1
|
Tran TU, Duong NT, Park DY, Bahng J, Duong HP, Do VD, Jeong MS, Lim SC. Spatially resolved optoelectronic puddles of WTe 2-2D Te heterostructure. NANOSCALE HORIZONS 2025; 10:1215-1223. [PMID: 40241425 DOI: 10.1039/d5nh00027k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Two-dimensional (2D) semiconductors have attracted significant scientific interest because of their optical properties. Their applications in optoelectronic devices can be further expanded by combining them to form heterostructures. We characterized a WTe2-2D Te heterostructure through local probing of the photocurrent with respect to the magnitude, phase, and position. Photocurrent generation within the device is divided into distinct regions: photo-thermoelectric effects occur solely at the 2D Te-Au junction area, PV-dominant effects at the 2D-WTe2 interface, and thermoelectric-to-photovoltaic crossover effects at the WTe2-2D Te overlap area. These different photocurrents cannot be fused into a single domain because each area is governed by different generation mechanisms, which depend on the location of the device. The power dependence of each photocurrent type also varies within the device. Our results indicate that careful material selection and device structure design, based on the electronic, optical, and thermal properties of the channel materials, are essential to avoid forming different optoelectronic puddles that could counteract each other within a single device.
Collapse
Affiliation(s)
- Thi Uyen Tran
- Department of Smart Fab. Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ngoc Thanh Duong
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Dae Young Park
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Jaeuk Bahng
- Department of Smart Fab. Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hai Phuong Duong
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Van Dam Do
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Mun Seok Jeong
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Seong Chu Lim
- Department of Smart Fab. Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Hu Y, Gao Z, Luo Z, An L. Next-Generation Image Sensors Based on Low-Dimensional Semiconductor Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501123. [PMID: 40237125 DOI: 10.1002/adma.202501123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/19/2025] [Indexed: 04/18/2025]
Abstract
With the rapid advancement of technology of big data and artificial intelligence (AI), the exponential increase in visual information leads to heightened demands for the quality and analysis of imaging results, rendering traditional silicon-based image sensors inadequate. This review serves as a comprehensive overview of next-generation image sensors based on low-dimensional semiconductor materials encompassing 0D, 1D, 2D materials, and their hybrids. It offers an in-depth introduction to the distinctive properties exhibited by these materials and delves into the device structures tailored specifically for image sensor applications. The classification of novel image sensors based on low-dimensional materials, in particular for transition metal dichalcogenides (TMDs), covering the preparation methods and corresponding imaging characteristics, is explored. Furthermore, this review highlights the diverse applications of low-dimensional materials in next-generation image sensors, encompassing advanced imaging sensors, biomimetic vision sensors, and non-von Neumann imaging systems. Lastly, the challenges and opportunities encountered in the development of next-generation image sensors utilizing low-dimensional semiconductor materials, paving the way for further advancements in this rapidly evolving field, are proposed.
Collapse
Affiliation(s)
- Yunxia Hu
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 100872, P. R. China
| | - Zhaoli Gao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 100872, P. R. China
| |
Collapse
|
3
|
Wu Y, Deng W, Zhang Y. Excitonic insulator powers room-temperature ultra-sensitive visible to terahertz detection. LIGHT, SCIENCE & APPLICATIONS 2025; 14:149. [PMID: 40175330 PMCID: PMC11965492 DOI: 10.1038/s41377-025-01828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Phase transitions induce significant changes in the electrical and photonic properties of materials. Ultra-sensitive photodetectors leveraging material phase transitions can be realized near the transition temperature. Photodetectors based on Ta2NiSe5, a room-temperature excitonic insulator phase transition material, exhibit exceptional performance from visible to terahertz frequencies. Specifically, in the terahertz range, the electronic bandwidth is 360 kHz, and the specific detectivity (D*) reaches 5.3 × 1011 cm·Hz1/2·W-1. The van der Waals heterostructure of Ta2NiSe5/WS2 further enhances performance.
Collapse
Affiliation(s)
- Yi Wu
- Key Laboratory of Optoelectronics Technology of Education, School of Information Science and Technology, Beijing University of Technology, 100124, Beijing, China
- College of Materials Science and Engineering, Beijing University of Technology, 100124, Beijing, China
| | - Wenjie Deng
- Key Laboratory of Optoelectronics Technology of Education, School of Information Science and Technology, Beijing University of Technology, 100124, Beijing, China.
| | - Yongzhe Zhang
- Key Laboratory of Optoelectronics Technology of Education, School of Information Science and Technology, Beijing University of Technology, 100124, Beijing, China.
| |
Collapse
|
4
|
Song J, Liang Y, Ding F, Ke Y, Li Y, Wang Y, Liu X, Liu Z, Lai X, Zhou J, Min X, Chai L, Peng C. Te 2-Regulated Black Arsenic Phosphorus Monocrystalline Film with Excellent Uniformity for High Performance Photodetection. J Phys Chem Lett 2025; 16:826-834. [PMID: 39817625 DOI: 10.1021/acs.jpclett.4c03371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Two-dimensional (2D) black arsenic phosphorus (b-AsP) material has been attracting considerable attention for its extraordinary properties. However, its application in large-scale device fabrication remains challenging due to the limited scale and irregular shape. Here, we found the special effect of Te2 upon growth of b-AsP and developed a novel Te2-regulated steady growth (Te-SG) strategy to obtain high-quality b-AsP single crystal. The large-scale b-AsP single crystal sheet with its full width at half-maximum (FWHM) being ≤0.05° was achieved for the first time. The b-AsP monocrystalline film with atomic-level flat surface was further fabricated by laser, which exhibits outstanding self-powered characteristics under various light illumination, including low dark current and peak room-temperature detectivity of 8.5 × 1010 cm Hz1/2 W-1. The excellent uniformity was also revealed through a large-plane b-AsP photodetector. This work paves a new way for the application of high-performance electronics and optoelectronics based on b-AsP.
Collapse
Affiliation(s)
- Jiaqi Song
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yanjie Liang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Fenghua Ding
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yong Ke
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yun Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yunyan Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Xiangheng Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhenxing Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xinting Lai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jia Zhou
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Cong Peng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
5
|
Shen Y, Hou P. Self-Powered Infrared-Detectable BP/Ta 2NiS 5 Heterojunction and Its Application in Energy-Efficient Optoelectronic Synapses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405709. [PMID: 39460407 DOI: 10.1002/smll.202405709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Indexed: 10/28/2024]
Abstract
The development of energy-efficient and high-performance optoelectronic devices is crucial for the advancement of modern optoelectronic and microelectronic systems. Although the self-powered devices and optoelectronic synapses based on 2D heterojunction show great application prospects, the high energy consumption and infrared band detection of self-powered optoelectronic synapses are still an urgent problem to be solved. In this report, a BP/Ta2NiS5 heterojunction is constructed to achieve infrared detection by leveraging differences in Fermi energy levels. This heterojunction exhibits a high specific detectivity of 6.57 × 1010, 2.6 × 1010, and 1.12 × 1010 Jones and responsivity of 20, 10.6, and 5.9 mA W-1 for 1064, 1550, and 2200 nm infrared light at 0 bias voltage, respectively. In addition, under the 2200 nm light, by applying an ultra-low bias voltage of 800 µV, the heterojunction exhibits ultra-low power and energy consumption of 28.8 pW and 0.64 pJ, successfully simulates a variety of synaptic behaviors under infrared light, and demonstrates its image perception and image memory capabilities. These findings position the BP/Ta2NiS5 heterojunction as an ideal candidate for a multifunctional optoelectronic device crucial for advanced photodetection, neuromorphic computing, and artificial intelligence.
Collapse
Affiliation(s)
- Ya Shen
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Pengfei Hou
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| |
Collapse
|
6
|
Shen Y, Zhao X, Cui Z, Qin K, Ma D, Cheng F, Yuan P, Qi X, Li E. van der Waals ZnO/HfSn 2N 4 Heterojunction with Exceptional Photoresponse for Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58802-58810. [PMID: 39428597 DOI: 10.1021/acsami.4c10486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Two-dimensional van der Waals heterojunctions represent a promising avenue for a spectrum of optoelectronic endeavors. Nonetheless, their deployment has been somewhat constrained by the suboptimal efficiency of the photocurrent generated. In this article, a ZnO/HfSn2N4 heterojunction is proposed to achieve high photoresponse efficiency. First-principles calculations are utilized to confirm that this heterojunction possesses thermal stability with a direct bandgap (1.36 eV). It exhibits a high light absorption coefficient and high carrier mobility (2.51 × 103 cm2 V-1 s-1), and biaxial strain has a significant effect on the modulation of the band structure. As the tensile strain increases, the bandgap changes nonlinearly, transitioning from a type-II to a type-I heterojunction. When compressive strain increases, the bandgap decreases. Quantum transport simulations are employed to calculate the density of states and transmission spectrum of the ZnO/HfSn2N4 model, verifying its excellent photoresponse (a photocurrent peak reaching 4.93 a02/photon and an extinction ratio peak of 75.1). It shows that the ZnO/HfSn2N4 heterojunction is a potentially efficient photodetector.
Collapse
Affiliation(s)
- Yang Shen
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Xiaoyu Zhao
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Zhen Cui
- School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Ke Qin
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Deming Ma
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Fengjiao Cheng
- School of Electrical Engineering, Xi'an University of Technology, Xi'an 710054, China
| | - Pei Yuan
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Xiangfeng Qi
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Enling Li
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| |
Collapse
|
7
|
Ma T, Xue N, Muhammad A, Fang G, Yan J, Chen R, Sun J, Sun X. Recent Progress in Photodetectors: From Materials to Structures and Applications. MICROMACHINES 2024; 15:1249. [PMID: 39459123 PMCID: PMC11509732 DOI: 10.3390/mi15101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
Photodetectors are critical components in a wide range of applications, from imaging and sensing to communications and environmental monitoring. Recent advancements in material science have led to the development of emerging photodetecting materials, such as perovskites, polymers, novel two-dimensional materials, and quantum dots, which offer unique optoelectronic properties and high tunability. This review presents a comprehensive overview of the synthesis methodologies for these cutting-edge materials, highlighting their potential to enhance photodetection performance. Additionally, we explore the design and fabrication of photodetectors with novel structures and physics, emphasizing devices that achieve high figure-of-merit parameters, such as enhanced sensitivity, fast response times, and broad spectral detection. Finally, we discuss the demonstration of new applications enabled by these advanced photodetectors, including flexible and wearable devices, next-generation imaging systems, and environmental sensing technologies. Through this review, we aim to provide insights into the current trends and future directions in the field of photodetection, guiding further research and development in this rapidly evolving area.
Collapse
Affiliation(s)
- Tianjun Ma
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Ning Xue
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Abdul Muhammad
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Gang Fang
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Jinyao Yan
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Rongkun Chen
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| | - Jianhai Sun
- State Key Laboratory of Transducer Technology Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuguang Sun
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; (T.M.)
| |
Collapse
|
8
|
Rogalski A, Hu W, Wang F, Martyniuk P. Performance of Low-Dimensional Solid Room-Temperature Photodetectors-Critical View. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4522. [PMID: 39336263 PMCID: PMC11433362 DOI: 10.3390/ma17184522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
In the last twenty years, nanofabrication progress has allowed for the emergence of a new photodetector family, generally called low-dimensional solids (LDSs), among which the most important are two-dimensional (2D) materials, perovskites, and nanowires/quantum dots. They operate in a wide wavelength range from ultraviolet to far-infrared. Current research indicates remarkable advances in increasing the performance of this new generation of photodetectors. The published performance at room temperature is even better than reported for typical photodetectors. Several articles demonstrate detectivity outperforming physical boundaries driven by background radiation and signal fluctuations. This study attempts to explain these peculiarities. In order to achieve this goal, we first clarify the fundamental differences in the photoelectric effects of the new generation of photodetectors compared to the standard designs dominating the commercial market. Photodetectors made of 2D transition metal dichalcogenides (TMDs), quantum dots, topological insulators, and perovskites are mainly considered. Their performance is compared with the fundamental limits estimated by the signal fluctuation limit (in the ultraviolet region) and the background radiation limit (in the infrared region). In the latter case, Law 19 dedicated to HgCdTe photodiodes is used as a standard reference benchmark. The causes for the performance overestimate of the different types of LDS detectors are also explained. Finally, an attempt is made to determine their place in the global market in the long term.
Collapse
Affiliation(s)
- Antoni Rogalski
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland;
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; (W.H.); (F.W.)
| | - Fang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; (W.H.); (F.W.)
| | - Piotr Martyniuk
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland;
| |
Collapse
|
9
|
Bhattacharya K, Chaudhary N, Bisht P, Satpati B, Manna S, Singh R, Mehta BR, Georgiev YM, Das S. High-Performance Visible-to-SWIR Photodetector Based on the Layered WS 2 Heterojunction with Light-Trapping Pyramidal Black Germanium. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48517-48525. [PMID: 39215749 DOI: 10.1021/acsami.4c08862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study presents a layered transition metal dichalcogenide/black germanium (b-Ge) heterojunction photodetector that exhibits superior performance across a broad spectrum of wavelengths spanning from visible (vis) to shortwave infrared (SWIR). The photodetector includes a thin layer of b-Ge, which is created by wet etching of germanium (Ge) wafer to form submicrometer pyramidal structures. On top of this b-Ge layer, the WS2 thin film is deposited using pulsed laser deposition. In comparison to conventional germanium, b-Ge absorbs about 25% more light between 850 and 1750 nm wavelengths. The WS2/b-Ge photodetector has a peak photoresponsivity of 0.65 A/W, which is more than twice the photoresponsivity of the WS2/Ge photodetector at 1540 nm. Additionally, it shows better responsivity and response speed compared with other similar state-of-the-art photodetectors. Such an improvement in the performance of the device is credited to the light-trapping effect enabled by the germanium pyramids. Theoretical simulations employing the finite-difference time-domain technique help validate the concept. This novel photodetector holds promise for efficient detection of light across the vis to SWIR spectrum.
Collapse
Affiliation(s)
- Kritika Bhattacharya
- Centre for Applied Research in Electronics, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Nahid Chaudhary
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Prashant Bisht
- Department of Physics, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Biswarup Satpati
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - Santanu Manna
- Department of Electrical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Rajendra Singh
- Department of Physics, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Bodh Raj Mehta
- Department of Physics, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Yordan Marchev Georgiev
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
| | - Samaresh Das
- Centre for Applied Research in Electronics, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
10
|
Gu H, Zhang T, Wang Y, Zhou T, Chen H. 2D compounds with heterolayered architecture for infrared photodetectors. Chem Sci 2024:d4sc03428g. [PMID: 39328196 PMCID: PMC11423492 DOI: 10.1039/d4sc03428g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Compounds with heterolayered architecture, as a family of two-dimensional (2D) materials, are composed of alternating positive and negative layers. Their physical properties are determined not only by the charged constituents, but also by the interaction between the two layers. This kind of material has been widely used for superconductivity, thermoelectricity, energy storage, etc. In recent years, heterolayered compounds have been found as an encouraging choice for infrared photodetectors with high sensitivity, fast response, and remarkable reliability. In this review, we summarize the research progress of heterolayered materials for infrared photodetectors. A simple development history of the materials with three-dimensional (3D) or 2D structures, which are suitable for infrared photodetectors, is introduced firstly. Then, we compare the differences between van der Waals layered 2D materials and heterolayered 2D cousins and explain the advantages of heterolayered 2D compounds. Finally, we present our perspective on the future direction of heterolayered 2D materials as an emerging class of materials for infrared photodetectors.
Collapse
Affiliation(s)
- Hao Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Tianshuo Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Yunluo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Tianrui Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Haijie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| |
Collapse
|
11
|
Ru G, Qi W, Sun S, Tang K, Du C, Liu W. Interlayer Friction and Adhesion Effects in Penta-PdSe 2-Based van der Waals Heterostructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400395. [PMID: 39324830 PMCID: PMC11425967 DOI: 10.1002/advs.202400395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/30/2024] [Indexed: 09/27/2024]
Abstract
Due to their inherent lattice mismatch characteristics, 2D heterostructure interfaces are considered ideal for achieving stable and sustained ultralow friction (superlubricity). Despite extensive research, the current understanding of how interface adhesion affects interlayer friction remains limited. This study focused on graphene/MoS2 and graphene/PdSe2 heterostructure interfaces, where extremely low friction coefficients of ≈10-3 are observed. In contrast, the MoS2/PdSe2 heterostructure interfaces exhibit higher friction coefficients, ≈0.02, primarily due to significant interfacial interactions driven by interlayer charge transfer, which is closely related to the ionic nature of 2D material crystals. These findings indicate that the greater the difference in ionicity between the two 2D materials comprising the sliding interfaces is, the lower the interlayer friction, providing key criteria for designing ultralow friction pairs. Moreover, the experimental results demonstrate that interlayer friction in heterostructure systems is closely associated with the material thickness and interface adhesion strength. These experimental findings are supported by molecular dynamics simulations, further validating the observed friction behavior. By integrating experimental observations with simulation analyses, this study reveals the pivotal role of interface adhesion in regulating interlayer friction and offers new insights into understanding and optimizing the frictional performance of layered solid lubricants.
Collapse
Affiliation(s)
- Guoliang Ru
- State Key Laboratory of Solidification Processing and Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Weihong Qi
- State Key Laboratory of Solidification Processing and Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 265503, China
| | - Shu Sun
- State Key Laboratory of Solidification Processing and Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kewei Tang
- State Key Laboratory of Solidification Processing and Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chengfeng Du
- State Key Laboratory of Solidification Processing and Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Weimin Liu
- State Key Laboratory of Solidification Processing and Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
12
|
Chen S, Ke S, Ji T, Li Z, Xu X, Liu B, Huang Z, Liu G, Zhou J. High-Speed Self-Powered PdSe 2/Si 2D-3D PIN-like Photodetector with Broadband Response Based on PdSe 2 Quantum Island Structure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42577-42587. [PMID: 39099305 DOI: 10.1021/acsami.4c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
As a two-dimensional (2D) material, palladium diselenide (PdSe2) has attracted extensive research attention due to its unique asymmetric crystal structure and extraordinary optoelectronic properties, showing great potential in electronic, optoelectronic, and other application fields. Thinner PdSe2 exhibits semiconductor properties, while the photoresponse of the photodetectors based on this film is weaker. Although increasing the thickness of the PdSe2 film can improve the photoresponse, thicker PdSe2 exhibits metallic-like properties, which is not conducive to the formation of the heterojunction. In this work, a PdSe2 2D material with a quantum island structure is prepared by a simple thermal-assisted conversion method. A new type of photodetector with a PdSe2/n--Si/n+-Si vertical PIN-like structure is innovatively proposed. Broad spectral absorption from 532 to 2200 nm and a high rectification ratio (106) of the device are achieved. The introduced n--Si layer concentrates the electric field in the depletion region, thereby shortening the transit time and accelerating the separation and collection of the carriers, resulting in the enhancement of the responsivity and 3 dB frequency compared to the traditional device with a PN structure. A recorded highest 3 dB frequency of ∼25 kHz is achieved for the PdSe2 2D-3D PIN-like device.
Collapse
Affiliation(s)
- Shaopeng Chen
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
| | - Shaoying Ke
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
| | - Tian Ji
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
| | - Zhiming Li
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
| | - Xiaojia Xu
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
| | - Bin Liu
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
| | - Zhiwei Huang
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
| | - Guanzhou Liu
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
| | - Jinrong Zhou
- Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
13
|
Ma Y, Liang H, Guan X, Xu S, Tao M, Liu X, Zheng Z, Yao J, Yang G. Two-dimensional layered material photodetectors: what could be the upcoming downstream applications beyond prototype devices? NANOSCALE HORIZONS 2024. [PMID: 39046195 DOI: 10.1039/d4nh00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
With distinctive advantages spanning excellent flexibility, rich physical properties, strong electrostatic tunability, dangling-bond-free surface, and ease of integration, 2D layered materials (2DLMs) have demonstrated tremendous potential for photodetection. However, to date, most of the research enthusiasm has been merely focused on developing novel prototype devices. In the past few years, researchers have also been devoted to developing various downstream applications based on 2DLM photodetectors to contribute to promoting them from fundamental research to practical commercialization, and extensive accomplishments have been realized. In spite of the remarkable advancements, these fascinating research findings are relatively scattered. To date, there is still a lack of a systematic and profound summarization regarding this fast-evolving domain. This is not beneficial to researchers, especially researchers just entering this research field, who want to have a quick, timely, and comprehensive inspection of this fascinating domain. To address this issue, in this review, the emerging downstream applications of 2DLM photodetectors in extensive fields, including imaging, health monitoring, target tracking, optoelectronic logic operation, ultraviolet monitoring, optical communications, automatic driving, and acoustic signal detection, have been systematically summarized, with the focus on the underlying working mechanisms. At the end, the ongoing challenges of this rapidly progressing domain are identified, and the potential schemes to address them are envisioned, which aim at navigating the future exploration as well as fully exerting the pivotal roles of 2DLMs towards the practical optoelectronic industry.
Collapse
Affiliation(s)
- Yuhang Ma
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Huanrong Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Xinyi Guan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Shuhua Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Meiling Tao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Xinyue Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China.
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China.
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| |
Collapse
|
14
|
Li L, Zhang Q, Geng D, Meng H, Hu W. Atomic engineering of two-dimensional materials via liquid metals. Chem Soc Rev 2024; 53:7158-7201. [PMID: 38847021 DOI: 10.1039/d4cs00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two-dimensional (2D) materials, known for their distinctive electronic, mechanical, and thermal properties, have attracted considerable attention. The precise atomic-scale synthesis of 2D materials opens up new frontiers in nanotechnology, presenting novel opportunities for material design and property control but remains challenging due to the high expense of single-crystal solid metal catalysts. Liquid metals, with their fluidity, ductility, dynamic surface, and isotropy, have significantly enhanced the catalytic processes crucial for synthesizing 2D materials, including decomposition, diffusion, and nucleation, thus presenting an unprecedented precise control over material structures and properties. Besides, the emergence of liquid alloy makes the creation of diverse heterostructures possible, offering a new dimension for atomic engineering. Significant achievements have been made in this field encompassing defect-free preparation, large-area self-aligned array, phase engineering, heterostructures, etc. This review systematically summarizes these contributions from the aspects of fundamental synthesis methods, liquid catalyst selection, resulting 2D materials, and atomic engineering. Moreover, the review sheds light on the outlook and challenges in this evolving field, providing a valuable resource for deeply understanding this field. The emergence of liquid metals has undoubtedly revolutionized the traditional nanotechnology for preparing 2D materials on solid metal catalysts, offering flexible possibilities for the advancement of next-generation electronics.
Collapse
Affiliation(s)
- Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hong Meng
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
15
|
Fu Z, Wang F, Liu J, Sun W, Zhang H, Song X, Yao J. High responsivity photodetector based on MEH-PPV/CsPbBr 3heterojunction. NANOTECHNOLOGY 2024; 35:325201. [PMID: 38697049 DOI: 10.1088/1361-6528/ad4654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Perovskite quantum dots (QDs) and organic materials have great research potential in the field of optoelectronic devices. In this paper, MEH-PPV/CsPbBr3heterojunction photodetectors (PDs) are prepared by spin coating method based on the good photoelectric properties of CsPbBr3perovskite QDs and MEH-PPV. The MEH-PPV/CsPbBr3heterojunction improves the energy level arrangement, and CsPbBr3QDs can passivate the surface defects of MEH-PPV films to achieve effective charge separation and transfer, thus inhibiting the dark current and improving the photoelectric performance of the device. Under 532 nm laser irradiation, the responsivity (R) of MEH-PPV/CsPbBr3heterojunction PD is 11.98 A W-1, the specific detectivity (D*) is 6.98 × 1011Jones, and the response time is 15/16 ms. This work provides experience for the study of perovskite QDs and organic materials heterojunction optoelectronic devices.
Collapse
Affiliation(s)
- Zhendong Fu
- Center of Intelligent Opto-electric Sensors, Tianjin Jinhang Technical Physics Institute, Tianjin, 300308, People's Republic of China
| | - Fuguo Wang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- Institute of Micro-nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Jiangnan Liu
- Center of Intelligent Opto-electric Sensors, Tianjin Jinhang Technical Physics Institute, Tianjin, 300308, People's Republic of China
| | - Wenbao Sun
- Center of Intelligent Opto-electric Sensors, Tianjin Jinhang Technical Physics Institute, Tianjin, 300308, People's Republic of China
| | - Haiting Zhang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- Institute of Micro-nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Xiaoxian Song
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- Institute of Micro-nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianquan Yao
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- Institute of Micro-nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
16
|
Liu B, Si J, Yan L, Shen Y, Hou X. Photoinduced carrier transfer dynamics in a monolayer MoS 2/PbS quantum dots heterostructure. OPTICS EXPRESS 2024; 32:19458-19466. [PMID: 38859080 DOI: 10.1364/oe.521726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/01/2024] [Indexed: 06/12/2024]
Abstract
Two-dimensional molybdenum disulfide (MoS2) has been proven to be a candidate in photodetectors, and MoS2/lead sulfide (PbS) quantum dots (QDs) heterostructure has been used to expand the optical response wavelength of MoS2. Time-resolved pump-probe transient absorption measurements are performed to clarify the carrier transfer dynamics in the MoS2/PbS heterostructure. By comparing the carrier dynamics in MoS2 and MoS2/PbS under different pump wavelengths, we found that the excited electrons in PbS QDs can transfer rapidly (<100 fs) to MoS2, inducing its optical response in the near-infrared region, although the pump light energy is lower than the bandgap of MoS2. Besides, interfacial excitons can be formed in the heterostructure, prolonging the lifetime of the excited carriers, which could be beneficial for the extraction of the carriers in devices.
Collapse
|
17
|
Debnath S, Meyyappan M, Giri PK. Printed MoSe 2/GaAs Photodetector Enabling Ultrafast and Broadband Photodetection up to 1.5 μm. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9039-9050. [PMID: 38324453 DOI: 10.1021/acsami.3c17477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The development of high-performance and low-cost photodetectors (PDs) capable of detecting a broad range of wavelengths, from ultraviolet (UV) to near-infrared (NIR), is crucial for applications in sensing, imaging, and communication systems. This work presents a novel approach for printing a broadband PD based on a heterostructure of two-dimensional (2D) molybdenum diselenide (MoSe2) and gallium arsenide (GaAs). The fabrication process involves a precise technique to print MoSe2 nanoflower (NF) ink onto a prepatterned GaAs substrate. The resulting heterostructure exhibits unique properties, leveraging the exceptional electronic and optical characteristics of both GaAs and 2D MoSe2. The fabricated PD achieves an astounding on-off ratio of ∼105 at 5 V bias while demonstrating an exceptional on-off ratio of ∼104 at 0 V. The depletion region between GaAs and MoSe2 facilitates efficient charge generation and separation and collection of photogenerated carriers. This significantly improves the performance of the PD, resulting in a notably high responsivity across the spectrum. The peak responsivity of the device is 5.25 A/W at 5 V bias under 808 nm laser excitation, which is more than an order of magnitude higher than that of any commercial NIR PDs. Furthermore, the device demonstrates an exceptional responsivity of 0.36 A/W under an external bias of 0 V. The printing technology used here offers several advantages including simplicity, scalability, and compatibility with large-scale production. Additionally, it enables precise control over the placement and integration of the MoSe2 NF onto the GaAs substrate, ensuring uniformity and reliability in device performance. The exceptional responsivity across a broad spectral range (360-1550 nm) and the success of the printing technique make our MoSe2/GaAs heterostructure PD promising for future low-cost and efficient optoelectronic devices.
Collapse
Affiliation(s)
- Subhankar Debnath
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
18
|
Xu Z, Sun C, Min S, Ye Z, Zhao C, Li J, Liu Z, Liu Y, Li WD, Tang MC, Song Q, Fu HY, Kang F, Li J, Shen Y, Yu C, Wei G. Si/Organic Integrated Narrowband Near-Infrared Photodetector. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302072. [PMID: 37431202 DOI: 10.1002/smll.202302072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Spectrally selective narrowband photodetection is critical for near-infrared (NIR) imaging applications, such as for communicationand night-vision utilities. It is a long-standing challenge for detectors based on silicon, to achieve narrowband photodetection without integrating any optical filters. Here, this work demonstrates a NIR nanograting Si/organic (PBDBT-DTBT:BTP-4F) heterojunction photodetector (PD), which for the first time obtains the full-width-at-half-maximum (FWHM) of only 26 nm and fast response of 74 µs at 895 nm. The response peak can be successfully tailored from 895 to 977 nm. The sharp and narrow response NIR peak is inherently attributed to the coherent overlapping between the NIR transmission spectrum of organic layer and diffraction enhanced absorption peak of patterned nanograting Si substrates. The finite difference time domain (FDTD) physics calculation confirms the resonant enhancement peaks, which is well consistent with the experiment results. Meanwhile, the relative characterization indicates that the introduction of the organic film can promote carrier transfer and charge collection, facilitating efficient photocurrent generation. This new device design strategy opens up a new window in developing low-cost sensitive NIR narrowband detection.
Collapse
Affiliation(s)
- Zhuhua Xu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Chuying Sun
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, 999077, China
| | - Siyi Min
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, 999077, China
| | - Zilong Ye
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Cong Zhao
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Jingzhou Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhenghao Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Youdi Liu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Wen-Di Li
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, 999077, China
| | - Man-Chung Tang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Qinghua Song
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - H Y Fu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Feiyu Kang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Jiangyu Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang Shen
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guodan Wei
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
19
|
Saleem MI, Chandrasekar P, Batool A, Lee JH. Aqueous-Phase Formation of Two-Dimensional PbI 2 Nanoplates for High-Performance Self-Powered Photodetectors. MICROMACHINES 2023; 14:1949. [PMID: 37893386 PMCID: PMC10608996 DOI: 10.3390/mi14101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
The process of the aqueous synthesis of nanomaterials has gained considerable interest due to its ability to eliminate the need for complex organic solvents, which aligns with the principles of green chemistry. Fabricating nanostructures in aqueous solutions has gained recognition for its potential to develop ultrasensitive, low-energy, and ultrafast optoelectronic devices. This study focuses on synthesizing lead iodide (PbI2) nanoplates (NPs) using a water-based solution technique and fabricating a planar photodetector. The planar photodetectors (ITO/PbI2 NPs/Au) demonstrated a remarkable photosensitivity of 3.9 × 103 and photoresponsivity of 0.51 mA/W at a wavelength of 405 nm. Further, we have carried-out analytical calculations for key performance parameters including open-circuit voltage (Voc), short-circuit current (Isc), on-off ratio, responsivity (R), and specific detectivity (D*) at zero applied bias, while photodetector operating in self-powered mode. These values are as follows: Voc = 0.103 V, Isc = 1.93 × 10-8, on-off ratio = 103, R = 4.0 mA/W, and D* = 3.3 × 1011 Jones. Particularly, the asymmetrical output properties of ITO/PbI2 NPs/Au detector provided additional evidence of the effective creation of a Schottky contact. Therefore, the photodetector exhibited a photo-response even at 0 V bias (rise/decay time ~1 s), leading to the realization of self-powered photodetectors. Additionally, the device exhibited a rapid photo-response of 0.23/0.38 s (-5 V) in the visible range. This study expands the scope of aqueous-phase synthesis of PbI2 nanostructures, enabling the large-area fabrication of high-performance photodetectors.
Collapse
Affiliation(s)
- Muhammad Imran Saleem
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea;
| | | | - Attia Batool
- Research Center for Materials Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Jeong-Hwan Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea;
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
20
|
Guo YT, Yi SS. Recent Advances in the Preparation and Application of Two-Dimensional Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5798. [PMID: 37687495 PMCID: PMC10488888 DOI: 10.3390/ma16175798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Two-dimensional nanomaterials (2D NMs), consisting of atoms or a near-atomic thickness with infinite transverse dimensions, possess unique structures, excellent physical properties, and tunable surface chemistry. They exhibit significant potential for development in the fields of sensing, renewable energy, and catalysis. This paper presents a comprehensive overview of the latest research findings on the preparation and application of 2D NMs. First, the article introduces the common synthesis methods of 2D NMs from both "top-down" and "bottom-up" perspectives, including mechanical exfoliation, ultrasonic-assisted liquid-phase exfoliation, ion intercalation, chemical vapor deposition, and hydrothermal techniques. In terms of the applications of 2D NMs, this study focuses on their potential in gas sensing, lithium-ion batteries, photodetection, electromagnetic wave absorption, photocatalysis, and electrocatalysis. Additionally, based on existing research, the article looks forward to the future development trends and possible challenges of 2D NMs. The significance of this work lies in its systematic summary of the recent advancements in the preparation methods and applications of 2D NMs.
Collapse
Affiliation(s)
| | - Sha-Sha Yi
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
21
|
Lu H, Wu W, He Z, Han X, Pan C. Recent progress in construction methods and applications of perovskite photodetector arrays. NANOSCALE HORIZONS 2023; 8:1014-1033. [PMID: 37337833 DOI: 10.1039/d3nh00119a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Metal halide perovskites are considered promising materials for next-generation optoelectronic devices due to their excellent optoelectronic performances and simple solution preparation process. Precise micro/nano-scale patterning techniques enable perovskite materials to be used for array integration of photodetectors. In this review, the device types of perovskite-based photodetectors are introduced and the structural characteristics and corresponding device performances are analyzed. Then, the typical construction methods suitable for the fabrication of perovskite photodetector arrays are highlighted, including surface treatment technology, template-assisted construction, inkjet printing technology, and modified photolithography. Furthermore, the current development trends and their applications in image sensing of perovskite photodetector arrays are summarized. Finally, major challenges are presented to guide the development of perovskite photodetector arrays.
Collapse
Affiliation(s)
- Hui Lu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Wenqiang Wu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zeping He
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Xun Han
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 311200, China.
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| |
Collapse
|
22
|
Wang H, Dong C, Gui Y, Ye J, Altaleb S, Thomaschewski M, Movahhed Nouri B, Patil C, Dalir H, Sorger VJ. Self-Powered Sb 2Te 3/MoS 2 Heterojunction Broadband Photodetector on Flexible Substrate from Visible to Near Infrared. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1973. [PMID: 37446489 DOI: 10.3390/nano13131973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
Van der Waals (vdWs) heterostructures, assembled by stacking of two-dimensional (2D) crystal layers, have emerged as a promising new material system for high-performance optoelectronic applications, such as thin film transistors, photodetectors, and light-emitters. In this study, we showcase an innovative device that leverages strain-tuning capabilities, utilizing a MoS2/Sb2Te3 vdWs p-n heterojunction architecture designed explicitly for photodetection across the visible to near-infrared spectrum. These heterojunction devices provide ultra-low dark currents as small as 4.3 pA, a robust photoresponsivity of 0.12 A W-1, and reasonable response times characterized by rising and falling durations of 0.197 s and 0.138 s, respectively. These novel devices exhibit remarkable tunability under the application of compressive strain up to 0.3%. The introduction of strain at the heterojunction interface influences the bandgap of the materials, resulting in a significant alteration of the heterojunction's band structure. This subsequently shifts the detector's optical absorption properties. The proposed strategy of strain-induced engineering of the stacked 2D crystal materials allows the tuning of the electronic and optical properties of the device. Such a technique enables fine-tuning of the optoelectronic performance of vdWs devices, paving the way for tunable high-performance, low-power consumption applications. This development also holds significant potential for applications in wearable sensor technology and flexible electro-optic circuits.
Collapse
Affiliation(s)
- Hao Wang
- Optelligence LLC, 10703 Marlboro Pike, Upper Marlboro, MD 20772, USA
- Department of Electrical & Computer Engineering, University of Florida, 968 Center Drive 216 Larsen Hall, Gainesville, FL 32611, USA
| | - Chaobo Dong
- Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street, Washington, DC 20052, USA
| | - Yaliang Gui
- Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street, Washington, DC 20052, USA
| | - Jiachi Ye
- Department of Electrical & Computer Engineering, University of Florida, 968 Center Drive 216 Larsen Hall, Gainesville, FL 32611, USA
| | - Salem Altaleb
- Department of Electrical & Computer Engineering, University of Florida, 968 Center Drive 216 Larsen Hall, Gainesville, FL 32611, USA
| | - Martin Thomaschewski
- Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street, Washington, DC 20052, USA
| | - Behrouz Movahhed Nouri
- Optelligence LLC, 10703 Marlboro Pike, Upper Marlboro, MD 20772, USA
- Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street, Washington, DC 20052, USA
| | - Chandraman Patil
- Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street, Washington, DC 20052, USA
| | - Hamed Dalir
- Department of Electrical & Computer Engineering, University of Florida, 968 Center Drive 216 Larsen Hall, Gainesville, FL 32611, USA
| | - Volker J Sorger
- Optelligence LLC, 10703 Marlboro Pike, Upper Marlboro, MD 20772, USA
- Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street, Washington, DC 20052, USA
| |
Collapse
|
23
|
Tai YC, An S, Huang PR, Jheng YT, Lee KC, Cheng HH, Kim M, Chang GE. Transfer-printing-enabled GeSn flexible resonant-cavity-enhanced photodetectors with strain-amplified mid-infrared optical responses. NANOSCALE 2023; 15:7745-7754. [PMID: 37000582 DOI: 10.1039/d2nr07107j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mid-infrared (MIR) flexible photodetectors (FPDs) constitute an essential element for wearable applications, including health-care monitoring and biomedical detection. Compared with organic materials, inorganic semiconductors are promising candidates for FPDs owing to their superior performance as well as optoelectronic properties. Herein, for the first time, we present the use of transfer-printing techniques to enable a cost-effective, nontoxic GeSn MIR resonant-cavity-enhanced FPDs (RCE-FPDs) with strain-amplified optical responses. A narrow bandgap nontoxic GeSn nanomembrane was employed as the active layer, which was grown on a silicon-on-insulator substrate and then transfer-printed onto a polyethylene terephthalate (PET) substrate, eliminating the unwanted defects and residual compressive strain, to yield the MIR RCE-FPDs. In addition, a vertical cavity was created for the GeSn active layer to enhance the optical responsivity. Under bending conditions, significant tensile strain up to 0.274% was introduced into the GeSn active layer to effectively modulate the band structure, extend the photodetection in the MIR region, and substantially enhance the optical responsivity to 0.292 A W-1 at λ = 1770 nm, corresponding to an enhancement of 323% compared with the device under flat conditions. Moreover, theoretical simulations were performed to confirm the strain effect on the device performance. The results demonstrated high-performance, nontoxic MIR RCE-FPDs for applications in flexible photodetection.
Collapse
Affiliation(s)
- Yeh-Chen Tai
- Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Shu An
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore, Singapore.
| | - Po-Rei Huang
- Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Yue-Tong Jheng
- Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Kuo-Chih Lee
- Center for Condensed Matter Sciences, and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hung-Hsiang Cheng
- Center for Condensed Matter Sciences, and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Munho Kim
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore, Singapore.
| | - Guo-En Chang
- Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 62102, Taiwan.
- Center for Condensed Matter Sciences, and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
24
|
Xiao P, Zhang S, Zhang L, Yang J, Shi C, Han L, Tang W, Zhu B. Visible Near-Infrared Photodetection Based on Ta 2NiSe 5/WSe 2 van der Waals Heterostructures. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094385. [PMID: 37177590 PMCID: PMC10181779 DOI: 10.3390/s23094385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
The increasing interest in two-dimensional materials with unique crystal structures and novel band characteristics has provided numerous new strategies and paradigms in the field of photodetection. However, as the demand for wide-spectrum detection increases, the size of integrated systems and the limitations of mission modules pose significant challenges to existing devices. In this paper, we present a van der Waals heterostructure photodetector based on Ta2NiSe5/WSe2, leveraging the inherent characteristics of heterostructures. Our results demonstrate that this detector exhibits excellent broad-spectrum detection ability from the visible to the infrared bands at room temperature, achieving an extremely high on/off ratio, without the need for an external bias voltage. Furthermore, compared to a pure material detector, it exhibits a fast response and low dark currents (~3.6 pA), with rise and fall times of 278 μs and 283 μs for the response rate, respectively. Our findings provide a promising method for wide-spectrum detection and enrich the diversity of room-temperature photoelectric detection.
Collapse
Affiliation(s)
- Pan Xiao
- College of Science, Zhejiang University of Technology, 288 Liu-He Road, Hangzhou 310023, China
| | - Shi Zhang
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou 310024, China
| | - Libo Zhang
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou 310024, China
- State Key Laboratory for Infrared, Physics Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China
| | - Jialiang Yang
- College of Science, Zhejiang University of Technology, 288 Liu-He Road, Hangzhou 310023, China
| | - Chaofan Shi
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou 310024, China
| | - Li Han
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou 310024, China
- State Key Laboratory for Infrared, Physics Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China
| | - Weiwei Tang
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou 310024, China
| | - Bairen Zhu
- College of Science, Zhejiang University of Technology, 288 Liu-He Road, Hangzhou 310023, China
| |
Collapse
|
25
|
Tang Q, Zhong F, Li Q, Weng J, Li J, Lu H, Wu H, Liu S, Wang J, Deng K, Xiao Y, Wang Z, He T. Infrared Photodetection from 2D/3D van der Waals Heterostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1169. [PMID: 37049263 PMCID: PMC10096675 DOI: 10.3390/nano13071169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
An infrared photodetector is a critical component that detects, identifies, and tracks complex targets in a detection system. Infrared photodetectors based on 3D bulk materials are widely applied in national defense, military, communications, and astronomy fields. The complex application environment requires higher performance and multi-dimensional capability. The emergence of 2D materials has brought new possibilities to develop next-generation infrared detectors. However, the inherent thickness limitations and the immature preparation of 2D materials still lead to low quantum efficiency and slow response speeds. This review summarizes 2D/3D hybrid van der Waals heterojunctions for infrared photodetection. First, the physical properties of 2D and 3D materials related to detection capability, including thickness, band gap, absorption band, quantum efficiency, and carrier mobility, are summarized. Then, the primary research progress of 2D/3D infrared detectors is reviewed from performance improvement (broadband, high-responsivity, fast response) and new functional devices (two-color detectors, polarization detectors). Importantly, combining low-doped 3D and flexible 2D materials can effectively improve the responsivity and detection speed due to a significant depletion region width. Furthermore, combining the anisotropic 2D lattice structure and high absorbance of 3D materials provides a new strategy in high-performance polarization detectors. This paper offers prospects for developing 2D/3D high-performance infrared detection technology.
Collapse
Affiliation(s)
- Qianying Tang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhong
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Qing Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Jialu Weng
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junzhe Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hangyu Lu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuning Liu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Wang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Deng
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Yunlong Xiao
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Zhen Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Ting He
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| |
Collapse
|
26
|
Upconversion optogenetics-driven biohybrid sensor for infrared sensing and imaging. Acta Biomater 2023; 158:747-758. [PMID: 36638940 DOI: 10.1016/j.actbio.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Living organisms are far superior to state-of-the-art devices in visual perception as they have evolved a wide number of capabilities that encompass our most advanced technologies. By leveraging the performance of living organisms and directly interfacing them with artificial components, it can use the intricacy and metabolic efficiency of biological visual sensing within artificial machines. Inspired by the molecular basis (transient receptor potential, TRP) for infrared detection of pit-bearing organisms, we propose a TRP-like biohybrid sensor by integrating upconversion nanoparticles (UCNP) and optogenetically engineered cells on a graphene transistor for infrared sensing and imaging. The UCNP converts infrared light irradiation into blue light, the blue light activates the cells expressed with channelrhodopsin-2 (ChR2) and induces transmembrane photocurrent, and the photocurrent is detected by a biocompatible graphene transistor. Stepwise and overall experimental results show that, upon infrared light irradiation, the UCNP can rapidly mediate cellular photocurrents, which further translates into the extra output current of the graphene transistor. More notably, the response speed of the biohybrid sensor is 1∼3 orders of magnitude faster than those of TRPs heterologously expressed in cell lines in the literature, which confirms the response time advantage of the combination of UCNP and ChR2 within the sensor in place of TRPs. The biohybrid sensor can successfully image infrared targets, proving the feasibility of developing bionic infrared sensing devices by biohybrid integration of nonliving nanomaterials and biological components. This work opens up an avenue for biohybrid sensors to develop the bionic infrared vision that promisingly reproduces the functional superiority of natural organisms. STATEMENT OF SIGNIFICANCE: Infrared sensing and imaging have a wide range of military and civilian applications. Organisms have evolved excellent infrared vision with the molecular basis, transient receptor potential (TRP), and the performance is superior to existing state-of-the-art infrared devices. Inspired by this, a TRP-like biohybrid sensor based on upconversion optogenetics and a 2D material-based device is developed for infrared sensing and imaging. The biohybrid sensor has a relatively fast response speed that is 1∼3 orders of magnitude faster than that of the heterologously expressed TRPs, which enables its capability of infrared imaging with a single pixel-based method. This work broadens the spectrum of biohybrid sensing based on engineered cells to infrared, advancing the process of reproducing the excellent infrared detection of organisms.
Collapse
|
27
|
Eshete M, Li X, Yang L, Wang X, Zhang J, Xie L, Deng L, Zhang G, Jiang J. Charge Steering in Heterojunction Photocatalysis: General Principles, Design, Construction, and Challenges. SMALL SCIENCE 2023; 3:2200041. [PMID: 40212059 PMCID: PMC11935971 DOI: 10.1002/smsc.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Steering charge kinetics is a key to optimizing quantum efficiency. Advancing the design of photocatalysts (ranging from single semiconductor to multicomponent semiconductor junctions) that promise improved photocatalytic performance for converting solar to chemical energy, entails mastery of increasingly more complicated processes. Indeed, charge kinetics become more complex as both charge generation and charge consumption may occur simultaneously on different components, generally with charges being transferred from one component to another. Capturing detailed charge dynamics information in each heterojunction would provide numerous significant benefits for applications and has been needed for a long time. Here, the steering of charge kinetics by modulating charge energy states in the design of semiconductor-metal-interface-based heterogeneous photocatalysts is focused. These phenomena can be delineated by separating heterojunctions into classes exhibiting either Schottky/ohmic or plasmonic effects. General principles for the design and construction of heterojunction photocatalysts, including recent advances in the interfacing of semiconductors with graphene, carbon quantum dots, and graphitic carbon nitride are presented. Their limitations and possible future outlook are brought forward to further instruct the field in designing highly efficient photocatalysts.
Collapse
Affiliation(s)
- Mesfin Eshete
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
- Department of Industrial ChemistryCollege of Applied SciencesNanotechnology Excellence CenterAddis Ababa Science and Technology UniversityP.O. Box 16417Addis AbabaEthiopia
| | - Xiyu Li
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Li Yang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Xijun Wang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Jinxiao Zhang
- College of Chemistry and BioengineeringGuilin University of Technology12 Jian'gan RoadGuilinGuangxi541004P. R. China
| | - Liyan Xie
- A Key Laboratory of the- Ministry of Education for Advanced- Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhuaZhejiang321004P. R. China
| | - Linjie Deng
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| |
Collapse
|
28
|
Lai H, Lu Z, Lu Y, Yao X, Xu X, Chen J, Zhou Y, Liu P, Shi T, Wang X, Xie W. Fast, Multi-Bit, and Vis-Infrared Broadband Nonvolatile Optoelectronic Memory with MoS 2 /2D-Perovskite Van der Waals Heterojunction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208664. [PMID: 36453570 DOI: 10.1002/adma.202208664] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Nonvolatile optoelectronic memory (NVOM) integrating the functions of optical sensing and long-term memory can efficiently process and store a large amount of visual scene information, which has become the core requirement of multiple intelligence scenarios. However, realizing NVOM with vis-infrared broadband response is still challenging. Herein, the room temperature vis-infrared broadband NVOM based on few-layer MoS2 /2D Ruddlesden-Popper perovskite (2D-RPP) van der Waals heterojunction is realized. It is found that the 2D-RPP converts the initial n-type MoS2 into p-type and facilitates hole transfer between them. Furthermore, the 2D-RPP rich in interband states serves as an effective electron trapping layer as well as broadband photoresponsive layer. As a result, the dielectric-free MoS2 /2D-RPP heterojunction enables the charge to transfer quickly under external field, which enables a large memory window (104 V), fast write speed of 20 µs, and optical programmable characteristics from visible light (405 nm) to telecommunication wavelengths (i.e., 1550 nm) at room temperature. Trapezoidal optical programming can produce up to 100 recognizable states (>6 bits), with operating energy as low as 5.1 pJ per optical program. These results provide a route to realize fast, low power, multi-bit optoelectronic memory from visible to the infrared wavelength.
Collapse
Affiliation(s)
- Haojie Lai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Zhengli Lu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yueheng Lu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xuanchun Yao
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Xin Xu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Jian Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Yang Zhou
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Pengyi Liu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Tingting Shi
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiaomu Wang
- School of Electronic Science and Technology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Weiguang Xie
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
29
|
Guo T, Song X, Wei P, Li J, Gao Y, Cheng Z, Zhou W, Gu Y, Chen X, Zeng H, Zhang S. High-Gain MoS 2/Ta 2NiSe 5 Heterojunction Photodetectors with Charge Transfer and Suppressing Dark Current. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56384-56394. [PMID: 36484601 DOI: 10.1021/acsami.2c17495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Emerging two-dimensional narrow band gap materials with tunable band gaps and unique electrical and optical properties have shown tremendous potential in broadband photodetection. Nevertheless, large dark currents severely hinder the performance of photodetectors. Here, a MoS2/Ta2NiSe5 van der Waals heterostructure device was successfully fabricated with a high rectification ratio of ∼104 and an ultralow reverse bias current of the pA level. Excitingly, the charge transfer and the generation of the built-in electric field of heterostructures have been proved by theory and experiment, which effectively suppress dark currents. The dark current of the heterostructure reduces by nearly 104 compared with the pure Ta2NiSe5 photodetector at Vds = 1 V. The MoS2/Ta2NiSe5 device exhibits excellent photoelectric performance with the maximum responsivity of 515.6 A W-1 and 0.7 A W-1 at the wavelengths of 532 and 1064 nm under forward bias, respectively. In addition, the specific detectivity is up to 3.1 × 1013 Jones (532 nm) and 2.4 × 109 Jones (1064 nm). Significantly, the device presents an ultra-high gain of 6 × 107 and an exceptional external quantum efficiency of 1.2 × 105% under 532 nm laser irradiation. The results reveal that the MoS2/Ta2NiSe5 heterostructure provides an essential platform for the development and application of high-performance broadband optoelectronic devices.
Collapse
Affiliation(s)
- Tingting Guo
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Xiufeng Song
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Pengfei Wei
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Jing Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Yuewen Gao
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Zhongzhou Cheng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Wenhan Zhou
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Yu Gu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Xiang Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| |
Collapse
|
30
|
Hu X, Liu K, Cai Y, Zang SQ, Zhai T. 2D Oxides for Electronics and Optoelectronics. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Xiaozong Hu
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Yongqing Cai
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Taipa 999078 Macau P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
31
|
Malik M, Iqbal MA, Choi JR, Pham PV. 2D Materials for Efficient Photodetection: Overview, Mechanisms, Performance and UV-IR Range Applications. Front Chem 2022; 10:905404. [PMID: 35668828 PMCID: PMC9165695 DOI: 10.3389/fchem.2022.905404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Two-dimensional (2D) materials have been widely used in photodetectors owing to their diverse advantages in device fabrication and manipulation, such as integration flexibility, availability of optical operation through an ultrabroad wavelength band, fulfilling of photonic demands at low cost, and applicability in photodetection with high-performance. Recently, transition metal dichalcogenides (TMDCs), black phosphorus (BP), III-V materials, heterostructure materials, and graphene have emerged at the forefront as intriguing basics for optoelectronic applications in the field of photodetection. The versatility of photonic systems composed of these materials enables their wide range of applications, including facilitation of chemical reactions, speeding-up of responses, and ultrasensitive light detection in the ultraviolet (UV), visible, mid-infrared (MIR), and far-infrared (FIR) ranges. This review provides an overview, evaluation, recent advancements as well as a description of the innovations of the past few years for state-of-the-art photodetectors based on two-dimensional materials in the wavelength range from UV to IR, and on the combinations of different two-dimensional crystals with other nanomaterials that are appealing for a variety of photonic applications. The device setup, materials synthesis, operating methods, and performance metrics for currently utilized photodetectors, along with device performance enhancement factors, are summarized.
Collapse
Affiliation(s)
- Maria Malik
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
| | - Muhammad Aamir Iqbal
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | | | - Phuong V Pham
- Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou, China
| |
Collapse
|