formation has been proposed as an alternative way for effective biofilm control. This review aims to provide insights into the regulation of biofilm formation in food and biomedicine. The underlying mechanisms for early-stage biofilm establishment are summarized based on the key factors and correlated regulatory networks. Recent developments and applications of novel regulatory strategies such as anti/pro-biofilm agents, nanomaterials, functionalized surface materials and physical strategies are also discussed. The current review indicates that these innovative methods have contributed to effective biofilm control in a smart, safe and eco-friendly way. However, standard methodology for regulating biofilm formation in practical use is still missing. As biofilm formation in real-world systems could be far more complicated, further studies and interdisciplinary collaboration are still needed for simulation and experiments in the industry and other open systems.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Rong Du
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
39
|
Jeong GJ, Rather MA, Khan F, Tabassum N, Mandal M, Kim YM. pH-responsive polymeric nanomaterials for the treatment of oral biofilm infections. Colloids Surf B Biointerfaces 2024; 234:113727. [PMID: 38157766 DOI: 10.1016/j.colsurfb.2023.113727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Bacterial and fungal pathogens forming oral biofilms present significant public health challenges due to the failure of antimicrobial drugs. The ability of biofilms to lower pH levels results in dental plaque, leading to gingivitis and cavities. Nanoparticles (NPs) have attracted considerable interest for drug delivery and, thus, as a solution to biofilm-related microbial infections. A novel strategy in this regard involves using pH-responsive polymeric NPs within the acidic microenvironment of oral biofilms. The acidity of the oral biofilm microenvironment is governed by carbohydrate metabolism, accumulation of lactic acid, and extracellular DNA of extracellular polymeric substances by oral biofilm-forming microbial pathogens. This acidity also provides an opportunity to enhance antibacterial activity against biofilm cells using pH-responsive drug delivery approaches. Thus, various polymeric NPs loaded with poorly soluble drugs and responsive to the acidic pH of oral biofilms have been developed. This review focuses on various forms of such polymeric NPs loaded with drugs. The fundamental mechanisms of action of pH-responsive polymeric NPs, their cytological toxicity, and in vivo efficacy testing are thoroughly discussed.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028 Assam, India
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028 Assam, India
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
40
|
Luo Z, Shi T, Ruan Z, Ding C, Huang R, Wang W, Guo Z, Zhan Z, Zhang Y, Chen Y. Quorum Sensing Interference Assisted Therapy-Based Magnetic Hyperthermia Amplifier for Synergistic Biofilm Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304836. [PMID: 37752756 DOI: 10.1002/smll.202304836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Indexed: 09/28/2023]
Abstract
Biofilms offer bacteria a physical and metabolic barrier, enhancing their tolerance to external stress. Consequently, these biofilms limit the effectiveness of conventional antimicrobial treatment. Recently, quorum sensing (QS) has been linked to biofilm's stress response to thermal, oxidative, and osmotic stress. Herein, a multiple synergistic therapeutic strategy that couples quorum sensing interference assisted therapy (QSIAT)-mediated enhanced thermal therapy with bacteria-triggered immunomodulation in a single nanoplatform, is presented. First, as magnetic hyperthermia amplifier, hyaluronic acid-coated ferrite (HA@MnFe2 O4 ) attenuates the stress response of biofilm by down-regulating QS-related genes, including agrA, agrC, and hld. Next, the sensitized bacteria are eliminated with magnetic heat. QS interference and heat also destruct the biofilm, and provide channels for further penetration of nanoparticles. Moreover, triggered by bacterial hyaluronidase, the wrapped hyaluronic acid (HA) decomposes into disaccharides at the site of infection and exerts healing effect. Thus, by reversing the bacterial tissue invasion mechanism for antimicrobial purpose, tissue regeneration following pathogen invasion and thermal therapy is successfully attained. RNA-sequencing demonstrates the QS-mediated stress response impairment. In vitro and in vivo experiments reveal the excellent antibiofilm and anti-inflammatory effects of HA@MnFe2 O4 . Overall, QSIAT provides a universal enhancement strategy for amplifying the bactericidal effects of conventional therapy via stress response interference.
Collapse
Affiliation(s)
- Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Tingwang Shi
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zesong Ruan
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Ding
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Rentai Huang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Wenbo Wang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhao Guo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zeming Zhan
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yunlong Zhang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yunfeng Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
41
|
Guo G, Liu Z, Yu J, You Y, Li M, Wang B, Tang J, Han P, Wu J, Shen H. Neutrophil Function Conversion Driven by Immune Switchpoint Regulator against Diabetes-Related Biofilm Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310320. [PMID: 38035713 DOI: 10.1002/adma.202310320] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Reinforced biofilm structures and dysfunctional neutrophils induced by excessive oxidative stress contribute to the refractoriness of diabetes-related biofilm infections (DRBIs). Herein, in contrast to traditional antibacterial therapies, an immune switchpoint-driven neutrophil immune function conversion strategy based on a deoxyribonuclease I loaded vanadium carbide MXene (DNase-I@V2 C) nanoregulator is proposed to treat DRBIs via biofilm lysis and redirecting neutrophil functions from NETosis to phagocytosis in diabetes. Owing to its intrinsic superoxide dismutase/catalase-like activities, DNase-I@V2 C effectively scavenges reactive oxygen species (ROS) in a high oxidative stress microenvironment to maintain the biological activity of DNase-I. By increasing the depth of biofilm penetration of DNase-I, DNase-I@V2 C thoroughly degrades extracellular DNA and neutrophil extracellular traps (NETs) in extracellular polymeric substances, thus breaking the physical barrier of biofilms. More importantly, as an immune switchpoint regulator, DNase-I@V2 C can skew neutrophil functions from NETosis toward phagocytosis by intercepting ROS-NE/MPO-PAD4 and activating ROS-PI3K-AKT-mTOR pathways in diabetic microenvironment, thereby eliminating biofilm infections. Biofilm lysis and synergistic neutrophil function conversion exert favorable therapeutic effects on biofilm infections in vitro and in vivo. This study serves as a proof-of-principle demonstration of effectively achieving DRBIs with high therapeutic efficacy by regulating immune switchpoint to reverse neutrophil functions.
Collapse
Affiliation(s)
- Geyong Guo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Zihao Liu
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Jinlong Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Yanan You
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Fudan University, Shanghai, 200090, P. R. China
| | - Mingzhang Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Boyong Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Pei Han
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Hao Shen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| |
Collapse
|
42
|
Zhang Y, Li L, Liu H, Zhang H, Wei M, Zhang J, Yang Y, Wu M, Chen Z, Liu C, Wang F, Wu Q, Shi J. Copper(II)-infused porphyrin MOF: maximum scavenging GSH for enhanced photodynamic disruption of bacterial biofilm. J Mater Chem B 2024; 12:1317-1329. [PMID: 38229564 DOI: 10.1039/d3tb02577b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Bacterial biofilm infection is a serious obstacle to clinical therapeutics. Photodynamic therapy (PDT) plays a dynamic role in combating biofilm infection by utilizing reactive oxygen species (ROS)-induced bacterial oxidation injury, showing advantages of mild side effects, spatiotemporal controllability and little drug resistance. However, superfluous glutathione (GSH) present in biofilm and bacteria corporately reduces ROS levels and seriously affects PDT efficiency. Herein, we have constructed a Cu2+-infused porphyrin metal-organic framework (MOF@Cu2+) for the enhanced photodynamic combating of biofilm infection by the maximum depletion of GSH. Our results show that the released Cu2+ from porphyrin MOF@Cu2+ could not only oxidize GSH in biofilm but also consume GSH leaked from ROS-destroyed bacteria, thus greatly weakening the antioxidant system in biofilm and bacteria and dramatically improving the ROS levels. As expected, our dual-enhanced PDT nanoplatform exhibits a strong biofilm eradication ability both in vitro and in an in vivo biofilm-infected mouse model. In addition, Cu2+ can promote biofilm-infected wound closing by provoking cell immigration, collagen sediment and angiogenesis. Besides, no apparent toxicity was detected after treatment with MOF@Cu2+. Overall, our design offers a new paradigm for photodynamic combating biofilm infection.
Collapse
Affiliation(s)
- Yaoxin Zhang
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Linpei Li
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Hui Liu
- Department of Pharmacy, Shangqiu First People's Hospital, Shangqiu 476100, China
| | - Haixia Zhang
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Menghao Wei
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Junqing Zhang
- School of Pharmacy, Henan University, Kaifeng 475004, China.
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China.
| | - Yanwei Yang
- Department of Pharmacy, the First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Mengnan Wu
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhaowei Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China.
- Department of Pharmacy, the First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Faming Wang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, China.
| | - Qiang Wu
- School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China.
| |
Collapse
|
43
|
Yang R, Zhang H, Marfavi Z, Lv Q, Han Y, Sun K, Yuan C, Tao K. Infiltrating Perfluorocarbon Nanoemulsion and Sensitizing Ultrasound Cavitation to Eradicate Biofilms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3126-3138. [PMID: 38191301 DOI: 10.1021/acsami.3c15167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Developing strategies for the treatment of bacterial biofilms is challenging due to their complex and resilient structure, low permeability to therapeutics, and ability to protect resident pathogens. Herein, we demonstrate that a polylysine-stabilized perfluorocarbon nanoemulsion is favored for penetrating biofilms and sensitizing the cavitation effect of low-intensity ultrasound, resulting in the dispersal of extracellular polymeric substances and killing of the protected cells. Through experiments, we observed a complete penetration of the nanoemulsion in a 40 μm Pseudomonas aeruginosa biofilm and demonstrated that it was induced by the fluidic perfluorocarbon, possibly attributing to its low surface tension. Furthermore, we presented an almost complete antibiofilm effect with a low-intensity ultrasound (1 MHz, 0.75 W/cm2, 5 min) in diverse cases, including cultured biofilms, colonized urinary catheters, and chronic wounds. During the treatment process, the perfluorocarbon phase enhanced the number and imploding energy of ultrasound cavities, thoroughly divided the biofilm structure, prevented biofilm self-healing, and sterilized the resident pathogens. Thus, the penetration and sensitization of the nanoemulsion might serve as a facile and potent strategy for eradicating biofilms in various applications.
Collapse
Affiliation(s)
- Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Haoran Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zeinab Marfavi
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Quanjie Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yijun Han
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Congli Yuan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
44
|
Xu Y, Chen B, Xu L, Zhang G, Cao L, Liu N, Wang W, Qian H, Shao M. Urchin-like Fe 3O 4@Bi 2S 3 Nanospheres Enable the Destruction of Biofilm and Efficiently Antibacterial Activities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3215-3231. [PMID: 38205800 DOI: 10.1021/acsami.3c17888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biofilm-associated infections (BAIs) have been considered a major threat to public health, which induce persistent infections and serious complications. The poor penetration of antibacterial agents in biofilm significantly limits the efficiency of combating BAIs. Magnetic urchin-like core-shell nanospheres of Fe3O4@Bi2S3 were developed for physically destructing biofilm and inducing bacterial eradication via reactive oxygen species (ROS) generation and innate immunity regulation. The urchin-like magnetic nanospheres with sharp edges of Fe3O4@Bi2S3 exhibited propeller-like rotation to physically destroy biofilm under a rotating magnetic field (RMF). The mild magnetic hyperthermia improved the generation of ROS and enhanced bacterial eradication. Significantly, the urchin-like nanostructure and generated ROS could stimulate macrophage polarization toward the M1 phenotype, which could eradicate the persistent bacteria with a metabolic inactivity state through phagocytosis, thereby promoting the recovery of implant infection and inhibiting recurrence. Thus, the design of magnetic-driven sharp-shaped nanostructures of Fe3O4@Bi2S3 provided enormous potential in combating biofilm infections.
Collapse
Affiliation(s)
- Yaqian Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Benjin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
| | - Lingling Xu
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Guoqiang Zhang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Limian Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Nian Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Wanni Wang
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Haisheng Qian
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| |
Collapse
|
45
|
Kang X, Yang X, Bu F, Feng W, Liu F, Xie W, Li G, Wang X. GSH/pH Cascade-Responsive Nanoparticles Eliminate Methicillin-Resistant Staphylococcus aureus Biofilm via Synergistic Photo-Chemo Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3202-3214. [PMID: 38207171 DOI: 10.1021/acsami.3c17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Bacterial biofilm infection threatens public health, and efficient treatment strategies are urgently required. Phototherapy is a potential candidate, but it is limited because of the off-targeting property, vulnerable activity, and normal tissue damage. Herein, cascade-responsive nanoparticles (NPs) with a synergistic effect of phototherapy and chemotherapy are proposed for targeted elimination of biofilms. The NPs are fabricated by encapsulating IR780 in a polycarbonate-based polymer that contains disulfide bonds in the main chain and a Schiff-base bond connecting vancomycin (Van) pendants in the side chain (denoted as SP-Van@IR780 NPs). SP-Van@IR780 NPs specifically target bacterial biofilms in vitro and in vivo by the mediation of Van pendants. Subsequently, SP-Van@IR780 NPs are decomposed into small size and achieve deep biofilm penetration due to the cleavage of disulfide bonds in the presence of GSH. Thereafter, Van is then detached from the NPs because the Schiff base bonds are broken at low pH when SP@IR780 NPs penetrate into the interior of biofilm. The released Van and IR780 exhibit a robust synergistic effect of chemotherapy and phototherapy, strongly eliminate the biofilm both in vitro and in vivo. Therefore, these biocompatible SP-Van@IR780 NPs provide a new outlook for the therapy of bacterial biofilm infection.
Collapse
Affiliation(s)
- Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
- China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Xuankun Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Fanqiang Bu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Fang Liu
- China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
46
|
Wei H, Yang C, Bi F, Li B, Xie R, Yu D, Fang S, Hua Z, Wang Q, Yang G. Structure-Controllable and Mass-Produced Glycopolymersomes as a Template of the Carbohydrate@Ag Nanobiohybrid with Inherent Antibacteria and Biofilm Eradication. Biomacromolecules 2024; 25:315-327. [PMID: 38100369 DOI: 10.1021/acs.biomac.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Glycopolymer-supported silver nanoparticles (AgNPs) have demonstrated a promising alternative to antibiotics for the treatment of multidrug-resistant bacteria-infected diseases. In this contribution, we report a class of biohybrid glycopolymersome-supported AgNPs, which are capable of effectively killing multidrug-resistant bacteria and disrupting related biofilms. First of all, glycopolymersomes with controllable structures were massively fabricated through reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly (PISA) in an aqueous solution driven by complementary hydrogen bonding interaction between the pyridine and amide groups of N-(2-methylpyridine)-acrylamide (MPA) monomers. Subsequently, Ag+ captured by glycopolymersomes through the coordination between pyridine-N and Ag+ was reduced into AgNPs stabilized by glycopolymersomes upon addition of the NaBH4 reducing agent, leading to the formation of the glycopolymersome@AgNPs biohybrid. As a result, they showed a wide-spectrum and enhanced removal of multidrug-resistant bacteria and biofilms compared to naked AgNPs due to the easier adhesion onto the bacterial surface and diffusion into biofilms through the specific protein-carbohydrate recognition. Moreover, the in vivo results revealed that the obtained biohybrid glycopolymersomes not only demonstrated an effective treatment for inhibiting the cariogenic bacteria but also were able to repair the demineralization of caries via accumulating Ca2+ through the recognition between carbohydrates and Ca2+. Furthermore, glycopolymersomes@AgNPs showed quite low in vitro hemolysis and cytotoxicity and almost negligible acute toxicity in vivo. Overall, this type of biohybrid glycopolymersome@AgNPs nanomaterial provides a new avenue for enhanced antibacterial and antibiofilm activities and the effective treatment of oral microbial-infected diseases.
Collapse
Affiliation(s)
- Hanchen Wei
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Caiyun Yang
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Feihu Bi
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Bang Li
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei 230032, China
| | - Rui Xie
- Department of Plant Pathology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Deshui Yu
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuzhen Fang
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zan Hua
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Qingqing Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei 230032, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
47
|
Blanco-Cabra N, Alcàcer-Almansa J, Admella J, Arévalo-Jaimes BV, Torrents E. Nanomedicine against biofilm infections: A roadmap of challenges and limitations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1944. [PMID: 38403876 DOI: 10.1002/wnan.1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Júlia Alcàcer-Almansa
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
48
|
Wang W, Gao Y, Xu W, Xu Y, Zhou N, Li Y, Zhang M, Tang BZ. The One-Stop Integrated Nanoagent Based on Photothermal Therapy for Deep Infection Healing and Inflammation Inhibition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307785. [PMID: 37857468 DOI: 10.1002/adma.202307785] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Chronic wounds caused by bacterial infections are a major challenge in medical fields. The hypoxia condition extremely induces reactive oxygen species (ROS) generation and upregulates the expression of hypoxia-inducible factor, both of which can increase the pro-inflammatory M1 subtype macrophages production while reducing the anti-inflammatory M2 subtype macrophages. Besides, bacteria-formed biofilms can hinder the penetration of therapeutic agents. Encouraged by natural motors automatically executing tasks, hypothesized that supplying sufficient oxygen (O2 ) would simultaneously drive therapeutic agent movement, rescue the hypoxic microenvironment, and disrupt the vicious cycle of inflammation. Here, small organic molecule-based nanoparticles (2TT-mC6B@Cu5.4 O NPs) that possess high photothermal conversion efficiency and enzymatic activities are developed, including superoxide dismutase-, catalase-, and glutathione peroxidase-like activity. 2TT-mC6B@Cu5.4 O NPs exhibit superior ROS-scavenging and O2 production abilities that synergistically relieve inflammation, alleviate hypoxia conditions, and promote their deep penetration in chronic wound tissues. Transcriptome analysis further demonstrates that 2TT-mC6B@Cu5.4O NPs inhibit biological activities inside bacteria. Furthermore, in vivo experiments prove that 2TT-mC6B@Cu5.4 O NPs-based hyperthermia can effectively eliminate bacteria in biofilms to promote wound healing.
Collapse
Affiliation(s)
- Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yumeng Gao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wang Xu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Ninglin Zhou
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yuanyuan Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
49
|
Yang S, Song Y, Dong H, Hu Y, Jiang J, Chang S, Shao J, Yang D. Stimuli-Actuated Turn-On Theranostic Nanoplatforms for Imaging-Guided Antibacterial Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304127. [PMID: 37649207 DOI: 10.1002/smll.202304127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Antibacterial theranostic nanoplatforms, which integrate diagnostic and therapeutic properties, exhibit gigantic application prospects in precision medicine. However, traditional theranostic nanoplatforms usually present an always-on signal output, which leads to poor specificity or selectivity in the treatment of bacterial infections. To address this challenge, stimuli-actuated turn-on nanoplatforms are developed for simultaneous activation of diagnostic signals (e.g., fluorescent, photoacoustic, magnetic signals) and initiation of antibacterial treatment. Specifically, by combining the infection microenvironment-responsive activation of visual signals and antibacterial activity, these theranostic nanoplatforms exert both higher accurate diagnosis rates and more effective treatment effects. In this review, the imaging and treatment strategies that are commonly used in the clinic are first briefly introduced. Next, the recent progress of stimuli-actuated turn-on theranostic nanoplatforms for treating bacterial infectious diseases is summarized in detail. Finally, current bottlenecks and future opportunities of antibacterial theranostic nanoplatforms are also outlined and discussed.
Collapse
Affiliation(s)
- Siyuan Yang
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
| | - Yingnan Song
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yanling Hu
- College of life and health, Nanjing Polytechnic Institute, Nanjing, 210048, China
| | - Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Siyuan Chang
- College of life and health, Nanjing Polytechnic Institute, Nanjing, 210048, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| |
Collapse
|
50
|
Wang X, Zhang C, He L, Li M, Chen P, Yang W, Sun P, Li D, Zhang Y. Near infrared II excitation nanoplatform for photothermal/chemodynamic/antibiotic synergistic therapy combating bacterial biofilm infections. J Nanobiotechnology 2023; 21:446. [PMID: 38001486 PMCID: PMC10668414 DOI: 10.1186/s12951-023-02212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Drug-resistant bacterial biofilm infections (BBIs) are refractory to elimination. Near-infrared-II photothermal therapy (NIR-II PTT) and chemodynamic therapy (CDT) are emerging antibiofilm approaches because of the heavy damage they inflict upon bacterial membrane structures and minimal drug-resistance. Hence, synergistic NIR-II PTT and CDT hold great promise for enhancing the therapeutic efficacy of BBIs. Herein, we propose a biofilm microenvironment (BME)-responsive nanoplatform, BTFB@Fe@Van, for use in the synergistic NIR-II PTT/CDT/antibiotic treatment of BBIs. BTFB@Fe@Van was prepared through the self-assembly of phenylboronic acid (PBA)-modified small-molecule BTFB, vancomycin, and the CDT catalyst Fe2+ ions in DSPE-PEG2000. Vancomycin was conjugated with BTFB through a pH-sensitive PBA-diol interaction, while the Fe2+ ions were bonded to the sulfur and nitrogen atoms of BTFB. The PBA-diol bonds decomposed in the acidic BME, simultaneously freeing the vancomycin and Fe2+ irons. Subsequently, the catalytic product hydroxyl radical was generated by the Fe2+ ions in the oxidative BME overexpressed with H2O2. Moreover, under 1064 nm laser, BTFB@Fe@Van exhibited outstanding hyperthermia and accelerated the release rate of vancomycin and the efficacy of CDT. Furthermore, the BTFB@Fe@Van nanoplatform enabled the precise NIR-II imaging of the infected sites. Both in-vitro and in-vivo experiments demonstrated that BTFB@Fe@Van possesses a synergistic NIR-II PTT/CDT/antibiotic mechanism against BBIs.
Collapse
Affiliation(s)
- Xuanzong Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liuliang He
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingfei Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pengfei Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wan Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Daifeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|