1
|
Ogata Y, Yamada T, Fujimura M, Igarashi T, Hasegawa S. Analysis of the relationship between age-related erythrocyte dysfunction and fatigue. Biogerontology 2024; 25:809-817. [PMID: 38710961 DOI: 10.1007/s10522-024-10106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
With the declining birth rates and aging societies in developed countries, the average age of the working population is increasing. Older people tend to get tired more easily, so prevention of fatigue is important to improve the quality of life for older workers. This study aimed to assess the mechanism of fatigue in older people, especially focused on relation between dysfunction of erythrocyte and fatigue. Total power (TP), which is the value of autonomic nerve activity, was measured as a value of fatigue and significantly decreased in workers with aging. As properties of senescent erythrocytes, the erythrocyte sedimentation rate and damaged erythrocytes population increased with aging and correlated with TP. These results suggested that the accumulation of damaged erythrocytes contributes to fatigue. Recent studies revealed that senescence-associated secretory phenotype (SASP), a phenomenon in which senescent cells secrete a variety of cytokines, affected hematopoiesis in bone marrow. We analyzed the effects of SASP factors on erythropoiesis and found that Interleukin -1α (IL-1α) suppressed erythrocyte differentiation of hematopoietic stem cells in vitro. We also showed that IL-1α levels in human blood and saliva increase with aging, suggesting the possibility that IL-1α level in saliva can be used to predict the decline in hematopoietic function.
Collapse
Affiliation(s)
- Yuichiro Ogata
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan.
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan
| | - Masahiro Fujimura
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan
| | - Toshio Igarashi
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan
- Nagoya University-MENARD Collaborative Chair, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Kim S, Jo KW, Park JM, Shin A, Kurita R, Nakamura Y, Kweon S, Baek EJ. Irradiation is not sufficient to eradicate residual immortalized erythroid cells in in vitro-generated red blood cell products. Transfusion 2023. [PMID: 37154531 DOI: 10.1111/trf.17394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND The generation of immortalized erythroid progenitor cell lines capable of producing enough red blood cells (RBCs) for blood transfusion typically requires the overexpression of oncogenes in stem cells or progenitor cells to permanently proliferate immature cells. It is essential that any live oncogene-expressing cells are eliminated from the final RBC products for clinical use. STUDY DESIGN AND METHODS It is believed that safety issues may be resolved by using a leukoreduction filter or by irradiating the final products, as is conventionally done in blood banks; however, this has never been proven to be effective. Therefore, to investigate whether immortalized erythroblasts can be completely removed using γ-ray irradiation, we irradiated the erythroblast cell line, HiDEP, and the erythroleukemic cell line, K562 that overexpress HPV16 E6/E7. We then analyzed the extent of cell death using flow cytometry and polymerase chain reaction (PCR). The cells were also subjected to leukoreduction filters. RESULTS Using γ-ray irradiation at 25 Gy, 90.4% of HiDEP cells, 91.6% of K562-HPV16 E6/E7 cells, and 93.5% of non-transduced K562 cells were dead. In addition, 5.58 × 107 HiDEP cells were passed through a leukoreduction filter, and 38 intact cells were harvested, revealing a filter removal efficiency of 99.9999%. However, both intact cells and oncogene DNA were still detected. DISCUSSION Irradiation cannot induce total cell death of oncogene-expressing erythroblasts and leukocyte filter efficiency is not 100%. Therefore, our findings imply that for clinical applications, safer methods should be developed to completely remove residual nucleated cells from cell line-derived RBC products.
Collapse
Affiliation(s)
- Suyeon Kim
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
| | - Kyeong Won Jo
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
| | - Ju Mi Park
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
| | - Arim Shin
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Soonho Kweon
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
| | - Eun Jung Baek
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Yu S, Vassilev S, Lim ZR, Sivalingam J, Lam ATL, Ho V, Renia L, Malleret B, Reuveny S, Oh SKW. Selection of O-negative induced pluripotent stem cell clones for high-density red blood cell production in a scalable perfusion bioreactor system. Cell Prolif 2022; 55:e13218. [PMID: 35289971 PMCID: PMC9357363 DOI: 10.1111/cpr.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 12/31/2022] Open
Abstract
Objectives Large‐scale generation of universal red blood cells (RBCs) from O‐negative (O‐ve) human induced pluripotent stem cells (hiPSCs) holds the potential to alleviate worldwide shortages of blood and provide a safe and secure year‐round supply. Mature RBCs and reticulocytes, the immature counterparts of RBCs generated during erythropoiesis, could also find important applications in research, for example in malaria parasite infection studies. However, one major challenge is the lack of a high‐density culture platform for large‐scale generation of RBCs in vitro. Materials and Methods We generated 10 O‐ve hiPSC clones and evaluated their potential for mesoderm formation and erythroid differentiation. We then used a perfusion bioreactor system to perform studies with high‐density cultures of erythroblasts in vitro. Results Based on their tri‐lineage (and specifically mesoderm) differentiation potential, we isolated six hiPSC clones capable of producing functional erythroblasts. Using the best performing clone, we demonstrated the small‐scale generation of high‐density cultures of erythroblasts in a perfusion bioreactor system. After process optimization, we were able to achieve a peak cell density of 34.7 million cells/ml with 92.2% viability in the stirred bioreactor. The cells expressed high levels of erythroblast markers, showed oxygen carrying capacity, and were able to undergo enucleation. Conclusions This study demonstrated a scalable platform for the production of functional RBCs from hiPSCs. The perfusion culture platform we describe here could pave the way for large volume‐controlled bioreactor culture for the industrial generation of high cell density erythroblasts and RBCs.
Collapse
Affiliation(s)
- SuE Yu
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Svetlan Vassilev
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Zhong Ri Lim
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Jaichandran Sivalingam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Alan Tin Lun Lam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Valerie Ho
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Republic of Singapore.,A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Republic of Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Republic of Singapore.,Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore
| | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Steve Kah Weng Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| |
Collapse
|
4
|
Javed R, Flores L, Bhave SJ, Jawed A, Mishra DK. The Future of Red Cell Transfusion Lies in Cultured Red Cells. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1740068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractBlood is a very important resource for healthcare-based services and there has been a consistently increasing demand for it in most parts of the world. Poor volunteer-based collection system, high-risk of transfusion-transmitted infections, and emergence of new pathogens as evident from the ongoing Coronavirus Disease 2019 (COVID-19) pandemic are potential challenges to the global healthcare systems. It is imperative to explore safe and reliable alternatives to red cell transfusions. Ex vivo culture of red cells (cRBCs) from different sources such as hematopoietic stem cells (HSCs), pluripotent stem cells, and immortalized progenitors (e.g., BELA-2 cells) could revolutionize transfusion medicine. cRBC could be of great diagnostic and therapeutic utility. It may provide a backup in times of acute shortages in patients with rare blood groups, and in cases with multiple antibodies or sickle cell anemia. The CRISP-Cas9 system has been used to develop personalized, multi-compatible RBCs for diagnostic reagents and patients with multiple allo-antibodies. cRBC could be practically feasible for pediatric patients, who require small quantities of red cell transfusions. cRBC produced under good manufacturing practice (GMP) conditions has been reported to survive in human blood circulation for more than 26 days. Recently, a phase I randomized controlled clinical trial called RESTORE was initiated to assess the survival and recovery of cRBCs. However, feasible technological advancement is required to produce enough cRBCs for clinical use. It is crucial to identify sustainable sources for large-scale production of clinically useful cRBCs. Although the potential cost of one unit of cRBC is extrapolated to be around US$ 8000, it is a life-saving product for patients having rare blood groups and is a “ready to use” source of phenotype-matched, homogenous young red cells in emergency situations.
Collapse
Affiliation(s)
- Rizwan Javed
- Department of Clinical Haematology and BMT, TATA Medical Center, Kolkata, West Bengal, India
| | - Lorraine Flores
- Department of Histocompatibility and Immunogenetics, NHS Blood and Transplant, Filton, Bristol, United Kingdom
| | - Saurabh Jayant Bhave
- Department of Clinical Haematology and BMT, TATA Medical Center, Kolkata, West Bengal, India
| | - Asheer Jawed
- Department of Respiratory Medicine at William Harvey Hospital, Ashford, United Kingdom
| | | |
Collapse
|
5
|
Soboleva S, Kurita R, Kajitani N, Åkerstrand H, Miharada K. Establishment of an immortalized human erythroid cell line sustaining differentiation potential without inducible gene expression system. Hum Cell 2021; 35:408-417. [PMID: 34817797 DOI: 10.1007/s13577-021-00652-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
Ex vivo manufactured red blood cells (RBC) generated from immortalized erythroid cell lines which can continuously grow are expected to become a significant alternative in future transfusion therapies. The ectopic expression of human papilloma virus (HPV) E6/E7 gene has successfully been employed to establish these cell lines. To induce differentiation and maturation of the immortalized cell lines, terminating the HPV-E6/E7 expression through a gene induction system has been believed to be essential. Here, we report that erythroid cell lines established from human bone marrow using simple expression of HPV-E6/E7 are capable of normal erythroid differentiation, without turning gene expression off. Through simply changing cell culture conditions, a newly established cell line, Erythroid Line from Lund University (ELLU), is able to differentiate toward mature cells, including enucleated reticulocytes. ELLU is heterogeneous and, unexpectedly, clones expressing adult hemoglobin rapidly differentiate and produce fragile cells. Upon differentiation, other ELLU clones shift from fetal to adult hemoglobin expression, giving rise to more mature cells. Our findings propose that it is not necessary to employ gene induction systems to establish immortalized erythroid cell lines sustaining differentiation potential and describe novel cellular characteristics for desired functionally competent clones.
Collapse
Affiliation(s)
- Svetlana Soboleva
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Naoko Kajitani
- Division of Medical Microbiology, Lund University, Lund, Sweden
| | - Hugo Åkerstrand
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kenichi Miharada
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden. .,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
6
|
Xie X, Yao H, Han X, Yue W, Pei X. Therapeutic use of red blood cells and platelets derived from human cord blood stem cells. Stem Cells Transl Med 2021; 10 Suppl 2:S48-S53. [PMID: 34724719 PMCID: PMC8560193 DOI: 10.1002/sctm.20-0517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/15/2021] [Accepted: 06/06/2021] [Indexed: 12/19/2022] Open
Abstract
Red blood cells (RBCs) and platelets derived from stem cells are possible solutions to the increasing demand for blood transfusion. Based on the availability of stem cells, their relatively defined differentiation mechanisms, and the massive exploration of induction systems, the generation of RBCs or platelets in vitro from cord blood hematopoietic stem/progenitor cells (CB-HSPCs) has potential for clinical applications. However, information on the clinical translation of stem cell-derived RBCs and platelets in the literature and at the ClinicalTrials.gov website is very limited. The only clinical trial on cultured RBCs, which aimed to assess the lifespan of RBCs cultured in vivo, was reported by Luc Douay and colleagues. Of note, the cultured RBCs they used were derived from autologous peripheral blood HSPCs, and no cultured platelets have been applied clinically to date. However, CB-HSPC-derived megakaryocytes, platelet precursors, have been used in the treatment of thrombocytopenia. A successful phase I trial was reported, followed by phase II and III clinical trials conducted in China. In this review, the gap between the many basic studies and limited clinical trials on stem cell-derived RBCs and platelets is summarized. The possible reasons and solutions for this gap are discussed. Further technological improvements for blood cell expansion and maturation ex vivo and the establishment of biological standards for stem cell derivatives might help to facilitate the therapeutic applications of cultured RBCs and platelets derived from CB-HSPCs in the near future.
Collapse
Affiliation(s)
- Xiaoyan Xie
- Stem Cells and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingPeople's Republic of China
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouPeople's Republic of China
| | - Hailei Yao
- Stem Cells and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingPeople's Republic of China
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouPeople's Republic of China
| | - Xiaoyan Han
- National Institutes for Food and Drug ControlBeijingPeople's Republic of China
| | - Wen Yue
- Stem Cells and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingPeople's Republic of China
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouPeople's Republic of China
| | - Xuetao Pei
- Stem Cells and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingPeople's Republic of China
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouPeople's Republic of China
| |
Collapse
|
7
|
Industrially Compatible Transfusable iPSC-Derived RBCs: Progress, Challenges and Prospective Solutions. Int J Mol Sci 2021; 22:ijms22189808. [PMID: 34575977 PMCID: PMC8472628 DOI: 10.3390/ijms22189808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Amidst the global shortfalls in blood supply, storage limitations of donor blood and the availability of potential blood substitutes for transfusion applications, society has pivoted towards in vitro generation of red blood cells (RBCs) as a means to solve these issues. Many conventional research studies over the past few decades have found success in differentiating hematopoietic stem and progenitor cells (HSPCs) from cord blood, adult bone marrow and peripheral blood sources. More recently, techniques that involve immortalization of erythroblast sources have also gained traction in tackling this problem. However, the RBCs generated from human induced pluripotent stem cells (hiPSCs) still remain as the most favorable solution due to many of its added advantages. In this review, we focus on the breakthroughs for high-density cultures of hiPSC-derived RBCs, and highlight the major challenges and prospective solutions throughout the whole process of erythropoiesis for hiPSC-derived RBCs. Furthermore, we elaborate on the recent advances and techniques used to achieve cost-effective, high-density cultures of GMP-compliant RBCs, and on their relevant novel applications after downstream processing and purification.
Collapse
|
8
|
Soboleva S, Kurita R, Ek F, Åkerstrand H, Silvério-Alves R, Olsson R, Nakamura Y, Miharada K. Identification of potential chemical compounds enhancing generation of enucleated cells from immortalized human erythroid cell lines. Commun Biol 2021; 4:677. [PMID: 34083702 PMCID: PMC8175573 DOI: 10.1038/s42003-021-02202-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Immortalized erythroid cell lines are expected to be a promising source of ex vivo manufactured red blood cells (RBCs), however the induction of enucleation in these cell lines is inefficient at present. We utilized an imaging-based high-throughput system to identify chemical compounds that trigger enucleation of human erythroid cell lines. Among >3,300 compounds, we identified multiple histone deacetylase inhibitors (HDACi) inducing enucleated cells from the cell line, although an increase in membrane fragility of enucleated cells was observed. Gene expression profiling revealed that HDACi treatment increased the expression of cytoskeletal genes, while an erythroid-specific cell membrane protein, SPTA1, was significantly down-regulated. Restoration of SPTA1 expression using CRISPR-activation partially rescued the fragility of cells and thereby improved the enucleation efficiency. Our observations provide a potential solution for the generation of mature cells from erythroid cell lines, contributing to the future realization of the use of immortalized cell lines for transfusion therapies. In an imaging-based screen of >3,300 compounds compounds, Soboleva et al identify HDAC inhibitors as mediators of erythroid cell enucleation. They further show that the erythroid-specific cell membrane protein, SPTA1, is downregulated in HDAC inhibited cells and that restoration of SPTA1 expression using CRISPR-activation partially rescues the fragility of cells, improving enucleation efficiency.
Collapse
Affiliation(s)
- Svetlana Soboleva
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hugo Åkerstrand
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Rita Silvério-Alves
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Kenichi Miharada
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden. .,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
9
|
Di Buduo CA, Aguilar A, Soprano PM, Bocconi A, Miguel CP, Mantica G, Balduini A. Latest culture techniques: cracking the secrets of bone marrow to mass-produce erythrocytes and platelets ex vivo. Haematologica 2021; 106:947-957. [PMID: 33472355 PMCID: PMC8017859 DOI: 10.3324/haematol.2020.262485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Since the dawn of medicine, scientists have carefully observed, modeled and interpreted the human body to improve healthcare. At the beginning there were drawings and paintings, now there is three-dimensional modeling. Moving from two-dimensional cultures and towards complex and relevant biomaterials, tissue-engineering approaches have been developed in order to create three-dimensional functional mimics of native organs. The bone marrow represents a challenging organ to reproduce because of its structure and composition that confer it unique biochemical and mechanical features to control hematopoiesis. Reproducing the human bone marrow niche is instrumental to answer the growing demand for human erythrocytes and platelets for fundamental studies and clinical applications in transfusion medicine. In this review, we discuss the latest culture techniques and technological approaches to obtain functional platelets and erythrocytes ex vivo. This is a rapidly evolving field that will define the future of targeted therapies for thrombocytopenia and anemia, but also a long-term promise for new approaches to the understanding and cure of hematologic diseases.
Collapse
Affiliation(s)
| | - Alicia Aguilar
- Department of Molecular Medicine, University of Pavia, Pavia
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia
| | - Alberto Bocconi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano
| | | | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA
| |
Collapse
|
10
|
Mechanical Stress Induces Ca 2+-Dependent Signal Transduction in Erythroblasts and Modulates Erythropoiesis. Int J Mol Sci 2021; 22:ijms22020955. [PMID: 33478008 PMCID: PMC7835781 DOI: 10.3390/ijms22020955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 01/12/2023] Open
Abstract
Bioreactors are increasingly implemented for large scale cultures of various mammalian cells, which requires optimization of culture conditions. Such upscaling is also required to produce red blood cells (RBC) for transfusion and therapy purposes. However, the physiological suitability of RBC cultures to be transferred to stirred bioreactors is not well understood. PIEZO1 is the most abundantly expressed known mechanosensor on erythroid cells. It is a cation channel that translates mechanical forces directly into a physiological response. We investigated signaling cascades downstream of PIEZO1 activated upon transitioning stationary cultures to orbital shaking associated with mechanical stress, and compared the results to direct activation of PIEZO1 by the chemical agonist Yoda1. Erythroblasts subjected to orbital shaking displayed decreased proliferation, comparable to incubation in the presence of a low dose of Yoda1. Epo (Erythropoietin)-dependent STAT5 phosphorylation, and Calcineurin-dependent NFAT dephosphorylation was enhanced. Phosphorylation of ERK was also induced by both orbital shaking and Yoda1 treatment. Activation of these pathways was inhibited by intracellular Ca2+ chelation (BAPTA-AM) in the orbital shaker. Our results suggest that PIEZO1 is functional and could be activated by the mechanical forces in a bioreactor setup, and results in the induction of Ca2+-dependent signaling cascades regulating various aspects of erythropoiesis. With this study, we showed that Yoda1 treatment and mechanical stress induced via orbital shaking results in comparable activation of some Ca2+-dependent pathways, exhibiting that there are direct physiological outcomes of mechanical stress on erythroblasts.
Collapse
|
11
|
Ebrahimi M, Forouzesh M, Raoufi S, Ramazii M, Ghaedrahmati F, Farzaneh M. Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res Ther 2020; 11:483. [PMID: 33198819 PMCID: PMC7667818 DOI: 10.1186/s13287-020-01998-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
During the last years, several strategies have been made to obtain mature erythrocytes or red blood cells (RBC) from the bone marrow or umbilical cord blood (UCB). However, UCB-derived hematopoietic stem cells (HSC) are a limited source and in vitro large-scale expansion of RBC from HSC remains problematic. One promising alternative can be human pluripotent stem cells (PSCs) that provide an unlimited source of cells. Human PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are self-renewing progenitors that can be differentiated to lineages of ectoderm, mesoderm, and endoderm. Several previous studies have revealed that human ESCs can differentiate into functional oxygen-carrying erythrocytes; however, the ex vivo expansion of human ESC-derived RBC is subjected to ethical concerns. Human iPSCs can be a suitable therapeutic choice for the in vitro/ex vivo manufacture of RBCs. Reprogramming of human somatic cells through the ectopic expression of the transcription factors (OCT4, SOX2, KLF4, c-MYC, LIN28, and NANOG) has provided a new avenue for disease modeling and regenerative medicine. Various techniques have been developed to generate enucleated RBCs from human iPSCs. The in vitro production of human iPSC-derived RBCs can be an alternative treatment option for patients with blood disorders. In this review, we focused on the generation of human iPSC-derived erythrocytes to present an overview of the current status and applications of this field.
Collapse
Affiliation(s)
- Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Forouzesh
- Legal Medicine Organization of Iran, Legal Medicine Research Center, Legal Medicine organization, Tehran, Iran
| | - Setareh Raoufi
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ramazii
- Kerman University of Medical Sciences, University of Kerman, Kerman, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
12
|
Chen J, Zhou Q, Liu MH, Yang YS, Wang YQ, Huang Y, Chen GQ. FAM122A Inhibits Erythroid Differentiation through GATA1. Stem Cell Reports 2020; 15:721-734. [PMID: 32763160 PMCID: PMC7486200 DOI: 10.1016/j.stemcr.2020.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/11/2020] [Accepted: 07/11/2020] [Indexed: 12/15/2022] Open
Abstract
FAM122A is a highly conserved housekeeping gene, but its physiological and pathophysiological roles remain greatly elusive. Based on the fact that FAM122A is highly expressed in human CD71+ early erythroid cells, herein we report that FAM122A is downregulated during erythroid differentiation, while its overexpression significantly inhibits erythrocytic differentiation in primary human hematopoietic progenitor cells and erythroleukemia cells. Mechanistically, FAM122A directly interacts with the C-terminal zinc finger domain of GATA1, a critical transcriptional factor for erythropoiesis, and reduces GATA1 chromatin occupancy on the promoters of its target genes, thus resulting in the decrease of GATA1 transcriptional activity. The public datasets show that FAM122A is abnormally upregulated in patients with β-thalassemia. Collectively, our results demonstrate that FAM122A plays an inhibitory role in the regulation of erythroid differentiation, and it would be a potentially therapeutic target for GATA1-related dyserythropoiesis or an important regulator for amplifying erythroid cells ex vivo.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Zhou
- Department of Obstetrics and Gynecology, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man-Hua Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Sheng Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin-Qi Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
14
|
Guzniczak E, Otto O, Whyte G, Chandra T, Robertson NA, Willoughby N, Jimenez M, Bridle H. Purifying stem cell-derived red blood cells: a high-throughput label-free downstream processing strategy based on microfluidic spiral inertial separation and membrane filtration. Biotechnol Bioeng 2020; 117:2032-2045. [PMID: 32100873 PMCID: PMC7383897 DOI: 10.1002/bit.27319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Cell-based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability-based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high-throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products.
Collapse
Affiliation(s)
- Ewa Guzniczak
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| | - Oliver Otto
- Centre for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Greifswald, Germany.,Deutsches Zentrum für Herz-Kreislaufforschung, Partner Site Greifswald, Greifswald, Germany
| | - Graeme Whyte
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| | - Tamir Chandra
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, Scotland
| | - Neil A Robertson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, Scotland
| | - Nik Willoughby
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| | - Melanie Jimenez
- Biomedical Engineering Division, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland
| | - Helen Bridle
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| |
Collapse
|
15
|
Kuhikar R, Khan N, Philip J, Melinkeri S, Kale V, Limaye L. Transforming growth factor β1 accelerates and enhances in vitro red blood cell formation from hematopoietic stem cells by stimulating mitophagy. Stem Cell Res Ther 2020; 11:71. [PMID: 32075694 PMCID: PMC7029523 DOI: 10.1186/s13287-020-01603-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Background Generation of red blood cells (RBCs) from hematopoietic stem cells (HSCs) in vitro takes about 21 days, making it unaffordable for clinical applications. Acceleration of the in vitro erythropoiesis process by using small molecules could eventually make the large-scale production of these cells commercially viable. Transforming Growth Factor β1 (TGF-β1) has been shown to have a dose-dependent activity on the HSCs: at high concentration it inhibits, whereas at low concentration it stimulates the HSCs growth. At high concentration, it also inhibits erythropoiesis but accelerates terminal erythroid differentiation of cell lines and erythroid progenitors. Here we examined whether the use of low concentration of TGF-β1 would be beneficial for increasing RBC production by stimulating HSC growth and also supporting erythroid differentiation. Such a strategy could make RBC production in vitro more efficient and cost-effective for clinical applications. Methods HSCs isolated from Apheresis samples were differentiated into mature RBCs by the sequential addition of specific combinations of growth factors for 21 days. In the control set, only EPO (3 IU/ml) was added whereas, in the test set, TGF-β1 at a concentration of 10 pg/ml was added along with EPO (3 IU/ml) from day 0. Results We found that a low concentration of TGF-β1 has no inhibitory effect on the proliferation of the early stages of erythropoiesis. Additionally, it significantly accelerates terminal stages of erythroid differentiation by promoting BNIP3L/NIX-mediated mitophagy. Conclusions Incorporation of TGF-β1 at 10 pg/ml concentration in the differentiation medium accelerates the in vitro erythropoiesis process by 3 days. This finding could have potential applications in transfusion medicine. Electronic supplementary material The online version of this article (10.1186/s13287-020-01603-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rutuja Kuhikar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Nikhat Khan
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India
| | | | - Sameer Melinkeri
- Blood and Marrow Transplant Unit, Deenanath Mangeshkar Hospital, Erandawne, Pune, 411004, India
| | - Vaijayanti Kale
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India.,Symbiosis Centre for Stem Cell research, School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, India
| | - Lalita Limaye
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
16
|
Bernecker C, Köfeler H, Pabst G, Trötzmüller M, Kolb D, Strohmayer K, Trajanoski S, Holzapfel GA, Schlenke P, Dorn I. Cholesterol Deficiency Causes Impaired Osmotic Stability of Cultured Red Blood Cells. Front Physiol 2019; 10:1529. [PMID: 31920725 PMCID: PMC6933518 DOI: 10.3389/fphys.2019.01529] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/04/2019] [Indexed: 11/17/2022] Open
Abstract
Ex vivo generation of red blood cells (cRBCs) is an attractive tool in basic research and for replacing blood components donated by volunteers. As a prerequisite for the survival of cRBCs during storage as well as in the circulation, the quality of the membrane is of utmost importance. Besides the cytoskeleton and embedded proteins, the lipid bilayer is critical for membrane integrity. Although cRBCs suffer from increased fragility, studies investigating the lipid content of their membrane are still lacking. We investigated the membrane lipid profile of cRBCs from CD34+ human stem and progenitor cells compared to native red blood cells (nRBCs) and native reticulocytes (nRETs). Ex vivo erythropoiesis was performed in a well-established liquid assay. cRBCs showed a maturation grade between nRETs and nRBCs. High-resolution mass spectrometry analysis for cholesterol and the major phospholipid classes, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, sphingomyelin and lysophosphatidylcholin, demonstrated severe cholesterol deficiency in cRBCs. Although cRBCs showed normal deformability capacity, they suffered from increased hemolysis due to minimal changes in the osmotic conditions. After additional lipid supplementation, especially cholesterol during culturing, the cholesterol content of cRBCs increased to a subnormal amount. Concurrently, the osmotic resistance recovered completely and became comparable to that of nRETs. Minor differences in the amount of phospholipids in cRBCs compared to native cells could mainly be attributed to the ongoing membrane remodeling process from the reticulocyte to the erythrocyte stage. Obtained results demonstrate severe cholesterol deficiency as a reason for enhanced fragility of cRBCs. Therefore, the supplementation of lipids, especially cholesterol during ex vivo erythropoiesis may overcome this limitation and strengthens the survival of cRBCs ex vivo and in vivo.
Collapse
Affiliation(s)
- Claudia Bernecker
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Harald Köfeler
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Georg Pabst
- Institute of Molecular Biosciences, University of Graz, Biophysics Division, BioTechMed Graz, Graz, Austria
| | | | - Dagmar Kolb
- Center for Medical Research, Medical University of Graz, Graz, Austria.,Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Karl Strohmayer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Slave Trajanoski
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria.,Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Peter Schlenke
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Isabel Dorn
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
17
|
Olivier EN, Zhang S, Yan Z, Suzuka S, Roberts K, Wang K, Bouhassira EE. PSC-RED and MNC-RED: Albumin-free and low-transferrin robust erythroid differentiation protocols to produce human enucleated red blood cells. Exp Hematol 2019; 75:31-52.e15. [PMID: 31176681 DOI: 10.1016/j.exphem.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/19/2023]
Abstract
Many methods have been developed to produce cultured red blood cells (cRBCs) in vitro but translational applications have been hampered by high costs of production and by low rates of enucleation. We have developed R6 and IMIT, two chemically defined culture media and combined them into robust erythroid differentiation (RED) protocols to differentiate induced-pluripotent stem cells (iPSCs) and peripheral blood mononuclear cells (MNCs) into enucleated erythroid cells. The RED protocols do not require any albumin or animal components and require ten- to twentyfold less transferrin (Tf) than previously, because iron is provided to the differentiating erythroblasts by small amounts of recombinant Tf supplemented with FeIII-EDTA, an iron chelator that allows Tf recycling to take place in cell culture. Importantly, cRBCs produced by iPSC differentiation using the long PSC-RED protocol enucleate at much higher rates than with previous protocols, eliminating one of the impediments to the use of these cells to produce clinically useful cRBCs. The absence of albumin, the reduced amounts of Tf, the improved reproducibility associated with the elimination of all animal components, and the high yield on the RED protocols decrease the cost of production of cultured red blood cells. RED protocols should therefore help to make translational applications of cultured RBCs more economically realistic.
Collapse
Affiliation(s)
- Emmanuel N Olivier
- Department of Cell Biology and Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
| | - Shouping Zhang
- Department of Cell Biology and Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
| | - Zi Yan
- Department of Cell Biology and Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
| | - Sandra Suzuka
- Department of Cell Biology and Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
| | - Karl Roberts
- Department of Cell Biology and Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
| | - Kai Wang
- Department of Cell Biology and Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
| | - Eric E Bouhassira
- Department of Cell Biology and Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
18
|
Zingariello M, Bardelli C, Sancillo L, Ciaffoni F, Genova ML, Girelli G, Migliaccio AR. Dexamethasone Predisposes Human Erythroblasts Toward Impaired Lipid Metabolism and Renders Their ex vivo Expansion Highly Dependent on Plasma Lipoproteins. Front Physiol 2019; 10:281. [PMID: 31019464 PMCID: PMC6458278 DOI: 10.3389/fphys.2019.00281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/04/2019] [Indexed: 02/04/2023] Open
Abstract
Cultures of stem cells from discarded sources supplemented with dexamethasone, a synthetic glucocorticoid receptor agonist, generate cultured red blood cells (cRBCs) in numbers sufficient for transfusion. According to the literature, however, erythroblasts generated with dexamethasone exhibit low enucleation rates giving rise to cRBCs that survive poorly in vivo. The knowledge that the glucocorticoid receptor regulates lipid metabolism and that lipid composition dictates the fragility of the plasma membrane suggests that insufficient lipid bioavailability restrains generation of cRBCs. To test this hypothesis, we first compared the expression profiling of erythroblasts generated with or without dexamethasone. This analysis revealed differences in expression of 55 genes, 6 of which encoding proteins involved in lipid metabolism. These were represented by genes encoding the mitochondrial proteins 3-Hydroxymethyl-3-Methylglutaryl-CoA lyase, upregulated, and 3-Oxoacid CoA-Transferase1 and glycerol-3-phosphate acyltransferase1, both downregulated, and the proteins ATP-binding cassette transporter1 and Hydroxysteroid-17-Beta-Dehydrogenase7, upregulated, and cAMP-dependent protein kinase catalytic subunit beta, downregulated. This profiling predicts that dexamethasone, possibly by interfering with mitochondrial functions, impairs the intrinsic lipid metabolism making the synthesis of the plasma membrane of erythroid cells depend on lipid-uptake from external sources. Optical and electron microscopy analyses confirmed that the mitochondria of erythroblasts generated with dexamethasone are abnormal and that their plasma membranes present pebbles associated with membrane ruptures releasing exosomes and micro-vesicles. These results indicate that the lipid supplements of media currently available are not adequate for cRBCs. To identify better lipid supplements, we determined the number of erythroblasts generated in synthetic media supplemented with either currently used liposomes or with lipoproteins purified from human plasma [the total lipoprotein fraction (TL) or its high (HDL), low (LDL) and very low (VLDL) density lipoprotein components]. Both LDL and VLDL generated numbers of erythroid cells 3-2-fold greater than that observed in controls. These greater numbers were associated with 2-3-fold greater amplification of erythroid cells due both to increased proliferation and to resistance to stress-induced death. In conclusion, dexamethasone impairs lipid metabolism making ex vivo expansion of erythroid cells highly dependent on lipid absorbed from external sources and the use of LDL and VLDL as lipid supplements improves the generation of cRBCs.
Collapse
Affiliation(s)
- Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Claudio Bardelli
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum University, Bologna, Italy
| | - Laura Sancillo
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | | | - Maria Luisa Genova
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum University, Bologna, Italy
| | | | - Anna Rita Migliaccio
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum University, Bologna, Italy
| |
Collapse
|
19
|
Christaki EE, Politou M, Antonelou M, Athanasopoulos A, Simantirakis E, Seghatchian J, Vassilopoulos G. Ex vivo generation of transfusable red blood cells from various stem cell sources: A concise revisit of where we are now. Transfus Apher Sci 2019; 58:108-112. [DOI: 10.1016/j.transci.2018.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Establishment and characterization of immortalized erythroid progenitor cell lines derived from a common cell source. Exp Hematol 2018; 69:11-16. [PMID: 30326248 DOI: 10.1016/j.exphem.2018.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
Abstract
Immortalized erythroid progenitor cell lines, which exhibit potential for enucleated red blood cell (RBC) production, are expected to serve as an in vitro source of RBCs. These erythroid progenitor cell lines have previously been established from a variety of sources; however, large numbers of cell lines have not been established, characterized, and compared from a common cell source. In the present study, 37 cell lines were established from human bone marrow cells from a single donor. The time required for the establishment of each cell line varied greatly from 46 to 246 days. Of these lines, five were selected and their characteristics were analyzed. The cell lines established at the earliest time point showed better results in terms of both karyotype and differentiation potential than those established the latest. Moreover, obvious differences were noted even when cell lines were established at the earliest time point from the same source. These results suggest that it is important to select the best cell lines from ones established at the earliest time point for generating cell lines with low genomic abnormality and high differentiation ability. We have successfully generated an adult type of cell line with 50% cells carrying a normal karyotype and with 25% enucleation efficiency. These findings could be valuable in the development of an optimal method for establishing cell lines.
Collapse
|
21
|
Lee E, Sivalingam J, Lim ZR, Chia G, Shi LG, Roberts M, Loh YH, Reuveny S, Oh SKW. Review: In vitro generation of red blood cells for transfusion medicine: Progress, prospects and challenges. Biotechnol Adv 2018; 36:2118-2128. [PMID: 30273713 DOI: 10.1016/j.biotechadv.2018.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023]
Abstract
In vitro generation of red blood cells (RBCs) has the potential to circumvent the shortfalls in global demand for blood for transfusion applications. The conventional approach for RBC generation has been from differentiation of hematopoietic stem cells (HSCs) derived from cord blood, adult bone marrow or peripheral blood. More recently, RBCs have been generated from human induced pluripotent stem cells (hiPSCs) as well as from immortalized adult erythroid progenitors. In this review, we highlight the recent advances to RBC generation from these different approaches and discuss the challenges and new strategies that can potentially make large-scale in vitro generation of RBCs a feasible approach.
Collapse
Affiliation(s)
- Esmond Lee
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Republic of Singapore; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, CA 94305, USA.
| | - Jaichandran Sivalingam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Republic of Singapore.
| | - Zhong Ri Lim
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Republic of Singapore
| | - Gloryn Chia
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Republic of Singapore
| | - Low Gin Shi
- Brilliant Research Pte. Ltd, Singapore 139955, Republic of Singapore
| | - Mackenna Roberts
- Oxford-University College London Centre for the Advancement of Sustainable Medical Innovation, University of Oxford, UK
| | - Yuin-Han Loh
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138668, Republic of Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Republic of Singapore
| | - Steve Kah-Weng Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Republic of Singapore
| |
Collapse
|
22
|
Blood, meat, and upscaling tissue engineering: Promises, anticipated markets, and performativity in the biomedical and agri-food sectors. BIOSOCIETIES 2018; 13:368-388. [PMID: 34249140 PMCID: PMC7611148 DOI: 10.1057/s41292-017-0072-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tissue engineering is a set of biomedical technologies, including stem cell science, which seek to grow biological tissue for a diversity of applications. In this paper, we explore two emergent tissue engineering technologies that seek to cause a step change in the upscaling capacity of cell growth: cultured blood and cultured meat. Cultured blood technology seeks to replace blood transfusion with a safe and affordable bioengineered replacement. Cultured meat technology seeks to replace livestock-based food production with meat produced in a bioreactor. Importantly, cultured meat technology straddles the industrial contexts of biomedicine and agrifood. In this paper, we articulate (i) the shared and divergent promissory trajectories of the two technologies and (ii) the anticipated market, consumer, and regulatory contexts of each. Our analysis concludes by discussing how the sectoral ontologies of biomedicine and agri-food impact the performative capacity of each technology’s promissory trajectory.
Collapse
|
23
|
Severn CE, Toye AM. The challenge of growing enough reticulocytes for transfusion. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/voxs.12374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- C. E. Severn
- School of Biochemistry; Biomedical Sciences Building; University Walk; University of Bristol; Bristol UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit; University of Bristol; Bristol UK
| | - A. M. Toye
- School of Biochemistry; Biomedical Sciences Building; University Walk; University of Bristol; Bristol UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit; University of Bristol; Bristol UK
- Bristol Institute of Transfusion Sciences; NHSBT Filton; Bristol UK
| |
Collapse
|
24
|
Zhang Y, Wang C, Wang L, Shen B, Guan X, Tian J, Ren Z, Ding X, Ma Y, Dai W, Jiang Y. Large-Scale Ex Vivo Generation of Human Red Blood Cells from Cord Blood CD34 + Cells. Stem Cells Transl Med 2017; 6:1698-1709. [PMID: 28618139 PMCID: PMC5689780 DOI: 10.1002/sctm.17-0057] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022] Open
Abstract
The ex vivo generation of human red blood cells on a large scale from hematopoietic stem and progenitor cells has been considered as a potential method to overcome blood supply shortages. Here, we report that functional human erythrocytes can be efficiently produced from cord blood (CB) CD34+ cells using a bottle turning device culture system. Safety and efficiency studies were performed in murine and nonhuman primate (NHP) models. With the selected optimized culture conditions, one human CB CD34+ cell could be induced ex vivo to produce up to 200 million erythrocytes with a purity of 90.1% ± 6.2% and 50% ± 5.7% (mean ± SD) for CD235a+ cells and enucleated cells, respectively. The yield of erythrocytes from one CB unit (5 million CD34+ cells) could be, in theory, equivalent to 500 blood transfusion units in clinical application. Moreover, induced human erythrocytes had normal hemoglobin content and could continue to undergo terminal maturation in the murine xenotransplantation model. In NHP model, xenotransplantation of induced human erythrocytes enhanced hematological recovery and ameliorated the hypoxia situation in the primates with hemorrhagic anemia. These findings suggested that the ex vivo-generated erythrocytes could be an alternative blood source for traditional transfusion products in the clinic. Stem Cells Translational Medicine 2017;6:1698-1709.
Collapse
Affiliation(s)
- Yu Zhang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Chen Wang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corp, Suzhou, China
| | - Lan Wang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Bin Shen
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Xin Guan
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Jing Tian
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhihua Ren
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corp, Suzhou, China
| | - Xinxin Ding
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York, USA
| | - Yupo Ma
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Department of Pathology, School of Medicine, The State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Wei Dai
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Department of Environment Medicine, New York University Langone Medical center, Tuxedo, New York, USA
| | - Yongping Jiang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corp, Suzhou, China
| |
Collapse
|
25
|
Bayley R, Ahmed F, Glen K, McCall M, Stacey A, Thomas R. The productivity limit of manufacturing blood cell therapy in scalable stirred bioreactors. J Tissue Eng Regen Med 2017; 12:e368-e378. [PMID: 27696710 PMCID: PMC5811890 DOI: 10.1002/term.2337] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/29/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022]
Abstract
Manufacture of red blood cells (RBCs) from progenitors has been proposed as a method to reduce reliance on donors. Such a process would need to be extremely efficient for economic viability given a relatively low value product and high (2 × 1012) cell dose. Therefore, the aim of these studies was to define the productivity of an industry standard stirred‐tank bioreactor and determine engineering limitations of commercial red blood cells production. Cord blood derived CD34+ cells were cultured under erythroid differentiation conditions in a stirred micro‐bioreactor (Ambr™). Enucleated cells of 80% purity could be created under optimal physical conditions: pH 7.5, 50% oxygen, without gas‐sparging (which damaged cells) and with mechanical agitation (which directly increased enucleation). O2 consumption was low (~5 × 10–8 μg/cell.h) theoretically enabling erythroblast densities in excess of 5 × 108/ml in commercial bioreactors and sub‐10 l/unit production volumes. The bioreactor process achieved a 24% and 42% reduction in media volume and culture time, respectively, relative to unoptimized flask processing. However, media exchange limited productivity to 1 unit of erythroblasts per 500 l of media. Systematic replacement of media constituents, as well as screening for inhibitory levels of ammonia, lactate and key cytokines did not identify a reason for this limitation. We conclude that the properties of erythroblasts are such that the conventional constraints on cell manufacturing efficiency, such as mass transfer and metabolic demand, should not prevent high intensity production; furthermore, this could be achieved in industry standard equipment. However, identification and removal of an inhibitory mediator is required to enable these economies to be realized. Copyright © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Rachel Bayley
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Forhad Ahmed
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Katie Glen
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Mark McCall
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Adrian Stacey
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Robert Thomas
- Centre for Biological Engineering (Holywell Park), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
26
|
Schrimpf C, Wrede C, Glage S, Hegermann J, Backhaus S, Blasczyk R, Heuft HG, Müller T. Differentiation of induced pluripotent stem cell-derived neutrophil granulocytes from common marmoset monkey (Callithrix jacchus). Transfusion 2016; 57:60-69. [PMID: 27888517 DOI: 10.1111/trf.13909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inherited and acquired marrow failure syndromes most commonly lead to defect in myeloid and/or neutrophil differentiation and/or function. Besides this, neutropenia induced by cancer-adjusted chemotherapy is a frequent clinical problem. In both cases, cell replacement therapy is a well-established, but due to necessity of donors limited and perilous procedure. Therefore, autologous cell replacement from patients' own marrow-derived cells lowers risk and bares new possibilities for therapy. Since the immune system of the marmoset monkey is known to show high similarity to humans, preclinical studies with these animals bare high hopes for immunologic research and cell replacement therapy. STUDY DESIGN AND METHODS Marmoset-induced pluripotent stem (iPS) cells (cj-iPSC) were first cultivated on mouse embryonic feeder cells in medium containing recombinant human vascular endothelial growth factor. After 13 days, CD34+/vascular endothelial growth factor receptor-2 (VEGFR2)- cells were sorted, treated with interleukin (IL-3), thrombopoietin, and stem cell factor for 20 days and further cultivated with granulocyte-colony-stimulating factor (G-CSF) and IL-3 for 10 days. RESULTS CD34+/VEGFR2- cells could be generated in high amounts (39.65 ± 6.01%; 2.31 × 105 cells). Afterward, these hematopoietic progenitors could be successfully differentiated into mature cj-iPSC-derived neutrophils showing similar morphology, specific surface antigens, and neutrophil-specific gene products and in vitro phagocytic activity. CONCLUSION cj-iPSC-derived neutrophils bare high hopes in hematologic cell replacement therapy. They exhibit high morphologic similarity to native neutrophils and present neutrophil-specific surface antigens, antimicrobial proteins, and gene products yielding an auspicious approach for continuative experiments including tests in living animals.
Collapse
Affiliation(s)
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, REBIRTH Cluster of Excellence, Hannover.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, REBIRTH Cluster of Excellence, Hannover.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Samantha Backhaus
- Institute for Transfusion Medicine, REBIRTH Cluster of Excellence, Hannover
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, REBIRTH Cluster of Excellence, Hannover
| | - Hans-Gert Heuft
- Institute for Transfusion Medicine, REBIRTH Cluster of Excellence, Hannover
| | - Thomas Müller
- Institute for Transfusion Medicine, REBIRTH Cluster of Excellence, Hannover.,REBIRTH Cluster of Excellence, Hannover, Germany.,Synlab Medical Care Centre Weiden Ltd, Weiden, Germany
| |
Collapse
|
27
|
Polyurethane scaffolds seeded with CD34(+) cells maintain early stem cells whilst also facilitating prolonged egress of haematopoietic progenitors. Sci Rep 2016; 6:32149. [PMID: 27573994 PMCID: PMC5004174 DOI: 10.1038/srep32149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022] Open
Abstract
We describe a 3D erythroid culture system that utilises a porous polyurethane (PU) scaffold to mimic the compartmentalisation found in the bone marrow. PU scaffolds seeded with peripheral blood CD34+ cells exhibit a remarkable reproducibility of egress, with an increased output when directly compared to human bone scaffolds over 28 days. Immunofluorescence demonstrated the persistence of CD34+ cells within the scaffolds for the entirety of the culture. To characterise scaffold outputs, we designed a flow cytometry panel that utilises surface marker expression observed in standard 2D erythroid and megakaryocyte cultures. This showed that the egress population is comprised of haematopoietic progenitor cells (CD36+GPA−/low). Control cultures conducted in parallel but in the absence of a scaffold were also generally maintained for the longevity of the culture albeit with a higher level of cell death. The harvested scaffold egress can also be expanded and differentiated to the reticulocyte stage. In summary, PU scaffolds can behave as a subtractive compartmentalised culture system retaining and allowing maintenance of the seeded “CD34+ cell” population despite this population decreasing in amount as the culture progresses, whilst also facilitating egress of increasingly differentiated cells.
Collapse
|
28
|
De novo generation of HSCs from somatic and pluripotent stem cell sources. Blood 2015; 125:2641-8. [PMID: 25762177 DOI: 10.1182/blood-2014-10-570234] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/13/2015] [Indexed: 01/19/2023] Open
Abstract
Generating human hematopoietic stem cells (HSCs) from autologous tissues, when coupled with genome editing technologies, is a promising approach for cellular transplantation therapy and for in vitro disease modeling, drug discovery, and toxicology studies. Human pluripotent stem cells (hPSCs) represent a potentially inexhaustible supply of autologous tissue; however, to date, directed differentiation from hPSCs has yielded hematopoietic cells that lack robust and sustained multilineage potential. Cellular reprogramming technologies represent an alternative platform for the de novo generation of HSCs via direct conversion from heterologous cell types. In this review, we discuss the latest advancements in HSC generation by directed differentiation from hPSCs or direct conversion from somatic cells, and highlight their applications in research and prospects for therapy.
Collapse
|
29
|
Dorn I, Klich K, Arauzo-Bravo MJ, Radstaak M, Santourlidis S, Ghanjati F, Radke TF, Psathaki OE, Hargus G, Kramer J, Einhaus M, Kim JB, Kögler G, Wernet P, Schöler HR, Schlenke P, Zaehres H. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin. Haematologica 2014; 100:32-41. [PMID: 25326431 DOI: 10.3324/haematol.2014.108068] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential.
Collapse
Affiliation(s)
- Isabel Dorn
- Max Planck Institute for Molecular Biomedicine, Münster, Germany Pediatric Hematology and Oncology, University Hospital Münster, Germany
| | - Katharina Klich
- Max Planck Institute for Molecular Biomedicine, Münster, Germany Institute for Transfusion Medicine and Transplantation Immunology, University Hospital Münster, Germany
| | - Marcos J Arauzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Martina Radstaak
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Simeon Santourlidis
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Düsseldorf, Germany
| | - Foued Ghanjati
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Düsseldorf, Germany
| | - Teja F Radke
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Düsseldorf, Germany
| | | | - Gunnar Hargus
- Max Planck Institute for Molecular Biomedicine, Münster, Germany Institute for Neuropathology, University Hospital Münster, Germany
| | - Jan Kramer
- Medical Department I, University of Lübeck, Germany LADR GmbH, Geesthacht, Germany
| | | | - Jeong Beom Kim
- UNIST, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Gesine Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Düsseldorf, Germany
| | - Peter Wernet
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Düsseldorf, Germany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Münster, Germany Faculty of Medicine, University of Münster, Germany
| | - Peter Schlenke
- Institute for Transfusion Medicine and Transplantation Immunology, University Hospital Münster, Germany Clinics for Blood Group Serology and Transfusion Medicine, Medical University Graz, Austria
| | - Holm Zaehres
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
30
|
Classic and alternative red blood cell storage strategies: seven years of "-omics" investigations. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2014; 13:21-31. [PMID: 25369599 DOI: 10.2450/2014.0053-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
|
31
|
Simply red: A novel spectrophotometric erythroid proliferation assay as a tool for erythropoiesis and erythrotoxicity studies. ACTA ACUST UNITED AC 2014. [PMID: 28626660 PMCID: PMC5466125 DOI: 10.1016/j.btre.2014.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most mammalian cell proliferation assays rely on manual or automated cell counting or the assessment of metabolic activity in colorimetric assays, with the former being either labor and time intensive or expensive and the latter being multistep procedures requiring the addition of several reagents. The proliferation of erythroid cells from hematopoietic stem cells and their differentiation into mature red blood cells is characterized by the accumulation of large amounts of hemoglobin. Hemoglobin concentrations are easily quantifiable using spectrophotometric methods due to the specific absorbance peak of the molecule’s heme moiety between 400 and 420 nm. Erythroid proliferation can therefore be readily assessed using spectrophotometric measurement in this range. We have used this feature of erythroid cells to develop a simple erythroid proliferation assay that is minimally labor/time- and reagent-intensive and could easily be automated for use in high-throughput screening. Such an assay can be a valuable tool for investigations into hematological disorders where erythropoiesis is dysregulated, i.e., either inhibited or enhanced, into the development of anemia as a side-effect of primary diseases such as parasitic infections and into cyto-(particularly erythro-) toxicity of chemical agents or drugs.
Collapse
|
32
|
Singh VK, Saini A, Tsuji K, Sharma PB, Chandra R. Manufacturing blood ex vivo: a futuristic approach to deal with the supply and safety concerns. Front Cell Dev Biol 2014; 2:26. [PMID: 25364733 PMCID: PMC4206981 DOI: 10.3389/fcell.2014.00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/26/2014] [Indexed: 12/13/2022] Open
Abstract
Blood transfusions are routinely done in every medical regimen and a worldwide established collection, processing/storage centers provide their services for the same. There have been extreme global demands for both raising the current collections and supply of safe/adequate blood due to increasingly demanding population. With, various risks remain associated with the donor derived blood, and a number of post collection blood screening and processing methods put extreme constraints on supply system especially in the underdeveloped countries. A logistic approach to manufacture erythrocytes ex-vivo by using modern tissue culture techniques have surfaced in the past few years. There are several reports showing the possibilities of RBCs (and even platelets/neutrophils) expansion under tightly regulated conditions. In fact, ex vivo synthesis of the few units of clinical grade RBCs from a single dose of starting material such as umbilical cord blood (CB) has been well established. Similarly, many different sources are also being explored for the same purpose, such as embryonic stem cells, induced pluripotent stem cells. However, the major concerns remain elusive before the manufacture and clinical use of different blood components may be used to successfully replace the present system of donor derived blood transfusion. The most important factor shall include the large scale of RBCs production from each donated unit within a limited time period and cost of their production, both of these issues need to be handled carefully since many of the recipients among developing countries are unable to pay even for the freely available donor derived blood. Anyways, keeping these issues in mind, present article shall be focused on the possibilities of blood production and their use in the near future.
Collapse
Affiliation(s)
- Vimal K Singh
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Kohichiro Tsuji
- Departments of Pediatric Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo Hospital Tokyo, Japan
| | - P B Sharma
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Ramesh Chandra
- Dr B. R. Ambedkar Center for Biomedical Research, University of Delhi Delhi, India
| |
Collapse
|
33
|
Xie X, Li Y, Pei X. From stem cells to red blood cells: how far away from the clinical application? SCIENCE CHINA-LIFE SCIENCES 2014; 57:581-5. [PMID: 24829108 DOI: 10.1007/s11427-014-4667-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/05/2014] [Indexed: 12/23/2022]
Abstract
The generation of red blood cells (RBCs) from stem cells provides a solution for deficiencies in blood transfusion. Currently, primary hematopoietic stem cells, embryonic stem cells and induced pluripotent stem cells have shown the potential to produce fully mature RBCs. Here, we discuss the advantages, induction protocols, progress and possible clinical applications of stem cells in RBC production.
Collapse
Affiliation(s)
- XiaoYan Xie
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, 100850, China
| | | | | |
Collapse
|
34
|
Masiello F, Tirelli V, Sanchez M, van den Akker E, Girelli G, Marconi M, Villa MA, Rebulla P, Hashmi G, Whitsett C, Migliaccio AR. Mononuclear cells from a rare blood donor, after freezing under good manufacturing practice conditions, generate red blood cells that recapitulate the rare blood phenotype. Transfusion 2014; 54:1059-70. [PMID: 24004289 PMCID: PMC3942379 DOI: 10.1111/trf.12391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/30/2013] [Accepted: 07/05/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cultured red blood cells (cRBCs) from cord blood (CB) have been proposed as transfusion products. Whether buffy coats discarded from blood donations (adult blood [AB]) may be used to generate cRBCs for transfusion has not been investigated. STUDY DESIGN AND METHODS Erythroid progenitor cell content and numbers and blood group antigen profiles of erythroblasts (ERYs) and cRBCs generated in human erythroid massive amplification (HEMA) culture by CB (n = 7) and AB (n = 33, three females, three males, one AB with rare blood antigens cryopreserved using CB protocols) were compared. RESULTS Variability was observed both in progenitor cell content (twofold) and number of ERYs generated (1 log) by CB and AB in HEMA. The average progenitor cell contents of the subset of AB and CB analyzed were similar. AB generated numbers of ERYs three times lower (p < 0.01) than CB in HEMA containing fetal bovine serum but similar to CB in HEMA containing human proteins. Female AB contained two times fewer (p < 0.05) erythroid progenitor cells but generated numbers of ERYs similar to those generated by male AB. Cryopreserved AB with a rare blood group phenotype and shipped to another laboratory generated great numbers of ERYs, 90% of which matured into cRBCs. Blood group antigen expression was consistent with the donor genotype for ERYs generated both by CB and AB but concordant with that of native RBCs only for cells derived from AB. CONCLUSION Buffy coats from regular donors, including a donor with rare phenotypes stored under conditions established for CB, are not inferior to CB for the generation of cRBCs.
Collapse
Affiliation(s)
- Francesca Masiello
- Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanita', Rome, Italy
| | - Valentina Tirelli
- Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanita', Rome, Italy
| | - Massimo Sanchez
- Cell Biology and Neuroscience, Istituto Superiore di Sanita', Rome, Italy
| | | | | | - Maurizio Marconi
- Centro Trasfusionale e di Immunoematologia, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Antonietta Villa
- Centro Trasfusionale e di Immunoematologia, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Rebulla
- Centro Trasfusionale e di Immunoematologia, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Carolyn Whitsett
- Kings County Hospital and Downstate Medical Center, Brooklyn, NY, USA
| | - Anna Rita Migliaccio
- Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanita', Rome, Italy
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
35
|
Shah S, Huang X, Cheng L. Concise review: stem cell-based approaches to red blood cell production for transfusion. Stem Cells Transl Med 2013; 3:346-55. [PMID: 24361925 DOI: 10.5966/sctm.2013-0054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Blood transfusion is a common procedure in modern medicine, and it is practiced throughout the world; however, many countries report a less than sufficient blood supply. Even in developed countries where the supply is currently adequate, projected demographics predict an insufficient supply as early as 2050. The blood supply is also strained during occasional widespread disasters and crises. Transfusion of blood components such as red blood cells (RBCs), platelets, or neutrophils is increasingly used from the same blood unit for multiple purposes and to reduce alloimmune responses. Even for RBCs and platelets lacking nuclei and many antigenic cell-surface molecules, alloimmunity could occur, especially in patients with chronic transfusion requirements. Once alloimmunization occurs, such patients require RBCs from donors with a different blood group antigen combination, making it a challenge to find donors after every successive episode of alloimmunization. Alternative blood substitutes such as synthetic oxygen carriers have so far proven unsuccessful. In this review, we focus on current research and technologies that permit RBC production ex vivo from hematopoietic stem cells, pluripotent stem cells, and immortalized erythroid precursors.
Collapse
Affiliation(s)
- Siddharth Shah
- Division of Hematology, Department of Medicine, and Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
36
|
Rousseau GF, Giarratana MC, Douay L. Large-scale production of red blood cells from stem cells: what are the technical challenges ahead? Biotechnol J 2013; 9:28-38. [PMID: 24408610 DOI: 10.1002/biot.201200368] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/05/2013] [Accepted: 09/12/2013] [Indexed: 12/11/2022]
Abstract
Blood-transfusion centers regularly face the challenge of donor blood shortages, especially for rare blood groups. The possibility of producing universal red blood cells from stem cells industrially has become a possible alternative since the successful injection of blood generated in vitro into a human being in 2011. Although there remains many biological and regulatory issues concerning the efficacy and safety of this new product, the major challenge today for future clinical applications is switching from the current limited 2-dimensional production techniques to large-scale 3-dimensional bioreactors. In addition to requiring technological breakthroughs, the whole process also has to become at least five-fold more cost-efficient to match the current prices of high-quality blood products. The current review sums up the main biological advances of the past decade, outlines the key biotechnological challenges for the large-scale cost-effective production of red blood cells, proposes solutions based on strategies used in the bioindustry and presents the state-of-the-art of large-scale blood production.
Collapse
Affiliation(s)
- Guillaume F Rousseau
- UPMC University Paris 6, UMR_S938, Proliferation and Differentiation of Stem Cells, Paris, France; INSERM, UMR_S938, Proliferation and Differentiation of Stem Cells, Paris, France; Université Paris Diderot, Paris, France
| | | | | |
Collapse
|
37
|
Huang X, Shah S, Wang J, Ye Z, Dowey SN, Tsang KM, Mendelsohn LG, Kato GJ, Kickler TS, Cheng L. Extensive ex vivo expansion of functional human erythroid precursors established from umbilical cord blood cells by defined factors. Mol Ther 2013; 22:451-463. [PMID: 24002691 DOI: 10.1038/mt.2013.201] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/21/2013] [Indexed: 12/15/2022] Open
Abstract
There is a constant shortage of red blood cells (RBCs) from sufficiently matched donors for patients who need chronic transfusion. Ex vivo expansion and maturation of human erythroid precursors (erythroblasts) from the patients or optimally matched donors could represent a potential solution. Proliferating erythroblasts can be expanded from umbilical cord blood mononuclear cells (CB MNCs) ex vivo for 10(6)-10(7)-fold (in ~50 days) before proliferation arrest and reaching sufficient number for broad application. Here, we report that ectopic expression of three genetic factors (Sox2, c-Myc, and an shRNA against TP53 gene) associated with iPSC derivation enables CB-derived erythroblasts to undergo extended expansion (~10(68)-fold in ~12 months) in a serum-free culture condition without change of cell identity or function. These expanding erythroblasts maintain immature erythroblast phenotypes and morphology, a normal diploid karyotype and dependence on a specific combination of growth factors for proliferation throughout expansion period. When being switched to a terminal differentiation condition, these immortalized erythroblasts gradually exit cell cycle, decrease cell size, accumulate hemoglobin, condense nuclei and eventually give rise to enucleated hemoglobin-containing erythrocytes that can bind and release oxygen. Our result may ultimately lead to an alternative approach to generate unlimited numbers of RBCs for personalized transfusion medicine.
Collapse
Affiliation(s)
- Xiaosong Huang
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Siddharth Shah
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing Wang
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaohui Ye
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah N Dowey
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kit Man Tsang
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laurel G Mendelsohn
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gregory J Kato
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas S Kickler
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linzhao Cheng
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
38
|
Li X, Wu Z, Fu X, Han W. How Far Are Stem-Cell-Derived Erythrocytes from the Clinical Arena? Bioscience 2013. [DOI: 10.1525/bio.2013.63.8.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
39
|
Mazurier C, Douay L. [Red blood cell production for transfusion purposes. A stem cell ex vivo fate]. Transfus Clin Biol 2013; 20:90-4. [PMID: 23601197 DOI: 10.1016/j.tracli.2013.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In vitro generation of red blood cells (RBC) makes sense in a context of recurrent shortage. It could be an interesting complementary source for "classic" transfusion products by combining the sufficiency of supply, homemade production of a particular phenotype of interest and reduced risk of infection. The question that arises is how to produce in vitro RBC? Here we retrace the steps that led to the production of functional RBC, from basic knowledge of in vivo erythropoiesis to in vitro generation of RBC from different sources of stem cells. Regarding the adults HSC, the major finding lies in the recent establishment of proof of concept of their transfusion in humans. Because the induced pluripotent stem cells (IPS) can proliferate indefinitely and be selected for a phenotype of interest, they are obviously the best source of stem cells. Proof of concept of generation of RBC from IPS has been made, but still has to be optimized. We also discuss the key points that need to be solved to achieve clinical transfusion application.
Collapse
Affiliation(s)
- C Mazurier
- Établissement français du sang Île-de-France, 94200 Ivry-sur-Seine, France
| | | |
Collapse
|
40
|
The Lombardy Rare Donor Programme. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2013; 12 Suppl 1:s249-55. [PMID: 23522888 DOI: 10.2450/2013.0182-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/12/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND In 2005, the government of Lombardy, an Italian region with an ethnically varied population of approximately 9.8 million inhabitants including 250,000 blood donors, founded the Lombardy Rare Donor Programme, a regional network of 15 blood transfusion departments coordinated by the Immunohaematology Reference Laboratory of the Ca' Granda Ospedale Maggiore Policlinico in Milan. During 2005 to 2012, Lombardy funded LORD-P with 14.1 million euros. MATERIALS AND METHODS During 2005-2012 the Lombardy Rare Donor Programme members developed a registry of blood donors and a bank of red blood cell units with either rare blood group phenotypes or IgA deficiency. To do this, the Immunohaematology Reference Laboratory performed extensive serological and molecular red blood cell typing in 59,738 group O or A, Rh CCDee, ccdee, ccDEE, ccDee, K- or k- donors aged 18-55 with a record of two or more blood donations, including both Caucasians and ethnic minorities. In parallel, the Immunohaematology Reference Laboratory implemented a 24/7 service of consultation, testing and distribution of rare units for anticipated or emergent transfusion needs in patients developing complex red blood cell alloimmunisation and lacking local compatible red blood cell or showing IgA deficiency. RESULTS Red blood cell typing identified 8,747, 538 and 33 donors rare for a combination of common antigens, negative for high-frequency antigens and with a rare Rh phenotype, respectively. In June 2012, the Lombardy Rare Donor Programme frozen inventory included 1,157 red blood cell units. From March 2010 to June 2012 one IgA-deficient donor was detected among 1,941 screened donors and IgA deficiency was confirmed in four previously identified donors. From 2005 to June 2012, the Immunohaematology Reference Laboratory provided 281 complex red blood cell alloimmunisation consultations and distributed 8,008 Lombardy Rare Donor Programme red blood cell units within and outside the region, which were transfused to 2,365 patients with no untoward effects. DISCUSSION Lombardy Rare Donor Programme, which recently joined the ISBT Working Party on Rare Donors, contributed to increase blood transfusion safety and efficacy inside and outside Lombardy.
Collapse
|